1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 140326a6346SHerbert Xu bool "Disable run-time self tests" 14100ca28a5SHerbert Xu default y 1420b767f96SAlexander Shishkin help 143326a6346SHerbert Xu Disable run-time self tests that normally take place at 144326a6346SHerbert Xu algorithm registration. 1450b767f96SAlexander Shishkin 1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1475b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1486569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1495b2706a4SEric Biggers help 1505b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1515b2706a4SEric Biggers including randomized fuzz tests. 1525b2706a4SEric Biggers 1535b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1545b2706a4SEric Biggers longer to run than the normal self tests. 1555b2706a4SEric Biggers 156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 157e590e132SEric Biggers tristate 158584fffc8SSebastian Siewior 159584fffc8SSebastian Siewiorconfig CRYPTO_NULL 160584fffc8SSebastian Siewior tristate "Null algorithms" 161149a3971SHerbert Xu select CRYPTO_NULL2 162584fffc8SSebastian Siewior help 163584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 164584fffc8SSebastian Siewior 165149a3971SHerbert Xuconfig CRYPTO_NULL2 166dd43c4e9SHerbert Xu tristate 167149a3971SHerbert Xu select CRYPTO_ALGAPI2 168b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 169149a3971SHerbert Xu select CRYPTO_HASH2 170149a3971SHerbert Xu 1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1723b4afaf2SKees Cook tristate "Parallel crypto engine" 1733b4afaf2SKees Cook depends on SMP 1745068c7a8SSteffen Klassert select PADATA 1755068c7a8SSteffen Klassert select CRYPTO_MANAGER 1765068c7a8SSteffen Klassert select CRYPTO_AEAD 1775068c7a8SSteffen Klassert help 1785068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1795068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1805068c7a8SSteffen Klassert 181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 182584fffc8SSebastian Siewior tristate "Software async crypto daemon" 183b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184b8a28251SLoc Ho select CRYPTO_HASH 185584fffc8SSebastian Siewior select CRYPTO_MANAGER 186584fffc8SSebastian Siewior help 187584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 188584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 189584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 190584fffc8SSebastian Siewior 191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 192584fffc8SSebastian Siewior tristate "Authenc support" 193584fffc8SSebastian Siewior select CRYPTO_AEAD 194b95bba5dSEric Biggers select CRYPTO_SKCIPHER 195584fffc8SSebastian Siewior select CRYPTO_MANAGER 196584fffc8SSebastian Siewior select CRYPTO_HASH 197e94c6a7aSHerbert Xu select CRYPTO_NULL 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 200584fffc8SSebastian Siewior This is required for IPSec. 201584fffc8SSebastian Siewior 202584fffc8SSebastian Siewiorconfig CRYPTO_TEST 203584fffc8SSebastian Siewior tristate "Testing module" 20400ea27f1SArd Biesheuvel depends on m || EXPERT 205da7f033dSHerbert Xu select CRYPTO_MANAGER 206584fffc8SSebastian Siewior help 207584fffc8SSebastian Siewior Quick & dirty crypto test module. 208584fffc8SSebastian Siewior 209266d0516SHerbert Xuconfig CRYPTO_SIMD 210266d0516SHerbert Xu tristate 211266d0516SHerbert Xu select CRYPTO_CRYPTD 212266d0516SHerbert Xu 213735d37b5SBaolin Wangconfig CRYPTO_ENGINE 214735d37b5SBaolin Wang tristate 215735d37b5SBaolin Wang 2163d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2173d6228a5SVitaly Chikunov 2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2193d6228a5SVitaly Chikunov tristate "RSA algorithm" 2203d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2213d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2223d6228a5SVitaly Chikunov select MPILIB 2233d6228a5SVitaly Chikunov select ASN1 2243d6228a5SVitaly Chikunov help 2253d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_DH 2283d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_KPP 2303d6228a5SVitaly Chikunov select MPILIB 2313d6228a5SVitaly Chikunov help 2323d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2333d6228a5SVitaly Chikunov 2344a2289daSVitaly Chikunovconfig CRYPTO_ECC 2354a2289daSVitaly Chikunov tristate 23638aa192aSArnd Bergmann select CRYPTO_RNG_DEFAULT 2374a2289daSVitaly Chikunov 2383d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2393d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2404a2289daSVitaly Chikunov select CRYPTO_ECC 2413d6228a5SVitaly Chikunov select CRYPTO_KPP 2423d6228a5SVitaly Chikunov help 2433d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2443d6228a5SVitaly Chikunov 2454e660291SStefan Bergerconfig CRYPTO_ECDSA 2464e660291SStefan Berger tristate "ECDSA (NIST P192, P256 etc.) algorithm" 2474e660291SStefan Berger select CRYPTO_ECC 2484e660291SStefan Berger select CRYPTO_AKCIPHER 2494e660291SStefan Berger select ASN1 2504e660291SStefan Berger help 2514e660291SStefan Berger Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 2524e660291SStefan Berger is A NIST cryptographic standard algorithm. Only signature verification 2534e660291SStefan Berger is implemented. 2544e660291SStefan Berger 2550d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2560d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2570d7a7864SVitaly Chikunov select CRYPTO_ECC 2580d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2590d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2601036633eSVitaly Chikunov select OID_REGISTRY 2611036633eSVitaly Chikunov select ASN1 2620d7a7864SVitaly Chikunov help 2630d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2640d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2650d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2660d7a7864SVitaly Chikunov is implemented. 2670d7a7864SVitaly Chikunov 268ea7ecb66STianjia Zhangconfig CRYPTO_SM2 269ea7ecb66STianjia Zhang tristate "SM2 algorithm" 27011400469STianjia Zhang select CRYPTO_LIB_SM3 271ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 272ea7ecb66STianjia Zhang select CRYPTO_MANAGER 273ea7ecb66STianjia Zhang select MPILIB 274ea7ecb66STianjia Zhang select ASN1 275ea7ecb66STianjia Zhang help 276ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 277ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 278ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 279ea7ecb66STianjia Zhang 280ea7ecb66STianjia Zhang References: 281ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 282ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 283ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 284ea7ecb66STianjia Zhang 285ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 286ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 287ee772cb6SArd Biesheuvel select CRYPTO_KPP 288ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 289ee772cb6SArd Biesheuvel 290bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 291bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 292bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 293bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 294bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 295bb611bdfSJason A. Donenfeld 296584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 297584fffc8SSebastian Siewior 298584fffc8SSebastian Siewiorconfig CRYPTO_CCM 299584fffc8SSebastian Siewior tristate "CCM support" 300584fffc8SSebastian Siewior select CRYPTO_CTR 301f15f05b0SArd Biesheuvel select CRYPTO_HASH 302584fffc8SSebastian Siewior select CRYPTO_AEAD 303c8a3315aSEric Biggers select CRYPTO_MANAGER 304584fffc8SSebastian Siewior help 305584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 306584fffc8SSebastian Siewior 307584fffc8SSebastian Siewiorconfig CRYPTO_GCM 308584fffc8SSebastian Siewior tristate "GCM/GMAC support" 309584fffc8SSebastian Siewior select CRYPTO_CTR 310584fffc8SSebastian Siewior select CRYPTO_AEAD 3119382d97aSHuang Ying select CRYPTO_GHASH 3129489667dSJussi Kivilinna select CRYPTO_NULL 313c8a3315aSEric Biggers select CRYPTO_MANAGER 314584fffc8SSebastian Siewior help 315584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 316584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 317584fffc8SSebastian Siewior 31871ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 31971ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 32071ebc4d1SMartin Willi select CRYPTO_CHACHA20 32171ebc4d1SMartin Willi select CRYPTO_POLY1305 32271ebc4d1SMartin Willi select CRYPTO_AEAD 323c8a3315aSEric Biggers select CRYPTO_MANAGER 32471ebc4d1SMartin Willi help 32571ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 32671ebc4d1SMartin Willi 32771ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 32871ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 32971ebc4d1SMartin Willi IETF protocols. 33071ebc4d1SMartin Willi 331f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 332f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 333f606a88eSOndrej Mosnacek select CRYPTO_AEAD 334f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 335f606a88eSOndrej Mosnacek help 336f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 337f606a88eSOndrej Mosnacek 338a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 339a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 340a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 341a4397635SArd Biesheuvel default y 342a4397635SArd Biesheuvel 3431d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3441d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3451d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3461d373d4eSOndrej Mosnacek select CRYPTO_AEAD 347de272ca7SEric Biggers select CRYPTO_SIMD 3481d373d4eSOndrej Mosnacek help 3494e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3501d373d4eSOndrej Mosnacek 351584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 352584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 353584fffc8SSebastian Siewior select CRYPTO_AEAD 354b95bba5dSEric Biggers select CRYPTO_SKCIPHER 355856e3f40SHerbert Xu select CRYPTO_NULL 356401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 357c8a3315aSEric Biggers select CRYPTO_MANAGER 358584fffc8SSebastian Siewior help 359584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 360584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 361584fffc8SSebastian Siewior 362a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 363a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 364a10f554fSHerbert Xu select CRYPTO_AEAD 365a10f554fSHerbert Xu select CRYPTO_NULL 366401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 367c8a3315aSEric Biggers select CRYPTO_MANAGER 368a10f554fSHerbert Xu help 369a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 370a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 371a10f554fSHerbert Xu algorithm for CBC. 372a10f554fSHerbert Xu 373584fffc8SSebastian Siewiorcomment "Block modes" 374584fffc8SSebastian Siewior 375584fffc8SSebastian Siewiorconfig CRYPTO_CBC 376584fffc8SSebastian Siewior tristate "CBC support" 377b95bba5dSEric Biggers select CRYPTO_SKCIPHER 378584fffc8SSebastian Siewior select CRYPTO_MANAGER 379584fffc8SSebastian Siewior help 380584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 381584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 382584fffc8SSebastian Siewior 383a7d85e06SJames Bottomleyconfig CRYPTO_CFB 384a7d85e06SJames Bottomley tristate "CFB support" 385b95bba5dSEric Biggers select CRYPTO_SKCIPHER 386a7d85e06SJames Bottomley select CRYPTO_MANAGER 387a7d85e06SJames Bottomley help 388a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 389a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 390a7d85e06SJames Bottomley 391584fffc8SSebastian Siewiorconfig CRYPTO_CTR 392584fffc8SSebastian Siewior tristate "CTR support" 393b95bba5dSEric Biggers select CRYPTO_SKCIPHER 394584fffc8SSebastian Siewior select CRYPTO_MANAGER 395584fffc8SSebastian Siewior help 396584fffc8SSebastian Siewior CTR: Counter mode 397584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 398584fffc8SSebastian Siewior 399584fffc8SSebastian Siewiorconfig CRYPTO_CTS 400584fffc8SSebastian Siewior tristate "CTS support" 401b95bba5dSEric Biggers select CRYPTO_SKCIPHER 402c8a3315aSEric Biggers select CRYPTO_MANAGER 403584fffc8SSebastian Siewior help 404584fffc8SSebastian Siewior CTS: Cipher Text Stealing 405584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 406ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 407ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 408ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 409584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 410584fffc8SSebastian Siewior for AES encryption. 