1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 116cfc2bb32STadeusz Strukconfig CRYPTO_RSA 117cfc2bb32STadeusz Struk tristate "RSA algorithm" 118425e0172STadeusz Struk select CRYPTO_AKCIPHER 11958446fefSTadeusz Struk select CRYPTO_MANAGER 120cfc2bb32STadeusz Struk select MPILIB 121cfc2bb32STadeusz Struk select ASN1 122cfc2bb32STadeusz Struk help 123cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 124cfc2bb32STadeusz Struk 125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 126802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 127802c7f1cSSalvatore Benedetto select CRYPTO_KPP 128802c7f1cSSalvatore Benedetto select MPILIB 129802c7f1cSSalvatore Benedetto help 130802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 131802c7f1cSSalvatore Benedetto 1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1333c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 134b5b90077SHauke Mehrtens select CRYPTO_KPP 1356755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1363c4b2390SSalvatore Benedetto help 1373c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 138802c7f1cSSalvatore Benedetto 1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1402b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1416a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1422b8c19dbSHerbert Xu help 1432b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1442b8c19dbSHerbert Xu cbc(aes). 1452b8c19dbSHerbert Xu 1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1476a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1486a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1496a0fcbb4SHerbert Xu select CRYPTO_HASH2 1506a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 151946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1524e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1532ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1546a0fcbb4SHerbert Xu 155a38f7907SSteffen Klassertconfig CRYPTO_USER 156a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1575db017aaSHerbert Xu depends on NET 158a38f7907SSteffen Klassert select CRYPTO_MANAGER 159a38f7907SSteffen Klassert help 160d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 161a38f7907SSteffen Klassert cbc(aes). 162a38f7907SSteffen Klassert 163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 164326a6346SHerbert Xu bool "Disable run-time self tests" 16500ca28a5SHerbert Xu default y 16600ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1670b767f96SAlexander Shishkin help 168326a6346SHerbert Xu Disable run-time self tests that normally take place at 169326a6346SHerbert Xu algorithm registration. 1700b767f96SAlexander Shishkin 171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 175584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 176584fffc8SSebastian Siewior option will be selected automatically if you select such a 177584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 178584fffc8SSebastian Siewior an external module that requires these functions. 179584fffc8SSebastian Siewior 180584fffc8SSebastian Siewiorconfig CRYPTO_NULL 181584fffc8SSebastian Siewior tristate "Null algorithms" 182149a3971SHerbert Xu select CRYPTO_NULL2 183584fffc8SSebastian Siewior help 184584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 185584fffc8SSebastian Siewior 186149a3971SHerbert Xuconfig CRYPTO_NULL2 187dd43c4e9SHerbert Xu tristate 188149a3971SHerbert Xu select CRYPTO_ALGAPI2 189149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 190149a3971SHerbert Xu select CRYPTO_HASH2 191149a3971SHerbert Xu 1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1933b4afaf2SKees Cook tristate "Parallel crypto engine" 1943b4afaf2SKees Cook depends on SMP 1955068c7a8SSteffen Klassert select PADATA 1965068c7a8SSteffen Klassert select CRYPTO_MANAGER 1975068c7a8SSteffen Klassert select CRYPTO_AEAD 1985068c7a8SSteffen Klassert help 1995068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2005068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2015068c7a8SSteffen Klassert 20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20325c38d3fSHuang Ying tristate 20425c38d3fSHuang Ying 205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 206584fffc8SSebastian Siewior tristate "Software async crypto daemon" 207584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 208b8a28251SLoc Ho select CRYPTO_HASH 209584fffc8SSebastian Siewior select CRYPTO_MANAGER 210254eff77SHuang Ying select CRYPTO_WORKQUEUE 211584fffc8SSebastian Siewior help 212584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 213584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 214584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 215584fffc8SSebastian Siewior 2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2171e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2181e65b81aSTim Chen select CRYPTO_BLKCIPHER 2191e65b81aSTim Chen select CRYPTO_HASH 2201e65b81aSTim Chen select CRYPTO_MANAGER 2211e65b81aSTim Chen select CRYPTO_WORKQUEUE 2221e65b81aSTim Chen help 2231e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2241e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2251e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2261e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2271e65b81aSTim Chen in the context of this kernel thread and drivers can post 2280e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2291e65b81aSTim Chen 230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 231584fffc8SSebastian Siewior tristate "Authenc support" 232584fffc8SSebastian Siewior select CRYPTO_AEAD 233584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 234584fffc8SSebastian Siewior select CRYPTO_MANAGER 235584fffc8SSebastian Siewior select CRYPTO_HASH 236e94c6a7aSHerbert Xu select CRYPTO_NULL 237584fffc8SSebastian Siewior help 238584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 239584fffc8SSebastian Siewior This is required for IPSec. 240584fffc8SSebastian Siewior 241584fffc8SSebastian Siewiorconfig CRYPTO_TEST 242584fffc8SSebastian Siewior tristate "Testing module" 243584fffc8SSebastian Siewior depends on m 244da7f033dSHerbert Xu select CRYPTO_MANAGER 245584fffc8SSebastian Siewior help 246584fffc8SSebastian Siewior Quick & dirty crypto test module. 247584fffc8SSebastian Siewior 248266d0516SHerbert Xuconfig CRYPTO_SIMD 249266d0516SHerbert Xu tristate 250266d0516SHerbert Xu select CRYPTO_CRYPTD 251266d0516SHerbert Xu 252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 253596d8750SJussi Kivilinna tristate 254596d8750SJussi Kivilinna depends on X86 255065ce327SHerbert Xu select CRYPTO_BLKCIPHER 256596d8750SJussi Kivilinna 257735d37b5SBaolin Wangconfig CRYPTO_ENGINE 258735d37b5SBaolin Wang tristate 259735d37b5SBaolin Wang 260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 261584fffc8SSebastian Siewior 262584fffc8SSebastian Siewiorconfig CRYPTO_CCM 263584fffc8SSebastian Siewior tristate "CCM support" 264584fffc8SSebastian Siewior select CRYPTO_CTR 265f15f05b0SArd Biesheuvel select CRYPTO_HASH 266584fffc8SSebastian Siewior select CRYPTO_AEAD 267584fffc8SSebastian Siewior help 268584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 269584fffc8SSebastian Siewior 270584fffc8SSebastian Siewiorconfig CRYPTO_GCM 271584fffc8SSebastian Siewior tristate "GCM/GMAC support" 272584fffc8SSebastian Siewior select CRYPTO_CTR 273584fffc8SSebastian Siewior select CRYPTO_AEAD 2749382d97aSHuang Ying select CRYPTO_GHASH 2759489667dSJussi Kivilinna select CRYPTO_NULL 276584fffc8SSebastian Siewior help 277584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 278584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 279584fffc8SSebastian Siewior 28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28171ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28271ebc4d1SMartin Willi select CRYPTO_CHACHA20 28371ebc4d1SMartin Willi select CRYPTO_POLY1305 28471ebc4d1SMartin Willi select CRYPTO_AEAD 28571ebc4d1SMartin Willi help 28671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28771ebc4d1SMartin Willi 28871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 28971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29071ebc4d1SMartin Willi IETF protocols. 29171ebc4d1SMartin Willi 292*f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 293*f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 294*f606a88eSOndrej Mosnacek select CRYPTO_AEAD 295*f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 296*f606a88eSOndrej Mosnacek help 297*f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 298*f606a88eSOndrej Mosnacek 299*f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 300*f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 301*f606a88eSOndrej Mosnacek select CRYPTO_AEAD 302*f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 303*f606a88eSOndrej Mosnacek help 304*f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 305*f606a88eSOndrej Mosnacek 306*f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 307*f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 308*f606a88eSOndrej Mosnacek select CRYPTO_AEAD 309*f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 310*f606a88eSOndrej Mosnacek help 311*f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 312*f606a88eSOndrej Mosnacek 313584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 314584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 315584fffc8SSebastian Siewior select CRYPTO_AEAD 316584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 317856e3f40SHerbert Xu select CRYPTO_NULL 318401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 319584fffc8SSebastian Siewior help 320584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 321584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 322584fffc8SSebastian Siewior 323a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 324a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 325a10f554fSHerbert Xu select CRYPTO_AEAD 326a10f554fSHerbert Xu select CRYPTO_NULL 327401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3283491244cSHerbert Xu default m 329a10f554fSHerbert Xu help 330a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 331a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 332a10f554fSHerbert Xu algorithm for CBC. 333a10f554fSHerbert Xu 334584fffc8SSebastian Siewiorcomment "Block modes" 335584fffc8SSebastian Siewior 336584fffc8SSebastian Siewiorconfig CRYPTO_CBC 337584fffc8SSebastian Siewior tristate "CBC support" 338584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 339584fffc8SSebastian Siewior select CRYPTO_MANAGER 340584fffc8SSebastian Siewior help 341584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 342584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 343584fffc8SSebastian Siewior 344a7d85e06SJames Bottomleyconfig CRYPTO_CFB 345a7d85e06SJames Bottomley tristate "CFB support" 346a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 347a7d85e06SJames Bottomley select CRYPTO_MANAGER 348a7d85e06SJames Bottomley help 349a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 350a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 351a7d85e06SJames Bottomley 352584fffc8SSebastian Siewiorconfig CRYPTO_CTR 353584fffc8SSebastian Siewior tristate "CTR support" 354584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 355584fffc8SSebastian Siewior select CRYPTO_SEQIV 356584fffc8SSebastian Siewior select CRYPTO_MANAGER 357584fffc8SSebastian Siewior help 358584fffc8SSebastian Siewior CTR: Counter mode 359584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 360584fffc8SSebastian Siewior 361584fffc8SSebastian Siewiorconfig CRYPTO_CTS 362584fffc8SSebastian Siewior tristate "CTS support" 363584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 364584fffc8SSebastian Siewior help 365584fffc8SSebastian Siewior CTS: Cipher Text Stealing 366584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 367584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 368584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 369584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 370584fffc8SSebastian Siewior for AES encryption. 