xref: /linux/crypto/Kconfig (revision f15f05b0a5de667c821a9727c33bce9d1d9b26dd)
11da177e4SLinus Torvalds#
2685784aaSDan Williams# Generic algorithms support
3685784aaSDan Williams#
4685784aaSDan Williamsconfig XOR_BLOCKS
5685784aaSDan Williams	tristate
6685784aaSDan Williams
7685784aaSDan Williams#
89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
99bc89cd8SDan Williams#
109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
119bc89cd8SDan Williams
129bc89cd8SDan Williams#
131da177e4SLinus Torvalds# Cryptographic API Configuration
141da177e4SLinus Torvalds#
152e290f43SJan Engelhardtmenuconfig CRYPTO
16c3715cb9SSebastian Siewior	tristate "Cryptographic API"
171da177e4SLinus Torvalds	help
181da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
191da177e4SLinus Torvalds
20cce9e06dSHerbert Xuif CRYPTO
21cce9e06dSHerbert Xu
22584fffc8SSebastian Siewiorcomment "Crypto core or helper"
23584fffc8SSebastian Siewior
24ccb778e1SNeil Hormanconfig CRYPTO_FIPS
25ccb778e1SNeil Horman	bool "FIPS 200 compliance"
26f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
271f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
28ccb778e1SNeil Horman	help
29ccb778e1SNeil Horman	  This options enables the fips boot option which is
30ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
31ccb778e1SNeil Horman	  certification.  You should say no unless you know what
32e84c5480SChuck Ebbert	  this is.
33ccb778e1SNeil Horman
34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
35cce9e06dSHerbert Xu	tristate
366a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
37cce9e06dSHerbert Xu	help
38cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
39cce9e06dSHerbert Xu
406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
416a0fcbb4SHerbert Xu	tristate
426a0fcbb4SHerbert Xu
431ae97820SHerbert Xuconfig CRYPTO_AEAD
441ae97820SHerbert Xu	tristate
456a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
461ae97820SHerbert Xu	select CRYPTO_ALGAPI
471ae97820SHerbert Xu
486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
496a0fcbb4SHerbert Xu	tristate
506a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
51149a3971SHerbert Xu	select CRYPTO_NULL2
52149a3971SHerbert Xu	select CRYPTO_RNG2
536a0fcbb4SHerbert Xu
545cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
555cde0af2SHerbert Xu	tristate
566a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
575cde0af2SHerbert Xu	select CRYPTO_ALGAPI
586a0fcbb4SHerbert Xu
596a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
606a0fcbb4SHerbert Xu	tristate
616a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
626a0fcbb4SHerbert Xu	select CRYPTO_RNG2
630a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1082ebda74fSGiovanni Cabiddu
1092ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1102ebda74fSGiovanni Cabiddu	tristate
1112ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1132ebda74fSGiovanni Cabiddu
114cfc2bb32STadeusz Strukconfig CRYPTO_RSA
115cfc2bb32STadeusz Struk	tristate "RSA algorithm"
116425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11758446fefSTadeusz Struk	select CRYPTO_MANAGER
118cfc2bb32STadeusz Struk	select MPILIB
119cfc2bb32STadeusz Struk	select ASN1
120cfc2bb32STadeusz Struk	help
121cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
122cfc2bb32STadeusz Struk
123802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
124802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
125802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
126802c7f1cSSalvatore Benedetto	select MPILIB
127802c7f1cSSalvatore Benedetto	help
128802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
129802c7f1cSSalvatore Benedetto
1303c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1313c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
1323c4b2390SSalvatore Benedetto	select CRYTPO_KPP
1333c4b2390SSalvatore Benedetto	help
1343c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
135802c7f1cSSalvatore Benedetto
1362b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1372b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1386a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1392b8c19dbSHerbert Xu	help
1402b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1412b8c19dbSHerbert Xu	  cbc(aes).
1422b8c19dbSHerbert Xu
1436a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1446a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1456a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1466a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1476a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
148946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1494e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1502ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1516a0fcbb4SHerbert Xu
152a38f7907SSteffen Klassertconfig CRYPTO_USER
153a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1545db017aaSHerbert Xu	depends on NET
155a38f7907SSteffen Klassert	select CRYPTO_MANAGER
156a38f7907SSteffen Klassert	help
157d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
158a38f7907SSteffen Klassert	  cbc(aes).
159a38f7907SSteffen Klassert
160326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
161326a6346SHerbert Xu	bool "Disable run-time self tests"
16200ca28a5SHerbert Xu	default y
16300ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1640b767f96SAlexander Shishkin	help
165326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
166326a6346SHerbert Xu	  algorithm registration.
1670b767f96SAlexander Shishkin
168584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
16908c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
170584fffc8SSebastian Siewior	help
171584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
172584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
173584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
174584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
175584fffc8SSebastian Siewior	  an external module that requires these functions.
