xref: /linux/crypto/Kconfig (revision 637e73ef99930b2d55b91868e7297689ca06f37d)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	select CRYPTO_LIB_UTILS
19	help
20	  This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27	bool "FIPS 200 compliance"
28	depends on CRYPTO_DRBG && CRYPTO_SELFTESTS
29	depends on (MODULE_SIG || !MODULES)
30	help
31	  This option enables the fips boot option which is
32	  required if you want the system to operate in a FIPS 200
33	  certification.  You should say no unless you know what
34	  this is.
35
36config CRYPTO_FIPS_NAME
37	string "FIPS Module Name"
38	default "Linux Kernel Cryptographic API"
39	depends on CRYPTO_FIPS
40	help
41	  This option sets the FIPS Module name reported by the Crypto API via
42	  the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45	bool "Use Custom FIPS Module Version"
46	depends on CRYPTO_FIPS
47	default n
48
49config CRYPTO_FIPS_VERSION
50	string "FIPS Module Version"
51	default "(none)"
52	depends on CRYPTO_FIPS_CUSTOM_VERSION
53	help
54	  This option provides the ability to override the FIPS Module Version.
55	  By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58	tristate
59	select CRYPTO_ALGAPI2
60	help
61	  This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64	tristate
65
66config CRYPTO_AEAD
67	tristate
68	select CRYPTO_AEAD2
69	select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72	tristate
73	select CRYPTO_ALGAPI2
74
75config CRYPTO_SIG
76	tristate
77	select CRYPTO_SIG2
78	select CRYPTO_ALGAPI
79
80config CRYPTO_SIG2
81	tristate
82	select CRYPTO_ALGAPI2
83
84config CRYPTO_SKCIPHER
85	tristate
86	select CRYPTO_SKCIPHER2
87	select CRYPTO_ALGAPI
88	select CRYPTO_ECB
89
90config CRYPTO_SKCIPHER2
91	tristate
92	select CRYPTO_ALGAPI2
93
94config CRYPTO_HASH
95	tristate
96	select CRYPTO_HASH2
97	select CRYPTO_ALGAPI
98
99config CRYPTO_HASH2
100	tristate
101	select CRYPTO_ALGAPI2
102
103config CRYPTO_RNG
104	tristate
105	select CRYPTO_RNG2
106	select CRYPTO_ALGAPI
107
108config CRYPTO_RNG2
109	tristate
110	select CRYPTO_ALGAPI2
111
112config CRYPTO_RNG_DEFAULT
113	tristate
114	select CRYPTO_DRBG_MENU
115
116config CRYPTO_AKCIPHER2
117	tristate
118	select CRYPTO_ALGAPI2
119
120config CRYPTO_AKCIPHER
121	tristate
122	select CRYPTO_AKCIPHER2
123	select CRYPTO_ALGAPI
124
125config CRYPTO_KPP2
126	tristate
127	select CRYPTO_ALGAPI2
128
129config CRYPTO_KPP
130	tristate
131	select CRYPTO_ALGAPI
132	select CRYPTO_KPP2
133
134config CRYPTO_ACOMP2
135	tristate
136	select CRYPTO_ALGAPI2
137	select SGL_ALLOC
138
139config CRYPTO_ACOMP
140	tristate
141	select CRYPTO_ALGAPI
142	select CRYPTO_ACOMP2
143
144config CRYPTO_HKDF
145	tristate
146	select CRYPTO_SHA256 if CRYPTO_SELFTESTS
147	select CRYPTO_SHA512 if CRYPTO_SELFTESTS
148	select CRYPTO_HASH2
149
150config CRYPTO_MANAGER
151	tristate
152	default CRYPTO_ALGAPI if CRYPTO_SELFTESTS
153	select CRYPTO_MANAGER2
154	help
155	  This provides the support for instantiating templates such as
156	  cbc(aes), and the support for the crypto self-tests.
157
158config CRYPTO_MANAGER2
159	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
160	select CRYPTO_ACOMP2
161	select CRYPTO_AEAD2
162	select CRYPTO_AKCIPHER2
163	select CRYPTO_SIG2
164	select CRYPTO_HASH2
165	select CRYPTO_KPP2
166	select CRYPTO_RNG2
167	select CRYPTO_SKCIPHER2
168
169config CRYPTO_USER
170	tristate "Userspace cryptographic algorithm configuration"
171	depends on NET
172	select CRYPTO_MANAGER
173	help
174	  Userspace configuration for cryptographic instantiations such as
175	  cbc(aes).
176
177config CRYPTO_SELFTESTS
178	bool "Enable cryptographic self-tests"
179	depends on EXPERT
180	help
181	  Enable the cryptographic self-tests.
182
183	  The cryptographic self-tests run at boot time, or at algorithm
184	  registration time if algorithms are dynamically loaded later.
185
186	  There are two main use cases for these tests:
187
188	  - Development and pre-release testing.  In this case, also enable
189	    CRYPTO_SELFTESTS_FULL to get the full set of tests.  All crypto code
190	    in the kernel is expected to pass the full set of tests.
191
192	  - Production kernels, to help prevent buggy drivers from being used
193	    and/or meet FIPS 140-3 pre-operational testing requirements.  In
194	    this case, enable CRYPTO_SELFTESTS but not CRYPTO_SELFTESTS_FULL.
195
196config CRYPTO_SELFTESTS_FULL
197	bool "Enable the full set of cryptographic self-tests"
198	depends on CRYPTO_SELFTESTS
199	help
200	  Enable the full set of cryptographic self-tests for each algorithm.
201
202	  The full set of tests should be enabled for development and
203	  pre-release testing, but not in production kernels.