371584fffc8SSebastian Siewior 372584fffc8SSebastian Siewiorconfig CRYPTO_ECB 373584fffc8SSebastian Siewior tristate "ECB support" 374584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 375584fffc8SSebastian Siewior select CRYPTO_MANAGER 376584fffc8SSebastian Siewior help 377584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 378584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 379584fffc8SSebastian Siewior the input block by block. 380584fffc8SSebastian Siewior 381584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3822470a2b2SJussi Kivilinna tristate "LRW support" 383584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 384584fffc8SSebastian Siewior select CRYPTO_MANAGER 385584fffc8SSebastian Siewior select CRYPTO_GF128MUL 386584fffc8SSebastian Siewior help 387584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 388584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 389584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 390584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 391584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 392584fffc8SSebastian Siewior 393584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 394584fffc8SSebastian Siewior tristate "PCBC support" 395584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 396584fffc8SSebastian Siewior select CRYPTO_MANAGER 397584fffc8SSebastian Siewior help 398584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 399584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 400584fffc8SSebastian Siewior 401584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4025bcf8e6dSJussi Kivilinna tristate "XTS support" 403584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 404584fffc8SSebastian Siewior select CRYPTO_MANAGER 40512cb3a1cSMilan Broz select CRYPTO_ECB 406584fffc8SSebastian Siewior help 407584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 408584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 409584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 410584fffc8SSebastian Siewior 4111c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4121c49678eSStephan Mueller tristate "Key wrapping support" 4131c49678eSStephan Mueller select CRYPTO_BLKCIPHER 4141c49678eSStephan Mueller help 4151c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4161c49678eSStephan Mueller padding. 4171c49678eSStephan Mueller 418584fffc8SSebastian Siewiorcomment "Hash modes" 419584fffc8SSebastian Siewior 42093b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 42193b5e86aSJussi Kivilinna tristate "CMAC support" 42293b5e86aSJussi Kivilinna select CRYPTO_HASH 42393b5e86aSJussi Kivilinna select CRYPTO_MANAGER 42493b5e86aSJussi Kivilinna help 42593b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 42693b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 42793b5e86aSJussi Kivilinna 42893b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 42993b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 43093b5e86aSJussi Kivilinna 4311da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4328425165dSHerbert Xu tristate "HMAC support" 4330796ae06SHerbert Xu select CRYPTO_HASH 43443518407SHerbert Xu select CRYPTO_MANAGER 4351da177e4SLinus Torvalds help 4361da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4371da177e4SLinus Torvalds This is required for IPSec. 4381da177e4SLinus Torvalds 439333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 440333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 441333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 442333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 443333b0d7eSKazunori MIYAZAWA help 444333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 445333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 446333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 447333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 448333b0d7eSKazunori MIYAZAWA 449f1939f7cSShane Wangconfig CRYPTO_VMAC 450f1939f7cSShane Wang tristate "VMAC support" 451f1939f7cSShane Wang select CRYPTO_HASH 452f1939f7cSShane Wang select CRYPTO_MANAGER 453f1939f7cSShane Wang help 454f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 455f1939f7cSShane Wang very high speed on 64-bit architectures. 456f1939f7cSShane Wang 457f1939f7cSShane Wang See also: 458f1939f7cSShane Wang <http://fastcrypto.org/vmac> 459f1939f7cSShane Wang 460584fffc8SSebastian Siewiorcomment "Digest" 461584fffc8SSebastian Siewior 462584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 463584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4645773a3e6SHerbert Xu select CRYPTO_HASH 4656a0962b2SDarrick J. Wong select CRC32 4661da177e4SLinus Torvalds help 467584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 468584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 46969c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4701da177e4SLinus Torvalds 4718cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4728cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4738cb51ba8SAustin Zhang depends on X86 4748cb51ba8SAustin Zhang select CRYPTO_HASH 4758cb51ba8SAustin Zhang help 4768cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4778cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4788cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4798cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4808cb51ba8SAustin Zhang gain performance compared with software implementation. 4818cb51ba8SAustin Zhang Module will be crc32c-intel. 4828cb51ba8SAustin Zhang 4837cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4846dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 485c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4866dd7a82cSAnton Blanchard select CRYPTO_HASH 4876dd7a82cSAnton Blanchard select CRC32 4886dd7a82cSAnton Blanchard help 4896dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4906dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4916dd7a82cSAnton Blanchard and newer processors for improved performance. 4926dd7a82cSAnton Blanchard 4936dd7a82cSAnton Blanchard 494442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 495442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 496442a7c40SDavid S. Miller depends on SPARC64 497442a7c40SDavid S. Miller select CRYPTO_HASH 498442a7c40SDavid S. Miller select CRC32 499442a7c40SDavid S. Miller help 500442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 501442a7c40SDavid S. Miller when available. 502442a7c40SDavid S. Miller 50378c37d19SAlexander Boykoconfig CRYPTO_CRC32 50478c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 50578c37d19SAlexander Boyko select CRYPTO_HASH 50678c37d19SAlexander Boyko select CRC32 50778c37d19SAlexander Boyko help 50878c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 50978c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 51078c37d19SAlexander Boyko 51178c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 51278c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 51378c37d19SAlexander Boyko depends on X86 51478c37d19SAlexander Boyko select CRYPTO_HASH 51578c37d19SAlexander Boyko select CRC32 51678c37d19SAlexander Boyko help 51778c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 51878c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 51978c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 52078c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 52178c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 52278c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 52378c37d19SAlexander Boyko 5244a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 5254a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 5264a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 5274a5dc51eSMarcin Nowakowski select CRYPTO_HASH 5284a5dc51eSMarcin Nowakowski help 5294a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 5304a5dc51eSMarcin Nowakowski instructions, when available. 5314a5dc51eSMarcin Nowakowski 5324a5dc51eSMarcin Nowakowski 53368411521SHerbert Xuconfig CRYPTO_CRCT10DIF 53468411521SHerbert Xu tristate "CRCT10DIF algorithm" 53568411521SHerbert Xu select CRYPTO_HASH 53668411521SHerbert Xu help 53768411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 53868411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 53968411521SHerbert Xu transforms to be used if they are available. 54068411521SHerbert Xu 54168411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 54268411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 54368411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 54468411521SHerbert Xu select CRYPTO_HASH 54568411521SHerbert Xu help 54668411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 54768411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 54868411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 54968411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 55068411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 55168411521SHerbert Xu 552b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 553b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 554b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 555b01df1c1SDaniel Axtens select CRYPTO_HASH 556b01df1c1SDaniel Axtens help 557b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 558b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 559b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 560b01df1c1SDaniel Axtens 561146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 562146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 563146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 564146c8688SDaniel Axtens help 565146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 566146c8688SDaniel Axtens POWER8 vpmsum instructions. 