1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 select CRYPTO_LIB_UTILS 19 help 20 This option provides the core Cryptographic API. 21 22if CRYPTO 23 24menu "Crypto core or helper" 25 26config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 28 depends on CRYPTO_DRBG && CRYPTO_SELFTESTS 29 depends on (MODULE_SIG || !MODULES) 30 help 31 This option enables the fips boot option which is 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no unless you know what 34 this is. 35 36config CRYPTO_FIPS_NAME 37 string "FIPS Module Name" 38 default "Linux Kernel Cryptographic API" 39 depends on CRYPTO_FIPS 40 help 41 This option sets the FIPS Module name reported by the Crypto API via 42 the /proc/sys/crypto/fips_name file. 43 44config CRYPTO_FIPS_CUSTOM_VERSION 45 bool "Use Custom FIPS Module Version" 46 depends on CRYPTO_FIPS 47 default n 48 49config CRYPTO_FIPS_VERSION 50 string "FIPS Module Version" 51 default "(none)" 52 depends on CRYPTO_FIPS_CUSTOM_VERSION 53 help 54 This option provides the ability to override the FIPS Module Version. 55 By default the KERNELRELEASE value is used. 56 57config CRYPTO_ALGAPI 58 tristate 59 select CRYPTO_ALGAPI2 60 help 61 This option provides the API for cryptographic algorithms. 62 63config CRYPTO_ALGAPI2 64 tristate 65 66config CRYPTO_AEAD 67 tristate 68 select CRYPTO_AEAD2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_AEAD2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_SIG 76 tristate 77 select CRYPTO_SIG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_SIG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_SKCIPHER 85 tristate 86 select CRYPTO_SKCIPHER2 87 select CRYPTO_ALGAPI 88 select CRYPTO_ECB 89 90config CRYPTO_SKCIPHER2 91 tristate 92 select CRYPTO_ALGAPI2 93 94config CRYPTO_HASH 95 tristate 96 select CRYPTO_HASH2 97 select CRYPTO_ALGAPI 98 99config CRYPTO_HASH2 100 tristate 101 select CRYPTO_ALGAPI2 102 103config CRYPTO_RNG 104 tristate 105 select CRYPTO_RNG2 106 select CRYPTO_ALGAPI 107 108config CRYPTO_RNG2 109 tristate 110 select CRYPTO_ALGAPI2 111 112config CRYPTO_RNG_DEFAULT 113 tristate 114 select CRYPTO_DRBG_MENU 115 116config CRYPTO_AKCIPHER2 117 tristate 118 select CRYPTO_ALGAPI2 119 120config CRYPTO_AKCIPHER 121 tristate 122 select CRYPTO_AKCIPHER2 123 select CRYPTO_ALGAPI 124 125config CRYPTO_KPP2 126 tristate 127 select CRYPTO_ALGAPI2 128 129config CRYPTO_KPP 130 tristate 131 select CRYPTO_ALGAPI 132 select CRYPTO_KPP2 133 134config CRYPTO_ACOMP2 135 tristate 136 select CRYPTO_ALGAPI2 137 select SGL_ALLOC 138 139config CRYPTO_ACOMP 140 tristate 141 select CRYPTO_ALGAPI 142 select CRYPTO_ACOMP2 143 144config CRYPTO_HKDF 145 tristate 146 select CRYPTO_SHA256 if CRYPTO_SELFTESTS 147 select CRYPTO_SHA512 if CRYPTO_SELFTESTS 148 select CRYPTO_HASH2 149 150config CRYPTO_MANAGER 151 tristate 152 default CRYPTO_ALGAPI if CRYPTO_SELFTESTS 153 select CRYPTO_MANAGER2 154 help 155 This provides the support for instantiating templates such as 156 cbc(aes), and the support for the crypto self-tests. 157 158config CRYPTO_MANAGER2 159 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 160 select CRYPTO_ACOMP2 161 select CRYPTO_AEAD2 162 select CRYPTO_AKCIPHER2 163 select CRYPTO_SIG2 164 select CRYPTO_HASH2 165 select CRYPTO_KPP2 166 select CRYPTO_RNG2 167 select CRYPTO_SKCIPHER2 168 169config CRYPTO_USER 170 tristate "Userspace cryptographic algorithm configuration" 171 depends on NET 172 select CRYPTO_MANAGER 173 help 174 Userspace configuration for cryptographic instantiations such as 175 cbc(aes). 176 177config CRYPTO_SELFTESTS 178 bool "Enable cryptographic self-tests" 179 depends on EXPERT 180 help 181 Enable the cryptographic self-tests. 182 183 The cryptographic self-tests run at boot time, or at algorithm 184 registration time if algorithms are dynamically loaded later. 185 186 There are two main use cases for these tests: 187 188 - Development and pre-release testing. In this case, also enable 189 CRYPTO_SELFTESTS_FULL to get the full set of tests. All crypto code 190 in the kernel is expected to pass the full set of tests. 191 192 - Production kernels, to help prevent buggy drivers from being used 193 and/or meet FIPS 140-3 pre-operational testing requirements. In 194 this case, enable CRYPTO_SELFTESTS but not CRYPTO_SELFTESTS_FULL. 195 196config CRYPTO_SELFTESTS_FULL 197 bool "Enable the full set of cryptographic self-tests" 198 depends on CRYPTO_SELFTESTS 199 help 200 Enable the full set of cryptographic self-tests for each algorithm. 201 202 The full set of tests should be enabled for development and 203 pre-release testing, but not in production kernels. 204 205 All crypto code in the kernel is expected to pass the full tests. 206 207config CRYPTO_NULL 208 tristate "Null algorithms" 209 select CRYPTO_ALGAPI 210 select CRYPTO_SKCIPHER 211 select CRYPTO_HASH 212 help 213 These are 'Null' algorithms, used by IPsec, which do nothing. 214 215config CRYPTO_PCRYPT 216 tristate "Parallel crypto engine" 217 depends on SMP 218 select PADATA 219 select CRYPTO_MANAGER 220 select CRYPTO_AEAD 221 help 222 This converts an arbitrary crypto algorithm into a parallel 223 algorithm that executes in kernel threads. 