176584fffc8SSebastian Siewior
177584fffc8SSebastian Siewiorconfig CRYPTO_NULL
178584fffc8SSebastian Siewior	tristate "Null algorithms"
179149a3971SHerbert Xu	select CRYPTO_NULL2
180584fffc8SSebastian Siewior	help
181584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
182584fffc8SSebastian Siewior
183149a3971SHerbert Xuconfig CRYPTO_NULL2
184dd43c4e9SHerbert Xu	tristate
185149a3971SHerbert Xu	select CRYPTO_ALGAPI2
186149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
187149a3971SHerbert Xu	select CRYPTO_HASH2
188149a3971SHerbert Xu
1895068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1903b4afaf2SKees Cook	tristate "Parallel crypto engine"
1913b4afaf2SKees Cook	depends on SMP
1925068c7a8SSteffen Klassert	select PADATA
1935068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1945068c7a8SSteffen Klassert	select CRYPTO_AEAD
1955068c7a8SSteffen Klassert	help
1965068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1975068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1985068c7a8SSteffen Klassert
19925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20025c38d3fSHuang Ying       tristate
20125c38d3fSHuang Ying
202584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
203584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
204584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
205b8a28251SLoc Ho	select CRYPTO_HASH
206584fffc8SSebastian Siewior	select CRYPTO_MANAGER
207254eff77SHuang Ying	select CRYPTO_WORKQUEUE
208584fffc8SSebastian Siewior	help
209584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
210584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
211584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
212584fffc8SSebastian Siewior
2131e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2141e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2151e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2161e65b81aSTim Chen	select CRYPTO_HASH
2171e65b81aSTim Chen	select CRYPTO_MANAGER
2181e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2191e65b81aSTim Chen	help
2201e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2211e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2221e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2231e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2241e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2250e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2261e65b81aSTim Chen
227584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
228584fffc8SSebastian Siewior	tristate "Authenc support"
229584fffc8SSebastian Siewior	select CRYPTO_AEAD
230584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
231584fffc8SSebastian Siewior	select CRYPTO_MANAGER
232584fffc8SSebastian Siewior	select CRYPTO_HASH
233e94c6a7aSHerbert Xu	select CRYPTO_NULL
234584fffc8SSebastian Siewior	help
235584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
236584fffc8SSebastian Siewior	  This is required for IPSec.
237584fffc8SSebastian Siewior
238584fffc8SSebastian Siewiorconfig CRYPTO_TEST
239584fffc8SSebastian Siewior	tristate "Testing module"
240584fffc8SSebastian Siewior	depends on m
241da7f033dSHerbert Xu	select CRYPTO_MANAGER
242584fffc8SSebastian Siewior	help
243584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
244584fffc8SSebastian Siewior
245a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER
246ffaf9156SJussi Kivilinna	tristate
247ffaf9156SJussi Kivilinna	select CRYPTO_CRYPTD
248ffaf9156SJussi Kivilinna
249266d0516SHerbert Xuconfig CRYPTO_SIMD
250266d0516SHerbert Xu	tristate
251266d0516SHerbert Xu	select CRYPTO_CRYPTD
252266d0516SHerbert Xu
253596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
254596d8750SJussi Kivilinna	tristate
255596d8750SJussi Kivilinna	depends on X86
256065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
257596d8750SJussi Kivilinna
258735d37b5SBaolin Wangconfig CRYPTO_ENGINE
259735d37b5SBaolin Wang	tristate
260735d37b5SBaolin Wang
261584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
262584fffc8SSebastian Siewior
263584fffc8SSebastian Siewiorconfig CRYPTO_CCM
264584fffc8SSebastian Siewior	tristate "CCM support"
265584fffc8SSebastian Siewior	select CRYPTO_CTR
266*f15f05b0SArd Biesheuvel	select CRYPTO_HASH
267584fffc8SSebastian Siewior	select CRYPTO_AEAD
268584fffc8SSebastian Siewior	help
269584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
270584fffc8SSebastian Siewior
271584fffc8SSebastian Siewiorconfig CRYPTO_GCM
272584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
273584fffc8SSebastian Siewior	select CRYPTO_CTR
274584fffc8SSebastian Siewior	select CRYPTO_AEAD
2759382d97aSHuang Ying	select CRYPTO_GHASH
2769489667dSJussi Kivilinna	select CRYPTO_NULL
277584fffc8SSebastian Siewior	help
278584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
279584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
280584fffc8SSebastian Siewior
28171ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28271ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28371ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28471ebc4d1SMartin Willi	select CRYPTO_POLY1305
28571ebc4d1SMartin Willi	select CRYPTO_AEAD
28671ebc4d1SMartin Willi	help
28771ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28871ebc4d1SMartin Willi
28971ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29071ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29171ebc4d1SMartin Willi	  IETF protocols.
29271ebc4d1SMartin Willi
293584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
294584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
295584fffc8SSebastian Siewior	select CRYPTO_AEAD
296584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
297856e3f40SHerbert Xu	select CRYPTO_NULL
298401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
299584fffc8SSebastian Siewior	help
300584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
301584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
302584fffc8SSebastian Siewior
303a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
304a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
305a10f554fSHerbert Xu	select CRYPTO_AEAD
306a10f554fSHerbert Xu	select CRYPTO_NULL
307401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3083491244cSHerbert Xu	default m
309a10f554fSHerbert Xu	help
310a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
311a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
312a10f554fSHerbert Xu	  algorithm for CBC.
313a10f554fSHerbert Xu
314584fffc8SSebastian Siewiorcomment "Block modes"
315584fffc8SSebastian Siewior
316584fffc8SSebastian Siewiorconfig CRYPTO_CBC
317584fffc8SSebastian Siewior	tristate "CBC support"
318584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
319584fffc8SSebastian Siewior	select CRYPTO_MANAGER
320584fffc8SSebastian Siewior	help
321584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
322584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
323584fffc8SSebastian Siewior
324584fffc8SSebastian Siewiorconfig CRYPTO_CTR
325584fffc8SSebastian Siewior	tristate "CTR support"
326584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
327584fffc8SSebastian Siewior	select CRYPTO_SEQIV
328584fffc8SSebastian Siewior	select CRYPTO_MANAGER
329584fffc8SSebastian Siewior	help
330584fffc8SSebastian Siewior	  CTR: Counter mode
331584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
332584fffc8SSebastian Siewior
333584fffc8SSebastian Siewiorconfig CRYPTO_CTS
334584fffc8SSebastian Siewior	tristate "CTS support"
335584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
336584fffc8SSebastian Siewior	help
337584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
338584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
339584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
340584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
341584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
342584fffc8SSebastian Siewior	  for AES encryption.