411584fffc8SSebastian Siewior 412ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 413ecd6d5c9SGilad Ben-Yossef 414584fffc8SSebastian Siewiorconfig CRYPTO_ECB 415584fffc8SSebastian Siewior tristate "ECB support" 416b95bba5dSEric Biggers select CRYPTO_SKCIPHER 417584fffc8SSebastian Siewior select CRYPTO_MANAGER 418584fffc8SSebastian Siewior help 419584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 420584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 421584fffc8SSebastian Siewior the input block by block. 422584fffc8SSebastian Siewior 423584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4242470a2b2SJussi Kivilinna tristate "LRW support" 425b95bba5dSEric Biggers select CRYPTO_SKCIPHER 426584fffc8SSebastian Siewior select CRYPTO_MANAGER 427584fffc8SSebastian Siewior select CRYPTO_GF128MUL 428*f60bbbbeSHerbert Xu select CRYPTO_ECB 429584fffc8SSebastian Siewior help 430584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 431584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 432584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 433584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 434584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 435584fffc8SSebastian Siewior 436e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 437e497c518SGilad Ben-Yossef tristate "OFB support" 438b95bba5dSEric Biggers select CRYPTO_SKCIPHER 439e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 440e497c518SGilad Ben-Yossef help 441e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 442e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 443e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 444e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 445e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 446e497c518SGilad Ben-Yossef normally even when applied before encryption. 447e497c518SGilad Ben-Yossef 448584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 449584fffc8SSebastian Siewior tristate "PCBC support" 450b95bba5dSEric Biggers select CRYPTO_SKCIPHER 451584fffc8SSebastian Siewior select CRYPTO_MANAGER 452584fffc8SSebastian Siewior help 453584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 454584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 455584fffc8SSebastian Siewior 456584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4575bcf8e6dSJussi Kivilinna tristate "XTS support" 458b95bba5dSEric Biggers select CRYPTO_SKCIPHER 459584fffc8SSebastian Siewior select CRYPTO_MANAGER 46012cb3a1cSMilan Broz select CRYPTO_ECB 461584fffc8SSebastian Siewior help 462584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 463584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 464584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 465584fffc8SSebastian Siewior 4661c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4671c49678eSStephan Mueller tristate "Key wrapping support" 468b95bba5dSEric Biggers select CRYPTO_SKCIPHER 469c8a3315aSEric Biggers select CRYPTO_MANAGER 4701c49678eSStephan Mueller help 4711c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4721c49678eSStephan Mueller padding. 4731c49678eSStephan Mueller 47426609a21SEric Biggersconfig CRYPTO_NHPOLY1305 47526609a21SEric Biggers tristate 47626609a21SEric Biggers select CRYPTO_HASH 47748ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 47826609a21SEric Biggers 479012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 480012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 481012c8238SEric Biggers depends on X86 && 64BIT 482012c8238SEric Biggers select CRYPTO_NHPOLY1305 483012c8238SEric Biggers help 484012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 485012c8238SEric Biggers Adiantum encryption mode. 486012c8238SEric Biggers 4870f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4880f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4890f961f9fSEric Biggers depends on X86 && 64BIT 4900f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4910f961f9fSEric Biggers help 4920f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4930f961f9fSEric Biggers Adiantum encryption mode. 4940f961f9fSEric Biggers 495059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 496059c2a4dSEric Biggers tristate "Adiantum support" 497059c2a4dSEric Biggers select CRYPTO_CHACHA20 49848ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 499059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 500c8a3315aSEric Biggers select CRYPTO_MANAGER 501059c2a4dSEric Biggers help 502059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 503059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 504059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 505059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 506059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 507059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 508059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 509059c2a4dSEric Biggers AES-XTS. 510059c2a4dSEric Biggers 511059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 512059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 513059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 514059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 515059c2a4dSEric Biggers security than XTS, subject to the security bound. 516059c2a4dSEric Biggers 517059c2a4dSEric Biggers If unsure, say N. 518059c2a4dSEric Biggers 519be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 520be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 521be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 522be1eb7f7SArd Biesheuvel help 523be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 524be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 525be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 526be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 527be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 528be1eb7f7SArd Biesheuvel encryption. 529be1eb7f7SArd Biesheuvel 530be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 531ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 532be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 533be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 534ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 535be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 536be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 537be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 538be1eb7f7SArd Biesheuvel 539be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 540be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 541be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 542be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 543be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 544be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 545be1eb7f7SArd Biesheuvel block encryption) 546be1eb7f7SArd Biesheuvel 547584fffc8SSebastian Siewiorcomment "Hash modes" 548584fffc8SSebastian Siewior 54993b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 55093b5e86aSJussi Kivilinna tristate "CMAC support" 55193b5e86aSJussi Kivilinna select CRYPTO_HASH 55293b5e86aSJussi Kivilinna select CRYPTO_MANAGER 55393b5e86aSJussi Kivilinna help 55493b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 55593b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 55693b5e86aSJussi Kivilinna 55793b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 55893b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 55993b5e86aSJussi Kivilinna 5601da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5618425165dSHerbert Xu tristate "HMAC support" 5620796ae06SHerbert Xu select CRYPTO_HASH 56343518407SHerbert Xu select CRYPTO_MANAGER 5641da177e4SLinus Torvalds help 5651da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5661da177e4SLinus Torvalds This is required for IPSec. 5671da177e4SLinus Torvalds 568333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 569333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 570333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 571333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 572333b0d7eSKazunori MIYAZAWA help 573333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 5749332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 575333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 576333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 577333b0d7eSKazunori MIYAZAWA 578f1939f7cSShane Wangconfig CRYPTO_VMAC 579f1939f7cSShane Wang tristate "VMAC support" 580f1939f7cSShane Wang select CRYPTO_HASH 581f1939f7cSShane Wang select CRYPTO_MANAGER 582f1939f7cSShane Wang help 583f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 584f1939f7cSShane Wang very high speed on 64-bit architectures. 585f1939f7cSShane Wang 586f1939f7cSShane Wang See also: 5879332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 588f1939f7cSShane Wang 589584fffc8SSebastian Siewiorcomment "Digest" 590584fffc8SSebastian Siewior 591584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 592584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5935773a3e6SHerbert Xu select CRYPTO_HASH 5946a0962b2SDarrick J. Wong select CRC32 5951da177e4SLinus Torvalds help 596584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 597584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 59869c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5991da177e4SLinus Torvalds 6008cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6018cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6028cb51ba8SAustin Zhang depends on X86 6038cb51ba8SAustin Zhang select CRYPTO_HASH 6048cb51ba8SAustin Zhang help 6058cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6068cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6078cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6088cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6098cb51ba8SAustin Zhang gain performance compared with software implementation. 