224 225config CRYPTO_CRYPTD 226 tristate "Software async crypto daemon" 227 select CRYPTO_SKCIPHER 228 select CRYPTO_HASH 229 select CRYPTO_MANAGER 230 help 231 This is a generic software asynchronous crypto daemon that 232 converts an arbitrary synchronous software crypto algorithm 233 into an asynchronous algorithm that executes in a kernel thread. 234 235config CRYPTO_AUTHENC 236 tristate "Authenc support" 237 select CRYPTO_AEAD 238 select CRYPTO_SKCIPHER 239 select CRYPTO_MANAGER 240 select CRYPTO_HASH 241 help 242 Authenc: Combined mode wrapper for IPsec. 243 244 This is required for IPSec ESP (XFRM_ESP). 245 246config CRYPTO_KRB5ENC 247 tristate "Kerberos 5 combined hash+cipher support" 248 select CRYPTO_AEAD 249 select CRYPTO_SKCIPHER 250 select CRYPTO_MANAGER 251 select CRYPTO_HASH 252 help 253 Combined hash and cipher support for Kerberos 5 RFC3961 simplified 254 profile. This is required for Kerberos 5-style encryption, used by 255 sunrpc/NFS and rxrpc/AFS. 256 257config CRYPTO_BENCHMARK 258 tristate "Crypto benchmarking module" 259 depends on m || EXPERT 260 select CRYPTO_MANAGER 261 help 262 Quick & dirty crypto benchmarking module. 263 264 This is mainly intended for use by people developing cryptographic 265 algorithms in the kernel. It should not be enabled in production 266 kernels. 267 268config CRYPTO_SIMD 269 tristate 270 select CRYPTO_CRYPTD 271 272config CRYPTO_ENGINE 273 tristate 274 275endmenu 276 277menu "Public-key cryptography" 278 279config CRYPTO_RSA 280 tristate "RSA (Rivest-Shamir-Adleman)" 281 select CRYPTO_AKCIPHER 282 select CRYPTO_MANAGER 283 select CRYPTO_SIG 284 select MPILIB 285 select ASN1 286 help 287 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017) 288 289config CRYPTO_DH 290 tristate "DH (Diffie-Hellman)" 291 select CRYPTO_KPP 292 select MPILIB 293 help 294 DH (Diffie-Hellman) key exchange algorithm 295 296config CRYPTO_DH_RFC7919_GROUPS 297 bool "RFC 7919 FFDHE groups" 298 depends on CRYPTO_DH 299 select CRYPTO_RNG_DEFAULT 300 help 301 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups 302 defined in RFC7919. 303 304 Support these finite-field groups in DH key exchanges: 305 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192 306 307 If unsure, say N. 308 309config CRYPTO_ECC 310 tristate 311 select CRYPTO_RNG_DEFAULT 312 313config CRYPTO_ECDH 314 tristate "ECDH (Elliptic Curve Diffie-Hellman)" 315 select CRYPTO_ECC 316 select CRYPTO_KPP 317 help 318 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm 319 using curves P-192, P-256, and P-384 (FIPS 186) 320 321config CRYPTO_ECDSA 322 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)" 323 select CRYPTO_ECC 324 select CRYPTO_SIG 325 select ASN1 326 help 327 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186, 328 ISO/IEC 14888-3) 329 using curves P-192, P-256, P-384 and P-521 330 331 Only signature verification is implemented. 332 333config CRYPTO_ECRDSA 334 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)" 335 select CRYPTO_ECC 336 select CRYPTO_SIG 337 select CRYPTO_STREEBOG 338 select OID_REGISTRY 339 select ASN1 340 help 341 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 342 RFC 7091, ISO/IEC 14888-3) 343 344 One of the Russian cryptographic standard algorithms (called GOST 345 algorithms). Only signature verification is implemented. 346 347config CRYPTO_MLDSA 348 tristate "ML-DSA (Module-Lattice-Based Digital Signature Algorithm)" 349 select CRYPTO_SIG 350 select CRYPTO_LIB_MLDSA 351 help 352 ML-DSA (Module-Lattice-Based Digital Signature Algorithm) (FIPS-204). 353 354 Only signature verification is implemented. 355 356endmenu 357 358menu "Block ciphers" 359 360config CRYPTO_AES 361 tristate "AES (Advanced Encryption Standard)" 362 select CRYPTO_ALGAPI 363 select CRYPTO_LIB_AES 364 help 365 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) 366 367 Rijndael appears to be consistently a very good performer in 368 both hardware and software across a wide range of computing 369 environments regardless of its use in feedback or non-feedback 370 modes. Its key setup time is excellent, and its key agility is 371 good. Rijndael's very low memory requirements make it very well 372 suited for restricted-space environments, in which it also 373 demonstrates excellent performance. Rijndael's operations are 374 among the easiest to defend against power and timing attacks. 375 376 The AES specifies three key sizes: 128, 192 and 256 bits 377 378config CRYPTO_ANUBIS 379 tristate "Anubis" 380 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 381 select CRYPTO_ALGAPI 382 help 383 Anubis cipher algorithm 384 385 Anubis is a variable key length cipher which can use keys from 386 128 bits to 320 bits in length. It was evaluated as a entrant 387 in the NESSIE competition. 388 389 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html 390 for further information. 391 392config CRYPTO_ARIA 393 tristate "ARIA" 394 select CRYPTO_ALGAPI 395 help 396 ARIA cipher algorithm (RFC5794) 397 398 ARIA is a standard encryption algorithm of the Republic of Korea. 399 The ARIA specifies three key sizes and rounds. 400 128-bit: 12 rounds. 401 192-bit: 14 rounds. 