567146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 568146c8688SDaniel Axtens 5692cdc6899SHuang Yingconfig CRYPTO_GHASH 5702cdc6899SHuang Ying tristate "GHASH digest algorithm" 5712cdc6899SHuang Ying select CRYPTO_GF128MUL 572578c60fbSArnd Bergmann select CRYPTO_HASH 5732cdc6899SHuang Ying help 5742cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5752cdc6899SHuang Ying 576f979e014SMartin Williconfig CRYPTO_POLY1305 577f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 578578c60fbSArnd Bergmann select CRYPTO_HASH 579f979e014SMartin Willi help 580f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 581f979e014SMartin Willi 582f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 583f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 584f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 585f979e014SMartin Willi 586c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 587b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 588c70f4abeSMartin Willi depends on X86 && 64BIT 589c70f4abeSMartin Willi select CRYPTO_POLY1305 590c70f4abeSMartin Willi help 591c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 592c70f4abeSMartin Willi 593c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 594c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 595c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 596c70f4abeSMartin Willi instructions. 597c70f4abeSMartin Willi 5981da177e4SLinus Torvaldsconfig CRYPTO_MD4 5991da177e4SLinus Torvalds tristate "MD4 digest algorithm" 600808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 6011da177e4SLinus Torvalds help 6021da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 6031da177e4SLinus Torvalds 6041da177e4SLinus Torvaldsconfig CRYPTO_MD5 6051da177e4SLinus Torvalds tristate "MD5 digest algorithm" 60614b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 6071da177e4SLinus Torvalds help 6081da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 6091da177e4SLinus Torvalds 610d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 611d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 612d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 613d69e75deSAaro Koskinen select CRYPTO_MD5 614d69e75deSAaro Koskinen select CRYPTO_HASH 615d69e75deSAaro Koskinen help 616d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 617d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 618d69e75deSAaro Koskinen 619e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 620e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 621e8e59953SMarkus Stockhausen depends on PPC 622e8e59953SMarkus Stockhausen select CRYPTO_HASH 623e8e59953SMarkus Stockhausen help 624e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 625e8e59953SMarkus Stockhausen in PPC assembler. 626e8e59953SMarkus Stockhausen 627fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 628fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 629fa4dfedcSDavid S. Miller depends on SPARC64 630fa4dfedcSDavid S. Miller select CRYPTO_MD5 631fa4dfedcSDavid S. Miller select CRYPTO_HASH 632fa4dfedcSDavid S. Miller help 633fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 634fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 635fa4dfedcSDavid S. Miller 636584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 637584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 63819e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 639584fffc8SSebastian Siewior help 640584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 641584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 642584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 643584fffc8SSebastian Siewior of the algorithm. 644584fffc8SSebastian Siewior 64582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 64682798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 6477c4468bcSHerbert Xu select CRYPTO_HASH 64882798f90SAdrian-Ken Rueegsegger help 64982798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 65082798f90SAdrian-Ken Rueegsegger 65182798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 65235ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 65382798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 65482798f90SAdrian-Ken Rueegsegger 65582798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6566d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 65782798f90SAdrian-Ken Rueegsegger 65882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 65982798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 660e5835fbaSHerbert Xu select CRYPTO_HASH 66182798f90SAdrian-Ken Rueegsegger help 66282798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 66382798f90SAdrian-Ken Rueegsegger 66482798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 66582798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 666b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 667b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 66882798f90SAdrian-Ken Rueegsegger 669b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 670b6d44341SAdrian Bunk against RIPEMD-160. 671534fe2c1SAdrian-Ken Rueegsegger 672534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6736d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 674534fe2c1SAdrian-Ken Rueegsegger 675534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 676534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 677d8a5e2e9SHerbert Xu select CRYPTO_HASH 678534fe2c1SAdrian-Ken Rueegsegger help 679b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 680b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 681b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 682b6d44341SAdrian Bunk (than RIPEMD-128). 683534fe2c1SAdrian-Ken Rueegsegger 684534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6856d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 686534fe2c1SAdrian-Ken Rueegsegger 687534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 688534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6893b8efb4cSHerbert Xu select CRYPTO_HASH 690534fe2c1SAdrian-Ken Rueegsegger help 691b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 692b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 693b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 694b6d44341SAdrian Bunk (than RIPEMD-160). 695534fe2c1SAdrian-Ken Rueegsegger 69682798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6976d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 69882798f90SAdrian-Ken Rueegsegger 6991da177e4SLinus Torvaldsconfig CRYPTO_SHA1 7001da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 70154ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 7021da177e4SLinus Torvalds help 7031da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 7041da177e4SLinus Torvalds 70566be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 706e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 70766be8951SMathias Krause depends on X86 && 64BIT 70866be8951SMathias Krause select CRYPTO_SHA1 70966be8951SMathias Krause select CRYPTO_HASH 71066be8951SMathias Krause help 71166be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 71266be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 713e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 714e38b6b7fStim when available. 71566be8951SMathias Krause 7168275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 717e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 7188275d1aaSTim Chen depends on X86 && 64BIT 7198275d1aaSTim Chen select CRYPTO_SHA256 7208275d1aaSTim Chen select CRYPTO_HASH 7218275d1aaSTim Chen help 7228275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 7238275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 7248275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 725e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 726e38b6b7fStim Instructions) when available. 7278275d1aaSTim Chen 72887de4579STim Chenconfig CRYPTO_SHA512_SSSE3 72987de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 73087de4579STim Chen depends on X86 && 64BIT 73187de4579STim Chen select CRYPTO_SHA512 73287de4579STim Chen select CRYPTO_HASH 73387de4579STim Chen help 73487de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 73587de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 73687de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 73787de4579STim Chen version 2 (AVX2) instructions, when available. 