6108cb51ba8SAustin Zhang Module will be crc32c-intel. 6118cb51ba8SAustin Zhang 6127cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6136dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 614c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6156dd7a82cSAnton Blanchard select CRYPTO_HASH 6166dd7a82cSAnton Blanchard select CRC32 6176dd7a82cSAnton Blanchard help 6186dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6196dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6206dd7a82cSAnton Blanchard and newer processors for improved performance. 6216dd7a82cSAnton Blanchard 6226dd7a82cSAnton Blanchard 623442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 624442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 625442a7c40SDavid S. Miller depends on SPARC64 626442a7c40SDavid S. Miller select CRYPTO_HASH 627442a7c40SDavid S. Miller select CRC32 628442a7c40SDavid S. Miller help 629442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 630442a7c40SDavid S. Miller when available. 631442a7c40SDavid S. Miller 63278c37d19SAlexander Boykoconfig CRYPTO_CRC32 63378c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 63478c37d19SAlexander Boyko select CRYPTO_HASH 63578c37d19SAlexander Boyko select CRC32 63678c37d19SAlexander Boyko help 63778c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 63878c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 63978c37d19SAlexander Boyko 64078c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 64178c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 64278c37d19SAlexander Boyko depends on X86 64378c37d19SAlexander Boyko select CRYPTO_HASH 64478c37d19SAlexander Boyko select CRC32 64578c37d19SAlexander Boyko help 64678c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 64778c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 64878c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 649af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 65078c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 65178c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 65278c37d19SAlexander Boyko 6534a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6544a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6554a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6564a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6574a5dc51eSMarcin Nowakowski help 6584a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6594a5dc51eSMarcin Nowakowski instructions, when available. 6604a5dc51eSMarcin Nowakowski 6614a5dc51eSMarcin Nowakowski 66267882e76SNikolay Borisovconfig CRYPTO_XXHASH 66367882e76SNikolay Borisov tristate "xxHash hash algorithm" 66467882e76SNikolay Borisov select CRYPTO_HASH 66567882e76SNikolay Borisov select XXHASH 66667882e76SNikolay Borisov help 66767882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 66867882e76SNikolay Borisov speeds close to RAM limits. 66967882e76SNikolay Borisov 67091d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 67191d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 67291d68933SDavid Sterba select CRYPTO_HASH 67391d68933SDavid Sterba help 67491d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 67591d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 67691d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 67791d68933SDavid Sterba 67891d68933SDavid Sterba This module provides the following algorithms: 67991d68933SDavid Sterba 68091d68933SDavid Sterba - blake2b-160 68191d68933SDavid Sterba - blake2b-256 68291d68933SDavid Sterba - blake2b-384 68391d68933SDavid Sterba - blake2b-512 68491d68933SDavid Sterba 68591d68933SDavid Sterba See https://blake2.net for further information. 68691d68933SDavid Sterba 6877f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 6887f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 6897f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 6907f9b0880SArd Biesheuvel select CRYPTO_HASH 6917f9b0880SArd Biesheuvel help 6927f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 6937f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 6947f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 6957f9b0880SArd Biesheuvel 6967f9b0880SArd Biesheuvel This module provides the following algorithms: 6977f9b0880SArd Biesheuvel 6987f9b0880SArd Biesheuvel - blake2s-128 6997f9b0880SArd Biesheuvel - blake2s-160 7007f9b0880SArd Biesheuvel - blake2s-224 7017f9b0880SArd Biesheuvel - blake2s-256 7027f9b0880SArd Biesheuvel 7037f9b0880SArd Biesheuvel See https://blake2.net for further information. 7047f9b0880SArd Biesheuvel 705ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 706ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 707ed0356edSJason A. Donenfeld depends on X86 && 64BIT 708ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 709ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 710ed0356edSJason A. Donenfeld 71168411521SHerbert Xuconfig CRYPTO_CRCT10DIF 71268411521SHerbert Xu tristate "CRCT10DIF algorithm" 71368411521SHerbert Xu select CRYPTO_HASH 71468411521SHerbert Xu help 71568411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 71668411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 71768411521SHerbert Xu transforms to be used if they are available. 71868411521SHerbert Xu 71968411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 72068411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 72168411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 72268411521SHerbert Xu select CRYPTO_HASH 72368411521SHerbert Xu help 72468411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 72568411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 72668411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 727af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 72868411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 72968411521SHerbert Xu 730b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 731b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 732b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 733b01df1c1SDaniel Axtens select CRYPTO_HASH 734b01df1c1SDaniel Axtens help 735b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 736b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 737b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 738b01df1c1SDaniel Axtens 739146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 740146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 741146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 742146c8688SDaniel Axtens help 743146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 744146c8688SDaniel Axtens POWER8 vpmsum instructions. 745146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 746146c8688SDaniel Axtens 7472cdc6899SHuang Yingconfig CRYPTO_GHASH 7488dfa20fcSEric Biggers tristate "GHASH hash function" 7492cdc6899SHuang Ying select CRYPTO_GF128MUL 750578c60fbSArnd Bergmann select CRYPTO_HASH 7512cdc6899SHuang Ying help 7528dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7538dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7542cdc6899SHuang Ying 755f979e014SMartin Williconfig CRYPTO_POLY1305 756f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 757578c60fbSArnd Bergmann select CRYPTO_HASH 75848ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 759f979e014SMartin Willi help 760f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 761f979e014SMartin Willi 762f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 763f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 764f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 765f979e014SMartin Willi 766c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 767b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 768c70f4abeSMartin Willi depends on X86 && 64BIT 7691b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 770f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 771c70f4abeSMartin Willi help 772c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 773c70f4abeSMartin Willi 774c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 775c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 776c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 777c70f4abeSMartin Willi instructions. 778c70f4abeSMartin Willi 779a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 780a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 7816c810cf2SMaciej W. Rozycki depends on MIPS 782a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 783a11d055eSArd Biesheuvel 7841da177e4SLinus Torvaldsconfig CRYPTO_MD4 7851da177e4SLinus Torvalds tristate "MD4 digest algorithm" 786808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7871da177e4SLinus Torvalds help 7881da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7891da177e4SLinus Torvalds 7901da177e4SLinus Torvaldsconfig CRYPTO_MD5 7911da177e4SLinus Torvalds tristate "MD5 digest algorithm" 79214b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7931da177e4SLinus Torvalds help 7941da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7951da177e4SLinus Torvalds 796d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 797d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 798d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 799d69e75deSAaro Koskinen select CRYPTO_MD5 800d69e75deSAaro Koskinen select CRYPTO_HASH 801d69e75deSAaro Koskinen help 802d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 803d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 804d69e75deSAaro Koskinen 805e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 806e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 807e8e59953SMarkus Stockhausen depends on PPC 808e8e59953SMarkus Stockhausen select CRYPTO_HASH 809e8e59953SMarkus Stockhausen help 810e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 811e8e59953SMarkus Stockhausen in PPC assembler. 812e8e59953SMarkus Stockhausen 813fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 814fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 815fa4dfedcSDavid S. Miller depends on SPARC64 816fa4dfedcSDavid S. Miller select CRYPTO_MD5 817fa4dfedcSDavid S. Miller select CRYPTO_HASH 818fa4dfedcSDavid S. Miller help 819fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 820fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 821fa4dfedcSDavid S. Miller 822584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 823584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 82419e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 825584fffc8SSebastian Siewior help 826584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 827584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 828584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 829584fffc8SSebastian Siewior of the algorithm. 