402 256-bit: 16 rounds. 403 404 See: 405 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do 406 407config CRYPTO_BLOWFISH 408 tristate "Blowfish" 409 select CRYPTO_ALGAPI 410 select CRYPTO_BLOWFISH_COMMON 411 help 412 Blowfish cipher algorithm, by Bruce Schneier 413 414 This is a variable key length cipher which can use keys from 32 415 bits to 448 bits in length. It's fast, simple and specifically 416 designed for use on "large microprocessors". 417 418 See https://www.schneier.com/blowfish.html for further information. 419 420config CRYPTO_BLOWFISH_COMMON 421 tristate 422 help 423 Common parts of the Blowfish cipher algorithm shared by the 424 generic c and the assembler implementations. 425 426config CRYPTO_CAMELLIA 427 tristate "Camellia" 428 select CRYPTO_ALGAPI 429 help 430 Camellia cipher algorithms (ISO/IEC 18033-3) 431 432 Camellia is a symmetric key block cipher developed jointly 433 at NTT and Mitsubishi Electric Corporation. 434 435 The Camellia specifies three key sizes: 128, 192 and 256 bits. 436 437 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information. 438 439config CRYPTO_CAST_COMMON 440 tristate 441 help 442 Common parts of the CAST cipher algorithms shared by the 443 generic c and the assembler implementations. 444 445config CRYPTO_CAST5 446 tristate "CAST5 (CAST-128)" 447 select CRYPTO_ALGAPI 448 select CRYPTO_CAST_COMMON 449 help 450 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3) 451 452config CRYPTO_CAST6 453 tristate "CAST6 (CAST-256)" 454 select CRYPTO_ALGAPI 455 select CRYPTO_CAST_COMMON 456 help 457 CAST6 (CAST-256) encryption algorithm (RFC2612) 458 459config CRYPTO_DES 460 tristate "DES and Triple DES EDE" 461 select CRYPTO_ALGAPI 462 select CRYPTO_LIB_DES 463 help 464 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and 465 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3) 466 cipher algorithms 467 468config CRYPTO_FCRYPT 469 tristate "FCrypt" 470 select CRYPTO_ALGAPI 471 select CRYPTO_SKCIPHER 472 help 473 FCrypt algorithm used by RxRPC 474 475 See https://ota.polyonymo.us/fcrypt-paper.txt 476 477config CRYPTO_KHAZAD 478 tristate "Khazad" 479 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 480 select CRYPTO_ALGAPI 481 help 482 Khazad cipher algorithm 483 484 Khazad was a finalist in the initial NESSIE competition. It is 485 an algorithm optimized for 64-bit processors with good performance 486 on 32-bit processors. Khazad uses an 128 bit key size. 487 488 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html 489 for further information. 490 491config CRYPTO_SEED 492 tristate "SEED" 493 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 494 select CRYPTO_ALGAPI 495 help 496 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3) 497 498 SEED is a 128-bit symmetric key block cipher that has been 499 developed by KISA (Korea Information Security Agency) as a 500 national standard encryption algorithm of the Republic of Korea. 501 It is a 16 round block cipher with the key size of 128 bit. 502 503 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do 504 for further information. 505 506config CRYPTO_SERPENT 507 tristate "Serpent" 508 select CRYPTO_ALGAPI 509 help 510 Serpent cipher algorithm, by Anderson, Biham & Knudsen 511 512 Keys are allowed to be from 0 to 256 bits in length, in steps 513 of 8 bits. 514 515 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information. 516 517config CRYPTO_SM4 518 tristate 519 520config CRYPTO_SM4_GENERIC 521 tristate "SM4 (ShangMi 4)" 522 select CRYPTO_ALGAPI 523 select CRYPTO_SM4 524 help 525 SM4 cipher algorithms (OSCCA GB/T 32907-2016, 526 ISO/IEC 18033-3:2010/Amd 1:2021) 527 528 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 529 Organization of State Commercial Administration of China (OSCCA) 530 as an authorized cryptographic algorithms for the use within China. 531 532 SMS4 was originally created for use in protecting wireless 533 networks, and is mandated in the Chinese National Standard for 534 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 535 (GB.15629.11-2003). 536 537 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 538 standardized through TC 260 of the Standardization Administration 539 of the People's Republic of China (SAC). 540 541 The input, output, and key of SMS4 are each 128 bits. 542 543 See https://eprint.iacr.org/2008/329.pdf for further information. 544 545 If unsure, say N. 546 547config CRYPTO_TEA 548 tristate "TEA, XTEA and XETA" 549 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 550 select CRYPTO_ALGAPI 551 help 552 TEA (Tiny Encryption Algorithm) cipher algorithms 553 554 Tiny Encryption Algorithm is a simple cipher that uses 555 many rounds for security. It is very fast and uses 556 little memory. 557 558 Xtendend Tiny Encryption Algorithm is a modification to 559 the TEA algorithm to address a potential key weakness 560 in the TEA algorithm. 561 562 Xtendend Encryption Tiny Algorithm is a mis-implementation 563 of the XTEA algorithm for compatibility purposes. 