204
205	  All crypto code in the kernel is expected to pass the full tests.
206
207config CRYPTO_NULL
208	tristate "Null algorithms"
209	select CRYPTO_ALGAPI
210	select CRYPTO_SKCIPHER
211	select CRYPTO_HASH
212	help
213	  These are 'Null' algorithms, used by IPsec, which do nothing.
214
215config CRYPTO_PCRYPT
216	tristate "Parallel crypto engine"
217	depends on SMP
218	select PADATA
219	select CRYPTO_MANAGER
220	select CRYPTO_AEAD
221	help
222	  This converts an arbitrary crypto algorithm into a parallel
223	  algorithm that executes in kernel threads.
224
225config CRYPTO_CRYPTD
226	tristate "Software async crypto daemon"
227	select CRYPTO_SKCIPHER
228	select CRYPTO_HASH
229	select CRYPTO_MANAGER
230	help
231	  This is a generic software asynchronous crypto daemon that
232	  converts an arbitrary synchronous software crypto algorithm
233	  into an asynchronous algorithm that executes in a kernel thread.
234
235config CRYPTO_AUTHENC
236	tristate "Authenc support"
237	select CRYPTO_AEAD
238	select CRYPTO_SKCIPHER
239	select CRYPTO_MANAGER
240	select CRYPTO_HASH
241	help
242	  Authenc: Combined mode wrapper for IPsec.
243
244	  This is required for IPSec ESP (XFRM_ESP).
245
246config CRYPTO_KRB5ENC
247	tristate "Kerberos 5 combined hash+cipher support"
248	select CRYPTO_AEAD
249	select CRYPTO_SKCIPHER
250	select CRYPTO_MANAGER
251	select CRYPTO_HASH
252	help
253	  Combined hash and cipher support for Kerberos 5 RFC3961 simplified
254	  profile.  This is required for Kerberos 5-style encryption, used by
255	  sunrpc/NFS and rxrpc/AFS.
256
257config CRYPTO_BENCHMARK
258	tristate "Crypto benchmarking module"
259	depends on m || EXPERT
260	select CRYPTO_MANAGER
261	help
262	  Quick & dirty crypto benchmarking module.
263
264	  This is mainly intended for use by people developing cryptographic
265	  algorithms in the kernel.  It should not be enabled in production
266	  kernels.
267
268config CRYPTO_SIMD
269	tristate
270	select CRYPTO_CRYPTD
271
272config CRYPTO_ENGINE
273	tristate
274
275endmenu
276
277menu "Public-key cryptography"
278
279config CRYPTO_RSA
280	tristate "RSA (Rivest-Shamir-Adleman)"
281	select CRYPTO_AKCIPHER
282	select CRYPTO_MANAGER
283	select CRYPTO_SIG
284	select MPILIB
285	select ASN1
286	help
287	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
288
289config CRYPTO_DH
290	tristate "DH (Diffie-Hellman)"
291	select CRYPTO_KPP
292	select MPILIB
293	help
294	  DH (Diffie-Hellman) key exchange algorithm
295
296config CRYPTO_DH_RFC7919_GROUPS
297	bool "RFC 7919 FFDHE groups"
298	depends on CRYPTO_DH
299	select CRYPTO_RNG_DEFAULT
300	help
301	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
302	  defined in RFC7919.
303
304	  Support these finite-field groups in DH key exchanges:
305	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
306
307	  If unsure, say N.
308
309config CRYPTO_ECC
310	tristate
311	select CRYPTO_RNG_DEFAULT
312
313config CRYPTO_ECDH
314	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
315	select CRYPTO_ECC
316	select CRYPTO_KPP
317	help
318	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
319	  using curves P-192, P-256, and P-384 (FIPS 186)
320
321config CRYPTO_ECDSA
322	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
323	select CRYPTO_ECC
324	select CRYPTO_SIG
325	select ASN1
326	help
327	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
328	  ISO/IEC 14888-3)
329	  using curves P-192, P-256, P-384 and P-521
330
331	  Only signature verification is implemented.
332
333config CRYPTO_ECRDSA
334	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
335	select CRYPTO_ECC
336	select CRYPTO_SIG
337	select CRYPTO_STREEBOG
338	select OID_REGISTRY
339	select ASN1
340	help
341	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
342	  RFC 7091, ISO/IEC 14888-3)
343
344	  One of the Russian cryptographic standard algorithms (called GOST
345	  algorithms). Only signature verification is implemented.
346
347endmenu
348
349menu "Block ciphers"
350
351config CRYPTO_AES
352	tristate "AES (Advanced Encryption Standard)"
353	select CRYPTO_ALGAPI
354	select CRYPTO_LIB_AES
355	help
356	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
357
358	  Rijndael appears to be consistently a very good performer in
359	  both hardware and software across a wide range of computing
360	  environments regardless of its use in feedback or non-feedback
361	  modes. Its key setup time is excellent, and its key agility is
362	  good. Rijndael's very low memory requirements make it very well
363	  suited for restricted-space environments, in which it also
364	  demonstrates excellent performance. Rijndael's operations are
365	  among the easiest to defend against power and timing attacks.