830584fffc8SSebastian Siewior 83182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 83282798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 833e5835fbaSHerbert Xu select CRYPTO_HASH 83482798f90SAdrian-Ken Rueegsegger help 83582798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 83682798f90SAdrian-Ken Rueegsegger 83782798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 83882798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 839b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 840b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 84182798f90SAdrian-Ken Rueegsegger 842b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 843b6d44341SAdrian Bunk against RIPEMD-160. 844534fe2c1SAdrian-Ken Rueegsegger 845534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8469332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 847534fe2c1SAdrian-Ken Rueegsegger 8481da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8491da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 85054ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8511da177e4SLinus Torvalds help 8521da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8531da177e4SLinus Torvalds 85466be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 855e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 85666be8951SMathias Krause depends on X86 && 64BIT 85766be8951SMathias Krause select CRYPTO_SHA1 85866be8951SMathias Krause select CRYPTO_HASH 85966be8951SMathias Krause help 86066be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 86166be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 862e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 863e38b6b7fStim when available. 86466be8951SMathias Krause 8658275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 866e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8678275d1aaSTim Chen depends on X86 && 64BIT 8688275d1aaSTim Chen select CRYPTO_SHA256 8698275d1aaSTim Chen select CRYPTO_HASH 8708275d1aaSTim Chen help 8718275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8728275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8738275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 874e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 875e38b6b7fStim Instructions) when available. 8768275d1aaSTim Chen 87787de4579STim Chenconfig CRYPTO_SHA512_SSSE3 87887de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 87987de4579STim Chen depends on X86 && 64BIT 88087de4579STim Chen select CRYPTO_SHA512 88187de4579STim Chen select CRYPTO_HASH 88287de4579STim Chen help 88387de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 88487de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 88587de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 88687de4579STim Chen version 2 (AVX2) instructions, when available. 88787de4579STim Chen 888efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 889efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 890efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 891efdb6f6eSAaro Koskinen select CRYPTO_SHA1 892efdb6f6eSAaro Koskinen select CRYPTO_HASH 893efdb6f6eSAaro Koskinen help 894efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 895efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 896efdb6f6eSAaro Koskinen 8974ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8984ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8994ff28d4cSDavid S. Miller depends on SPARC64 9004ff28d4cSDavid S. Miller select CRYPTO_SHA1 9014ff28d4cSDavid S. Miller select CRYPTO_HASH 9024ff28d4cSDavid S. Miller help 9034ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9044ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9054ff28d4cSDavid S. Miller 906323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 907323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 908323a6bf1SMichael Ellerman depends on PPC 909323a6bf1SMichael Ellerman help 910323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 911323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 912323a6bf1SMichael Ellerman 913d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 914d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 915d9850fc5SMarkus Stockhausen depends on PPC && SPE 916d9850fc5SMarkus Stockhausen help 917d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 918d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 919d9850fc5SMarkus Stockhausen 9201da177e4SLinus Torvaldsconfig CRYPTO_SHA256 921cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 92250e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 92308c327f6SHans de Goede select CRYPTO_LIB_SHA256 9241da177e4SLinus Torvalds help 9251da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9261da177e4SLinus Torvalds 9271da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9281da177e4SLinus Torvalds security against collision attacks. 9291da177e4SLinus Torvalds 930cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 931cd12fb90SJonathan Lynch of security against collision attacks. 932cd12fb90SJonathan Lynch 9332ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9342ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9352ecc1e95SMarkus Stockhausen depends on PPC && SPE 9362ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9372ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9382ecc1e95SMarkus Stockhausen help 9392ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9402ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9412ecc1e95SMarkus Stockhausen 942efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 943efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 944efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 945efdb6f6eSAaro Koskinen select CRYPTO_SHA256 946efdb6f6eSAaro Koskinen select CRYPTO_HASH 947efdb6f6eSAaro Koskinen help 948efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 949efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 950efdb6f6eSAaro Koskinen 95186c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 95286c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 95386c93b24SDavid S. Miller depends on SPARC64 95486c93b24SDavid S. Miller select CRYPTO_SHA256 95586c93b24SDavid S. Miller select CRYPTO_HASH 95686c93b24SDavid S. Miller help 95786c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 95886c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 95986c93b24SDavid S. Miller 9601da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9611da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 962bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9631da177e4SLinus Torvalds help 9641da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9651da177e4SLinus Torvalds 9661da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9671da177e4SLinus Torvalds security against collision attacks. 9681da177e4SLinus Torvalds 9691da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9701da177e4SLinus Torvalds of security against collision attacks. 9711da177e4SLinus Torvalds 972efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 973efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 974efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 975efdb6f6eSAaro Koskinen select CRYPTO_SHA512 976efdb6f6eSAaro Koskinen select CRYPTO_HASH 977efdb6f6eSAaro Koskinen help 978efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 979efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 980efdb6f6eSAaro Koskinen 981775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 982775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 983775e0c69SDavid S. Miller depends on SPARC64 984775e0c69SDavid S. Miller select CRYPTO_SHA512 985775e0c69SDavid S. Miller select CRYPTO_HASH 986775e0c69SDavid S. Miller help 987775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 988775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 989775e0c69SDavid S. Miller 99053964b9eSJeff Garzikconfig CRYPTO_SHA3 99153964b9eSJeff Garzik tristate "SHA3 digest algorithm" 99253964b9eSJeff Garzik select CRYPTO_HASH 99353964b9eSJeff Garzik help 99453964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 99553964b9eSJeff Garzik cryptographic sponge function family called Keccak. 99653964b9eSJeff Garzik 99753964b9eSJeff Garzik References: 99853964b9eSJeff Garzik http://keccak.noekeon.org/ 99953964b9eSJeff Garzik 10004f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10014f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10024f0fc160SGilad Ben-Yossef select CRYPTO_HASH 1003b4784a45STianjia Zhang select CRYPTO_LIB_SM3 10044f0fc160SGilad Ben-Yossef help 10054f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10064f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10074f0fc160SGilad Ben-Yossef 10084f0fc160SGilad Ben-Yossef References: 10094f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10104f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10114f0fc160SGilad Ben-Yossef 1012930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64 1013930ab34dSTianjia Zhang tristate "SM3 digest algorithm (x86_64/AVX)" 1014930ab34dSTianjia Zhang depends on X86 && 64BIT 1015930ab34dSTianjia Zhang select CRYPTO_HASH 1016930ab34dSTianjia Zhang select CRYPTO_LIB_SM3 1017930ab34dSTianjia Zhang help 1018930ab34dSTianjia Zhang SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1019930ab34dSTianjia Zhang It is part of the Chinese Commercial Cryptography suite. This is 1020930ab34dSTianjia Zhang SM3 optimized implementation using Advanced Vector Extensions (AVX) 1021930ab34dSTianjia Zhang when available. 1022930ab34dSTianjia Zhang 1023930ab34dSTianjia Zhang If unsure, say N. 1024930ab34dSTianjia Zhang 1025fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1026fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1027fe18957eSVitaly Chikunov select CRYPTO_HASH 1028fe18957eSVitaly Chikunov help 1029fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1030fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1031fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1032fe18957eSVitaly Chikunov 1033fe18957eSVitaly Chikunov References: 1034fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1035fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1036fe18957eSVitaly Chikunov 1037584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1038584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10394946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10401da177e4SLinus Torvalds help 1041584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10421da177e4SLinus Torvalds 1043584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1044584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10451da177e4SLinus Torvalds 10461da177e4SLinus Torvalds See also: 10476d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10481da177e4SLinus Torvalds 10490e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10508dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10518af00860SRichard Weinberger depends on X86 && 64BIT 10520e1227d3SHuang Ying select CRYPTO_CRYPTD 10530e1227d3SHuang Ying help 10548dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10558dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10560e1227d3SHuang Ying 1057584fffc8SSebastian Siewiorcomment "Ciphers" 10581da177e4SLinus Torvalds 10591da177e4SLinus Torvaldsconfig CRYPTO_AES 10601da177e4SLinus Torvalds tristate "AES cipher algorithms" 1061cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10625bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10631da177e4SLinus Torvalds help 10641da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10651da177e4SLinus Torvalds algorithm. 