343584fffc8SSebastian Siewior
344584fffc8SSebastian Siewiorconfig CRYPTO_ECB
345584fffc8SSebastian Siewior	tristate "ECB support"
346584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
347584fffc8SSebastian Siewior	select CRYPTO_MANAGER
348584fffc8SSebastian Siewior	help
349584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
350584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
351584fffc8SSebastian Siewior	  the input block by block.
352584fffc8SSebastian Siewior
353584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3542470a2b2SJussi Kivilinna	tristate "LRW support"
355584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
356584fffc8SSebastian Siewior	select CRYPTO_MANAGER
357584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
358584fffc8SSebastian Siewior	help
359584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
360584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
361584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
362584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
363584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
364584fffc8SSebastian Siewior
365584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
366584fffc8SSebastian Siewior	tristate "PCBC support"
367584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
368584fffc8SSebastian Siewior	select CRYPTO_MANAGER
369584fffc8SSebastian Siewior	help
370584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
371584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
372584fffc8SSebastian Siewior
373584fffc8SSebastian Siewiorconfig CRYPTO_XTS
3745bcf8e6dSJussi Kivilinna	tristate "XTS support"
375584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
376584fffc8SSebastian Siewior	select CRYPTO_MANAGER
377584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
378584fffc8SSebastian Siewior	help
379584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
380584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
381584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
382584fffc8SSebastian Siewior
3831c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
3841c49678eSStephan Mueller	tristate "Key wrapping support"
3851c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
3861c49678eSStephan Mueller	help
3871c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
3881c49678eSStephan Mueller	  padding.
3891c49678eSStephan Mueller
390584fffc8SSebastian Siewiorcomment "Hash modes"
391584fffc8SSebastian Siewior
39293b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
39393b5e86aSJussi Kivilinna	tristate "CMAC support"
39493b5e86aSJussi Kivilinna	select CRYPTO_HASH
39593b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
39693b5e86aSJussi Kivilinna	help
39793b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
39893b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
39993b5e86aSJussi Kivilinna
40093b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
40193b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
40293b5e86aSJussi Kivilinna
4031da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4048425165dSHerbert Xu	tristate "HMAC support"
4050796ae06SHerbert Xu	select CRYPTO_HASH
40643518407SHerbert Xu	select CRYPTO_MANAGER
4071da177e4SLinus Torvalds	help
4081da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4091da177e4SLinus Torvalds	  This is required for IPSec.
4101da177e4SLinus Torvalds
411333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
412333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
413333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
414333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
415333b0d7eSKazunori MIYAZAWA	help
416333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
417333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
418333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
419333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
420333b0d7eSKazunori MIYAZAWA
421f1939f7cSShane Wangconfig CRYPTO_VMAC
422f1939f7cSShane Wang	tristate "VMAC support"
423f1939f7cSShane Wang	select CRYPTO_HASH
424f1939f7cSShane Wang	select CRYPTO_MANAGER
425f1939f7cSShane Wang	help
426f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
427f1939f7cSShane Wang	  very high speed on 64-bit architectures.
428f1939f7cSShane Wang
429f1939f7cSShane Wang	  See also:
430f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
431f1939f7cSShane Wang
432584fffc8SSebastian Siewiorcomment "Digest"
433584fffc8SSebastian Siewior
434584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
435584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
4365773a3e6SHerbert Xu	select CRYPTO_HASH
4376a0962b2SDarrick J. Wong	select CRC32
4381da177e4SLinus Torvalds	help
439584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
440584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
44169c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
4421da177e4SLinus Torvalds
4438cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
4448cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
4458cb51ba8SAustin Zhang	depends on X86
4468cb51ba8SAustin Zhang	select CRYPTO_HASH
4478cb51ba8SAustin Zhang	help
4488cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
4498cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
4508cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
4518cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
4528cb51ba8SAustin Zhang	  gain performance compared with software implementation.
4538cb51ba8SAustin Zhang	  Module will be crc32c-intel.
4548cb51ba8SAustin Zhang
4557cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
4566dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
457c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
4586dd7a82cSAnton Blanchard	select CRYPTO_HASH
4596dd7a82cSAnton Blanchard	select CRC32
4606dd7a82cSAnton Blanchard	help
4616dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
4626dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
4636dd7a82cSAnton Blanchard	  and newer processors for improved performance.
4646dd7a82cSAnton Blanchard
4656dd7a82cSAnton Blanchard
466442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
467442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
468442a7c40SDavid S. Miller	depends on SPARC64
469442a7c40SDavid S. Miller	select CRYPTO_HASH
470442a7c40SDavid S. Miller	select CRC32
471442a7c40SDavid S. Miller	help
472442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
473442a7c40SDavid S. Miller	  when available.
