1# 2# Generic algorithms support 3# 4config XOR_BLOCKS 5 tristate 6 7# 8# async_tx api: hardware offloaded memory transfer/transform support 9# 10source "crypto/async_tx/Kconfig" 11 12# 13# Cryptographic API Configuration 14# 15menuconfig CRYPTO 16 tristate "Cryptographic API" 17 help 18 This option provides the core Cryptographic API. 19 20if CRYPTO 21 22comment "Crypto core or helper" 23 24config CRYPTO_FIPS 25 bool "FIPS 200 compliance" 26 depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS 27 help 28 This options enables the fips boot option which is 29 required if you want to system to operate in a FIPS 200 30 certification. You should say no unless you know what 31 this is. 32 33config CRYPTO_ALGAPI 34 tristate 35 select CRYPTO_ALGAPI2 36 help 37 This option provides the API for cryptographic algorithms. 38 39config CRYPTO_ALGAPI2 40 tristate 41 42config CRYPTO_AEAD 43 tristate 44 select CRYPTO_AEAD2 45 select CRYPTO_ALGAPI 46 47config CRYPTO_AEAD2 48 tristate 49 select CRYPTO_ALGAPI2 50 51config CRYPTO_BLKCIPHER 52 tristate 53 select CRYPTO_BLKCIPHER2 54 select CRYPTO_ALGAPI 55 56config CRYPTO_BLKCIPHER2 57 tristate 58 select CRYPTO_ALGAPI2 59 select CRYPTO_RNG2 60 select CRYPTO_WORKQUEUE 61 62config CRYPTO_HASH 63 tristate 64 select CRYPTO_HASH2 65 select CRYPTO_ALGAPI 66 67config CRYPTO_HASH2 68 tristate 69 select CRYPTO_ALGAPI2 70 71config CRYPTO_RNG 72 tristate 73 select CRYPTO_RNG2 74 select CRYPTO_ALGAPI 75 76config CRYPTO_RNG2 77 tristate 78 select CRYPTO_ALGAPI2 79 80config CRYPTO_PCOMP 81 tristate 82 select CRYPTO_PCOMP2 83 select CRYPTO_ALGAPI 84 85config CRYPTO_PCOMP2 86 tristate 87 select CRYPTO_ALGAPI2 88 89config CRYPTO_MANAGER 90 tristate "Cryptographic algorithm manager" 91 select CRYPTO_MANAGER2 92 help 93 Create default cryptographic template instantiations such as 94 cbc(aes). 95 96config CRYPTO_MANAGER2 97 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 98 select CRYPTO_AEAD2 99 select CRYPTO_HASH2 100 select CRYPTO_BLKCIPHER2 101 select CRYPTO_PCOMP2 102 103config CRYPTO_USER 104 tristate "Userspace cryptographic algorithm configuration" 105 depends on NET 106 select CRYPTO_MANAGER 107 help 108 Userspace configuration for cryptographic instantiations such as 109 cbc(aes). 110 111config CRYPTO_MANAGER_DISABLE_TESTS 112 bool "Disable run-time self tests" 113 default y 114 depends on CRYPTO_MANAGER2 115 help 116 Disable run-time self tests that normally take place at 117 algorithm registration. 118 119config CRYPTO_GF128MUL 120 tristate "GF(2^128) multiplication functions" 121 help 122 Efficient table driven implementation of multiplications in the 123 field GF(2^128). This is needed by some cypher modes. This 124 option will be selected automatically if you select such a 125 cipher mode. Only select this option by hand if you expect to load 126 an external module that requires these functions. 127 128config CRYPTO_NULL 129 tristate "Null algorithms" 130 select CRYPTO_ALGAPI 131 select CRYPTO_BLKCIPHER 132 select CRYPTO_HASH 133 help 134 These are 'Null' algorithms, used by IPsec, which do nothing. 135 136config CRYPTO_PCRYPT 137 tristate "Parallel crypto engine" 138 depends on SMP 139 select PADATA 140 select CRYPTO_MANAGER 141 select CRYPTO_AEAD 142 help 143 This converts an arbitrary crypto algorithm into a parallel 144 algorithm that executes in kernel threads. 145 146config CRYPTO_WORKQUEUE 147 tristate 148 149config CRYPTO_CRYPTD 150 tristate "Software async crypto daemon" 151 select CRYPTO_BLKCIPHER 152 select CRYPTO_HASH 153 select CRYPTO_MANAGER 154 select CRYPTO_WORKQUEUE 155 help 156 This is a generic software asynchronous crypto daemon that 157 converts an arbitrary synchronous software crypto algorithm 158 into an asynchronous algorithm that executes in a kernel thread. 159 160config CRYPTO_AUTHENC 161 tristate "Authenc support" 162 select CRYPTO_AEAD 163 select CRYPTO_BLKCIPHER 164 select CRYPTO_MANAGER 165 select CRYPTO_HASH 166 help 167 Authenc: Combined mode wrapper for IPsec. 168 This is required for IPSec. 169 170config CRYPTO_TEST 171 tristate "Testing module" 172 depends on m 173 select CRYPTO_MANAGER 174 help 175 Quick & dirty crypto test module. 176 177config CRYPTO_ABLK_HELPER_X86 178 tristate 179 depends on X86 180 select CRYPTO_CRYPTD 181 182config CRYPTO_GLUE_HELPER_X86 183 tristate 184 depends on X86 185 select CRYPTO_ALGAPI 186 187comment "Authenticated Encryption with Associated Data" 188 189config CRYPTO_CCM 190 tristate "CCM support" 191 select CRYPTO_CTR 192 select CRYPTO_AEAD 193 help 194 Support for Counter with CBC MAC. Required for IPsec. 195 196config CRYPTO_GCM 197 tristate "GCM/GMAC support" 198 select CRYPTO_CTR 199 select CRYPTO_AEAD 200 select CRYPTO_GHASH 201 select CRYPTO_NULL 202 help 203 Support for Galois/Counter Mode (GCM) and Galois Message 204 Authentication Code (GMAC). Required for IPSec. 205 206config CRYPTO_SEQIV 207 tristate "Sequence Number IV Generator" 208 select CRYPTO_AEAD 209 select CRYPTO_BLKCIPHER 210 select CRYPTO_RNG 211 help 212 This IV generator generates an IV based on a sequence number by 213 xoring it with a salt. This algorithm is mainly useful for CTR 214 215comment "Block modes" 216 217config CRYPTO_CBC 218 tristate "CBC support" 219 select CRYPTO_BLKCIPHER 220 select CRYPTO_MANAGER 221 help 222 CBC: Cipher Block Chaining mode 223 This block cipher algorithm is required for IPSec. 