73887de4579STim Chen 739efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 740efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 741efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 742efdb6f6eSAaro Koskinen select CRYPTO_SHA1 743efdb6f6eSAaro Koskinen select CRYPTO_HASH 744efdb6f6eSAaro Koskinen help 745efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 746efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 747efdb6f6eSAaro Koskinen 7484ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 7494ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 7504ff28d4cSDavid S. Miller depends on SPARC64 7514ff28d4cSDavid S. Miller select CRYPTO_SHA1 7524ff28d4cSDavid S. Miller select CRYPTO_HASH 7534ff28d4cSDavid S. Miller help 7544ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7554ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7564ff28d4cSDavid S. Miller 757323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 758323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 759323a6bf1SMichael Ellerman depends on PPC 760323a6bf1SMichael Ellerman help 761323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 762323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 763323a6bf1SMichael Ellerman 764d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 765d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 766d9850fc5SMarkus Stockhausen depends on PPC && SPE 767d9850fc5SMarkus Stockhausen help 768d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 769d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 770d9850fc5SMarkus Stockhausen 7711e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7721e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7731e65b81aSTim Chen depends on X86 && 64BIT 7741e65b81aSTim Chen select CRYPTO_SHA1 7751e65b81aSTim Chen select CRYPTO_HASH 7761e65b81aSTim Chen select CRYPTO_MCRYPTD 7771e65b81aSTim Chen help 7781e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7791e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7801e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7811e65b81aSTim Chen better throughput. It should not be enabled by default but 7821e65b81aSTim Chen used when there is significant amount of work to keep the keep 7831e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7841e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7851e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7861e65b81aSTim Chen 7879be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7889be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7899be7e244SMegha Dey depends on X86 && 64BIT 7909be7e244SMegha Dey select CRYPTO_SHA256 7919be7e244SMegha Dey select CRYPTO_HASH 7929be7e244SMegha Dey select CRYPTO_MCRYPTD 7939be7e244SMegha Dey help 7949be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7959be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7969be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7979be7e244SMegha Dey better throughput. It should not be enabled by default but 7989be7e244SMegha Dey used when there is significant amount of work to keep the keep 7999be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 8009be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 8019be7e244SMegha Dey process the crypto jobs, adding a slight latency. 8029be7e244SMegha Dey 803026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 804026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 805026bb8aaSMegha Dey depends on X86 && 64BIT 806026bb8aaSMegha Dey select CRYPTO_SHA512 807026bb8aaSMegha Dey select CRYPTO_HASH 808026bb8aaSMegha Dey select CRYPTO_MCRYPTD 809026bb8aaSMegha Dey help 810026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 811026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 812026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 813026bb8aaSMegha Dey better throughput. It should not be enabled by default but 814026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 815026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 816026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 817026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 818026bb8aaSMegha Dey 8191da177e4SLinus Torvaldsconfig CRYPTO_SHA256 820cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 82150e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 8221da177e4SLinus Torvalds help 8231da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 8241da177e4SLinus Torvalds 8251da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 8261da177e4SLinus Torvalds security against collision attacks. 8271da177e4SLinus Torvalds 828cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 829cd12fb90SJonathan Lynch of security against collision attacks. 830cd12fb90SJonathan Lynch 8312ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 8322ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 8332ecc1e95SMarkus Stockhausen depends on PPC && SPE 8342ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 8352ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8362ecc1e95SMarkus Stockhausen help 8372ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8382ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 8392ecc1e95SMarkus Stockhausen 840efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 841efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 842efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 843efdb6f6eSAaro Koskinen select CRYPTO_SHA256 844efdb6f6eSAaro Koskinen select CRYPTO_HASH 845efdb6f6eSAaro Koskinen help 846efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 847efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 848efdb6f6eSAaro Koskinen 84986c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 85086c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 85186c93b24SDavid S. Miller depends on SPARC64 85286c93b24SDavid S. Miller select CRYPTO_SHA256 85386c93b24SDavid S. Miller select CRYPTO_HASH 85486c93b24SDavid S. Miller help 85586c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 85686c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 85786c93b24SDavid S. Miller 8581da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8591da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 860bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8611da177e4SLinus Torvalds help 8621da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8631da177e4SLinus Torvalds 8641da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8651da177e4SLinus Torvalds security against collision attacks. 8661da177e4SLinus Torvalds 8671da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8681da177e4SLinus Torvalds of security against collision attacks. 8691da177e4SLinus Torvalds 870efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 871efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 872efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 873efdb6f6eSAaro Koskinen select CRYPTO_SHA512 874efdb6f6eSAaro Koskinen select CRYPTO_HASH 875efdb6f6eSAaro Koskinen help 876efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 877efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 878efdb6f6eSAaro Koskinen 879775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 880775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 881775e0c69SDavid S. Miller depends on SPARC64 882775e0c69SDavid S. Miller select CRYPTO_SHA512 883775e0c69SDavid S. Miller select CRYPTO_HASH 884775e0c69SDavid S. Miller help 885775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 886775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 887775e0c69SDavid S. Miller 88853964b9eSJeff Garzikconfig CRYPTO_SHA3 88953964b9eSJeff Garzik tristate "SHA3 digest algorithm" 89053964b9eSJeff Garzik select CRYPTO_HASH 89153964b9eSJeff Garzik help 89253964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 89353964b9eSJeff Garzik cryptographic sponge function family called Keccak. 89453964b9eSJeff Garzik 89553964b9eSJeff Garzik References: 89653964b9eSJeff Garzik http://keccak.noekeon.org/ 89753964b9eSJeff Garzik 8984f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 8994f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9004f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9014f0fc160SGilad Ben-Yossef help 9024f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9034f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9044f0fc160SGilad Ben-Yossef 9054f0fc160SGilad Ben-Yossef References: 9064f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9074f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9084f0fc160SGilad Ben-Yossef 9091da177e4SLinus Torvaldsconfig CRYPTO_TGR192 9101da177e4SLinus Torvalds tristate "Tiger digest algorithms" 911f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 9121da177e4SLinus Torvalds help 9131da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 9141da177e4SLinus Torvalds 9151da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 9161da177e4SLinus Torvalds still having decent performance on 32-bit processors. 9171da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 9181da177e4SLinus Torvalds 9191da177e4SLinus Torvalds See also: 9201da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 9211da177e4SLinus Torvalds 922584fffc8SSebastian Siewiorconfig CRYPTO_WP512 923584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 9244946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 9251da177e4SLinus Torvalds help 926584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 9271da177e4SLinus Torvalds 928584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 929584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 9301da177e4SLinus Torvalds 9311da177e4SLinus Torvalds See also: 9326d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 9331da177e4SLinus Torvalds 9340e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 9350e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 9368af00860SRichard Weinberger depends on X86 && 64BIT 9370e1227d3SHuang Ying select CRYPTO_CRYPTD 9380e1227d3SHuang Ying help 9390e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 9400e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 9410e1227d3SHuang Ying 942584fffc8SSebastian Siewiorcomment "Ciphers" 9431da177e4SLinus Torvalds 9441da177e4SLinus Torvaldsconfig CRYPTO_AES 9451da177e4SLinus Torvalds tristate "AES cipher algorithms" 946cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9471da177e4SLinus Torvalds help 9481da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9491da177e4SLinus Torvalds algorithm. 9501da177e4SLinus Torvalds 9511da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9521da177e4SLinus Torvalds both hardware and software across a wide range of computing 9531da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9541da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9551da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9561da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9571da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9581da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9591da177e4SLinus Torvalds 9601da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9611da177e4SLinus Torvalds 9621da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 9631da177e4SLinus Torvalds 964b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 965b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 966b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 967b5e0b032SArd Biesheuvel help 968b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 969b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 970b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 971b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 972b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 973b5e0b032SArd Biesheuvel with a more dramatic performance hit) 974b5e0b032SArd Biesheuvel 975b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 976b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 977b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 978b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 979b5e0b032SArd Biesheuvel block. 