474442a7c40SDavid S. Miller
47578c37d19SAlexander Boykoconfig CRYPTO_CRC32
47678c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
47778c37d19SAlexander Boyko	select CRYPTO_HASH
47878c37d19SAlexander Boyko	select CRC32
47978c37d19SAlexander Boyko	help
48078c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
48178c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
48278c37d19SAlexander Boyko
48378c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
48478c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
48578c37d19SAlexander Boyko	depends on X86
48678c37d19SAlexander Boyko	select CRYPTO_HASH
48778c37d19SAlexander Boyko	select CRC32
48878c37d19SAlexander Boyko	help
48978c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
49078c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
49178c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
49278c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
49378c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
49478c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
49578c37d19SAlexander Boyko
49668411521SHerbert Xuconfig CRYPTO_CRCT10DIF
49768411521SHerbert Xu	tristate "CRCT10DIF algorithm"
49868411521SHerbert Xu	select CRYPTO_HASH
49968411521SHerbert Xu	help
50068411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
50168411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
50268411521SHerbert Xu	  transforms to be used if they are available.
50368411521SHerbert Xu
50468411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
50568411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
50668411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
50768411521SHerbert Xu	select CRYPTO_HASH
50868411521SHerbert Xu	help
50968411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
51068411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
51168411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
51268411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
51368411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
51468411521SHerbert Xu
5152cdc6899SHuang Yingconfig CRYPTO_GHASH
5162cdc6899SHuang Ying	tristate "GHASH digest algorithm"
5172cdc6899SHuang Ying	select CRYPTO_GF128MUL
518578c60fbSArnd Bergmann	select CRYPTO_HASH
5192cdc6899SHuang Ying	help
5202cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
5212cdc6899SHuang Ying
522f979e014SMartin Williconfig CRYPTO_POLY1305
523f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
524578c60fbSArnd Bergmann	select CRYPTO_HASH
525f979e014SMartin Willi	help
526f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
527f979e014SMartin Willi
528f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
529f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
530f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
531f979e014SMartin Willi
532c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
533b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
534c70f4abeSMartin Willi	depends on X86 && 64BIT
535c70f4abeSMartin Willi	select CRYPTO_POLY1305
536c70f4abeSMartin Willi	help
537c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
538c70f4abeSMartin Willi
539c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
540c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
541c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
542c70f4abeSMartin Willi	  instructions.
543c70f4abeSMartin Willi
5441da177e4SLinus Torvaldsconfig CRYPTO_MD4
5451da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
546808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5471da177e4SLinus Torvalds	help
5481da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
5491da177e4SLinus Torvalds
5501da177e4SLinus Torvaldsconfig CRYPTO_MD5
5511da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
55214b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5531da177e4SLinus Torvalds	help
5541da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
5551da177e4SLinus Torvalds
556d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
557d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
558d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
559d69e75deSAaro Koskinen	select CRYPTO_MD5
560d69e75deSAaro Koskinen	select CRYPTO_HASH
561d69e75deSAaro Koskinen	help
562d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
563d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
564d69e75deSAaro Koskinen
565e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
566e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
567e8e59953SMarkus Stockhausen	depends on PPC
568e8e59953SMarkus Stockhausen	select CRYPTO_HASH
569e8e59953SMarkus Stockhausen	help
570e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
571e8e59953SMarkus Stockhausen	  in PPC assembler.
572e8e59953SMarkus Stockhausen
573fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
574fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
575fa4dfedcSDavid S. Miller	depends on SPARC64
576fa4dfedcSDavid S. Miller	select CRYPTO_MD5
577fa4dfedcSDavid S. Miller	select CRYPTO_HASH
578fa4dfedcSDavid S. Miller	help
579fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
580fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
581fa4dfedcSDavid S. Miller
582584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
583584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
58419e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
585584fffc8SSebastian Siewior	help
586584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
587584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
588584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
589584fffc8SSebastian Siewior	  of the algorithm.
590584fffc8SSebastian Siewior
59182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
59282798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
5937c4468bcSHerbert Xu	select CRYPTO_HASH
59482798f90SAdrian-Ken Rueegsegger	help
59582798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
59682798f90SAdrian-Ken Rueegsegger
59782798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
59835ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
59982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
60082798f90SAdrian-Ken Rueegsegger
60182798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6026d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
60382798f90SAdrian-Ken Rueegsegger
60482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
60582798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
606e5835fbaSHerbert Xu	select CRYPTO_HASH
60782798f90SAdrian-Ken Rueegsegger	help
60882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
60982798f90SAdrian-Ken Rueegsegger
61082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
61182798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
612b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
613b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
61482798f90SAdrian-Ken Rueegsegger
615b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
616b6d44341SAdrian Bunk	  against RIPEMD-160.
617534fe2c1SAdrian-Ken Rueegsegger
618534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6196d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
620534fe2c1SAdrian-Ken Rueegsegger
621534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
622534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
623d8a5e2e9SHerbert Xu	select CRYPTO_HASH
624534fe2c1SAdrian-Ken Rueegsegger	help
625b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
626b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
627b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
628b6d44341SAdrian Bunk	  (than RIPEMD-128).
629534fe2c1SAdrian-Ken Rueegsegger
630534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6316d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
632534fe2c1SAdrian-Ken Rueegsegger
633534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
634534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
6353b8efb4cSHerbert Xu	select CRYPTO_HASH
636534fe2c1SAdrian-Ken Rueegsegger	help
637b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
638b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
639b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
640b6d44341SAdrian Bunk	  (than RIPEMD-160).