564 565config CRYPTO_TWOFISH 566 tristate "Twofish" 567 select CRYPTO_ALGAPI 568 select CRYPTO_TWOFISH_COMMON 569 help 570 Twofish cipher algorithm 571 572 Twofish was submitted as an AES (Advanced Encryption Standard) 573 candidate cipher by researchers at CounterPane Systems. It is a 574 16 round block cipher supporting key sizes of 128, 192, and 256 575 bits. 576 577 See https://www.schneier.com/twofish.html for further information. 578 579config CRYPTO_TWOFISH_COMMON 580 tristate 581 help 582 Common parts of the Twofish cipher algorithm shared by the 583 generic c and the assembler implementations. 584 585endmenu 586 587menu "Length-preserving ciphers and modes" 588 589config CRYPTO_ADIANTUM 590 tristate "Adiantum" 591 select CRYPTO_CHACHA20 592 select CRYPTO_LIB_NH 593 select CRYPTO_LIB_POLY1305 594 select CRYPTO_LIB_POLY1305_GENERIC 595 select CRYPTO_MANAGER 596 help 597 Adiantum tweakable, length-preserving encryption mode 598 599 Designed for fast and secure disk encryption, especially on 600 CPUs without dedicated crypto instructions. It encrypts 601 each sector using the XChaCha12 stream cipher, two passes of 602 an ε-almost-∆-universal hash function, and an invocation of 603 the AES-256 block cipher on a single 16-byte block. On CPUs 604 without AES instructions, Adiantum is much faster than 605 AES-XTS. 606 607 Adiantum's security is provably reducible to that of its 608 underlying stream and block ciphers, subject to a security 609 bound. Unlike XTS, Adiantum is a true wide-block encryption 610 mode, so it actually provides an even stronger notion of 611 security than XTS, subject to the security bound. 612 613 If unsure, say N. 614 615config CRYPTO_ARC4 616 tristate "ARC4 (Alleged Rivest Cipher 4)" 617 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 618 select CRYPTO_SKCIPHER 619 select CRYPTO_LIB_ARC4 620 help 621 ARC4 cipher algorithm 622 623 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 624 bits in length. This algorithm is required for driver-based 625 WEP, but it should not be for other purposes because of the 626 weakness of the algorithm. 627 628config CRYPTO_CHACHA20 629 tristate "ChaCha" 630 select CRYPTO_LIB_CHACHA 631 select CRYPTO_SKCIPHER 632 help 633 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms 634 635 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 636 Bernstein and further specified in RFC7539 for use in IETF protocols. 637 This is the portable C implementation of ChaCha20. See 638 https://cr.yp.to/chacha/chacha-20080128.pdf for further information. 639 640 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 641 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 642 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 643 while provably retaining ChaCha20's security. See 644 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information. 645 646 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 647 reduced security margin but increased performance. It can be needed 648 in some performance-sensitive scenarios. 649 650config CRYPTO_CBC 651 tristate "CBC (Cipher Block Chaining)" 652 select CRYPTO_SKCIPHER 653 select CRYPTO_MANAGER 654 help 655 CBC (Cipher Block Chaining) mode (NIST SP800-38A) 656 657 This block cipher mode is required for IPSec ESP (XFRM_ESP). 658 659config CRYPTO_CTR 660 tristate "CTR (Counter)" 661 select CRYPTO_SKCIPHER 662 select CRYPTO_MANAGER 663 help 664 CTR (Counter) mode (NIST SP800-38A) 665 666config CRYPTO_CTS 667 tristate "CTS (Cipher Text Stealing)" 668 select CRYPTO_SKCIPHER 669 select CRYPTO_MANAGER 670 help 671 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST 672 Addendum to SP800-38A (October 2010)) 673 674 This mode is required for Kerberos gss mechanism support 675 for AES encryption. 676 677config CRYPTO_ECB 678 tristate "ECB (Electronic Codebook)" 679 select CRYPTO_SKCIPHER2 680 select CRYPTO_MANAGER 681 help 682 ECB (Electronic Codebook) mode (NIST SP800-38A) 683 684config CRYPTO_HCTR2 685 tristate "HCTR2" 686 select CRYPTO_XCTR 687 select CRYPTO_LIB_POLYVAL 688 select CRYPTO_MANAGER 689 help 690 HCTR2 length-preserving encryption mode 691 692 A mode for storage encryption that is efficient on processors with 693 instructions to accelerate AES and carryless multiplication, e.g. 694 x86 processors with AES-NI and CLMUL, and ARM processors with the 695 ARMv8 crypto extensions. 696 697 See https://eprint.iacr.org/2021/1441 698 699config CRYPTO_LRW 700 tristate "LRW (Liskov Rivest Wagner)" 701 select CRYPTO_LIB_GF128MUL 702 select CRYPTO_SKCIPHER 703 select CRYPTO_MANAGER 704 select CRYPTO_ECB 705 help 706 LRW (Liskov Rivest Wagner) mode 707 708 A tweakable, non malleable, non movable 709 narrow block cipher mode for dm-crypt. Use it with cipher 710 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 711 The first 128, 192 or 256 bits in the key are used for AES and the 712 rest is used to tie each cipher block to its logical position. 713 714 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf 715 716config CRYPTO_PCBC 717 tristate "PCBC (Propagating Cipher Block Chaining)" 718 select CRYPTO_SKCIPHER 719 select CRYPTO_MANAGER 720 help 721 PCBC (Propagating Cipher Block Chaining) mode 722 723 This block cipher mode is required for RxRPC. 