366
367	  The AES specifies three key sizes: 128, 192 and 256 bits
368
369config CRYPTO_AES_TI
370	tristate "AES (Advanced Encryption Standard) (fixed time)"
371	select CRYPTO_ALGAPI
372	select CRYPTO_LIB_AES
373	help
374	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
375
376	  This is a generic implementation of AES that attempts to eliminate
377	  data dependent latencies as much as possible without affecting
378	  performance too much. It is intended for use by the generic CCM
379	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
380	  solely on encryption (although decryption is supported as well, but
381	  with a more dramatic performance hit)
382
383	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
384	  8 for decryption), this implementation only uses just two S-boxes of
385	  256 bytes each, and attempts to eliminate data dependent latencies by
386	  prefetching the entire table into the cache at the start of each
387	  block. Interrupts are also disabled to avoid races where cachelines
388	  are evicted when the CPU is interrupted to do something else.
389
390config CRYPTO_ANUBIS
391	tristate "Anubis"
392	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
393	select CRYPTO_ALGAPI
394	help
395	  Anubis cipher algorithm
396
397	  Anubis is a variable key length cipher which can use keys from
398	  128 bits to 320 bits in length.  It was evaluated as a entrant
399	  in the NESSIE competition.
400
401	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
402	  for further information.
403
404config CRYPTO_ARIA
405	tristate "ARIA"
406	select CRYPTO_ALGAPI
407	help
408	  ARIA cipher algorithm (RFC5794)
409
410	  ARIA is a standard encryption algorithm of the Republic of Korea.
411	  The ARIA specifies three key sizes and rounds.
412	  128-bit: 12 rounds.
413	  192-bit: 14 rounds.
414	  256-bit: 16 rounds.
415
416	  See:
417	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
418
419config CRYPTO_BLOWFISH
420	tristate "Blowfish"
421	select CRYPTO_ALGAPI
422	select CRYPTO_BLOWFISH_COMMON
423	help
424	  Blowfish cipher algorithm, by Bruce Schneier
425
426	  This is a variable key length cipher which can use keys from 32
427	  bits to 448 bits in length.  It's fast, simple and specifically
428	  designed for use on "large microprocessors".
429
430	  See https://www.schneier.com/blowfish.html for further information.
431
432config CRYPTO_BLOWFISH_COMMON
433	tristate
434	help
435	  Common parts of the Blowfish cipher algorithm shared by the
436	  generic c and the assembler implementations.
437
438config CRYPTO_CAMELLIA
439	tristate "Camellia"
440	select CRYPTO_ALGAPI
441	help
442	  Camellia cipher algorithms (ISO/IEC 18033-3)
443
444	  Camellia is a symmetric key block cipher developed jointly
445	  at NTT and Mitsubishi Electric Corporation.
446
447	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
448
449	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
450
451config CRYPTO_CAST_COMMON
452	tristate
453	help
454	  Common parts of the CAST cipher algorithms shared by the
455	  generic c and the assembler implementations.
456
457config CRYPTO_CAST5
458	tristate "CAST5 (CAST-128)"
459	select CRYPTO_ALGAPI
460	select CRYPTO_CAST_COMMON
461	help
462	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
463
464config CRYPTO_CAST6
465	tristate "CAST6 (CAST-256)"
466	select CRYPTO_ALGAPI
467	select CRYPTO_CAST_COMMON
468	help
469	  CAST6 (CAST-256) encryption algorithm (RFC2612)
470
471config CRYPTO_DES
472	tristate "DES and Triple DES EDE"
473	select CRYPTO_ALGAPI
474	select CRYPTO_LIB_DES
475	help
476	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
477	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
478	  cipher algorithms
479
480config CRYPTO_FCRYPT
481	tristate "FCrypt"
482	select CRYPTO_ALGAPI
483	select CRYPTO_SKCIPHER
484	help
485	  FCrypt algorithm used by RxRPC
486
487	  See https://ota.polyonymo.us/fcrypt-paper.txt
488
489config CRYPTO_KHAZAD
490	tristate "Khazad"
491	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
492	select CRYPTO_ALGAPI
493	help
494	  Khazad cipher algorithm
495
496	  Khazad was a finalist in the initial NESSIE competition.  It is
497	  an algorithm optimized for 64-bit processors with good performance
498	  on 32-bit processors.  Khazad uses an 128 bit key size.
499
500	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
501	  for further information.
502
503config CRYPTO_SEED
504	tristate "SEED"
505	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
506	select CRYPTO_ALGAPI
507	help
508	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
509
510	  SEED is a 128-bit symmetric key block cipher that has been
511	  developed by KISA (Korea Information Security Agency) as a
512	  national standard encryption algorithm of the Republic of Korea.
513	  It is a 16 round block cipher with the key size of 128 bit.
514
515	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
516	  for further information.
517
518config CRYPTO_SERPENT
519	tristate "Serpent"
520	select CRYPTO_ALGAPI
521	help
522	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
523
524	  Keys are allowed to be from 0 to 256 bits in length, in steps
525	  of 8 bits.
526
527	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
528
529config CRYPTO_SM4
530	tristate
531
532config CRYPTO_SM4_GENERIC
533	tristate "SM4 (ShangMi 4)"
534	select CRYPTO_ALGAPI
535	select CRYPTO_SM4
536	help
537	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
538	  ISO/IEC 18033-3:2010/Amd 1:2021)
539
540	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
541	  Organization of State Commercial Administration of China (OSCCA)
542	  as an authorized cryptographic algorithms for the use within China.
543
544	  SMS4 was originally created for use in protecting wireless
545	  networks, and is mandated in the Chinese National Standard for
546	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
547	  (GB.15629.11-2003).
548
549	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
550	  standardized through TC 260 of the Standardization Administration
551	  of the People's Republic of China (SAC).