641534fe2c1SAdrian-Ken Rueegsegger
64282798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6436d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
64482798f90SAdrian-Ken Rueegsegger
6451da177e4SLinus Torvaldsconfig CRYPTO_SHA1
6461da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
64754ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6481da177e4SLinus Torvalds	help
6491da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
6501da177e4SLinus Torvalds
65166be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
652e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
65366be8951SMathias Krause	depends on X86 && 64BIT
65466be8951SMathias Krause	select CRYPTO_SHA1
65566be8951SMathias Krause	select CRYPTO_HASH
65666be8951SMathias Krause	help
65766be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
65866be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
659e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
660e38b6b7fStim	  when available.
66166be8951SMathias Krause
6628275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
663e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
6648275d1aaSTim Chen	depends on X86 && 64BIT
6658275d1aaSTim Chen	select CRYPTO_SHA256
6668275d1aaSTim Chen	select CRYPTO_HASH
6678275d1aaSTim Chen	help
6688275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
6698275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
6708275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
671e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
672e38b6b7fStim	  Instructions) when available.
6738275d1aaSTim Chen
67487de4579STim Chenconfig CRYPTO_SHA512_SSSE3
67587de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
67687de4579STim Chen	depends on X86 && 64BIT
67787de4579STim Chen	select CRYPTO_SHA512
67887de4579STim Chen	select CRYPTO_HASH
67987de4579STim Chen	help
68087de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
68187de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
68287de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
68387de4579STim Chen	  version 2 (AVX2) instructions, when available.
68487de4579STim Chen
685efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
686efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
687efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
688efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
689efdb6f6eSAaro Koskinen	select CRYPTO_HASH
690efdb6f6eSAaro Koskinen	help
691efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
692efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
693efdb6f6eSAaro Koskinen
6944ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
6954ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
6964ff28d4cSDavid S. Miller	depends on SPARC64
6974ff28d4cSDavid S. Miller	select CRYPTO_SHA1
6984ff28d4cSDavid S. Miller	select CRYPTO_HASH
6994ff28d4cSDavid S. Miller	help
7004ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7014ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7024ff28d4cSDavid S. Miller
703323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
704323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
705323a6bf1SMichael Ellerman	depends on PPC
706323a6bf1SMichael Ellerman	help
707323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
708323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
709323a6bf1SMichael Ellerman
710d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
711d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
712d9850fc5SMarkus Stockhausen	depends on PPC && SPE
713d9850fc5SMarkus Stockhausen	help
714d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
715d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
716d9850fc5SMarkus Stockhausen
7171e65b81aSTim Chenconfig CRYPTO_SHA1_MB
7181e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7191e65b81aSTim Chen	depends on X86 && 64BIT
7201e65b81aSTim Chen	select CRYPTO_SHA1
7211e65b81aSTim Chen	select CRYPTO_HASH
7221e65b81aSTim Chen	select CRYPTO_MCRYPTD
7231e65b81aSTim Chen	help
7241e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7251e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
7261e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
7271e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
7281e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
7291e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
7301e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
7311e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
7321e65b81aSTim Chen
7339be7e244SMegha Deyconfig CRYPTO_SHA256_MB
7349be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7359be7e244SMegha Dey	depends on X86 && 64BIT
7369be7e244SMegha Dey	select CRYPTO_SHA256
7379be7e244SMegha Dey	select CRYPTO_HASH
7389be7e244SMegha Dey	select CRYPTO_MCRYPTD
7399be7e244SMegha Dey	help
7409be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7419be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
7429be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
7439be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
7449be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
7459be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
7469be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
7479be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
7489be7e244SMegha Dey
749026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
750026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
751026bb8aaSMegha Dey        depends on X86 && 64BIT
752026bb8aaSMegha Dey        select CRYPTO_SHA512
753026bb8aaSMegha Dey        select CRYPTO_HASH
754026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
755026bb8aaSMegha Dey        help
756026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
757026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
758026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
759026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
760026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
761026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
762026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
763026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
764026bb8aaSMegha Dey
7651da177e4SLinus Torvaldsconfig CRYPTO_SHA256
766cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
76750e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7681da177e4SLinus Torvalds	help
7691da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
7701da177e4SLinus Torvalds
7711da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
7721da177e4SLinus Torvalds	  security against collision attacks.
7731da177e4SLinus Torvalds
774cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
775cd12fb90SJonathan Lynch	  of security against collision attacks.
776cd12fb90SJonathan Lynch
7772ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
7782ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
7792ecc1e95SMarkus Stockhausen	depends on PPC && SPE
7802ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
7812ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
7822ecc1e95SMarkus Stockhausen	help
7832ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
7842ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
7852ecc1e95SMarkus Stockhausen
786efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
787efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
788efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
789efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
790efdb6f6eSAaro Koskinen	select CRYPTO_HASH
791efdb6f6eSAaro Koskinen	help
792efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
793efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
794efdb6f6eSAaro Koskinen
79586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
79686c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
79786c93b24SDavid S. Miller	depends on SPARC64
79886c93b24SDavid S. Miller	select CRYPTO_SHA256
79986c93b24SDavid S. Miller	select CRYPTO_HASH
80086c93b24SDavid S. Miller	help
80186c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
80286c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
80386c93b24SDavid S. Miller
8041da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8051da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
806bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8071da177e4SLinus Torvalds	help
8081da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8091da177e4SLinus Torvalds
8101da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8111da177e4SLinus Torvalds	  security against collision attacks.