980b5e0b032SArd Biesheuvel 9811da177e4SLinus Torvaldsconfig CRYPTO_AES_586 9821da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 983cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 984cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9855157dea8SSebastian Siewior select CRYPTO_AES 9861da177e4SLinus Torvalds help 9871da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9881da177e4SLinus Torvalds algorithm. 9891da177e4SLinus Torvalds 9901da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9911da177e4SLinus Torvalds both hardware and software across a wide range of computing 9921da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9931da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9941da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9951da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9961da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9971da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9981da177e4SLinus Torvalds 9991da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10001da177e4SLinus Torvalds 10011da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 10021da177e4SLinus Torvalds 1003a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1004a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1005cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1006cce9e06dSHerbert Xu select CRYPTO_ALGAPI 100781190b32SSebastian Siewior select CRYPTO_AES 1008a2a892a2SAndreas Steinmetz help 1009a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1010a2a892a2SAndreas Steinmetz algorithm. 1011a2a892a2SAndreas Steinmetz 1012a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1013a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1014a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1015a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1016a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1017a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1018a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1019a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1020a2a892a2SAndreas Steinmetz 1021a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1022a2a892a2SAndreas Steinmetz 1023a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1024a2a892a2SAndreas Steinmetz 102554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 102654b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 10278af00860SRichard Weinberger depends on X86 102885671860SHerbert Xu select CRYPTO_AEAD 10290d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 10300d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 103154b6a1bdSHuang Ying select CRYPTO_ALGAPI 103285671860SHerbert Xu select CRYPTO_BLKCIPHER 10337643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 103485671860SHerbert Xu select CRYPTO_SIMD 103554b6a1bdSHuang Ying help 103654b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 103754b6a1bdSHuang Ying 103854b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 103954b6a1bdSHuang Ying algorithm. 104054b6a1bdSHuang Ying 104154b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 104254b6a1bdSHuang Ying both hardware and software across a wide range of computing 104354b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 104454b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 104554b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 104654b6a1bdSHuang Ying suited for restricted-space environments, in which it also 104754b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 104854b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 104954b6a1bdSHuang Ying 105054b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 105154b6a1bdSHuang Ying 105254b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 105354b6a1bdSHuang Ying 10540d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10550d258efbSMathias Krause for some popular block cipher mode is supported too, including 10560d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 10570d258efbSMathias Krause acceleration for CTR. 10582cf4ac8bSHuang Ying 10599bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10609bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10619bf4852dSDavid S. Miller depends on SPARC64 10629bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10639bf4852dSDavid S. Miller select CRYPTO_ALGAPI 10649bf4852dSDavid S. Miller help 10659bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10669bf4852dSDavid S. Miller 10679bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10689bf4852dSDavid S. Miller algorithm. 10699bf4852dSDavid S. Miller 10709bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10719bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10729bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10739bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10749bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10759bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10769bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10779bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10789bf4852dSDavid S. Miller 10799bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10809bf4852dSDavid S. Miller 10819bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10829bf4852dSDavid S. Miller 10839bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10849bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10859bf4852dSDavid S. Miller ECB and CBC. 10869bf4852dSDavid S. Miller 1087504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1088504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1089504c6143SMarkus Stockhausen depends on PPC && SPE 1090504c6143SMarkus Stockhausen help 1091504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1092504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1093504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1094504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1095504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1096504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1097504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1098504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1099504c6143SMarkus Stockhausen 11001da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11011da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1102cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11031da177e4SLinus Torvalds help 11041da177e4SLinus Torvalds Anubis cipher algorithm. 11051da177e4SLinus Torvalds 11061da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11071da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11081da177e4SLinus Torvalds in the NESSIE competition. 11091da177e4SLinus Torvalds 11101da177e4SLinus Torvalds See also: 11116d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11126d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11131da177e4SLinus Torvalds 1114584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1115584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1116b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1117e2ee95b8SHye-Shik Chang help 1118584fffc8SSebastian Siewior ARC4 cipher algorithm. 1119e2ee95b8SHye-Shik Chang 1120584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1121584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1122584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1123584fffc8SSebastian Siewior weakness of the algorithm. 1124584fffc8SSebastian Siewior 1125584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1126584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1127584fffc8SSebastian Siewior select CRYPTO_ALGAPI 112852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1129584fffc8SSebastian Siewior help 1130584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1131584fffc8SSebastian Siewior 1132584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1133584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1134584fffc8SSebastian Siewior designed for use on "large microprocessors". 1135e2ee95b8SHye-Shik Chang 1136e2ee95b8SHye-Shik Chang See also: 1137584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1138584fffc8SSebastian Siewior 113952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 114052ba867cSJussi Kivilinna tristate 114152ba867cSJussi Kivilinna help 114252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 114352ba867cSJussi Kivilinna generic c and the assembler implementations. 114452ba867cSJussi Kivilinna 114552ba867cSJussi Kivilinna See also: 114652ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 114752ba867cSJussi Kivilinna 114864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 114964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1150f21a7c19SAl Viro depends on X86 && 64BIT 1151c1679171SEric Biggers select CRYPTO_BLKCIPHER 115264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 115364b94ceaSJussi Kivilinna help 115464b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 115564b94ceaSJussi Kivilinna 115664b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 115764b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 115864b94ceaSJussi Kivilinna designed for use on "large microprocessors". 115964b94ceaSJussi Kivilinna 116064b94ceaSJussi Kivilinna See also: 116164b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 116264b94ceaSJussi Kivilinna 1163584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1164584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1165584fffc8SSebastian Siewior depends on CRYPTO 1166584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1167584fffc8SSebastian Siewior help 1168584fffc8SSebastian Siewior Camellia cipher algorithms module. 