224 225config CRYPTO_CTR 226 tristate "CTR support" 227 select CRYPTO_BLKCIPHER 228 select CRYPTO_SEQIV 229 select CRYPTO_MANAGER 230 help 231 CTR: Counter mode 232 This block cipher algorithm is required for IPSec. 233 234config CRYPTO_CTS 235 tristate "CTS support" 236 select CRYPTO_BLKCIPHER 237 help 238 CTS: Cipher Text Stealing 239 This is the Cipher Text Stealing mode as described by 240 Section 8 of rfc2040 and referenced by rfc3962. 241 (rfc3962 includes errata information in its Appendix A) 242 This mode is required for Kerberos gss mechanism support 243 for AES encryption. 244 245config CRYPTO_ECB 246 tristate "ECB support" 247 select CRYPTO_BLKCIPHER 248 select CRYPTO_MANAGER 249 help 250 ECB: Electronic CodeBook mode 251 This is the simplest block cipher algorithm. It simply encrypts 252 the input block by block. 253 254config CRYPTO_LRW 255 tristate "LRW support" 256 select CRYPTO_BLKCIPHER 257 select CRYPTO_MANAGER 258 select CRYPTO_GF128MUL 259 help 260 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 261 narrow block cipher mode for dm-crypt. Use it with cipher 262 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 263 The first 128, 192 or 256 bits in the key are used for AES and the 264 rest is used to tie each cipher block to its logical position. 265 266config CRYPTO_PCBC 267 tristate "PCBC support" 268 select CRYPTO_BLKCIPHER 269 select CRYPTO_MANAGER 270 help 271 PCBC: Propagating Cipher Block Chaining mode 272 This block cipher algorithm is required for RxRPC. 273 274config CRYPTO_XTS 275 tristate "XTS support" 276 select CRYPTO_BLKCIPHER 277 select CRYPTO_MANAGER 278 select CRYPTO_GF128MUL 279 help 280 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 281 key size 256, 384 or 512 bits. This implementation currently 282 can't handle a sectorsize which is not a multiple of 16 bytes. 283 284comment "Hash modes" 285 286config CRYPTO_CMAC 287 tristate "CMAC support" 288 select CRYPTO_HASH 289 select CRYPTO_MANAGER 290 help 291 Cipher-based Message Authentication Code (CMAC) specified by 292 The National Institute of Standards and Technology (NIST). 293 294 https://tools.ietf.org/html/rfc4493 295 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 296 297config CRYPTO_HMAC 298 tristate "HMAC support" 299 select CRYPTO_HASH 300 select CRYPTO_MANAGER 301 help 302 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 303 This is required for IPSec. 304 305config CRYPTO_XCBC 306 tristate "XCBC support" 307 select CRYPTO_HASH 308 select CRYPTO_MANAGER 309 help 310 XCBC: Keyed-Hashing with encryption algorithm 311 http://www.ietf.org/rfc/rfc3566.txt 312 http://csrc.nist.gov/encryption/modes/proposedmodes/ 313 xcbc-mac/xcbc-mac-spec.pdf 314 315config CRYPTO_VMAC 316 tristate "VMAC support" 317 select CRYPTO_HASH 318 select CRYPTO_MANAGER 319 help 320 VMAC is a message authentication algorithm designed for 321 very high speed on 64-bit architectures. 322 323 See also: 324 <http://fastcrypto.org/vmac> 325 326comment "Digest" 327 328config CRYPTO_CRC32C 329 tristate "CRC32c CRC algorithm" 330 select CRYPTO_HASH 331 select CRC32 332 help 333 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 334 by iSCSI for header and data digests and by others. 335 See Castagnoli93. Module will be crc32c. 336 337config CRYPTO_CRC32C_INTEL 338 tristate "CRC32c INTEL hardware acceleration" 339 depends on X86 340 select CRYPTO_HASH 341 help 342 In Intel processor with SSE4.2 supported, the processor will 343 support CRC32C implementation using hardware accelerated CRC32 344 instruction. This option will create 'crc32c-intel' module, 345 which will enable any routine to use the CRC32 instruction to 346 gain performance compared with software implementation. 347 Module will be crc32c-intel. 348 349config CRYPTO_CRC32C_SPARC64 350 tristate "CRC32c CRC algorithm (SPARC64)" 351 depends on SPARC64 352 select CRYPTO_HASH 353 select CRC32 354 help 355 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 356 when available. 357 358config CRYPTO_CRC32 359 tristate "CRC32 CRC algorithm" 360 select CRYPTO_HASH 361 select CRC32 362 help 363 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 364 Shash crypto api wrappers to crc32_le function. 365 366config CRYPTO_CRC32_PCLMUL 367 tristate "CRC32 PCLMULQDQ hardware acceleration" 368 depends on X86 369 select CRYPTO_HASH 370 select CRC32 371 help 372 From Intel Westmere and AMD Bulldozer processor with SSE4.2 373 and PCLMULQDQ supported, the processor will support 374 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 375 instruction. This option will create 'crc32-plcmul' module, 376 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 377 and gain better performance as compared with the table implementation. 378 379config CRYPTO_GHASH 380 tristate "GHASH digest algorithm" 381 select CRYPTO_GF128MUL 382 help 383 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 384 385config CRYPTO_MD4 386 tristate "MD4 digest algorithm" 387 select CRYPTO_HASH 388 help 389 MD4 message digest algorithm (RFC1320). 390 391config CRYPTO_MD5 392 tristate "MD5 digest algorithm" 393 select CRYPTO_HASH 394 help 395 MD5 message digest algorithm (RFC1321). 396 397config CRYPTO_MD5_SPARC64 398 tristate "MD5 digest algorithm (SPARC64)" 399 depends on SPARC64 400 select CRYPTO_MD5 401 select CRYPTO_HASH 402 help 403 MD5 message digest algorithm (RFC1321) implemented 404 using sparc64 crypto instructions, when available. 