8121da177e4SLinus Torvalds
8131da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
8141da177e4SLinus Torvalds	  of security against collision attacks.
8151da177e4SLinus Torvalds
816efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
817efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
818efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
819efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
820efdb6f6eSAaro Koskinen	select CRYPTO_HASH
821efdb6f6eSAaro Koskinen	help
822efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
823efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
824efdb6f6eSAaro Koskinen
825775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
826775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
827775e0c69SDavid S. Miller	depends on SPARC64
828775e0c69SDavid S. Miller	select CRYPTO_SHA512
829775e0c69SDavid S. Miller	select CRYPTO_HASH
830775e0c69SDavid S. Miller	help
831775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
832775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
833775e0c69SDavid S. Miller
83453964b9eSJeff Garzikconfig CRYPTO_SHA3
83553964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
83653964b9eSJeff Garzik	select CRYPTO_HASH
83753964b9eSJeff Garzik	help
83853964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
83953964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
84053964b9eSJeff Garzik
84153964b9eSJeff Garzik	  References:
84253964b9eSJeff Garzik	  http://keccak.noekeon.org/
84353964b9eSJeff Garzik
8441da177e4SLinus Torvaldsconfig CRYPTO_TGR192
8451da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
846f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8471da177e4SLinus Torvalds	help
8481da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
8491da177e4SLinus Torvalds
8501da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
8511da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
8521da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
8531da177e4SLinus Torvalds
8541da177e4SLinus Torvalds	  See also:
8551da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
8561da177e4SLinus Torvalds
857584fffc8SSebastian Siewiorconfig CRYPTO_WP512
858584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
8594946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8601da177e4SLinus Torvalds	help
861584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
8621da177e4SLinus Torvalds
863584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
864584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
8651da177e4SLinus Torvalds
8661da177e4SLinus Torvalds	  See also:
8676d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
8681da177e4SLinus Torvalds
8690e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
8700e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
8718af00860SRichard Weinberger	depends on X86 && 64BIT
8720e1227d3SHuang Ying	select CRYPTO_CRYPTD
8730e1227d3SHuang Ying	help
8740e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
8750e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
8760e1227d3SHuang Ying
877584fffc8SSebastian Siewiorcomment "Ciphers"
8781da177e4SLinus Torvalds
8791da177e4SLinus Torvaldsconfig CRYPTO_AES
8801da177e4SLinus Torvalds	tristate "AES cipher algorithms"
881cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
8821da177e4SLinus Torvalds	help
8831da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
8841da177e4SLinus Torvalds	  algorithm.
8851da177e4SLinus Torvalds
8861da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
8871da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
8881da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
8891da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
8901da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
8911da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
8921da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
8931da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
8941da177e4SLinus Torvalds
8951da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
8961da177e4SLinus Torvalds
8971da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
8981da177e4SLinus Torvalds
899b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
900b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
901b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
902b5e0b032SArd Biesheuvel	help
903b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
904b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
905b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
906b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
907b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
908b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
909b5e0b032SArd Biesheuvel
910b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
911b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
912b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
913b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
914b5e0b032SArd Biesheuvel	  block.
915b5e0b032SArd Biesheuvel
9161da177e4SLinus Torvaldsconfig CRYPTO_AES_586
9171da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
918cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
919cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9205157dea8SSebastian Siewior	select CRYPTO_AES
9211da177e4SLinus Torvalds	help
9221da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9231da177e4SLinus Torvalds	  algorithm.
9241da177e4SLinus Torvalds
9251da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9261da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9271da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9281da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9291da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9301da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9311da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9321da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9331da177e4SLinus Torvalds
9341da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9351da177e4SLinus Torvalds
9361da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
9371da177e4SLinus Torvalds
938a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
939a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
940cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
941cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
94281190b32SSebastian Siewior	select CRYPTO_AES
943a2a892a2SAndreas Steinmetz	help
944a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
945a2a892a2SAndreas Steinmetz	  algorithm.
946a2a892a2SAndreas Steinmetz
947a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
948a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
949a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
950a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
951a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
952a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
953a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
954a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
955a2a892a2SAndreas Steinmetz
956a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
957a2a892a2SAndreas Steinmetz
958a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
959a2a892a2SAndreas Steinmetz
96054b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
96154b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
9628af00860SRichard Weinberger	depends on X86
96385671860SHerbert Xu	select CRYPTO_AEAD
9640d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
9650d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
96654b6a1bdSHuang Ying	select CRYPTO_ALGAPI
96785671860SHerbert Xu	select CRYPTO_BLKCIPHER
9687643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
96985671860SHerbert Xu	select CRYPTO_SIMD
97054b6a1bdSHuang Ying	help
97154b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
97254b6a1bdSHuang Ying
97354b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
97454b6a1bdSHuang Ying	  algorithm.
97554b6a1bdSHuang Ying
97654b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
97754b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
97854b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
97954b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
98054b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
98154b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
98254b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
98354b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
98454b6a1bdSHuang Ying
98554b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
98654b6a1bdSHuang Ying
98754b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
98854b6a1bdSHuang Ying
9890d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
9900d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
9910d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
9920d258efbSMathias Krause	  acceleration for CTR.
9932cf4ac8bSHuang Ying
9949bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
9959bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
9969bf4852dSDavid S. Miller	depends on SPARC64
9979bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
9989bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
9999bf4852dSDavid S. Miller	help
10009bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
10019bf4852dSDavid S. Miller
10029bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10039bf4852dSDavid S. Miller	  algorithm.