1169584fffc8SSebastian Siewior 1170584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1171584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1172584fffc8SSebastian Siewior 1173584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1174584fffc8SSebastian Siewior 1175584fffc8SSebastian Siewior See also: 1176584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1177584fffc8SSebastian Siewior 11780b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11790b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1180f21a7c19SAl Viro depends on X86 && 64BIT 11810b95ec56SJussi Kivilinna depends on CRYPTO 11821af6d037SEric Biggers select CRYPTO_BLKCIPHER 1183964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11840b95ec56SJussi Kivilinna help 11850b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11860b95ec56SJussi Kivilinna 11870b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11880b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11890b95ec56SJussi Kivilinna 11900b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11910b95ec56SJussi Kivilinna 11920b95ec56SJussi Kivilinna See also: 11930b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11940b95ec56SJussi Kivilinna 1195d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1196d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1197d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1198d9b1d2e7SJussi Kivilinna depends on CRYPTO 119944893bc2SEric Biggers select CRYPTO_BLKCIPHER 1200d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 120144893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 120244893bc2SEric Biggers select CRYPTO_SIMD 1203d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1204d9b1d2e7SJussi Kivilinna help 1205d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1206d9b1d2e7SJussi Kivilinna 1207d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1208d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1209d9b1d2e7SJussi Kivilinna 1210d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1211d9b1d2e7SJussi Kivilinna 1212d9b1d2e7SJussi Kivilinna See also: 1213d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1214d9b1d2e7SJussi Kivilinna 1215f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1216f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1217f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1218f3f935a7SJussi Kivilinna depends on CRYPTO 1219f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1220f3f935a7SJussi Kivilinna help 1221f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1222f3f935a7SJussi Kivilinna 1223f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1224f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1225f3f935a7SJussi Kivilinna 1226f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1227f3f935a7SJussi Kivilinna 1228f3f935a7SJussi Kivilinna See also: 1229f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1230f3f935a7SJussi Kivilinna 123181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 123281658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 123381658ad0SDavid S. Miller depends on SPARC64 123481658ad0SDavid S. Miller depends on CRYPTO 123581658ad0SDavid S. Miller select CRYPTO_ALGAPI 123681658ad0SDavid S. Miller help 123781658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 123881658ad0SDavid S. Miller 123981658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 124081658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 124181658ad0SDavid S. Miller 124281658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 124381658ad0SDavid S. Miller 124481658ad0SDavid S. Miller See also: 124581658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 124681658ad0SDavid S. Miller 1247044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1248044ab525SJussi Kivilinna tristate 1249044ab525SJussi Kivilinna help 1250044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1251044ab525SJussi Kivilinna generic c and the assembler implementations. 1252044ab525SJussi Kivilinna 1253584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1254584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1255584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1256044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1257584fffc8SSebastian Siewior help 1258584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1259584fffc8SSebastian Siewior described in RFC2144. 1260584fffc8SSebastian Siewior 12614d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12624d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12634d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12641e63183aSEric Biggers select CRYPTO_BLKCIPHER 12654d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12661e63183aSEric Biggers select CRYPTO_CAST_COMMON 12671e63183aSEric Biggers select CRYPTO_SIMD 12684d6d6a2cSJohannes Goetzfried help 12694d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12704d6d6a2cSJohannes Goetzfried described in RFC2144. 12714d6d6a2cSJohannes Goetzfried 12724d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12734d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12744d6d6a2cSJohannes Goetzfried 1275584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1276584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1277584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1278044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1279584fffc8SSebastian Siewior help 1280584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1281584fffc8SSebastian Siewior described in RFC2612. 1282584fffc8SSebastian Siewior 12834ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12844ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12854ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12864bd96924SEric Biggers select CRYPTO_BLKCIPHER 12874ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12884bd96924SEric Biggers select CRYPTO_CAST_COMMON 12894bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 12904bd96924SEric Biggers select CRYPTO_SIMD 12914ea1277dSJohannes Goetzfried select CRYPTO_XTS 12924ea1277dSJohannes Goetzfried help 12934ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12944ea1277dSJohannes Goetzfried described in RFC2612. 12954ea1277dSJohannes Goetzfried 12964ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12974ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12984ea1277dSJohannes Goetzfried 1299584fffc8SSebastian Siewiorconfig CRYPTO_DES 1300584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1301584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1302584fffc8SSebastian Siewior help 1303584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1304584fffc8SSebastian Siewior 1305c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1306c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 130797da37b3SDave Jones depends on SPARC64 1308c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1309c5aac2dfSDavid S. Miller select CRYPTO_DES 1310c5aac2dfSDavid S. Miller help 1311c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1312c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1313c5aac2dfSDavid S. Miller 13146574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13156574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13166574e6c6SJussi Kivilinna depends on X86 && 64BIT 131709c0f03bSEric Biggers select CRYPTO_BLKCIPHER 13186574e6c6SJussi Kivilinna select CRYPTO_DES 13196574e6c6SJussi Kivilinna help 13206574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13216574e6c6SJussi Kivilinna 13226574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13236574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13246574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13256574e6c6SJussi Kivilinna one that processes three blocks parallel. 13266574e6c6SJussi Kivilinna 1327584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1328584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1329584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1330584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1331584fffc8SSebastian Siewior help 1332584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1333584fffc8SSebastian Siewior 1334584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1335584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1336584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1337584fffc8SSebastian Siewior help 1338584fffc8SSebastian Siewior Khazad cipher algorithm. 1339584fffc8SSebastian Siewior 1340584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1341584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1342584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1343584fffc8SSebastian Siewior 1344584fffc8SSebastian Siewior See also: 13456d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1346e2ee95b8SHye-Shik Chang 13472407d608STan Swee Hengconfig CRYPTO_SALSA20 13483b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13492407d608STan Swee Heng select CRYPTO_BLKCIPHER 13502407d608STan Swee Heng help 13512407d608STan Swee Heng Salsa20 stream cipher algorithm. 13522407d608STan Swee Heng 13532407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13542407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13552407d608STan Swee Heng 13562407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13572407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13581da177e4SLinus Torvalds 1359974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13603b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1361974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1362974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1363c9a3ff8fSEric Biggers select CRYPTO_SALSA20 1364974e4b75STan Swee Heng help 1365974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1366974e4b75STan Swee Heng 1367974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1368974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1369974e4b75STan Swee Heng 1370974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1371974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1372974e4b75STan Swee Heng 13739a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13743b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13759a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13769a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 1377c9a3ff8fSEric Biggers select CRYPTO_SALSA20 13789a7dafbbSTan Swee Heng help 13799a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13809a7dafbbSTan Swee Heng 13819a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13829a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13839a7dafbbSTan Swee Heng 13849a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13859a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13869a7dafbbSTan Swee Heng 1387c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1388c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1389c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1390c08d0e64SMartin Willi help 1391c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1392c08d0e64SMartin Willi 1393c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1394c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1395c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1396c08d0e64SMartin Willi 1397c08d0e64SMartin Willi See also: 1398c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1399c08d0e64SMartin Willi 1400c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14013d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1402c9320b6dSMartin