552
553	  The input, output, and key of SMS4 are each 128 bits.
554
555	  See https://eprint.iacr.org/2008/329.pdf for further information.
556
557	  If unsure, say N.
558
559config CRYPTO_TEA
560	tristate "TEA, XTEA and XETA"
561	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
562	select CRYPTO_ALGAPI
563	help
564	  TEA (Tiny Encryption Algorithm) cipher algorithms
565
566	  Tiny Encryption Algorithm is a simple cipher that uses
567	  many rounds for security.  It is very fast and uses
568	  little memory.
569
570	  Xtendend Tiny Encryption Algorithm is a modification to
571	  the TEA algorithm to address a potential key weakness
572	  in the TEA algorithm.
573
574	  Xtendend Encryption Tiny Algorithm is a mis-implementation
575	  of the XTEA algorithm for compatibility purposes.
576
577config CRYPTO_TWOFISH
578	tristate "Twofish"
579	select CRYPTO_ALGAPI
580	select CRYPTO_TWOFISH_COMMON
581	help
582	  Twofish cipher algorithm
583
584	  Twofish was submitted as an AES (Advanced Encryption Standard)
585	  candidate cipher by researchers at CounterPane Systems.  It is a
586	  16 round block cipher supporting key sizes of 128, 192, and 256
587	  bits.
588
589	  See https://www.schneier.com/twofish.html for further information.
590
591config CRYPTO_TWOFISH_COMMON
592	tristate
593	help
594	  Common parts of the Twofish cipher algorithm shared by the
595	  generic c and the assembler implementations.
596
597endmenu
598
599menu "Length-preserving ciphers and modes"
600
601config CRYPTO_ADIANTUM
602	tristate "Adiantum"
603	select CRYPTO_CHACHA20
604	select CRYPTO_LIB_NH
605	select CRYPTO_LIB_POLY1305
606	select CRYPTO_LIB_POLY1305_GENERIC
607	select CRYPTO_MANAGER
608	help
609	  Adiantum tweakable, length-preserving encryption mode
610
611	  Designed for fast and secure disk encryption, especially on
612	  CPUs without dedicated crypto instructions.  It encrypts
613	  each sector using the XChaCha12 stream cipher, two passes of
614	  an ε-almost-∆-universal hash function, and an invocation of
615	  the AES-256 block cipher on a single 16-byte block.  On CPUs
616	  without AES instructions, Adiantum is much faster than
617	  AES-XTS.
618
619	  Adiantum's security is provably reducible to that of its
620	  underlying stream and block ciphers, subject to a security
621	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
622	  mode, so it actually provides an even stronger notion of
623	  security than XTS, subject to the security bound.
624
625	  If unsure, say N.
626
627config CRYPTO_ARC4
628	tristate "ARC4 (Alleged Rivest Cipher 4)"
629	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
630	select CRYPTO_SKCIPHER
631	select CRYPTO_LIB_ARC4
632	help
633	  ARC4 cipher algorithm
634
635	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
636	  bits in length.  This algorithm is required for driver-based
637	  WEP, but it should not be for other purposes because of the
638	  weakness of the algorithm.
639
640config CRYPTO_CHACHA20
641	tristate "ChaCha"
642	select CRYPTO_LIB_CHACHA
643	select CRYPTO_SKCIPHER
644	help
645	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
646
647	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
648	  Bernstein and further specified in RFC7539 for use in IETF protocols.
649	  This is the portable C implementation of ChaCha20.  See
650	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
651
652	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
653	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
654	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
655	  while provably retaining ChaCha20's security.  See
656	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
657
658	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
659	  reduced security margin but increased performance.  It can be needed
660	  in some performance-sensitive scenarios.
661
662config CRYPTO_CBC
663	tristate "CBC (Cipher Block Chaining)"
664	select CRYPTO_SKCIPHER
665	select CRYPTO_MANAGER
666	help
667	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
668
669	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
670
671config CRYPTO_CTR
672	tristate "CTR (Counter)"
673	select CRYPTO_SKCIPHER
674	select CRYPTO_MANAGER
675	help
676	  CTR (Counter) mode (NIST SP800-38A)
677
678config CRYPTO_CTS
679	tristate "CTS (Cipher Text Stealing)"
680	select CRYPTO_SKCIPHER
681	select CRYPTO_MANAGER
682	help
683	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
684	  Addendum to SP800-38A (October 2010))
685
686	  This mode is required for Kerberos gss mechanism support
687	  for AES encryption.
688
689config CRYPTO_ECB
690	tristate "ECB (Electronic Codebook)"
691	select CRYPTO_SKCIPHER2
692	select CRYPTO_MANAGER
693	help
694	  ECB (Electronic Codebook) mode (NIST SP800-38A)
695
696config CRYPTO_HCTR2
697	tristate "HCTR2"
698	select CRYPTO_XCTR
699	select CRYPTO_LIB_POLYVAL
700	select CRYPTO_MANAGER
701	help
702	  HCTR2 length-preserving encryption mode
703
704	  A mode for storage encryption that is efficient on processors with
705	  instructions to accelerate AES and carryless multiplication, e.g.
706	  x86 processors with AES-NI and CLMUL, and ARM processors with the
707	  ARMv8 crypto extensions.
708
709	  See https://eprint.iacr.org/2021/1441
710
711config CRYPTO_LRW
712	tristate "LRW (Liskov Rivest Wagner)"
713	select CRYPTO_LIB_GF128MUL
714	select CRYPTO_SKCIPHER
715	select CRYPTO_MANAGER
716	select CRYPTO_ECB
717	help
718	  LRW (Liskov Rivest Wagner) mode
719
720	  A tweakable, non malleable, non movable
721	  narrow block cipher mode for dm-crypt.  Use it with cipher
722	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
723	  The first 128, 192 or 256 bits in the key are used for AES and the
724	  rest is used to tie each cipher block to its logical position.