724 725config CRYPTO_XCTR 726 tristate 727 select CRYPTO_SKCIPHER 728 select CRYPTO_MANAGER 729 help 730 XCTR (XOR Counter) mode for HCTR2 731 732 This blockcipher mode is a variant of CTR mode using XORs and little-endian 733 addition rather than big-endian arithmetic. 734 735 XCTR mode is used to implement HCTR2. 736 737config CRYPTO_XTS 738 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)" 739 select CRYPTO_SKCIPHER 740 select CRYPTO_MANAGER 741 select CRYPTO_ECB 742 help 743 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E 744 and IEEE 1619) 745 746 Use with aes-xts-plain, key size 256, 384 or 512 bits. This 747 implementation currently can't handle a sectorsize which is not a 748 multiple of 16 bytes. 749 750endmenu 751 752menu "AEAD (authenticated encryption with associated data) ciphers" 753 754config CRYPTO_AEGIS128 755 tristate "AEGIS-128" 756 select CRYPTO_AEAD 757 select CRYPTO_LIB_AES # for AES S-box tables 758 help 759 AEGIS-128 AEAD algorithm 760 761config CRYPTO_AEGIS128_SIMD 762 bool "AEGIS-128 (arm NEON, arm64 NEON)" 763 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 764 default y 765 help 766 AEGIS-128 AEAD algorithm 767 768 Architecture: arm or arm64 using: 769 - NEON (Advanced SIMD) extension 770 771config CRYPTO_CHACHA20POLY1305 772 tristate "ChaCha20-Poly1305" 773 select CRYPTO_CHACHA20 774 select CRYPTO_AEAD 775 select CRYPTO_LIB_POLY1305 776 select CRYPTO_MANAGER 777 help 778 ChaCha20 stream cipher and Poly1305 authenticator combined 779 mode (RFC8439) 780 781config CRYPTO_CCM 782 tristate "CCM (Counter with Cipher Block Chaining-MAC)" 783 select CRYPTO_CTR 784 select CRYPTO_HASH 785 select CRYPTO_AEAD 786 select CRYPTO_MANAGER 787 help 788 CCM (Counter with Cipher Block Chaining-Message Authentication Code) 789 authenticated encryption mode (NIST SP800-38C) 790 791config CRYPTO_GCM 792 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)" 793 select CRYPTO_CTR 794 select CRYPTO_AEAD 795 select CRYPTO_GHASH 796 select CRYPTO_MANAGER 797 help 798 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC 799 (GCM Message Authentication Code) (NIST SP800-38D) 800 801 This is required for IPSec ESP (XFRM_ESP). 802 803config CRYPTO_GENIV 804 tristate 805 select CRYPTO_AEAD 806 select CRYPTO_MANAGER 807 select CRYPTO_RNG_DEFAULT 808 809config CRYPTO_SEQIV 810 tristate "Sequence Number IV Generator" 811 select CRYPTO_GENIV 812 help 813 Sequence Number IV generator 814 815 This IV generator generates an IV based on a sequence number by 816 xoring it with a salt. This algorithm is mainly useful for CTR. 817 818 This is required for IPsec ESP (XFRM_ESP). 819 820config CRYPTO_ECHAINIV 821 tristate "Encrypted Chain IV Generator" 822 select CRYPTO_GENIV 823 help 824 Encrypted Chain IV generator 825 826 This IV generator generates an IV based on the encryption of 827 a sequence number xored with a salt. This is the default 828 algorithm for CBC. 829 830config CRYPTO_ESSIV 831 tristate "Encrypted Salt-Sector IV Generator" 832 select CRYPTO_AUTHENC 833 help 834 Encrypted Salt-Sector IV generator 835 836 This IV generator is used in some cases by fscrypt and/or 837 dm-crypt. It uses the hash of the block encryption key as the 838 symmetric key for a block encryption pass applied to the input 839 IV, making low entropy IV sources more suitable for block 840 encryption. 841 842 This driver implements a crypto API template that can be 843 instantiated either as an skcipher or as an AEAD (depending on the 844 type of the first template argument), and which defers encryption 845 and decryption requests to the encapsulated cipher after applying 846 ESSIV to the input IV. Note that in the AEAD case, it is assumed 847 that the keys are presented in the same format used by the authenc 848 template, and that the IV appears at the end of the authenticated 849 associated data (AAD) region (which is how dm-crypt uses it.) 850 851 Note that the use of ESSIV is not recommended for new deployments, 852 and so this only needs to be enabled when interoperability with 853 existing encrypted volumes of filesystems is required, or when 854 building for a particular system that requires it (e.g., when 855 the SoC in question has accelerated CBC but not XTS, making CBC 856 combined with ESSIV the only feasible mode for h/w accelerated 857 block encryption) 858 859endmenu 860 861menu "Hashes, digests, and MACs" 862 863config CRYPTO_BLAKE2B 864 tristate "BLAKE2b" 865 select CRYPTO_HASH 866 select CRYPTO_LIB_BLAKE2B 867 help 868 BLAKE2b cryptographic hash function (RFC 7693) 869 870 BLAKE2b is optimized for 64-bit platforms and can produce digests 871 of any size between 1 and 64 bytes. The keyed hash is also implemented. 872 873 This module provides the following algorithms: 874 - blake2b-160 875 - blake2b-256 876 - blake2b-384 877 - blake2b-512 878 879 Used by the btrfs filesystem. 880 881 See https://blake2.net for further information. 