Willi depends on X86 && 64BIT 1403c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1404c9320b6dSMartin Willi select CRYPTO_CHACHA20 1405c9320b6dSMartin Willi help 1406c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1407c9320b6dSMartin Willi 1408c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1409c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1410c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1411c9320b6dSMartin Willi 1412c9320b6dSMartin Willi See also: 1413c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1414c9320b6dSMartin Willi 1415584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1416584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1417584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1418584fffc8SSebastian Siewior help 1419584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1420584fffc8SSebastian Siewior 1421584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1422584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1423584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1424584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1425584fffc8SSebastian Siewior 1426584fffc8SSebastian Siewior See also: 1427584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1428584fffc8SSebastian Siewior 1429584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1430584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1431584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1432584fffc8SSebastian Siewior help 1433584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1434584fffc8SSebastian Siewior 1435584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1436584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1437584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1438584fffc8SSebastian Siewior 1439584fffc8SSebastian Siewior See also: 1440584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1441584fffc8SSebastian Siewior 1442937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1443937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1444937c30d7SJussi Kivilinna depends on X86 && 64BIT 1445e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1446596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1447937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1448e0f409dcSEric Biggers select CRYPTO_SIMD 1449937c30d7SJussi Kivilinna help 1450937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1451937c30d7SJussi Kivilinna 1452937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1453937c30d7SJussi Kivilinna of 8 bits. 1454937c30d7SJussi Kivilinna 14551e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1456937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1457937c30d7SJussi Kivilinna 1458937c30d7SJussi Kivilinna See also: 1459937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1460937c30d7SJussi Kivilinna 1461251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1462251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1463251496dbSJussi Kivilinna depends on X86 && !64BIT 1464e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1465596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1466251496dbSJussi Kivilinna select CRYPTO_SERPENT 1467e0f409dcSEric Biggers select CRYPTO_SIMD 1468251496dbSJussi Kivilinna help 1469251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1470251496dbSJussi Kivilinna 1471251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1472251496dbSJussi Kivilinna of 8 bits. 1473251496dbSJussi Kivilinna 1474251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1475251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1476251496dbSJussi Kivilinna 1477251496dbSJussi Kivilinna See also: 1478251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1479251496dbSJussi Kivilinna 14807efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14817efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14827efe4076SJohannes Goetzfried depends on X86 && 64BIT 1483e16bf974SEric Biggers select CRYPTO_BLKCIPHER 14841d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14857efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1486e16bf974SEric Biggers select CRYPTO_SIMD 14877efe4076SJohannes Goetzfried select CRYPTO_XTS 14887efe4076SJohannes Goetzfried help 14897efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14907efe4076SJohannes Goetzfried 14917efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14927efe4076SJohannes Goetzfried of 8 bits. 14937efe4076SJohannes Goetzfried 14947efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14957efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14967efe4076SJohannes Goetzfried 14977efe4076SJohannes Goetzfried See also: 14987efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14997efe4076SJohannes Goetzfried 150056d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 150156d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 150256d76c96SJussi Kivilinna depends on X86 && 64BIT 150356d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 150456d76c96SJussi Kivilinna help 150556d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 150656d76c96SJussi Kivilinna 150756d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 150856d76c96SJussi Kivilinna of 8 bits. 150956d76c96SJussi Kivilinna 151056d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 151156d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 151256d76c96SJussi Kivilinna 151356d76c96SJussi Kivilinna See also: 151456d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 151556d76c96SJussi Kivilinna 1516747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1517747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1518747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1519747c8ce4SGilad Ben-Yossef help 1520747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1521747c8ce4SGilad Ben-Yossef 1522747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1523747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1524747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1525747c8ce4SGilad Ben-Yossef 1526747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1527747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1528747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1529747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1530747c8ce4SGilad Ben-Yossef 1531747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1532747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1533747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1534747c8ce4SGilad Ben-Yossef 1535747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1536747c8ce4SGilad Ben-Yossef 1537747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1538747c8ce4SGilad Ben-Yossef 1539747c8ce4SGilad Ben-Yossef If unsure, say N. 1540747c8ce4SGilad Ben-Yossef 1541da7a0ab5SEric Biggersconfig CRYPTO_SPECK 1542da7a0ab5SEric Biggers tristate "Speck cipher algorithm" 1543da7a0ab5SEric Biggers select CRYPTO_ALGAPI 1544da7a0ab5SEric Biggers help 1545da7a0ab5SEric Biggers Speck is a lightweight block cipher that is tuned for optimal 1546da7a0ab5SEric Biggers performance in software (rather than hardware). 1547da7a0ab5SEric Biggers 1548da7a0ab5SEric Biggers Speck may not be as secure as AES, and should only be used on systems 1549da7a0ab5SEric Biggers where AES is not fast enough. 1550da7a0ab5SEric Biggers 1551da7a0ab5SEric Biggers See also: <https://eprint.iacr.org/2013/404.pdf> 1552da7a0ab5SEric Biggers 1553da7a0ab5SEric Biggers If unsure, say N. 1554da7a0ab5SEric Biggers 1555584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1556584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1557584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1558584fffc8SSebastian Siewior help 1559584fffc8SSebastian Siewior TEA cipher algorithm. 1560584fffc8SSebastian Siewior 1561584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1562584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1563584fffc8SSebastian Siewior little memory. 1564584fffc8SSebastian Siewior 1565584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1566584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1567584fffc8SSebastian Siewior in the TEA algorithm. 1568584fffc8SSebastian Siewior 1569584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1570584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1571584fffc8SSebastian Siewior 1572584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1573584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1574584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1575584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1576584fffc8SSebastian Siewior help 1577584fffc8SSebastian Siewior Twofish cipher algorithm. 1578584fffc8SSebastian Siewior 1579584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1580584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1581584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1582584fffc8SSebastian Siewior bits. 1583584fffc8SSebastian Siewior 1584584fffc8SSebastian Siewior See also: 1585584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1586584fffc8SSebastian Siewior 1587584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1588584fffc8SSebastian Siewior tristate 1589584fffc8SSebastian Siewior help 1590584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1591584fffc8SSebastian Siewior generic c and the assembler implementations. 1592584fffc8SSebastian Siewior 1593584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1594584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1595584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1596584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1597584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1598584fffc8SSebastian Siewior help 1599584fffc8SSebastian Siewior Twofish cipher algorithm. 