10661da177e4SLinus Torvalds 10671da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10681da177e4SLinus Torvalds both hardware and software across a wide range of computing 10691da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10701da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10711da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10721da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10731da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10741da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10751da177e4SLinus Torvalds 10761da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10771da177e4SLinus Torvalds 10781da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10791da177e4SLinus Torvalds 1080b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1081b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1082b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1083e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1084b5e0b032SArd Biesheuvel help 1085b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1086b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1087b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1088b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1089b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1090b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1091b5e0b032SArd Biesheuvel 1092b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1093b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1094b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1095b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10960a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10970a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1098b5e0b032SArd Biesheuvel 109954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 110054b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11018af00860SRichard Weinberger depends on X86 110285671860SHerbert Xu select CRYPTO_AEAD 11032c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 110454b6a1bdSHuang Ying select CRYPTO_ALGAPI 1105b95bba5dSEric Biggers select CRYPTO_SKCIPHER 110685671860SHerbert Xu select CRYPTO_SIMD 110754b6a1bdSHuang Ying help 110854b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 110954b6a1bdSHuang Ying 111054b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 111154b6a1bdSHuang Ying algorithm. 111254b6a1bdSHuang Ying 111354b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 111454b6a1bdSHuang Ying both hardware and software across a wide range of computing 111554b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 111654b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 111754b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 111854b6a1bdSHuang Ying suited for restricted-space environments, in which it also 111954b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 112054b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 112154b6a1bdSHuang Ying 112254b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 112354b6a1bdSHuang Ying 112454b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 112554b6a1bdSHuang Ying 11260d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11270d258efbSMathias Krause for some popular block cipher mode is supported too, including 1128944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11290d258efbSMathias Krause acceleration for CTR. 11302cf4ac8bSHuang Ying 11319bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11329bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11339bf4852dSDavid S. Miller depends on SPARC64 1134b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11359bf4852dSDavid S. Miller help 11369bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11379bf4852dSDavid S. Miller 11389bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11399bf4852dSDavid S. Miller algorithm. 11409bf4852dSDavid S. Miller 11419bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11429bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11439bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11449bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11459bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11469bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11479bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11489bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11499bf4852dSDavid S. Miller 11509bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11519bf4852dSDavid S. Miller 11529bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11539bf4852dSDavid S. Miller 11549bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11559bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11569bf4852dSDavid S. Miller ECB and CBC. 11579bf4852dSDavid S. Miller 1158504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1159504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1160504c6143SMarkus Stockhausen depends on PPC && SPE 1161b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1162504c6143SMarkus Stockhausen help 1163504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1164504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1165504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1166504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1167504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1168504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1169504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1170504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1171504c6143SMarkus Stockhausen 11721da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11731da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 11741674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1175cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11761da177e4SLinus Torvalds help 11771da177e4SLinus Torvalds Anubis cipher algorithm. 11781da177e4SLinus Torvalds 11791da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11801da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11811da177e4SLinus Torvalds in the NESSIE competition. 11821da177e4SLinus Torvalds 11831da177e4SLinus Torvalds See also: 11846d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11856d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11861da177e4SLinus Torvalds 1187584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1188584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 11899ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1190b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1191dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1192e2ee95b8SHye-Shik Chang help 1193584fffc8SSebastian Siewior ARC4 cipher algorithm. 1194e2ee95b8SHye-Shik Chang 1195584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1196584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1197584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1198584fffc8SSebastian Siewior weakness of the algorithm. 1199584fffc8SSebastian Siewior 1200584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1201584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1202584fffc8SSebastian Siewior select CRYPTO_ALGAPI 120352ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1204584fffc8SSebastian Siewior help 1205584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1206584fffc8SSebastian Siewior 1207584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1208584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1209584fffc8SSebastian Siewior designed for use on "large microprocessors". 1210e2ee95b8SHye-Shik Chang 1211e2ee95b8SHye-Shik Chang See also: 12129332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1213584fffc8SSebastian Siewior 121452ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 121552ba867cSJussi Kivilinna tristate 121652ba867cSJussi Kivilinna help 121752ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 121852ba867cSJussi Kivilinna generic c and the assembler implementations. 121952ba867cSJussi Kivilinna 122052ba867cSJussi Kivilinna See also: 12219332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 122252ba867cSJussi Kivilinna 122364b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 122464b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1225f21a7c19SAl Viro depends on X86 && 64BIT 1226b95bba5dSEric Biggers select CRYPTO_SKCIPHER 122764b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1228c0a64926SArd Biesheuvel imply CRYPTO_CTR 122964b94ceaSJussi Kivilinna help 123064b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 123164b94ceaSJussi Kivilinna 123264b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 123364b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 123464b94ceaSJussi Kivilinna designed for use on "large microprocessors". 123564b94ceaSJussi Kivilinna 123664b94ceaSJussi Kivilinna See also: 12379332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 123864b94ceaSJussi Kivilinna 1239584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1240584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1241584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1242584fffc8SSebastian Siewior help 1243584fffc8SSebastian Siewior Camellia cipher algorithms module. 