882 883config CRYPTO_CMAC 884 tristate "CMAC (Cipher-based MAC)" 885 select CRYPTO_HASH 886 select CRYPTO_MANAGER 887 help 888 CMAC (Cipher-based Message Authentication Code) authentication 889 mode (NIST SP800-38B and IETF RFC4493) 890 891config CRYPTO_GHASH 892 tristate "GHASH" 893 select CRYPTO_HASH 894 select CRYPTO_LIB_GF128MUL 895 help 896 GCM GHASH function (NIST SP800-38D) 897 898config CRYPTO_HMAC 899 tristate "HMAC (Keyed-Hash MAC)" 900 select CRYPTO_HASH 901 select CRYPTO_MANAGER 902 help 903 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and 904 RFC2104) 905 906 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). 907 908config CRYPTO_MD4 909 tristate "MD4" 910 select CRYPTO_HASH 911 help 912 MD4 message digest algorithm (RFC1320) 913 914config CRYPTO_MD5 915 tristate "MD5" 916 select CRYPTO_HASH 917 select CRYPTO_LIB_MD5 918 help 919 MD5 message digest algorithm (RFC1321), including HMAC support. 920 921config CRYPTO_MICHAEL_MIC 922 tristate "Michael MIC" 923 select CRYPTO_HASH 924 help 925 Michael MIC (Message Integrity Code) (IEEE 802.11i) 926 927 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol), 928 known as WPA (Wif-Fi Protected Access). 929 930 This algorithm is required for TKIP, but it should not be used for 931 other purposes because of the weakness of the algorithm. 932 933config CRYPTO_RMD160 934 tristate "RIPEMD-160" 935 select CRYPTO_HASH 936 help 937 RIPEMD-160 hash function (ISO/IEC 10118-3) 938 939 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 940 to be used as a secure replacement for the 128-bit hash functions 941 MD4, MD5 and its predecessor RIPEMD 942 (not to be confused with RIPEMD-128). 943 944 Its speed is comparable to SHA-1 and there are no known attacks 945 against RIPEMD-160. 946 947 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 948 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html 949 for further information. 950 951config CRYPTO_SHA1 952 tristate "SHA-1" 953 select CRYPTO_HASH 954 select CRYPTO_LIB_SHA1 955 help 956 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3), including 957 HMAC support. 958 959config CRYPTO_SHA256 960 tristate "SHA-224 and SHA-256" 961 select CRYPTO_HASH 962 select CRYPTO_LIB_SHA256 963 help 964 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 965 10118-3), including HMAC support. 966 967 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). 968 Used by the btrfs filesystem, Ceph, NFS, and SMB. 969 970config CRYPTO_SHA512 971 tristate "SHA-384 and SHA-512" 972 select CRYPTO_HASH 973 select CRYPTO_LIB_SHA512 974 help 975 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 976 10118-3), including HMAC support. 977 978config CRYPTO_SHA3 979 tristate "SHA-3" 980 select CRYPTO_HASH 981 select CRYPTO_LIB_SHA3 982 help 983 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3) 984 985config CRYPTO_SM3_GENERIC 986 tristate "SM3 (ShangMi 3)" 987 select CRYPTO_HASH 988 select CRYPTO_LIB_SM3 989 help 990 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3) 991 992 This is part of the Chinese Commercial Cryptography suite. 993 994 References: 995 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 996 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 997 998config CRYPTO_STREEBOG 999 tristate "Streebog" 1000 select CRYPTO_HASH 1001 help 1002 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3) 1003 1004 This is one of the Russian cryptographic standard algorithms (called 1005 GOST algorithms). This setting enables two hash algorithms with 1006 256 and 512 bits output. 1007 1008 References: 1009 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1010 https://tools.ietf.org/html/rfc6986 1011 1012config CRYPTO_WP512 1013 tristate "Whirlpool" 1014 select CRYPTO_HASH 1015 help 1016 Whirlpool hash function (ISO/IEC 10118-3) 1017 1018 512, 384 and 256-bit hashes. 1019 1020 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1021 1022 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html 1023 for further information. 1024 1025config CRYPTO_XCBC 1026 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)" 1027 select CRYPTO_HASH 1028 select CRYPTO_MANAGER 1029 help 1030 XCBC-MAC (Extended Cipher Block Chaining Message Authentication 1031 Code) (RFC3566) 1032 1033config CRYPTO_XXHASH 1034 tristate "xxHash" 1035 select CRYPTO_HASH 1036 select XXHASH 1037 help 1038 xxHash non-cryptographic hash algorithm 1039 1040 Extremely fast, working at speeds close to RAM limits. 1041 1042 Used by the btrfs filesystem. 1043 1044endmenu 1045 1046menu "CRCs (cyclic redundancy checks)" 1047 1048config CRYPTO_CRC32C 1049 tristate "CRC32c" 1050 select CRYPTO_HASH 1051 select CRC32 1052 help 1053 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720) 1054 1055 A 32-bit CRC (cyclic redundancy check) with a polynomial defined 1056 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic 1057 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions 1058 on Communications, Vol. 41, No. 6, June 1993, selected for use with 1059 iSCSI. 1060 1061 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI. 1062 1063config CRYPTO_CRC32 1064 tristate "CRC32" 1065 select CRYPTO_HASH 1066 select CRC32 1067 help 1068 CRC32 CRC algorithm (IEEE 802.3) 1069 1070 Used by RoCEv2 and f2fs. 1071 1072endmenu 1073 1074menu "Compression" 1075 1076config CRYPTO_DEFLATE 1077 tristate "Deflate" 1078 select CRYPTO_ALGAPI 1079 select CRYPTO_ACOMP2 1080 select ZLIB_INFLATE 1081 select ZLIB_DEFLATE 1082 help 1083 Deflate compression algorithm (RFC1951) 1084 1085 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394) 1086 1087config CRYPTO_LZO 1088 tristate "LZO" 1089 select CRYPTO_ALGAPI 1090 select CRYPTO_ACOMP2 1091 select LZO_COMPRESS 1092 select LZO_DECOMPRESS 1093 help 1094 LZO compression algorithm 1095 1096 See https://www.oberhumer.com/opensource/lzo/ for further information. 