725
726	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
727
728config CRYPTO_PCBC
729	tristate "PCBC (Propagating Cipher Block Chaining)"
730	select CRYPTO_SKCIPHER
731	select CRYPTO_MANAGER
732	help
733	  PCBC (Propagating Cipher Block Chaining) mode
734
735	  This block cipher mode is required for RxRPC.
736
737config CRYPTO_XCTR
738	tristate
739	select CRYPTO_SKCIPHER
740	select CRYPTO_MANAGER
741	help
742	  XCTR (XOR Counter) mode for HCTR2
743
744	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
745	  addition rather than big-endian arithmetic.
746
747	  XCTR mode is used to implement HCTR2.
748
749config CRYPTO_XTS
750	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
751	select CRYPTO_SKCIPHER
752	select CRYPTO_MANAGER
753	select CRYPTO_ECB
754	help
755	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
756	  and IEEE 1619)
757
758	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
759	  implementation currently can't handle a sectorsize which is not a
760	  multiple of 16 bytes.
761
762endmenu
763
764menu "AEAD (authenticated encryption with associated data) ciphers"
765
766config CRYPTO_AEGIS128
767	tristate "AEGIS-128"
768	select CRYPTO_AEAD
769	select CRYPTO_LIB_AES  # for AES S-box tables
770	help
771	  AEGIS-128 AEAD algorithm
772
773config CRYPTO_AEGIS128_SIMD
774	bool "AEGIS-128 (arm NEON, arm64 NEON)"
775	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
776	default y
777	help
778	  AEGIS-128 AEAD algorithm
779
780	  Architecture: arm or arm64 using:
781	  - NEON (Advanced SIMD) extension
782
783config CRYPTO_CHACHA20POLY1305
784	tristate "ChaCha20-Poly1305"
785	select CRYPTO_CHACHA20
786	select CRYPTO_AEAD
787	select CRYPTO_LIB_POLY1305
788	select CRYPTO_MANAGER
789	help
790	  ChaCha20 stream cipher and Poly1305 authenticator combined
791	  mode (RFC8439)
792
793config CRYPTO_CCM
794	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
795	select CRYPTO_CTR
796	select CRYPTO_HASH
797	select CRYPTO_AEAD
798	select CRYPTO_MANAGER
799	help
800	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
801	  authenticated encryption mode (NIST SP800-38C)
802
803config CRYPTO_GCM
804	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
805	select CRYPTO_CTR
806	select CRYPTO_AEAD
807	select CRYPTO_GHASH
808	select CRYPTO_MANAGER
809	help
810	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
811	  (GCM Message Authentication Code) (NIST SP800-38D)
812
813	  This is required for IPSec ESP (XFRM_ESP).
814
815config CRYPTO_GENIV
816	tristate
817	select CRYPTO_AEAD
818	select CRYPTO_MANAGER
819	select CRYPTO_RNG_DEFAULT
820
821config CRYPTO_SEQIV
822	tristate "Sequence Number IV Generator"
823	select CRYPTO_GENIV
824	help
825	  Sequence Number IV generator
826
827	  This IV generator generates an IV based on a sequence number by
828	  xoring it with a salt.  This algorithm is mainly useful for CTR.
829
830	  This is required for IPsec ESP (XFRM_ESP).
831
832config CRYPTO_ECHAINIV
833	tristate "Encrypted Chain IV Generator"
834	select CRYPTO_GENIV
835	help
836	  Encrypted Chain IV generator
837
838	  This IV generator generates an IV based on the encryption of
839	  a sequence number xored with a salt.  This is the default
840	  algorithm for CBC.
841
842config CRYPTO_ESSIV
843	tristate "Encrypted Salt-Sector IV Generator"
844	select CRYPTO_AUTHENC
845	help
846	  Encrypted Salt-Sector IV generator
847
848	  This IV generator is used in some cases by fscrypt and/or
849	  dm-crypt. It uses the hash of the block encryption key as the
850	  symmetric key for a block encryption pass applied to the input
851	  IV, making low entropy IV sources more suitable for block
852	  encryption.
853
854	  This driver implements a crypto API template that can be
855	  instantiated either as an skcipher or as an AEAD (depending on the
856	  type of the first template argument), and which defers encryption
857	  and decryption requests to the encapsulated cipher after applying
858	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
859	  that the keys are presented in the same format used by the authenc
860	  template, and that the IV appears at the end of the authenticated
861	  associated data (AAD) region (which is how dm-crypt uses it.)
862
863	  Note that the use of ESSIV is not recommended for new deployments,
864	  and so this only needs to be enabled when interoperability with
865	  existing encrypted volumes of filesystems is required, or when
866	  building for a particular system that requires it (e.g., when
867	  the SoC in question has accelerated CBC but not XTS, making CBC
868	  combined with ESSIV the only feasible mode for h/w accelerated
869	  block encryption)
870
871endmenu
872
873menu "Hashes, digests, and MACs"
874
875config CRYPTO_BLAKE2B
876	tristate "BLAKE2b"