1244584fffc8SSebastian Siewior 1245584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1246584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1247584fffc8SSebastian Siewior 1248584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1249584fffc8SSebastian Siewior 1250584fffc8SSebastian Siewior See also: 1251584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1252584fffc8SSebastian Siewior 12530b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12540b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1255f21a7c19SAl Viro depends on X86 && 64BIT 1256b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1257a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 12580b95ec56SJussi Kivilinna help 12590b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12600b95ec56SJussi Kivilinna 12610b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12620b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12630b95ec56SJussi Kivilinna 12640b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12650b95ec56SJussi Kivilinna 12660b95ec56SJussi Kivilinna See also: 12670b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12680b95ec56SJussi Kivilinna 1269d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1270d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1271d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1272b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1273d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 127444893bc2SEric Biggers select CRYPTO_SIMD 127555a7e88fSArd Biesheuvel imply CRYPTO_XTS 1276d9b1d2e7SJussi Kivilinna help 1277d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1278d9b1d2e7SJussi Kivilinna 1279d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1280d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1281d9b1d2e7SJussi Kivilinna 1282d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1283d9b1d2e7SJussi Kivilinna 1284d9b1d2e7SJussi Kivilinna See also: 1285d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1286d9b1d2e7SJussi Kivilinna 1287f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1288f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1289f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1290f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1291f3f935a7SJussi Kivilinna help 1292f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1293f3f935a7SJussi Kivilinna 1294f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1295f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1296f3f935a7SJussi Kivilinna 1297f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1298f3f935a7SJussi Kivilinna 1299f3f935a7SJussi Kivilinna See also: 1300f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1301f3f935a7SJussi Kivilinna 130281658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 130381658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 130481658ad0SDavid S. Miller depends on SPARC64 130581658ad0SDavid S. Miller select CRYPTO_ALGAPI 1306b95bba5dSEric Biggers select CRYPTO_SKCIPHER 130781658ad0SDavid S. Miller help 130881658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 130981658ad0SDavid S. Miller 131081658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 131181658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 131281658ad0SDavid S. Miller 131381658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 131481658ad0SDavid S. Miller 131581658ad0SDavid S. Miller See also: 131681658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 131781658ad0SDavid S. Miller 1318044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1319044ab525SJussi Kivilinna tristate 1320044ab525SJussi Kivilinna help 1321044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1322044ab525SJussi Kivilinna generic c and the assembler implementations. 1323044ab525SJussi Kivilinna 1324584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1325584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1326584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1327044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1328584fffc8SSebastian Siewior help 1329584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1330584fffc8SSebastian Siewior described in RFC2144. 1331584fffc8SSebastian Siewior 13324d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13334d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13344d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1335b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13364d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13371e63183aSEric Biggers select CRYPTO_CAST_COMMON 13381e63183aSEric Biggers select CRYPTO_SIMD 1339e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 13404d6d6a2cSJohannes Goetzfried help 13414d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13424d6d6a2cSJohannes Goetzfried described in RFC2144. 13434d6d6a2cSJohannes Goetzfried 13444d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13454d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13464d6d6a2cSJohannes Goetzfried 1347584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1348584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1349584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1350044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1351584fffc8SSebastian Siewior help 1352584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1353584fffc8SSebastian Siewior described in RFC2612. 1354584fffc8SSebastian Siewior 13554ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13564ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13574ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1358b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13594ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13604bd96924SEric Biggers select CRYPTO_CAST_COMMON 13614bd96924SEric Biggers select CRYPTO_SIMD 13622cc0fedbSArd Biesheuvel imply CRYPTO_XTS 13637a6623ccSArd Biesheuvel imply CRYPTO_CTR 13644ea1277dSJohannes Goetzfried help 13654ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13664ea1277dSJohannes Goetzfried described in RFC2612. 13674ea1277dSJohannes Goetzfried 13684ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13694ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13704ea1277dSJohannes Goetzfried 1371584fffc8SSebastian Siewiorconfig CRYPTO_DES 1372584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1373584fffc8SSebastian Siewior select CRYPTO_ALGAPI 137404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1375584fffc8SSebastian Siewior help 1376584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1377584fffc8SSebastian Siewior 1378c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1379c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 138097da37b3SDave Jones depends on SPARC64 1381c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 138204007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1383b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1384c5aac2dfSDavid S. Miller help 1385c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1386c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1387c5aac2dfSDavid S. Miller 13886574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13896574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13906574e6c6SJussi Kivilinna depends on X86 && 64BIT 1391b95bba5dSEric Biggers select CRYPTO_SKCIPHER 139204007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1393768db5feSArd Biesheuvel imply CRYPTO_CTR 13946574e6c6SJussi Kivilinna help 13956574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13966574e6c6SJussi Kivilinna 13976574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13986574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13996574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14006574e6c6SJussi Kivilinna one that processes three blocks parallel. 14016574e6c6SJussi Kivilinna 1402584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1403584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1404584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1405b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1406584fffc8SSebastian Siewior help 1407584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1408584fffc8SSebastian Siewior 1409584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1410584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 14111674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1412584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1413584fffc8SSebastian Siewior help 1414584fffc8SSebastian Siewior Khazad cipher algorithm. 1415584fffc8SSebastian Siewior 1416584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1417584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1418584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1419584fffc8SSebastian Siewior 1420584fffc8SSebastian Siewior See also: 14216d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1422e2ee95b8SHye-Shik Chang 1423c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1424aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14255fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1426b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1427c08d0e64SMartin Willi help 1428aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1429c08d0e64SMartin Willi 1430c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1431c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1432de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 14339332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1434c08d0e64SMartin Willi 1435de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1436de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1437de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1438de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1439de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1440de61d7aeSEric Biggers 1441aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1442aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1443aa762409SEric Biggers in some performance-sensitive scenarios. 1444aa762409SEric Biggers 1445c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14464af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1447c9320b6dSMartin Willi depends on X86 && 64BIT 1448b95bba5dSEric Biggers select CRYPTO_SKCIPHER 144928e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 145084e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1451c9320b6dSMartin Willi help 14527a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14537a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1454c9320b6dSMartin Willi 14553a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14563a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14573a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1458660eda8dSEric Biggers select CRYPTO_SKCIPHER 14593a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14603a2f58f3SArd Biesheuvel 1461584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1462584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 14631674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1464584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1465584fffc8SSebastian Siewior help 1466584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1467584fffc8SSebastian Siewior 1468584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1469584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1470584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1471584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1472584fffc8SSebastian Siewior 1473584fffc8SSebastian Siewior See also: 1474584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1475584fffc8SSebastian Siewior 1476584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1477584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1478584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1479584fffc8SSebastian Siewior help 1480584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1481584fffc8SSebastian Siewior 1482584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1483784506a1SArd Biesheuvel of 8 bits. 1484584fffc8SSebastian Siewior 1485584fffc8SSebastian Siewior See also: 14869332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1487584fffc8SSebastian Siewior 1488937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1489937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1490937c30d7SJussi Kivilinna depends on X86 && 64BIT 1491b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1492937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1493e0f409dcSEric Biggers select CRYPTO_SIMD 14942e9440aeSArd Biesheuvel