1097 1098config CRYPTO_842 1099 tristate "842" 1100 select CRYPTO_ALGAPI 1101 select CRYPTO_ACOMP2 1102 select 842_COMPRESS 1103 select 842_DECOMPRESS 1104 help 1105 842 compression algorithm by IBM 1106 1107 See https://github.com/plauth/lib842 for further information. 1108 1109config CRYPTO_LZ4 1110 tristate "LZ4" 1111 select CRYPTO_ALGAPI 1112 select CRYPTO_ACOMP2 1113 select LZ4_COMPRESS 1114 select LZ4_DECOMPRESS 1115 help 1116 LZ4 compression algorithm 1117 1118 See https://github.com/lz4/lz4 for further information. 1119 1120config CRYPTO_LZ4HC 1121 tristate "LZ4HC" 1122 select CRYPTO_ALGAPI 1123 select CRYPTO_ACOMP2 1124 select LZ4HC_COMPRESS 1125 select LZ4_DECOMPRESS 1126 help 1127 LZ4 high compression mode algorithm 1128 1129 See https://github.com/lz4/lz4 for further information. 1130 1131config CRYPTO_ZSTD 1132 tristate "Zstd" 1133 select CRYPTO_ALGAPI 1134 select CRYPTO_ACOMP2 1135 select ZSTD_COMPRESS 1136 select ZSTD_DECOMPRESS 1137 help 1138 zstd compression algorithm 1139 1140 See https://github.com/facebook/zstd for further information. 1141 1142endmenu 1143 1144menu "Random number generation" 1145 1146menuconfig CRYPTO_DRBG_MENU 1147 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)" 1148 help 1149 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A) 1150 1151 In the following submenu, one or more of the DRBG types must be selected. 1152 1153if CRYPTO_DRBG_MENU 1154 1155config CRYPTO_DRBG_HMAC 1156 bool 1157 default y 1158 select CRYPTO_HMAC 1159 select CRYPTO_SHA512 1160 1161config CRYPTO_DRBG_HASH 1162 bool "Hash_DRBG" 1163 select CRYPTO_SHA256 1164 help 1165 Hash_DRBG variant as defined in NIST SP800-90A. 1166 1167 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms. 1168 1169config CRYPTO_DRBG_CTR 1170 bool "CTR_DRBG" 1171 select CRYPTO_DF80090A 1172 help 1173 CTR_DRBG variant as defined in NIST SP800-90A. 1174 1175 This uses the AES cipher algorithm with the counter block mode. 1176 1177config CRYPTO_DRBG 1178 tristate 1179 default CRYPTO_DRBG_MENU 1180 select CRYPTO_RNG 1181 select CRYPTO_JITTERENTROPY 1182 1183endif # if CRYPTO_DRBG_MENU 1184 1185config CRYPTO_JITTERENTROPY 1186 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)" 1187 select CRYPTO_RNG 1188 select CRYPTO_SHA3 1189 help 1190 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library 1191 1192 A non-physical non-deterministic ("true") RNG (e.g., an entropy source 1193 compliant with NIST SP800-90B) intended to provide a seed to a 1194 deterministic RNG (e.g., per NIST SP800-90C). 1195 This RNG does not perform any cryptographic whitening of the generated 1196 random numbers. 1197 1198 See https://www.chronox.de/jent/ 1199 1200if CRYPTO_JITTERENTROPY 1201if CRYPTO_FIPS && EXPERT 1202 1203choice 1204 prompt "CPU Jitter RNG Memory Size" 1205 default CRYPTO_JITTERENTROPY_MEMSIZE_2 1206 help 1207 The Jitter RNG measures the execution time of memory accesses. 1208 Multiple consecutive memory accesses are performed. If the memory 1209 size fits into a cache (e.g. L1), only the memory access timing 1210 to that cache is measured. The closer the cache is to the CPU 1211 the less variations are measured and thus the less entropy is 1212 obtained. Thus, if the memory size fits into the L1 cache, the 1213 obtained entropy is less than if the memory size fits within 1214 L1 + L2, which in turn is less if the memory fits into 1215 L1 + L2 + L3. Thus, by selecting a different memory size, 1216 the entropy rate produced by the Jitter RNG can be modified. 1217 1218 config CRYPTO_JITTERENTROPY_MEMSIZE_2 1219 bool "2048 Bytes (default)" 1220 1221 config CRYPTO_JITTERENTROPY_MEMSIZE_128 1222 bool "128 kBytes" 1223 1224 config CRYPTO_JITTERENTROPY_MEMSIZE_1024 1225 bool "1024 kBytes" 1226 1227 config CRYPTO_JITTERENTROPY_MEMSIZE_8192 1228 bool "8192 kBytes" 1229endchoice 1230 1231config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS 1232 int 1233 default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2 1234 default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128 1235 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024 1236 default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192 1237 1238config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE 1239 int 1240 default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2 1241 default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128 1242 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024 1243 default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192 1244 1245config CRYPTO_JITTERENTROPY_OSR 1246 int "CPU Jitter RNG Oversampling Rate" 1247 range 1 15 1248 default 3 1249 help 1250 The Jitter RNG allows the specification of an oversampling rate (OSR). 