1600584fffc8SSebastian Siewior 1601584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1602584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1603584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1604584fffc8SSebastian Siewior bits. 1605584fffc8SSebastian Siewior 1606584fffc8SSebastian Siewior See also: 1607584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1608584fffc8SSebastian Siewior 1609584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1610584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1611584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1612584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1613584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1614584fffc8SSebastian Siewior help 1615584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1616584fffc8SSebastian Siewior 1617584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1618584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1619584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1620584fffc8SSebastian Siewior bits. 1621584fffc8SSebastian Siewior 1622584fffc8SSebastian Siewior See also: 1623584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1624584fffc8SSebastian Siewior 16258280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16268280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1627f21a7c19SAl Viro depends on X86 && 64BIT 162837992fa4SEric Biggers select CRYPTO_BLKCIPHER 16298280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16308280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1631414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16328280daadSJussi Kivilinna help 16338280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16348280daadSJussi Kivilinna 16358280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16368280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16378280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16388280daadSJussi Kivilinna bits. 16398280daadSJussi Kivilinna 16408280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16418280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16428280daadSJussi Kivilinna 16438280daadSJussi Kivilinna See also: 16448280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16458280daadSJussi Kivilinna 1646107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1647107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1648107778b5SJohannes Goetzfried depends on X86 && 64BIT 16490e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1650a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16510e6ab46dSEric Biggers select CRYPTO_SIMD 1652107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1653107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1654107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1655107778b5SJohannes Goetzfried help 1656107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1657107778b5SJohannes Goetzfried 1658107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1659107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1660107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1661107778b5SJohannes Goetzfried bits. 1662107778b5SJohannes Goetzfried 1663107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1664107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1665107778b5SJohannes Goetzfried 1666107778b5SJohannes Goetzfried See also: 1667107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1668107778b5SJohannes Goetzfried 1669584fffc8SSebastian Siewiorcomment "Compression" 1670584fffc8SSebastian Siewior 16711da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16721da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1673cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1674f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16751da177e4SLinus Torvalds select ZLIB_INFLATE 16761da177e4SLinus Torvalds select ZLIB_DEFLATE 16771da177e4SLinus Torvalds help 16781da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16791da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16801da177e4SLinus Torvalds 16811da177e4SLinus Torvalds You will most probably want this if using IPSec. 16821da177e4SLinus Torvalds 16830b77abb3SZoltan Sogorconfig CRYPTO_LZO 16840b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16850b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1686ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16870b77abb3SZoltan Sogor select LZO_COMPRESS 16880b77abb3SZoltan Sogor select LZO_DECOMPRESS 16890b77abb3SZoltan Sogor help 16900b77abb3SZoltan Sogor This is the LZO algorithm. 16910b77abb3SZoltan Sogor 169235a1fc18SSeth Jenningsconfig CRYPTO_842 169335a1fc18SSeth Jennings tristate "842 compression algorithm" 16942062c5b6SDan Streetman select CRYPTO_ALGAPI 16956a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16962062c5b6SDan Streetman select 842_COMPRESS 16972062c5b6SDan Streetman select 842_DECOMPRESS 169835a1fc18SSeth Jennings help 169935a1fc18SSeth Jennings This is the 842 algorithm. 170035a1fc18SSeth Jennings 17010ea8530dSChanho Minconfig CRYPTO_LZ4 17020ea8530dSChanho Min tristate "LZ4 compression algorithm" 17030ea8530dSChanho Min select CRYPTO_ALGAPI 17048cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17050ea8530dSChanho Min select LZ4_COMPRESS 17060ea8530dSChanho Min select LZ4_DECOMPRESS 17070ea8530dSChanho Min help 17080ea8530dSChanho Min This is the LZ4 algorithm. 17090ea8530dSChanho Min 17100ea8530dSChanho Minconfig CRYPTO_LZ4HC 17110ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17120ea8530dSChanho Min select CRYPTO_ALGAPI 171391d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17140ea8530dSChanho Min select LZ4HC_COMPRESS 17150ea8530dSChanho Min select LZ4_DECOMPRESS 17160ea8530dSChanho Min help 17170ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17180ea8530dSChanho Min 1719d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1720d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1721d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1722d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1723d28fc3dbSNick Terrell select ZSTD_COMPRESS 1724d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1725d28fc3dbSNick Terrell help 1726d28fc3dbSNick Terrell This is the zstd algorithm. 1727d28fc3dbSNick Terrell 172817f0f4a4SNeil Hormancomment "Random Number Generation" 172917f0f4a4SNeil Horman 173017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 173117f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 173217f0f4a4SNeil Horman select CRYPTO_AES 173317f0f4a4SNeil Horman select CRYPTO_RNG 173417f0f4a4SNeil Horman help 173517f0f4a4SNeil Horman This option enables the generic pseudo random number generator 173617f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17377dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17387dd607e8SJiri Kosina CRYPTO_FIPS is selected 173917f0f4a4SNeil Horman 1740f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1741419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1742419090c6SStephan Mueller help 1743419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1744419090c6SStephan Mueller more of the DRBG types must be selected. 1745419090c6SStephan Mueller 1746f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1747419090c6SStephan Mueller 1748419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1749401e4238SHerbert Xu bool 1750419090c6SStephan Mueller default y 1751419090c6SStephan Mueller select CRYPTO_HMAC 1752826775bbSHerbert Xu select CRYPTO_SHA256 1753419090c6SStephan Mueller 1754419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1755419090c6SStephan Mueller bool "Enable Hash DRBG" 1756826775bbSHerbert Xu select CRYPTO_SHA256 1757419090c6SStephan Mueller help 1758419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1759419090c6SStephan Mueller 1760419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1761419090c6SStephan Mueller bool "Enable CTR DRBG" 1762419090c6SStephan Mueller select CRYPTO_AES 176335591285SStephan Mueller depends on CRYPTO_CTR 1764419090c6SStephan Mueller help 1765419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1766419090c6SStephan Mueller 1767f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1768f2c89a10SHerbert Xu tristate 1769401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1770f2c89a10SHerbert Xu select CRYPTO_RNG 1771bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1772f2c89a10SHerbert Xu 1773f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1774419090c6SStephan Mueller 1775bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1776bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17772f313e02SArnd Bergmann select CRYPTO_RNG 1778bb5530e4SStephan Mueller help 1779bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1780bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1781bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1782bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1783bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1784bb5530e4SStephan Mueller 178503c8efc1SHerbert Xuconfig CRYPTO_USER_API 178603c8efc1SHerbert Xu tristate 178703c8efc1SHerbert Xu 1788fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1789fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17907451708fSHerbert Xu depends on NET 1791fe869cdbSHerbert Xu select CRYPTO_HASH 1792fe869cdbSHerbert Xu select CRYPTO_USER_API 1793fe869cdbSHerbert Xu help 1794fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1795fe869cdbSHerbert Xu algorithms. 1796fe869cdbSHerbert Xu 17978ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17988ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17997451708fSHerbert Xu depends on NET 18008ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18018ff59090SHerbert Xu select CRYPTO_USER_API 18028ff59090SHerbert Xu help 18038ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18048ff59090SHerbert Xu key cipher algorithms. 18058ff59090SHerbert Xu 18062f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18072f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18082f375538SStephan Mueller depends on NET 18092f375538SStephan Mueller select CRYPTO_RNG 18102f375538SStephan Mueller select CRYPTO_USER_API 18112f375538SStephan Mueller help 18122f375538SStephan Mueller This option enables the user-spaces interface for random 18132f375538SStephan Mueller number generator algorithms. 18142f375538SStephan Mueller 1815b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1816b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1817b64a2d95SHerbert Xu depends on NET 1818b64a2d95SHerbert Xu select CRYPTO_AEAD 181972548b09SStephan Mueller select CRYPTO_BLKCIPHER 182072548b09SStephan Mueller select CRYPTO_NULL 1821b64a2d95SHerbert Xu select CRYPTO_USER_API 1822b64a2d95SHerbert Xu help 1823b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1824b64a2d95SHerbert Xu cipher algorithms. 1825b64a2d95SHerbert Xu 1826ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1827ee08997fSDmitry Kasatkin bool 1828ee08997fSDmitry Kasatkin 18291da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1830964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1831cfc411e7SDavid Howellssource certs/Kconfig 18321da177e4SLinus Torvalds 1833cce9e06dSHerbert Xuendif # if CRYPTO 1834