imply CRYPTO_CTR 1495937c30d7SJussi Kivilinna help 1496937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1497937c30d7SJussi Kivilinna 1498937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1499937c30d7SJussi Kivilinna of 8 bits. 1500937c30d7SJussi Kivilinna 15011e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1502937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1503937c30d7SJussi Kivilinna 1504937c30d7SJussi Kivilinna See also: 15059332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1506937c30d7SJussi Kivilinna 1507251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1508251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1509251496dbSJussi Kivilinna depends on X86 && !64BIT 1510b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1511251496dbSJussi Kivilinna select CRYPTO_SERPENT 1512e0f409dcSEric Biggers select CRYPTO_SIMD 15132e9440aeSArd Biesheuvel imply CRYPTO_CTR 1514251496dbSJussi Kivilinna help 1515251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1516251496dbSJussi Kivilinna 1517251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1518251496dbSJussi Kivilinna of 8 bits. 1519251496dbSJussi Kivilinna 1520251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1521251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1522251496dbSJussi Kivilinna 1523251496dbSJussi Kivilinna See also: 15249332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1525251496dbSJussi Kivilinna 15267efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15277efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15287efe4076SJohannes Goetzfried depends on X86 && 64BIT 1529b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15307efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1531e16bf974SEric Biggers select CRYPTO_SIMD 15329ec0af8aSArd Biesheuvel imply CRYPTO_XTS 15332e9440aeSArd Biesheuvel imply CRYPTO_CTR 15347efe4076SJohannes Goetzfried help 15357efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15367efe4076SJohannes Goetzfried 15377efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15387efe4076SJohannes Goetzfried of 8 bits. 15397efe4076SJohannes Goetzfried 15407efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15417efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15427efe4076SJohannes Goetzfried 15437efe4076SJohannes Goetzfried See also: 15449332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 15457efe4076SJohannes Goetzfried 154656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 154756d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 154856d76c96SJussi Kivilinna depends on X86 && 64BIT 154956d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 155056d76c96SJussi Kivilinna help 155156d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 155256d76c96SJussi Kivilinna 155356d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 155456d76c96SJussi Kivilinna of 8 bits. 155556d76c96SJussi Kivilinna 155656d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 155756d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 155856d76c96SJussi Kivilinna 155956d76c96SJussi Kivilinna See also: 15609332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 156156d76c96SJussi Kivilinna 1562747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1563747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1564747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 15652b31277aSTianjia Zhang select CRYPTO_LIB_SM4 1566747c8ce4SGilad Ben-Yossef help 1567747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1568747c8ce4SGilad Ben-Yossef 1569747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1570747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1571747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1572747c8ce4SGilad Ben-Yossef 1573747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1574747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1575747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1576747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1577747c8ce4SGilad Ben-Yossef 1578747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1579747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1580747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1581747c8ce4SGilad Ben-Yossef 1582747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1583747c8ce4SGilad Ben-Yossef 1584747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1585747c8ce4SGilad Ben-Yossef 1586747c8ce4SGilad Ben-Yossef If unsure, say N. 1587747c8ce4SGilad Ben-Yossef 1588a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64 1589a7ee22eeSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1590a7ee22eeSTianjia Zhang depends on X86 && 64BIT 1591a7ee22eeSTianjia Zhang select CRYPTO_SKCIPHER 1592a7ee22eeSTianjia Zhang select CRYPTO_SIMD 1593a7ee22eeSTianjia Zhang select CRYPTO_ALGAPI 1594a7ee22eeSTianjia Zhang select CRYPTO_LIB_SM4 1595a7ee22eeSTianjia Zhang help 1596a7ee22eeSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1597a7ee22eeSTianjia Zhang 1598a7ee22eeSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1599a7ee22eeSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 1600a7ee22eeSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 1601a7ee22eeSTianjia Zhang 1602a7ee22eeSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX/x86_64 1603a7ee22eeSTianjia Zhang instruction set for block cipher. Through two affine transforms, 1604a7ee22eeSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1605a7ee22eeSTianjia Zhang effect of instruction acceleration. 1606a7ee22eeSTianjia Zhang 1607a7ee22eeSTianjia Zhang If unsure, say N. 1608a7ee22eeSTianjia Zhang 16095b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64 16105b2efa2bSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 16115b2efa2bSTianjia Zhang depends on X86 && 64BIT 16125b2efa2bSTianjia Zhang select CRYPTO_SKCIPHER 16135b2efa2bSTianjia Zhang select CRYPTO_SIMD 16145b2efa2bSTianjia Zhang select CRYPTO_ALGAPI 16155b2efa2bSTianjia Zhang select CRYPTO_LIB_SM4 16165b2efa2bSTianjia Zhang select CRYPTO_SM4_AESNI_AVX_X86_64 16175b2efa2bSTianjia Zhang help 16185b2efa2bSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 16195b2efa2bSTianjia Zhang 16205b2efa2bSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 16215b2efa2bSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 16225b2efa2bSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 16235b2efa2bSTianjia Zhang 16245b2efa2bSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX2/x86_64 16255b2efa2bSTianjia Zhang instruction set for block cipher. Through two affine transforms, 16265b2efa2bSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 16275b2efa2bSTianjia Zhang effect of instruction acceleration. 16285b2efa2bSTianjia Zhang 16295b2efa2bSTianjia Zhang If unsure, say N. 16305b2efa2bSTianjia Zhang 1631584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1632584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 16331674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1634584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1635584fffc8SSebastian Siewior help 1636584fffc8SSebastian Siewior TEA cipher algorithm. 1637584fffc8SSebastian Siewior 1638584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1639584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1640584fffc8SSebastian Siewior little memory. 1641584fffc8SSebastian Siewior 1642584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1643584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1644584fffc8SSebastian Siewior in the TEA algorithm. 1645584fffc8SSebastian Siewior 1646584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1647584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1648584fffc8SSebastian Siewior 1649584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1650584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1651584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1652584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1653584fffc8SSebastian Siewior help 1654584fffc8SSebastian Siewior Twofish cipher algorithm. 1655584fffc8SSebastian Siewior 1656584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1657584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1658584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1659584fffc8SSebastian Siewior bits. 1660584fffc8SSebastian Siewior 1661584fffc8SSebastian Siewior See also: 16629332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1663584fffc8SSebastian Siewior 1664584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1665584fffc8SSebastian Siewior tristate 1666584fffc8SSebastian Siewior help 1667584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1668584fffc8SSebastian Siewior generic c and the assembler implementations. 1669584fffc8SSebastian Siewior 1670584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1671584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1672584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1673584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1674584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1675f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1676584fffc8SSebastian Siewior help 1677584fffc8SSebastian Siewior Twofish cipher algorithm. 1678584fffc8SSebastian Siewior 1679584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1680584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1681584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1682584fffc8SSebastian Siewior bits. 1683584fffc8SSebastian Siewior 1684584fffc8SSebastian Siewior See also: 16859332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1686584fffc8SSebastian Siewior 1687584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1688584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1689584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1690584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1691584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1692f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1693584fffc8SSebastian Siewior help 1694584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1695584fffc8SSebastian Siewior 1696584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1697584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1698584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1699584fffc8SSebastian Siewior bits. 1700584fffc8SSebastian Siewior 1701584fffc8SSebastian Siewior See also: 17029332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1703584fffc8SSebastian Siewior 17048280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17058280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1706f21a7c19SAl Viro depends on X86 && 64BIT 1707b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17088280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17098280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 17108280daadSJussi Kivilinna help 17118280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17128280daadSJussi Kivilinna 17138280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17148280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17158280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17168280daadSJussi