1251 The Jitter RNG operation requires a fixed amount of timing 1252 measurements to produce one output block of random numbers. The 1253 OSR value is multiplied with the amount of timing measurements to 1254 generate one output block. Thus, the timing measurement is oversampled 1255 by the OSR factor. The oversampling allows the Jitter RNG to operate 1256 on hardware whose timers deliver limited amount of entropy (e.g. 1257 the timer is coarse) by setting the OSR to a higher value. The 1258 trade-off, however, is that the Jitter RNG now requires more time 1259 to generate random numbers. 1260 1261config CRYPTO_JITTERENTROPY_TESTINTERFACE 1262 bool "CPU Jitter RNG Test Interface" 1263 help 1264 The test interface allows a privileged process to capture 1265 the raw unconditioned high resolution time stamp noise that 1266 is collected by the Jitter RNG for statistical analysis. As 1267 this data is used at the same time to generate random bits, 1268 the Jitter RNG operates in an insecure mode as long as the 1269 recording is enabled. This interface therefore is only 1270 intended for testing purposes and is not suitable for 1271 production systems. 1272 1273 The raw noise data can be obtained using the jent_raw_hires 1274 debugfs file. Using the option 1275 jitterentropy_testing.boot_raw_hires_test=1 the raw noise of 1276 the first 1000 entropy events since boot can be sampled. 1277 1278 If unsure, select N. 1279 1280endif # if CRYPTO_FIPS && EXPERT 1281 1282if !(CRYPTO_FIPS && EXPERT) 1283 1284config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS 1285 int 1286 default 64 1287 1288config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE 1289 int 1290 default 32 1291 1292config CRYPTO_JITTERENTROPY_OSR 1293 int 1294 default 1 1295 1296config CRYPTO_JITTERENTROPY_TESTINTERFACE 1297 bool 1298 1299endif # if !(CRYPTO_FIPS && EXPERT) 1300endif # if CRYPTO_JITTERENTROPY 1301 1302config CRYPTO_KDF800108_CTR 1303 tristate 1304 select CRYPTO_HMAC 1305 select CRYPTO_SHA256 1306 1307config CRYPTO_DF80090A 1308 tristate 1309 select CRYPTO_AES 1310 select CRYPTO_CTR 1311 1312endmenu 1313menu "Userspace interface" 1314 1315config CRYPTO_USER_API 1316 tristate 1317 1318config CRYPTO_USER_API_HASH 1319 tristate "Hash algorithms" 1320 depends on NET 1321 select CRYPTO_HASH 1322 select CRYPTO_USER_API 1323 help 1324 Enable the userspace interface for hash algorithms. 1325 1326 See Documentation/crypto/userspace-if.rst and 1327 https://www.chronox.de/libkcapi/html/index.html 1328 1329config CRYPTO_USER_API_SKCIPHER 1330 tristate "Symmetric key cipher algorithms" 1331 depends on NET 1332 select CRYPTO_SKCIPHER 1333 select CRYPTO_USER_API 1334 help 1335 Enable the userspace interface for symmetric key cipher algorithms. 1336 1337 See Documentation/crypto/userspace-if.rst and 1338 https://www.chronox.de/libkcapi/html/index.html 1339 1340config CRYPTO_USER_API_RNG 1341 tristate "RNG (random number generator) algorithms" 1342 depends on NET 1343 select CRYPTO_RNG 1344 select CRYPTO_USER_API 1345 help 1346 Enable the userspace interface for RNG (random number generator) 1347 algorithms. 1348 1349 See Documentation/crypto/userspace-if.rst and 1350 https://www.chronox.de/libkcapi/html/index.html 1351 1352config CRYPTO_USER_API_RNG_CAVP 1353 bool "Enable CAVP testing of DRBG" 1354 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1355 help 1356 Enable extra APIs in the userspace interface for NIST CAVP 1357 (Cryptographic Algorithm Validation Program) testing: 1358 - resetting DRBG entropy 1359 - providing Additional Data 1360 1361 This should only be enabled for CAVP testing. You should say 1362 no unless you know what this is. 1363 1364config CRYPTO_USER_API_AEAD 1365 tristate "AEAD cipher algorithms" 1366 depends on NET 1367 select CRYPTO_AEAD 1368 select CRYPTO_SKCIPHER 1369 select CRYPTO_USER_API 1370 help 1371 Enable the userspace interface for AEAD cipher algorithms. 1372 1373 See Documentation/crypto/userspace-if.rst and 1374 https://www.chronox.de/libkcapi/html/index.html 1375 1376config CRYPTO_USER_API_ENABLE_OBSOLETE 1377 bool "Obsolete cryptographic algorithms" 1378 depends on CRYPTO_USER_API 1379 default y 1380 help 1381 Allow obsolete cryptographic algorithms to be selected that have 1382 already been phased out from internal use by the kernel, and are 1383 only useful for userspace clients that still rely on them. 1384 1385endmenu 1386 1387if !KMSAN # avoid false positives from assembly 1388if ARM 1389source "arch/arm/crypto/Kconfig" 1390endif 1391if ARM64 1392source "arch/arm64/crypto/Kconfig" 1393endif 1394if LOONGARCH 1395source "arch/loongarch/crypto/Kconfig" 1396endif 1397if MIPS 1398source "arch/mips/crypto/Kconfig" 1399endif 1400if PPC 1401source "arch/powerpc/crypto/Kconfig" 1402endif 1403if RISCV 1404source "arch/riscv/crypto/Kconfig" 1405endif 1406if S390 1407source "arch/s390/crypto/Kconfig" 1408endif 1409if SPARC 1410source "arch/sparc/crypto/Kconfig" 1411endif 1412if X86 1413source "arch/x86/crypto/Kconfig" 1414endif 1415endif 1416 1417source "drivers/crypto/Kconfig" 1418source "crypto/asymmetric_keys/Kconfig" 1419source "certs/Kconfig" 1420source "crypto/krb5/Kconfig" 1421 1422endif # if CRYPTO 1423