877	select CRYPTO_HASH
878	select CRYPTO_LIB_BLAKE2B
879	help
880	  BLAKE2b cryptographic hash function (RFC 7693)
881
882	  BLAKE2b is optimized for 64-bit platforms and can produce digests
883	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
884
885	  This module provides the following algorithms:
886	  - blake2b-160
887	  - blake2b-256
888	  - blake2b-384
889	  - blake2b-512
890
891	  Used by the btrfs filesystem.
892
893	  See https://blake2.net for further information.
894
895config CRYPTO_CMAC
896	tristate "CMAC (Cipher-based MAC)"
897	select CRYPTO_HASH
898	select CRYPTO_MANAGER
899	help
900	  CMAC (Cipher-based Message Authentication Code) authentication
901	  mode (NIST SP800-38B and IETF RFC4493)
902
903config CRYPTO_GHASH
904	tristate "GHASH"
905	select CRYPTO_HASH
906	select CRYPTO_LIB_GF128MUL
907	help
908	  GCM GHASH function (NIST SP800-38D)
909
910config CRYPTO_HMAC
911	tristate "HMAC (Keyed-Hash MAC)"
912	select CRYPTO_HASH
913	select CRYPTO_MANAGER
914	help
915	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
916	  RFC2104)
917
918	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
919
920config CRYPTO_MD4
921	tristate "MD4"
922	select CRYPTO_HASH
923	help
924	  MD4 message digest algorithm (RFC1320)
925
926config CRYPTO_MD5
927	tristate "MD5"
928	select CRYPTO_HASH
929	select CRYPTO_LIB_MD5
930	help
931	  MD5 message digest algorithm (RFC1321), including HMAC support.
932
933config CRYPTO_MICHAEL_MIC
934	tristate "Michael MIC"
935	select CRYPTO_HASH
936	help
937	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
938
939	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
940	  known as WPA (Wif-Fi Protected Access).
941
942	  This algorithm is required for TKIP, but it should not be used for
943	  other purposes because of the weakness of the algorithm.
944
945config CRYPTO_RMD160
946	tristate "RIPEMD-160"
947	select CRYPTO_HASH
948	help
949	  RIPEMD-160 hash function (ISO/IEC 10118-3)
950
951	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
952	  to be used as a secure replacement for the 128-bit hash functions
953	  MD4, MD5 and its predecessor RIPEMD
954	  (not to be confused with RIPEMD-128).
955
956	  Its speed is comparable to SHA-1 and there are no known attacks
957	  against RIPEMD-160.
958
959	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
960	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
961	  for further information.
962
963config CRYPTO_SHA1
964	tristate "SHA-1"
965	select CRYPTO_HASH
966	select CRYPTO_LIB_SHA1
967	help
968	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3), including
969	  HMAC support.
970
971config CRYPTO_SHA256
972	tristate "SHA-224 and SHA-256"
973	select CRYPTO_HASH
974	select CRYPTO_LIB_SHA256
975	help
976	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC
977	  10118-3), including HMAC support.
978
979	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
980	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
981
982config CRYPTO_SHA512
983	tristate "SHA-384 and SHA-512"
984	select CRYPTO_HASH
985	select CRYPTO_LIB_SHA512
986	help
987	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC
988	  10118-3), including HMAC support.
989
990config CRYPTO_SHA3
991	tristate "SHA-3"
992	select CRYPTO_HASH
993	select CRYPTO_LIB_SHA3
994	help
995	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
996
997config CRYPTO_SM3_GENERIC
998	tristate "SM3 (ShangMi 3)"
999	select CRYPTO_HASH
1000	select CRYPTO_LIB_SM3
1001	help
1002	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1003
1004	  This is part of the Chinese Commercial Cryptography suite.
1005
1006	  References:
1007	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1008	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1009
1010config CRYPTO_STREEBOG
1011	tristate "Streebog"
1012	select CRYPTO_HASH
1013	help
1014	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1015
1016	  This is one of the Russian cryptographic standard algorithms (called
1017	  GOST algorithms). This setting enables two hash algorithms with
1018	  256 and 512 bits output.
1019
1020	  References:
1021	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1022	  https://tools.ietf.org/html/rfc6986
1023
1024config CRYPTO_WP512
1025	tristate "Whirlpool"
1026	select CRYPTO_HASH
1027	help
1028	  Whirlpool hash function (ISO/IEC 10118-3)
1029
1030	  512, 384 and 256-bit hashes.
1031
1032	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1033
1034	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1035	  for further information.
1036
1037config CRYPTO_XCBC
1038	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1039	select CRYPTO_HASH
1040	select CRYPTO_MANAGER
1041	help
1042	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1043	  Code) (RFC3566)
1044
1045config CRYPTO_XXHASH
1046	tristate "xxHash"
1047	select CRYPTO_HASH
1048	select XXHASH
1049	help
1050	  xxHash non-cryptographic hash algorithm
1051
1052	  Extremely fast, working at speeds close to RAM limits.
1053
1054	  Used by the btrfs filesystem.
1055
1056endmenu
1057
1058menu "CRCs (cyclic redundancy checks)"
1059
1060config CRYPTO_CRC32C
1061	tristate "CRC32c"
1062	select CRYPTO_HASH
1063	select CRC32
1064	help
1065	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1066
1067	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1068	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1069	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1070	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1071	  iSCSI.