405 406config CRYPTO_MICHAEL_MIC 407 tristate "Michael MIC keyed digest algorithm" 408 select CRYPTO_HASH 409 help 410 Michael MIC is used for message integrity protection in TKIP 411 (IEEE 802.11i). This algorithm is required for TKIP, but it 412 should not be used for other purposes because of the weakness 413 of the algorithm. 414 415config CRYPTO_RMD128 416 tristate "RIPEMD-128 digest algorithm" 417 select CRYPTO_HASH 418 help 419 RIPEMD-128 (ISO/IEC 10118-3:2004). 420 421 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 422 be used as a secure replacement for RIPEMD. For other use cases, 423 RIPEMD-160 should be used. 424 425 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 426 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 427 428config CRYPTO_RMD160 429 tristate "RIPEMD-160 digest algorithm" 430 select CRYPTO_HASH 431 help 432 RIPEMD-160 (ISO/IEC 10118-3:2004). 433 434 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 435 to be used as a secure replacement for the 128-bit hash functions 436 MD4, MD5 and it's predecessor RIPEMD 437 (not to be confused with RIPEMD-128). 438 439 It's speed is comparable to SHA1 and there are no known attacks 440 against RIPEMD-160. 441 442 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 443 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 444 445config CRYPTO_RMD256 446 tristate "RIPEMD-256 digest algorithm" 447 select CRYPTO_HASH 448 help 449 RIPEMD-256 is an optional extension of RIPEMD-128 with a 450 256 bit hash. It is intended for applications that require 451 longer hash-results, without needing a larger security level 452 (than RIPEMD-128). 453 454 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 455 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 456 457config CRYPTO_RMD320 458 tristate "RIPEMD-320 digest algorithm" 459 select CRYPTO_HASH 460 help 461 RIPEMD-320 is an optional extension of RIPEMD-160 with a 462 320 bit hash. It is intended for applications that require 463 longer hash-results, without needing a larger security level 464 (than RIPEMD-160). 465 466 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 467 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 468 469config CRYPTO_SHA1 470 tristate "SHA1 digest algorithm" 471 select CRYPTO_HASH 472 help 473 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 474 475config CRYPTO_SHA1_SSSE3 476 tristate "SHA1 digest algorithm (SSSE3/AVX)" 477 depends on X86 && 64BIT 478 select CRYPTO_SHA1 479 select CRYPTO_HASH 480 help 481 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 482 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 483 Extensions (AVX), when available. 484 485config CRYPTO_SHA256_SSSE3 486 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)" 487 depends on X86 && 64BIT 488 select CRYPTO_SHA256 489 select CRYPTO_HASH 490 help 491 SHA-256 secure hash standard (DFIPS 180-2) implemented 492 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 493 Extensions version 1 (AVX1), or Advanced Vector Extensions 494 version 2 (AVX2) instructions, when available. 495 496config CRYPTO_SHA512_SSSE3 497 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 498 depends on X86 && 64BIT 499 select CRYPTO_SHA512 500 select CRYPTO_HASH 501 help 502 SHA-512 secure hash standard (DFIPS 180-2) implemented 503 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 504 Extensions version 1 (AVX1), or Advanced Vector Extensions 505 version 2 (AVX2) instructions, when available. 506 507config CRYPTO_SHA1_SPARC64 508 tristate "SHA1 digest algorithm (SPARC64)" 509 depends on SPARC64 510 select CRYPTO_SHA1 511 select CRYPTO_HASH 512 help 513 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 514 using sparc64 crypto instructions, when available. 515 516config CRYPTO_SHA1_ARM 517 tristate "SHA1 digest algorithm (ARM-asm)" 518 depends on ARM 519 select CRYPTO_SHA1 520 select CRYPTO_HASH 521 help 522 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 523 using optimized ARM assembler. 524 525config CRYPTO_SHA1_PPC 526 tristate "SHA1 digest algorithm (powerpc)" 527 depends on PPC 528 help 529 This is the powerpc hardware accelerated implementation of the 530 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 531 532config CRYPTO_SHA256 533 tristate "SHA224 and SHA256 digest algorithm" 534 select CRYPTO_HASH 535 help 536 SHA256 secure hash standard (DFIPS 180-2). 537 538 This version of SHA implements a 256 bit hash with 128 bits of 539 security against collision attacks. 540 541 This code also includes SHA-224, a 224 bit hash with 112 bits 542 of security against collision attacks. 543 544config CRYPTO_SHA256_SPARC64 545 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 546 depends on SPARC64 547 select CRYPTO_SHA256 548 select CRYPTO_HASH 549 help 550 SHA-256 secure hash standard (DFIPS 180-2) implemented 551 using sparc64 crypto instructions, when available. 552 553config CRYPTO_SHA512 554 tristate "SHA384 and SHA512 digest algorithms" 555 select CRYPTO_HASH 556 help 557 SHA512 secure hash standard (DFIPS 180-2). 558 559 This version of SHA implements a 512 bit hash with 256 bits of 560 security against collision attacks. 561 562 This code also includes SHA-384, a 384 bit hash with 192 bits 563 of security against collision attacks. 564 565config CRYPTO_SHA512_SPARC64 566 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 567 depends on SPARC64 568 select CRYPTO_SHA512 569 select CRYPTO_HASH 570 help 571 SHA-512 secure hash standard (DFIPS 180-2) implemented 572 using sparc64 crypto instructions, when available. 