10049bf4852dSDavid S. Miller
10059bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
10069bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
10079bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
10089bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
10099bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
10109bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
10119bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
10129bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
10139bf4852dSDavid S. Miller
10149bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
10159bf4852dSDavid S. Miller
10169bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10179bf4852dSDavid S. Miller
10189bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
10199bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
10209bf4852dSDavid S. Miller	  ECB and CBC.
10219bf4852dSDavid S. Miller
1022504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1023504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1024504c6143SMarkus Stockhausen	depends on PPC && SPE
1025504c6143SMarkus Stockhausen	help
1026504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1027504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1028504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1029504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1030504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1031504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1032504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1033504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1034504c6143SMarkus Stockhausen
10351da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
10361da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1037cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10381da177e4SLinus Torvalds	help
10391da177e4SLinus Torvalds	  Anubis cipher algorithm.
10401da177e4SLinus Torvalds
10411da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
10421da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
10431da177e4SLinus Torvalds	  in the NESSIE competition.
10441da177e4SLinus Torvalds
10451da177e4SLinus Torvalds	  See also:
10466d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
10476d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
10481da177e4SLinus Torvalds
1049584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1050584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1051b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1052e2ee95b8SHye-Shik Chang	help
1053584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1054e2ee95b8SHye-Shik Chang
1055584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1056584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1057584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1058584fffc8SSebastian Siewior	  weakness of the algorithm.
1059584fffc8SSebastian Siewior
1060584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1061584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1062584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
106352ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1064584fffc8SSebastian Siewior	help
1065584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1066584fffc8SSebastian Siewior
1067584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1068584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1069584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1070e2ee95b8SHye-Shik Chang
1071e2ee95b8SHye-Shik Chang	  See also:
1072584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1073584fffc8SSebastian Siewior
107452ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
107552ba867cSJussi Kivilinna	tristate
107652ba867cSJussi Kivilinna	help
107752ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
107852ba867cSJussi Kivilinna	  generic c and the assembler implementations.
107952ba867cSJussi Kivilinna
108052ba867cSJussi Kivilinna	  See also:
108152ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
108252ba867cSJussi Kivilinna
108364b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
108464b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1085f21a7c19SAl Viro	depends on X86 && 64BIT
108664b94ceaSJussi Kivilinna	select CRYPTO_ALGAPI
108764b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
108864b94ceaSJussi Kivilinna	help
108964b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
109064b94ceaSJussi Kivilinna
109164b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
109264b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
109364b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
109464b94ceaSJussi Kivilinna
109564b94ceaSJussi Kivilinna	  See also:
109664b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
109764b94ceaSJussi Kivilinna
1098584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1099584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1100584fffc8SSebastian Siewior	depends on CRYPTO
1101584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1102584fffc8SSebastian Siewior	help
1103584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1104584fffc8SSebastian Siewior
1105584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1106584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1107584fffc8SSebastian Siewior
1108584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1109584fffc8SSebastian Siewior
1110584fffc8SSebastian Siewior	  See also:
1111584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1112584fffc8SSebastian Siewior
11130b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
11140b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1115f21a7c19SAl Viro	depends on X86 && 64BIT
11160b95ec56SJussi Kivilinna	depends on CRYPTO
11170b95ec56SJussi Kivilinna	select CRYPTO_ALGAPI
1118964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
11190b95ec56SJussi Kivilinna	select CRYPTO_LRW
11200b95ec56SJussi Kivilinna	select CRYPTO_XTS
11210b95ec56SJussi Kivilinna	help
11220b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
11230b95ec56SJussi Kivilinna
11240b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
11250b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
11260b95ec56SJussi Kivilinna
11270b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
11280b95ec56SJussi Kivilinna
11290b95ec56SJussi Kivilinna	  See also:
11300b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
11310b95ec56SJussi Kivilinna
1132d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1133d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1134d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1135d9b1d2e7SJussi Kivilinna	depends on CRYPTO
1136d9b1d2e7SJussi Kivilinna	select CRYPTO_ALGAPI
1137d9b1d2e7SJussi Kivilinna	select CRYPTO_CRYPTD
1138801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1139d9b1d2e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1140d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1141d9b1d2e7SJussi Kivilinna	select CRYPTO_LRW
1142d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1143d9b1d2e7SJussi Kivilinna	help
1144d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1145d9b1d2e7SJussi Kivilinna
1146d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1147d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1148d9b1d2e7SJussi Kivilinna
1149d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1150d9b1d2e7SJussi Kivilinna
1151d9b1d2e7SJussi Kivilinna	  See also:
1152d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1153d9b1d2e7SJussi Kivilinna
1154f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1155f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1156f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1157f3f935a7SJussi Kivilinna	depends on CRYPTO
1158f3f935a7SJussi Kivilinna	select CRYPTO_ALGAPI
1159f3f935a7SJussi Kivilinna	select CRYPTO_CRYPTD
1160801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1161f3f935a7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1162f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1163f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1164f3f935a7SJussi Kivilinna	select CRYPTO_LRW
1165f3f935a7SJussi Kivilinna	select CRYPTO_XTS
1166f3f935a7SJussi Kivilinna	help
1167f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1168f3f935a7SJussi Kivilinna
1169f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1170f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1171f3f935a7SJussi Kivilinna
1172f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1173f3f935a7SJussi Kivilinna
1174f3f935a7SJussi Kivilinna	  See also:
1175f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1176f3f935a7SJussi Kivilinna
117781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
117881658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
117981658ad0SDavid S. Miller	depends on SPARC64
118081658ad0SDavid S. Miller	depends on CRYPTO
118181658ad0SDavid S. Miller	select CRYPTO_ALGAPI
118281658ad0SDavid S. Miller	help
118381658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
118481658ad0SDavid S. Miller
118581658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
118681658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
118781658ad0SDavid S. Miller
118881658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
118981658ad0SDavid S. Miller
119081658ad0SDavid S. Miller	  See also:
119181658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
119281658ad0SDavid S. Miller
1193044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1194044ab525SJussi Kivilinna	tristate
1195044ab525SJussi Kivilinna	help
1196044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1197044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1198044ab525SJussi Kivilinna
1199584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1200584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1201584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1202044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1203584fffc8SSebastian Siewior	help
1204584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1205584fffc8SSebastian Siewior	  described in RFC2144.