1072
1073	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1074
1075config CRYPTO_CRC32
1076	tristate "CRC32"
1077	select CRYPTO_HASH
1078	select CRC32
1079	help
1080	  CRC32 CRC algorithm (IEEE 802.3)
1081
1082	  Used by RoCEv2 and f2fs.
1083
1084endmenu
1085
1086menu "Compression"
1087
1088config CRYPTO_DEFLATE
1089	tristate "Deflate"
1090	select CRYPTO_ALGAPI
1091	select CRYPTO_ACOMP2
1092	select ZLIB_INFLATE
1093	select ZLIB_DEFLATE
1094	help
1095	  Deflate compression algorithm (RFC1951)
1096
1097	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1098
1099config CRYPTO_LZO
1100	tristate "LZO"
1101	select CRYPTO_ALGAPI
1102	select CRYPTO_ACOMP2
1103	select LZO_COMPRESS
1104	select LZO_DECOMPRESS
1105	help
1106	  LZO compression algorithm
1107
1108	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1109
1110config CRYPTO_842
1111	tristate "842"
1112	select CRYPTO_ALGAPI
1113	select CRYPTO_ACOMP2
1114	select 842_COMPRESS
1115	select 842_DECOMPRESS
1116	help
1117	  842 compression algorithm by IBM
1118
1119	  See https://github.com/plauth/lib842 for further information.
1120
1121config CRYPTO_LZ4
1122	tristate "LZ4"
1123	select CRYPTO_ALGAPI
1124	select CRYPTO_ACOMP2
1125	select LZ4_COMPRESS
1126	select LZ4_DECOMPRESS
1127	help
1128	  LZ4 compression algorithm
1129
1130	  See https://github.com/lz4/lz4 for further information.
1131
1132config CRYPTO_LZ4HC
1133	tristate "LZ4HC"
1134	select CRYPTO_ALGAPI
1135	select CRYPTO_ACOMP2
1136	select LZ4HC_COMPRESS
1137	select LZ4_DECOMPRESS
1138	help
1139	  LZ4 high compression mode algorithm
1140
1141	  See https://github.com/lz4/lz4 for further information.
1142
1143config CRYPTO_ZSTD
1144	tristate "Zstd"
1145	select CRYPTO_ALGAPI
1146	select CRYPTO_ACOMP2
1147	select ZSTD_COMPRESS
1148	select ZSTD_DECOMPRESS
1149	help
1150	  zstd compression algorithm
1151
1152	  See https://github.com/facebook/zstd for further information.
1153
1154endmenu
1155
1156menu "Random number generation"
1157
1158menuconfig CRYPTO_DRBG_MENU
1159	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1160	help
1161	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1162
1163	  In the following submenu, one or more of the DRBG types must be selected.
1164
1165if CRYPTO_DRBG_MENU
1166
1167config CRYPTO_DRBG_HMAC
1168	bool
1169	default y
1170	select CRYPTO_HMAC
1171	select CRYPTO_SHA512
1172
1173config CRYPTO_DRBG_HASH
1174	bool "Hash_DRBG"
1175	select CRYPTO_SHA256
1176	help
1177	  Hash_DRBG variant as defined in NIST SP800-90A.
1178
1179	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1180
1181config CRYPTO_DRBG_CTR
1182	bool "CTR_DRBG"
1183	select CRYPTO_DF80090A
1184	help
1185	  CTR_DRBG variant as defined in NIST SP800-90A.
1186
1187	  This uses the AES cipher algorithm with the counter block mode.
1188
1189config CRYPTO_DRBG
1190	tristate
1191	default CRYPTO_DRBG_MENU
1192	select CRYPTO_RNG
1193	select CRYPTO_JITTERENTROPY
1194
1195endif	# if CRYPTO_DRBG_MENU
1196
1197config CRYPTO_JITTERENTROPY
1198	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1199	select CRYPTO_RNG
1200	select CRYPTO_SHA3
1201	help
1202	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1203
1204	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1205	  compliant with NIST SP800-90B) intended to provide a seed to a
1206	  deterministic RNG (e.g., per NIST SP800-90C).
1207	  This RNG does not perform any cryptographic whitening of the generated
1208	  random numbers.
1209
1210	  See https://www.chronox.de/jent/
1211
1212if CRYPTO_JITTERENTROPY
1213if CRYPTO_FIPS && EXPERT
1214
1215choice
1216	prompt "CPU Jitter RNG Memory Size"
1217	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1218	help
1219	  The Jitter RNG measures the execution time of memory accesses.
1220	  Multiple consecutive memory accesses are performed. If the memory
1221	  size fits into a cache (e.g. L1), only the memory access timing
1222	  to that cache is measured. The closer the cache is to the CPU
1223	  the less variations are measured and thus the less entropy is
1224	  obtained. Thus, if the memory size fits into the L1 cache, the
1225	  obtained entropy is less than if the memory size fits within
1226	  L1 + L2, which in turn is less if the memory fits into
1227	  L1 + L2 + L3. Thus, by selecting a different memory size,
1228	  the entropy rate produced by the Jitter RNG can be modified.
1229
1230	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1231		bool "2048 Bytes (default)"
1232
1233	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1234		bool "128 kBytes"
1235
1236	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1237		bool "1024 kBytes"
1238
1239	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1240		bool "8192 kBytes"
1241endchoice
1242
1243config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1244	int
1245	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1246	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1247	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1248	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1249
1250config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1251	int
1252	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1253	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1254	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1255	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1256
1257config CRYPTO_JITTERENTROPY_OSR
1258	int "CPU Jitter RNG Oversampling Rate"
1259	range 1 15
1260	default 3
1261	help
1262	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1263	  The Jitter RNG operation requires a fixed amount of timing
1264	  measurements to produce one output block of random numbers. The
1265	  OSR value is multiplied with the amount of timing measurements to
1266	  generate one output block. Thus, the timing measurement is oversampled
1267	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1268	  on hardware whose timers deliver limited amount of entropy (e.g.
1269	  the timer is coarse) by setting the OSR to a higher value. The
1270	  trade-off, however, is that the Jitter RNG now requires more time
1271	  to generate random numbers.