573 574config CRYPTO_TGR192 575 tristate "Tiger digest algorithms" 576 select CRYPTO_HASH 577 help 578 Tiger hash algorithm 192, 160 and 128-bit hashes 579 580 Tiger is a hash function optimized for 64-bit processors while 581 still having decent performance on 32-bit processors. 582 Tiger was developed by Ross Anderson and Eli Biham. 583 584 See also: 585 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 586 587config CRYPTO_WP512 588 tristate "Whirlpool digest algorithms" 589 select CRYPTO_HASH 590 help 591 Whirlpool hash algorithm 512, 384 and 256-bit hashes 592 593 Whirlpool-512 is part of the NESSIE cryptographic primitives. 594 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 595 596 See also: 597 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 598 599config CRYPTO_GHASH_CLMUL_NI_INTEL 600 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 601 depends on X86 && 64BIT 602 select CRYPTO_CRYPTD 603 help 604 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 605 The implementation is accelerated by CLMUL-NI of Intel. 606 607comment "Ciphers" 608 609config CRYPTO_AES 610 tristate "AES cipher algorithms" 611 select CRYPTO_ALGAPI 612 help 613 AES cipher algorithms (FIPS-197). AES uses the Rijndael 614 algorithm. 615 616 Rijndael appears to be consistently a very good performer in 617 both hardware and software across a wide range of computing 618 environments regardless of its use in feedback or non-feedback 619 modes. Its key setup time is excellent, and its key agility is 620 good. Rijndael's very low memory requirements make it very well 621 suited for restricted-space environments, in which it also 622 demonstrates excellent performance. Rijndael's operations are 623 among the easiest to defend against power and timing attacks. 624 625 The AES specifies three key sizes: 128, 192 and 256 bits 626 627 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 628 629config CRYPTO_AES_586 630 tristate "AES cipher algorithms (i586)" 631 depends on (X86 || UML_X86) && !64BIT 632 select CRYPTO_ALGAPI 633 select CRYPTO_AES 634 help 635 AES cipher algorithms (FIPS-197). AES uses the Rijndael 636 algorithm. 637 638 Rijndael appears to be consistently a very good performer in 639 both hardware and software across a wide range of computing 640 environments regardless of its use in feedback or non-feedback 641 modes. Its key setup time is excellent, and its key agility is 642 good. Rijndael's very low memory requirements make it very well 643 suited for restricted-space environments, in which it also 644 demonstrates excellent performance. Rijndael's operations are 645 among the easiest to defend against power and timing attacks. 646 647 The AES specifies three key sizes: 128, 192 and 256 bits 648 649 See <http://csrc.nist.gov/encryption/aes/> for more information. 650 651config CRYPTO_AES_X86_64 652 tristate "AES cipher algorithms (x86_64)" 653 depends on (X86 || UML_X86) && 64BIT 654 select CRYPTO_ALGAPI 655 select CRYPTO_AES 656 help 657 AES cipher algorithms (FIPS-197). AES uses the Rijndael 658 algorithm. 659 660 Rijndael appears to be consistently a very good performer in 661 both hardware and software across a wide range of computing 662 environments regardless of its use in feedback or non-feedback 663 modes. Its key setup time is excellent, and its key agility is 664 good. Rijndael's very low memory requirements make it very well 665 suited for restricted-space environments, in which it also 666 demonstrates excellent performance. Rijndael's operations are 667 among the easiest to defend against power and timing attacks. 668 669 The AES specifies three key sizes: 128, 192 and 256 bits 670 671 See <http://csrc.nist.gov/encryption/aes/> for more information. 672 673config CRYPTO_AES_NI_INTEL 674 tristate "AES cipher algorithms (AES-NI)" 675 depends on X86 676 select CRYPTO_AES_X86_64 if 64BIT 677 select CRYPTO_AES_586 if !64BIT 678 select CRYPTO_CRYPTD 679 select CRYPTO_ABLK_HELPER_X86 680 select CRYPTO_ALGAPI 681 select CRYPTO_GLUE_HELPER_X86 if 64BIT 682 select CRYPTO_LRW 683 select CRYPTO_XTS 684 help 685 Use Intel AES-NI instructions for AES algorithm. 686 687 AES cipher algorithms (FIPS-197). AES uses the Rijndael 688 algorithm. 689 690 Rijndael appears to be consistently a very good performer in 691 both hardware and software across a wide range of computing 692 environments regardless of its use in feedback or non-feedback 693 modes. Its key setup time is excellent, and its key agility is 694 good. Rijndael's very low memory requirements make it very well 695 suited for restricted-space environments, in which it also 696 demonstrates excellent performance. Rijndael's operations are 697 among the easiest to defend against power and timing attacks. 698 699 The AES specifies three key sizes: 128, 192 and 256 bits 700 701 See <http://csrc.nist.gov/encryption/aes/> for more information. 702 703 In addition to AES cipher algorithm support, the acceleration 704 for some popular block cipher mode is supported too, including 705 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 706 acceleration for CTR. 707 708config CRYPTO_AES_SPARC64 709 tristate "AES cipher algorithms (SPARC64)" 710 depends on SPARC64 711 select CRYPTO_CRYPTD 712 select CRYPTO_ALGAPI 713 help 714 Use SPARC64 crypto opcodes for AES algorithm. 715 716 AES cipher algorithms (FIPS-197). AES uses the Rijndael 717 algorithm. 