Kivilinna bits. 17178280daadSJussi Kivilinna 17188280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17198280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17208280daadSJussi Kivilinna 17218280daadSJussi Kivilinna See also: 17229332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 17238280daadSJussi Kivilinna 1724107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1725107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1726107778b5SJohannes Goetzfried depends on X86 && 64BIT 1727b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17280e6ab46dSEric Biggers select CRYPTO_SIMD 1729107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1730107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1731107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1732da4df93aSArd Biesheuvel imply CRYPTO_XTS 1733107778b5SJohannes Goetzfried help 1734107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1735107778b5SJohannes Goetzfried 1736107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1737107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1738107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1739107778b5SJohannes Goetzfried bits. 1740107778b5SJohannes Goetzfried 1741107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1742107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1743107778b5SJohannes Goetzfried 1744107778b5SJohannes Goetzfried See also: 17459332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1746107778b5SJohannes Goetzfried 1747584fffc8SSebastian Siewiorcomment "Compression" 1748584fffc8SSebastian Siewior 17491da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17501da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1751cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1752f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17531da177e4SLinus Torvalds select ZLIB_INFLATE 17541da177e4SLinus Torvalds select ZLIB_DEFLATE 17551da177e4SLinus Torvalds help 17561da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17571da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17581da177e4SLinus Torvalds 17591da177e4SLinus Torvalds You will most probably want this if using IPSec. 17601da177e4SLinus Torvalds 17610b77abb3SZoltan Sogorconfig CRYPTO_LZO 17620b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17630b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1764ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17650b77abb3SZoltan Sogor select LZO_COMPRESS 17660b77abb3SZoltan Sogor select LZO_DECOMPRESS 17670b77abb3SZoltan Sogor help 17680b77abb3SZoltan Sogor This is the LZO algorithm. 17690b77abb3SZoltan Sogor 177035a1fc18SSeth Jenningsconfig CRYPTO_842 177135a1fc18SSeth Jennings tristate "842 compression algorithm" 17722062c5b6SDan Streetman select CRYPTO_ALGAPI 17736a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17742062c5b6SDan Streetman select 842_COMPRESS 17752062c5b6SDan Streetman select 842_DECOMPRESS 177635a1fc18SSeth Jennings help 177735a1fc18SSeth Jennings This is the 842 algorithm. 177835a1fc18SSeth Jennings 17790ea8530dSChanho Minconfig CRYPTO_LZ4 17800ea8530dSChanho Min tristate "LZ4 compression algorithm" 17810ea8530dSChanho Min select CRYPTO_ALGAPI 17828cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17830ea8530dSChanho Min select LZ4_COMPRESS 17840ea8530dSChanho Min select LZ4_DECOMPRESS 17850ea8530dSChanho Min help 17860ea8530dSChanho Min This is the LZ4 algorithm. 17870ea8530dSChanho Min 17880ea8530dSChanho Minconfig CRYPTO_LZ4HC 17890ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17900ea8530dSChanho Min select CRYPTO_ALGAPI 179191d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17920ea8530dSChanho Min select LZ4HC_COMPRESS 17930ea8530dSChanho Min select LZ4_DECOMPRESS 17940ea8530dSChanho Min help 17950ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17960ea8530dSChanho Min 1797d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1798d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1799d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1800d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1801d28fc3dbSNick Terrell select ZSTD_COMPRESS 1802d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1803d28fc3dbSNick Terrell help 1804d28fc3dbSNick Terrell This is the zstd algorithm. 1805d28fc3dbSNick Terrell 180617f0f4a4SNeil Hormancomment "Random Number Generation" 180717f0f4a4SNeil Horman 180817f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 180917f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 181017f0f4a4SNeil Horman select CRYPTO_AES 181117f0f4a4SNeil Horman select CRYPTO_RNG 181217f0f4a4SNeil Horman help 181317f0f4a4SNeil Horman This option enables the generic pseudo random number generator 181417f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18157dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18167dd607e8SJiri Kosina CRYPTO_FIPS is selected 181717f0f4a4SNeil Horman 1818f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1819419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1820419090c6SStephan Mueller help 1821419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1822419090c6SStephan Mueller more of the DRBG types must be selected. 1823419090c6SStephan Mueller 1824f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1825419090c6SStephan Mueller 1826419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1827401e4238SHerbert Xu bool 1828419090c6SStephan Mueller default y 1829419090c6SStephan Mueller select CRYPTO_HMAC 18305261cdf4SStephan Mueller select CRYPTO_SHA512 1831419090c6SStephan Mueller 1832419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1833419090c6SStephan Mueller bool "Enable Hash DRBG" 1834826775bbSHerbert Xu select CRYPTO_SHA256 1835419090c6SStephan Mueller help 1836419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1837419090c6SStephan Mueller 1838419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1839419090c6SStephan Mueller bool "Enable CTR DRBG" 1840419090c6SStephan Mueller select CRYPTO_AES 1841d6fc1a45SCorentin Labbe select CRYPTO_CTR 1842419090c6SStephan Mueller help 1843419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1844419090c6SStephan Mueller 1845f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1846f2c89a10SHerbert Xu tristate 1847401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1848f2c89a10SHerbert Xu select CRYPTO_RNG 1849bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1850f2c89a10SHerbert Xu 1851f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1852419090c6SStephan Mueller 1853bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1854bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18552f313e02SArnd Bergmann select CRYPTO_RNG 1856bb5530e4SStephan Mueller help 1857bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1858bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1859bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1860bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1861bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1862bb5530e4SStephan Mueller 1863026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR 1864026a733eSStephan Müller tristate 1865a88592ccSHerbert Xu select CRYPTO_HMAC 1866304b4aceSStephan Müller select CRYPTO_SHA256 1867026a733eSStephan Müller 186803c8efc1SHerbert Xuconfig CRYPTO_USER_API 186903c8efc1SHerbert Xu tristate 187003c8efc1SHerbert Xu 1871fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1872fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18737451708fSHerbert Xu depends on NET 1874fe869cdbSHerbert Xu select CRYPTO_HASH 1875fe869cdbSHerbert Xu select CRYPTO_USER_API 1876fe869cdbSHerbert Xu help 1877fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1878fe869cdbSHerbert Xu algorithms. 1879fe869cdbSHerbert Xu 18808ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18818ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18827451708fSHerbert Xu depends on NET 1883b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18848ff59090SHerbert Xu select CRYPTO_USER_API 18858ff59090SHerbert Xu help 18868ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18878ff59090SHerbert Xu key cipher algorithms. 18888ff59090SHerbert Xu 18892f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18902f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18912f375538SStephan Mueller depends on NET 18922f375538SStephan Mueller select CRYPTO_RNG 18932f375538SStephan Mueller select CRYPTO_USER_API 18942f375538SStephan Mueller help 18952f375538SStephan Mueller This option enables the user-spaces interface for random 18962f375538SStephan Mueller number generator algorithms. 18972f375538SStephan Mueller 189877ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 189977ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 190077ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 190177ebdabeSElena Petrova help 190277ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 190377ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 190477ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 190577ebdabeSElena Petrova no unless you know what this is. 190677ebdabeSElena Petrova 1907b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1908b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1909b64a2d95SHerbert Xu depends on NET 1910b64a2d95SHerbert Xu select CRYPTO_AEAD 1911b95bba5dSEric Biggers select CRYPTO_SKCIPHER 191272548b09SStephan Mueller select CRYPTO_NULL 1913b64a2d95SHerbert Xu select CRYPTO_USER_API 1914b64a2d95SHerbert Xu help 1915b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1916b64a2d95SHerbert Xu cipher algorithms. 1917b64a2d95SHerbert Xu 19189ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 19199ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 19209ace6771SArd Biesheuvel depends on CRYPTO_USER_API 19219ace6771SArd Biesheuvel default y 19229ace6771SArd Biesheuvel help 19239ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 19249ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 19259ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 19269ace6771SArd Biesheuvel 1927cac5818cSCorentin Labbeconfig CRYPTO_STATS 1928cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1929a6a31385SCorentin Labbe depends on CRYPTO_USER 1930cac5818cSCorentin Labbe help 1931cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1932cac5818cSCorentin Labbe This will collect: 1933cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1934cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1935cac5818cSCorentin Labbe - size and numbers of hash operations 1936cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1937cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1938cac5818cSCorentin Labbe 1939ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1940ee08997fSDmitry Kasatkin bool 1941ee08997fSDmitry Kasatkin 19421da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19438636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19448636a1f9SMasahiro Yamadasource "certs/Kconfig" 19451da177e4SLinus Torvalds 1946cce9e06dSHerbert Xuendif # if CRYPTO 1947