1272
1273config CRYPTO_JITTERENTROPY_TESTINTERFACE
1274	bool "CPU Jitter RNG Test Interface"
1275	help
1276	  The test interface allows a privileged process to capture
1277	  the raw unconditioned high resolution time stamp noise that
1278	  is collected by the Jitter RNG for statistical analysis. As
1279	  this data is used at the same time to generate random bits,
1280	  the Jitter RNG operates in an insecure mode as long as the
1281	  recording is enabled. This interface therefore is only
1282	  intended for testing purposes and is not suitable for
1283	  production systems.
1284
1285	  The raw noise data can be obtained using the jent_raw_hires
1286	  debugfs file. Using the option
1287	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1288	  the first 1000 entropy events since boot can be sampled.
1289
1290	  If unsure, select N.
1291
1292endif	# if CRYPTO_FIPS && EXPERT
1293
1294if !(CRYPTO_FIPS && EXPERT)
1295
1296config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1297	int
1298	default 64
1299
1300config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1301	int
1302	default 32
1303
1304config CRYPTO_JITTERENTROPY_OSR
1305	int
1306	default 1
1307
1308config CRYPTO_JITTERENTROPY_TESTINTERFACE
1309	bool
1310
1311endif	# if !(CRYPTO_FIPS && EXPERT)
1312endif	# if CRYPTO_JITTERENTROPY
1313
1314config CRYPTO_KDF800108_CTR
1315	tristate
1316	select CRYPTO_HMAC
1317	select CRYPTO_SHA256
1318
1319config CRYPTO_DF80090A
1320	tristate
1321	select CRYPTO_AES
1322	select CRYPTO_CTR
1323
1324endmenu
1325menu "Userspace interface"
1326
1327config CRYPTO_USER_API
1328	tristate
1329
1330config CRYPTO_USER_API_HASH
1331	tristate "Hash algorithms"
1332	depends on NET
1333	select CRYPTO_HASH
1334	select CRYPTO_USER_API
1335	help
1336	  Enable the userspace interface for hash algorithms.
1337
1338	  See Documentation/crypto/userspace-if.rst and
1339	  https://www.chronox.de/libkcapi/html/index.html
1340
1341config CRYPTO_USER_API_SKCIPHER
1342	tristate "Symmetric key cipher algorithms"
1343	depends on NET
1344	select CRYPTO_SKCIPHER
1345	select CRYPTO_USER_API
1346	help
1347	  Enable the userspace interface for symmetric key cipher algorithms.
1348
1349	  See Documentation/crypto/userspace-if.rst and
1350	  https://www.chronox.de/libkcapi/html/index.html
1351
1352config CRYPTO_USER_API_RNG
1353	tristate "RNG (random number generator) algorithms"
1354	depends on NET
1355	select CRYPTO_RNG
1356	select CRYPTO_USER_API
1357	help
1358	  Enable the userspace interface for RNG (random number generator)
1359	  algorithms.
1360
1361	  See Documentation/crypto/userspace-if.rst and
1362	  https://www.chronox.de/libkcapi/html/index.html
1363
1364config CRYPTO_USER_API_RNG_CAVP
1365	bool "Enable CAVP testing of DRBG"
1366	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1367	help
1368	  Enable extra APIs in the userspace interface for NIST CAVP
1369	  (Cryptographic Algorithm Validation Program) testing:
1370	  - resetting DRBG entropy
1371	  - providing Additional Data
1372
1373	  This should only be enabled for CAVP testing. You should say
1374	  no unless you know what this is.
1375
1376config CRYPTO_USER_API_AEAD
1377	tristate "AEAD cipher algorithms"
1378	depends on NET
1379	select CRYPTO_AEAD
1380	select CRYPTO_SKCIPHER
1381	select CRYPTO_USER_API
1382	help
1383	  Enable the userspace interface for AEAD cipher algorithms.
1384
1385	  See Documentation/crypto/userspace-if.rst and
1386	  https://www.chronox.de/libkcapi/html/index.html
1387
1388config CRYPTO_USER_API_ENABLE_OBSOLETE
1389	bool "Obsolete cryptographic algorithms"
1390	depends on CRYPTO_USER_API
1391	default y
1392	help
1393	  Allow obsolete cryptographic algorithms to be selected that have
1394	  already been phased out from internal use by the kernel, and are
1395	  only useful for userspace clients that still rely on them.
1396
1397endmenu
1398
1399if !KMSAN # avoid false positives from assembly
1400if ARM
1401source "arch/arm/crypto/Kconfig"
1402endif
1403if ARM64
1404source "arch/arm64/crypto/Kconfig"
1405endif
1406if LOONGARCH
1407source "arch/loongarch/crypto/Kconfig"
1408endif
1409if MIPS
1410source "arch/mips/crypto/Kconfig"
1411endif
1412if PPC
1413source "arch/powerpc/crypto/Kconfig"
1414endif
1415if RISCV
1416source "arch/riscv/crypto/Kconfig"
1417endif
1418if S390
1419source "arch/s390/crypto/Kconfig"
1420endif
1421if SPARC
1422source "arch/sparc/crypto/Kconfig"
1423endif
1424if X86
1425source "arch/x86/crypto/Kconfig"
1426endif
1427endif
1428
1429source "drivers/crypto/Kconfig"
1430source "crypto/asymmetric_keys/Kconfig"
1431source "certs/Kconfig"
1432source "crypto/krb5/Kconfig"
1433
1434endif	# if CRYPTO
1435