718 719 Rijndael appears to be consistently a very good performer in 720 both hardware and software across a wide range of computing 721 environments regardless of its use in feedback or non-feedback 722 modes. Its key setup time is excellent, and its key agility is 723 good. Rijndael's very low memory requirements make it very well 724 suited for restricted-space environments, in which it also 725 demonstrates excellent performance. Rijndael's operations are 726 among the easiest to defend against power and timing attacks. 727 728 The AES specifies three key sizes: 128, 192 and 256 bits 729 730 See <http://csrc.nist.gov/encryption/aes/> for more information. 731 732 In addition to AES cipher algorithm support, the acceleration 733 for some popular block cipher mode is supported too, including 734 ECB and CBC. 735 736config CRYPTO_AES_ARM 737 tristate "AES cipher algorithms (ARM-asm)" 738 depends on ARM 739 select CRYPTO_ALGAPI 740 select CRYPTO_AES 741 help 742 Use optimized AES assembler routines for ARM platforms. 743 744 AES cipher algorithms (FIPS-197). AES uses the Rijndael 745 algorithm. 746 747 Rijndael appears to be consistently a very good performer in 748 both hardware and software across a wide range of computing 749 environments regardless of its use in feedback or non-feedback 750 modes. Its key setup time is excellent, and its key agility is 751 good. Rijndael's very low memory requirements make it very well 752 suited for restricted-space environments, in which it also 753 demonstrates excellent performance. Rijndael's operations are 754 among the easiest to defend against power and timing attacks. 755 756 The AES specifies three key sizes: 128, 192 and 256 bits 757 758 See <http://csrc.nist.gov/encryption/aes/> for more information. 759 760config CRYPTO_ANUBIS 761 tristate "Anubis cipher algorithm" 762 select CRYPTO_ALGAPI 763 help 764 Anubis cipher algorithm. 765 766 Anubis is a variable key length cipher which can use keys from 767 128 bits to 320 bits in length. It was evaluated as a entrant 768 in the NESSIE competition. 769 770 See also: 771 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 772 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 773 774config CRYPTO_ARC4 775 tristate "ARC4 cipher algorithm" 776 select CRYPTO_BLKCIPHER 777 help 778 ARC4 cipher algorithm. 779 780 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 781 bits in length. This algorithm is required for driver-based 782 WEP, but it should not be for other purposes because of the 783 weakness of the algorithm. 784 785config CRYPTO_BLOWFISH 786 tristate "Blowfish cipher algorithm" 787 select CRYPTO_ALGAPI 788 select CRYPTO_BLOWFISH_COMMON 789 help 790 Blowfish cipher algorithm, by Bruce Schneier. 791 792 This is a variable key length cipher which can use keys from 32 793 bits to 448 bits in length. It's fast, simple and specifically 794 designed for use on "large microprocessors". 795 796 See also: 797 <http://www.schneier.com/blowfish.html> 798 799config CRYPTO_BLOWFISH_COMMON 800 tristate 801 help 802 Common parts of the Blowfish cipher algorithm shared by the 803 generic c and the assembler implementations. 804 805 See also: 806 <http://www.schneier.com/blowfish.html> 807 808config CRYPTO_BLOWFISH_X86_64 809 tristate "Blowfish cipher algorithm (x86_64)" 810 depends on X86 && 64BIT 811 select CRYPTO_ALGAPI 812 select CRYPTO_BLOWFISH_COMMON 813 help 814 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 815 816 This is a variable key length cipher which can use keys from 32 817 bits to 448 bits in length. It's fast, simple and specifically 818 designed for use on "large microprocessors". 819 820 See also: 821 <http://www.schneier.com/blowfish.html> 822 823config CRYPTO_BLOWFISH_AVX2_X86_64 824 tristate "Blowfish cipher algorithm (x86_64/AVX2)" 825 depends on X86 && 64BIT 826 depends on BROKEN 827 select CRYPTO_ALGAPI 828 select CRYPTO_CRYPTD 829 select CRYPTO_ABLK_HELPER_X86 830 select CRYPTO_BLOWFISH_COMMON 831 select CRYPTO_BLOWFISH_X86_64 832 help 833 Blowfish cipher algorithm (x86_64/AVX2), by Bruce Schneier. 834 835 This is a variable key length cipher which can use keys from 32 836 bits to 448 bits in length. It's fast, simple and specifically 837 designed for use on "large microprocessors". 838 839 See also: 840 <http://www.schneier.com/blowfish.html> 841 842config CRYPTO_CAMELLIA 843 tristate "Camellia cipher algorithms" 844 depends on CRYPTO 845 select CRYPTO_ALGAPI 846 help 847 Camellia cipher algorithms module. 848 849 Camellia is a symmetric key block cipher developed jointly 850 at NTT and Mitsubishi Electric Corporation. 851 852 The Camellia specifies three key sizes: 128, 192 and 256 bits. 853 854 See also: 855 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 856 857config CRYPTO_CAMELLIA_X86_64 858 tristate "Camellia cipher algorithm (x86_64)" 859 depends on X86 && 64BIT 860 depends on CRYPTO 861 select CRYPTO_ALGAPI 862 select CRYPTO_GLUE_HELPER_X86 863 select CRYPTO_LRW 864 select CRYPTO_XTS 865 help 866 Camellia cipher algorithm module (x86_64). 867 868 Camellia is a symmetric key block cipher developed jointly 869 at NTT and Mitsubishi Electric Corporation. 870 871 The Camellia specifies three key sizes: 128, 192 and 256 bits. 872 873 See also: 874 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 875 876config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 877 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 878 depends on X86 && 64BIT 879 depends on CRYPTO 880 select CRYPTO_ALGAPI 881 select CRYPTO_CRYPTD 882 select CRYPTO_ABLK_HELPER_X86 883 select CRYPTO_GLUE_HELPER_X86 884 select CRYPTO_CAMELLIA_X86_64 885 select CRYPTO_LRW 886 select CRYPTO_XTS 887 help 888 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 889 890 Camellia is a symmetric key block cipher developed jointly 891 at NTT and Mitsubishi Electric Corporation. 892 893 The Camellia specifies three key sizes: 128, 192 and 256 bits. 894 895 See also: 896 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 897 898config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 899 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 900 depends on X86 && 64BIT 901 depends on CRYPTO 902 select CRYPTO_ALGAPI 903 select CRYPTO_CRYPTD 904 select CRYPTO_ABLK_HELPER_X86 905 select CRYPTO_GLUE_HELPER_X86 906 select CRYPTO_CAMELLIA_X86_64 907 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 908 select CRYPTO_LRW 909 select CRYPTO_XTS 910 help 911 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 912 913 Camellia is a symmetric key block cipher developed jointly 914 at NTT and Mitsubishi Electric Corporation. 915 916 The Camellia specifies three key sizes: 128, 192 and 256 bits. 917 918 See also: 919 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 920 921config CRYPTO_CAMELLIA_SPARC64 922 tristate "Camellia cipher algorithm (SPARC64)" 923 depends on SPARC64 924 depends on CRYPTO 925 select CRYPTO_ALGAPI 926 help 927 Camellia cipher algorithm module (SPARC64). 928 929 Camellia is a symmetric key block cipher developed jointly 930 at NTT and Mitsubishi Electric Corporation. 931 932 The Camellia specifies three key sizes: 128, 192 and 256 bits. 933 934 See also: 935 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 936 937config CRYPTO_CAST_COMMON 938 tristate 939 help 940 Common parts of the CAST cipher algorithms shared by the 941 generic c and the assembler implementations. 942 943config CRYPTO_CAST5 944 tristate "CAST5 (CAST-128) cipher algorithm" 945 select CRYPTO_ALGAPI 946 select CRYPTO_CAST_COMMON 947 help 948 The CAST5 encryption algorithm (synonymous with CAST-128) is 949 described in RFC2144. 950 951config CRYPTO_CAST5_AVX_X86_64 952 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 953 depends on X86 && 64BIT 954 select CRYPTO_ALGAPI 955 select CRYPTO_CRYPTD 956 select CRYPTO_ABLK_HELPER_X86 957 select CRYPTO_CAST_COMMON 958 select CRYPTO_CAST5 959 help 960 The CAST5 encryption algorithm (synonymous with CAST-128) is 961 described in RFC2144. 962 963 This module provides the Cast5 cipher algorithm that processes 964 sixteen blocks parallel using the AVX instruction set. 965 966config CRYPTO_CAST6 967 tristate "CAST6 (CAST-256) cipher algorithm" 968 select CRYPTO_ALGAPI 969 select CRYPTO_CAST_COMMON 970 help 971 The CAST6 encryption algorithm (synonymous with CAST-256) is 972 described in RFC2612. 973 974config CRYPTO_CAST6_AVX_X86_64 975 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 976 depends on X86 && 64BIT 977 select CRYPTO_ALGAPI 978 select CRYPTO_CRYPTD 979 select CRYPTO_ABLK_HELPER_X86 980 select CRYPTO_GLUE_HELPER_X86 981 select CRYPTO_CAST_COMMON 982 select CRYPTO_CAST6 983 select CRYPTO_LRW 984 select CRYPTO_XTS 985 help 986 The CAST6 encryption algorithm (synonymous with CAST-256) is 987 described in RFC2612. 988 989 This module provides the Cast6 cipher algorithm that processes 990 eight blocks parallel using the AVX instruction set. 991 992config CRYPTO_DES 993 tristate "DES and Triple DES EDE cipher algorithms" 994 select CRYPTO_ALGAPI 995 help 996 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 997 998config CRYPTO_DES_SPARC64 999 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1000 depends on SPARC64 1001 select CRYPTO_ALGAPI 1002 select CRYPTO_DES 1003 help 1004 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1005 optimized using SPARC64 crypto opcodes. 1006 1007config CRYPTO_FCRYPT 1008 tristate "FCrypt cipher algorithm" 1009 select CRYPTO_ALGAPI 1010 select CRYPTO_BLKCIPHER 1011 help 1012 FCrypt algorithm used by RxRPC. 1013 1014config CRYPTO_KHAZAD 1015 tristate "Khazad cipher algorithm" 1016 select CRYPTO_ALGAPI 1017 help 1018 Khazad cipher algorithm. 1019 1020 Khazad was a finalist in the initial NESSIE competition. It is 1021 an algorithm optimized for 64-bit processors with good performance 1022 on 32-bit processors. Khazad uses an 128 bit key size. 1023 1024 See also: 1025 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1026 1027config CRYPTO_SALSA20 1028 tristate "Salsa20 stream cipher algorithm" 1029 select CRYPTO_BLKCIPHER 1030 help 1031 Salsa20 stream cipher algorithm. 1032 1033 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1034 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1035 1036 The Salsa20 stream cipher algorithm is designed by Daniel J. 1037 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1038 1039config CRYPTO_SALSA20_586 1040 tristate "Salsa20 stream cipher algorithm (i586)" 1041 depends on (X86 || UML_X86) && !64BIT 1042 select CRYPTO_BLKCIPHER 1043 help 1044 Salsa20 stream cipher algorithm. 1045 1046 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1047 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1048 1049 The Salsa20 stream cipher algorithm is designed by Daniel J. 1050 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1051 1052config CRYPTO_SALSA20_X86_64 1053 tristate "Salsa20 stream cipher algorithm (x86_64)" 1054 depends on (X86 || UML_X86) && 64BIT 1055 select CRYPTO_BLKCIPHER 1056 help 1057 Salsa20 stream cipher algorithm. 1058 1059 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1060 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1061 1062 The Salsa20 stream cipher algorithm is designed by Daniel J. 1063 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1064 1065config CRYPTO_SEED 1066 tristate "SEED cipher algorithm" 1067 select CRYPTO_ALGAPI 1068 help 1069 SEED cipher algorithm (RFC4269). 1070 1071 SEED is a 128-bit symmetric key block cipher that has been 1072 developed by KISA (Korea Information Security Agency) as a 1073 national standard encryption algorithm of the Republic of Korea. 1074 It is a 16 round block cipher with the key size of 128 bit. 1075 1076 See also: 1077 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1078 1079config CRYPTO_SERPENT 1080 tristate "Serpent cipher algorithm" 1081 select CRYPTO_ALGAPI 1082 help 1083 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1084 1085 Keys are allowed to be from 0 to 256 bits in length, in steps 1086 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1087 variant of Serpent for compatibility with old kerneli.org code. 1088 1089 See also: 1090 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1091 1092config CRYPTO_SERPENT_SSE2_X86_64 1093 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1094 depends on X86 && 64BIT 1095 select CRYPTO_ALGAPI 1096 select CRYPTO_CRYPTD 1097 select CRYPTO_ABLK_HELPER_X86 1098 select CRYPTO_GLUE_HELPER_X86 1099 select CRYPTO_SERPENT 1100 select CRYPTO_LRW 1101 select CRYPTO_XTS 1102 help 1103 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1104 1105 Keys are allowed to be from 0 to 256 bits in length, in steps 1106 of 8 bits. 1107 1108 This module provides Serpent cipher algorithm that processes eigth 1109 blocks parallel using SSE2 instruction set. 1110 1111 See also: 1112 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1113 1114config CRYPTO_SERPENT_SSE2_586 1115 tristate "Serpent cipher algorithm (i586/SSE2)" 1116 depends on X86 && !64BIT 1117 select CRYPTO_ALGAPI 1118 select CRYPTO_CRYPTD 1119 select CRYPTO_ABLK_HELPER_X86 1120 select CRYPTO_GLUE_HELPER_X86 1121 select CRYPTO_SERPENT 1122 select CRYPTO_LRW 1123 select CRYPTO_XTS 1124 help 1125 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1126 1127 Keys are allowed to be from 0 to 256 bits in length, in steps 1128 of 8 bits. 1129 1130 This module provides Serpent cipher algorithm that processes four 1131 blocks parallel using SSE2 instruction set. 1132 1133 See also: 1134 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1135 1136config CRYPTO_SERPENT_AVX_X86_64 1137 tristate "Serpent cipher algorithm (x86_64/AVX)" 1138 depends on X86 && 64BIT 1139 select CRYPTO_ALGAPI 1140 select CRYPTO_CRYPTD 1141 select CRYPTO_ABLK_HELPER_X86 1142 select CRYPTO_GLUE_HELPER_X86 1143 select CRYPTO_SERPENT 1144 select CRYPTO_LRW 1145 select CRYPTO_XTS 1146 help 1147 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1148 1149 Keys are allowed to be from 0 to 256 bits in length, in steps 1150 of 8 bits. 1151 1152 This module provides the Serpent cipher algorithm that processes 1153 eight blocks parallel using the AVX instruction set. 1154 1155 See also: 1156 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1157 1158config CRYPTO_SERPENT_AVX2_X86_64 1159 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1160 depends on X86 && 64BIT 1161 select CRYPTO_ALGAPI 1162 select CRYPTO_CRYPTD 1163 select CRYPTO_ABLK_HELPER_X86 1164 select CRYPTO_GLUE_HELPER_X86 1165 select CRYPTO_SERPENT 1166 select CRYPTO_SERPENT_AVX_X86_64 1167 select CRYPTO_LRW 1168 select CRYPTO_XTS 1169 help 1170 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1171 1172 Keys are allowed to be from 0 to 256 bits in length, in steps 1173 of 8 bits. 1174 1175 This module provides Serpent cipher algorithm that processes 16 1176 blocks parallel using AVX2 instruction set. 1177 1178 See also: 1179 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1180 1181config CRYPTO_TEA 1182 tristate "TEA, XTEA and XETA cipher algorithms" 1183 select CRYPTO_ALGAPI 1184 help 1185 TEA cipher algorithm. 1186 1187 Tiny Encryption Algorithm is a simple cipher that uses 1188 many rounds for security. It is very fast and uses 1189 little memory. 1190 1191 Xtendend Tiny Encryption Algorithm is a modification to 1192 the TEA algorithm to address a potential key weakness 1193 in the TEA algorithm. 1194 1195 Xtendend Encryption Tiny Algorithm is a mis-implementation 1196 of the XTEA algorithm for compatibility purposes. 1197 1198config CRYPTO_TWOFISH 1199 tristate "Twofish cipher algorithm" 1200 select CRYPTO_ALGAPI 1201 select CRYPTO_TWOFISH_COMMON 1202 help 1203 Twofish cipher algorithm. 1204 1205 Twofish was submitted as an AES (Advanced Encryption Standard) 1206 candidate cipher by researchers at CounterPane Systems. It is a 1207 16 round block cipher supporting key sizes of 128, 192, and 256 1208 bits. 1209 1210 See also: 1211 <http://www.schneier.com/twofish.html> 1212 1213config CRYPTO_TWOFISH_COMMON 1214 tristate 1215 help 1216 Common parts of the Twofish cipher algorithm shared by the 1217 generic c and the assembler implementations. 1218 1219config CRYPTO_TWOFISH_586 1220 tristate "Twofish cipher algorithms (i586)" 1221 depends on (X86 || UML_X86) && !64BIT 1222 select CRYPTO_ALGAPI 1223 select CRYPTO_TWOFISH_COMMON 1224 help 1225 Twofish cipher algorithm. 1226 1227 Twofish was submitted as an AES (Advanced Encryption Standard) 1228 candidate cipher by researchers at CounterPane Systems. It is a 1229 16 round block cipher supporting key sizes of 128, 192, and 256 1230 bits. 1231 1232 See also: 1233 <http://www.schneier.com/twofish.html> 1234 1235config CRYPTO_TWOFISH_X86_64 1236 tristate "Twofish cipher algorithm (x86_64)" 1237 depends on (X86 || UML_X86) && 64BIT 1238 select CRYPTO_ALGAPI 1239 select CRYPTO_TWOFISH_COMMON 1240 help 1241 Twofish cipher algorithm (x86_64). 1242 1243 Twofish was submitted as an AES (Advanced Encryption Standard) 1244 candidate cipher by researchers at CounterPane Systems. It is a 1245 16 round block cipher supporting key sizes of 128, 192, and 256 1246 bits. 1247 1248 See also: 1249 <http://www.schneier.com/twofish.html> 1250 1251config CRYPTO_TWOFISH_X86_64_3WAY 1252 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1253 depends on X86 && 64BIT 1254 select CRYPTO_ALGAPI 1255 select CRYPTO_TWOFISH_COMMON 1256 select CRYPTO_TWOFISH_X86_64 1257 select CRYPTO_GLUE_HELPER_X86 1258 select CRYPTO_LRW 1259 select CRYPTO_XTS 1260 help 1261 Twofish cipher algorithm (x86_64, 3-way parallel). 1262 1263 Twofish was submitted as an AES (Advanced Encryption Standard) 1264 candidate cipher by researchers at CounterPane Systems. It is a 1265 16 round block cipher supporting key sizes of 128, 192, and 256 1266 bits. 1267 1268 This module provides Twofish cipher algorithm that processes three 1269 blocks parallel, utilizing resources of out-of-order CPUs better. 1270 1271 See also: 1272 <http://www.schneier.com/twofish.html> 1273 1274config CRYPTO_TWOFISH_AVX_X86_64 1275 tristate "Twofish cipher algorithm (x86_64/AVX)" 1276 depends on X86 && 64BIT 1277 select CRYPTO_ALGAPI 1278 select CRYPTO_CRYPTD 1279 select CRYPTO_ABLK_HELPER_X86 1280 select CRYPTO_GLUE_HELPER_X86 1281 select CRYPTO_TWOFISH_COMMON 1282 select CRYPTO_TWOFISH_X86_64 1283 select CRYPTO_TWOFISH_X86_64_3WAY 1284 select CRYPTO_LRW 1285 select CRYPTO_XTS 1286 help 1287 Twofish cipher algorithm (x86_64/AVX). 1288 1289 Twofish was submitted as an AES (Advanced Encryption Standard) 1290 candidate cipher by researchers at CounterPane Systems. It is a 1291 16 round block cipher supporting key sizes of 128, 192, and 256 1292 bits. 1293 1294 This module provides the Twofish cipher algorithm that processes 1295 eight blocks parallel using the AVX Instruction Set. 1296 1297 See also: 1298 <http://www.schneier.com/twofish.html> 1299 1300config CRYPTO_TWOFISH_AVX2_X86_64 1301 tristate "Twofish cipher algorithm (x86_64/AVX2)" 1302 depends on X86 && 64BIT 1303 depends on BROKEN 1304 select CRYPTO_ALGAPI 1305 select CRYPTO_CRYPTD 1306 select CRYPTO_ABLK_HELPER_X86 1307 select CRYPTO_GLUE_HELPER_X86 1308 select CRYPTO_TWOFISH_COMMON 1309 select CRYPTO_TWOFISH_X86_64 1310 select CRYPTO_TWOFISH_X86_64_3WAY 1311 select CRYPTO_TWOFISH_AVX_X86_64 1312 select CRYPTO_LRW 1313 select CRYPTO_XTS 1314 help 1315 Twofish cipher algorithm (x86_64/AVX2). 1316 1317 Twofish was submitted as an AES (Advanced Encryption Standard) 1318 candidate cipher by researchers at CounterPane Systems. It is a 1319 16 round block cipher supporting key sizes of 128, 192, and 256 1320 bits. 1321 1322 See also: 1323 <http://www.schneier.com/twofish.html> 1324 1325comment "Compression" 1326 1327config CRYPTO_DEFLATE 1328 tristate "Deflate compression algorithm" 1329 select CRYPTO_ALGAPI 1330 select ZLIB_INFLATE 1331 select ZLIB_DEFLATE 1332 help 1333 This is the Deflate algorithm (RFC1951), specified for use in 1334 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1335 1336 You will most probably want this if using IPSec. 1337 1338config CRYPTO_ZLIB 1339 tristate "Zlib compression algorithm" 1340 select CRYPTO_PCOMP 1341 select ZLIB_INFLATE 1342 select ZLIB_DEFLATE 1343 select NLATTR 1344 help 1345 This is the zlib algorithm. 1346 1347config CRYPTO_LZO 1348 tristate "LZO compression algorithm" 1349 select CRYPTO_ALGAPI 1350 select LZO_COMPRESS 1351 select LZO_DECOMPRESS 1352 help 1353 This is the LZO algorithm. 1354 1355config CRYPTO_842 1356 tristate "842 compression algorithm" 1357 depends on CRYPTO_DEV_NX_COMPRESS 1358 # 842 uses lzo if the hardware becomes unavailable 1359 select LZO_COMPRESS 1360 select LZO_DECOMPRESS 1361 help 1362 This is the 842 algorithm. 1363 1364comment "Random Number Generation" 1365 1366config CRYPTO_ANSI_CPRNG 1367 tristate "Pseudo Random Number Generation for Cryptographic modules" 1368 default m 1369 select CRYPTO_AES 1370 select CRYPTO_RNG 1371 help 1372 This option enables the generic pseudo random number generator 1373 for cryptographic modules. Uses the Algorithm specified in 1374 ANSI X9.31 A.2.4. Note that this option must be enabled if 1375 CRYPTO_FIPS is selected 1376 1377config CRYPTO_USER_API 1378 tristate 1379 1380config CRYPTO_USER_API_HASH 1381 tristate "User-space interface for hash algorithms" 1382 depends on NET 1383 select CRYPTO_HASH 1384 select CRYPTO_USER_API 1385 help 1386 This option enables the user-spaces interface for hash 1387 algorithms. 1388 1389config CRYPTO_USER_API_SKCIPHER 1390 tristate "User-space interface for symmetric key cipher algorithms" 1391 depends on NET 1392 select CRYPTO_BLKCIPHER 1393 select CRYPTO_USER_API 1394 help 1395 This option enables the user-spaces interface for symmetric 1396 key cipher algorithms. 1397 1398source "drivers/crypto/Kconfig" 1399source crypto/asymmetric_keys/Kconfig 1400 1401endif # if CRYPTO 1402