1206584fffc8SSebastian Siewior
12074d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12084d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12094d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12104d6d6a2cSJohannes Goetzfried	select CRYPTO_ALGAPI
12114d6d6a2cSJohannes Goetzfried	select CRYPTO_CRYPTD
1212801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1213044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12144d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
12154d6d6a2cSJohannes Goetzfried	help
12164d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
12174d6d6a2cSJohannes Goetzfried	  described in RFC2144.
12184d6d6a2cSJohannes Goetzfried
12194d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
12204d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
12214d6d6a2cSJohannes Goetzfried
1222584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1223584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1224584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1225044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1226584fffc8SSebastian Siewior	help
1227584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1228584fffc8SSebastian Siewior	  described in RFC2612.
1229584fffc8SSebastian Siewior
12304ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
12314ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
12324ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
12334ea1277dSJohannes Goetzfried	select CRYPTO_ALGAPI
12344ea1277dSJohannes Goetzfried	select CRYPTO_CRYPTD
1235801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
12364ea1277dSJohannes Goetzfried	select CRYPTO_GLUE_HELPER_X86
1237044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12384ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
12394ea1277dSJohannes Goetzfried	select CRYPTO_LRW
12404ea1277dSJohannes Goetzfried	select CRYPTO_XTS
12414ea1277dSJohannes Goetzfried	help
12424ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
12434ea1277dSJohannes Goetzfried	  described in RFC2612.
12444ea1277dSJohannes Goetzfried
12454ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
12464ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
12474ea1277dSJohannes Goetzfried
1248584fffc8SSebastian Siewiorconfig CRYPTO_DES
1249584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1250584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1251584fffc8SSebastian Siewior	help
1252584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1253584fffc8SSebastian Siewior
1254c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1255c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
125697da37b3SDave Jones	depends on SPARC64
1257c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1258c5aac2dfSDavid S. Miller	select CRYPTO_DES
1259c5aac2dfSDavid S. Miller	help
1260c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1261c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1262c5aac2dfSDavid S. Miller
12636574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
12646574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
12656574e6c6SJussi Kivilinna	depends on X86 && 64BIT
12666574e6c6SJussi Kivilinna	select CRYPTO_ALGAPI
12676574e6c6SJussi Kivilinna	select CRYPTO_DES
12686574e6c6SJussi Kivilinna	help
12696574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
12706574e6c6SJussi Kivilinna
12716574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
12726574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
12736574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
12746574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
12756574e6c6SJussi Kivilinna
1276584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1277584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1278584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1279584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1280584fffc8SSebastian Siewior	help
1281584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1282584fffc8SSebastian Siewior
1283584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1284584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1285584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1286584fffc8SSebastian Siewior	help
1287584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1288584fffc8SSebastian Siewior
1289584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1290584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1291584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1292584fffc8SSebastian Siewior
1293584fffc8SSebastian Siewior	  See also:
12946d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1295e2ee95b8SHye-Shik Chang
12962407d608STan Swee Hengconfig CRYPTO_SALSA20
12973b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
12982407d608STan Swee Heng	select CRYPTO_BLKCIPHER
12992407d608STan Swee Heng	help
13002407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13012407d608STan Swee Heng
13022407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13032407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13042407d608STan Swee Heng
13052407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13062407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13071da177e4SLinus Torvalds
1308974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13093b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1310974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1311974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1312974e4b75STan Swee Heng	help
1313974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1314974e4b75STan Swee Heng
1315974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1316974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1317974e4b75STan Swee Heng
1318974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1319974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1320974e4b75STan Swee Heng
13219a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
13223b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
13239a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
13249a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
13259a7dafbbSTan Swee Heng	help
13269a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
13279a7dafbbSTan Swee Heng
13289a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13299a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13309a7dafbbSTan Swee Heng
13319a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13329a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13339a7dafbbSTan Swee Heng
1334c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1335c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1336c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1337c08d0e64SMartin Willi	help
1338c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1339c08d0e64SMartin Willi
1340c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1341c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1342c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1343c08d0e64SMartin Willi
1344c08d0e64SMartin Willi	  See also:
1345c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1346c08d0e64SMartin Willi
1347c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
13483d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1349c9320b6dSMartin Willi	depends on X86 && 64BIT
1350c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1351c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1352c9320b6dSMartin Willi	help
1353c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1354c9320b6dSMartin Willi
1355c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1356c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1357c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1358c9320b6dSMartin Willi
1359c9320b6dSMartin Willi	  See also:
1360c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1361c9320b6dSMartin Willi
1362584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1363584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1364584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1365584fffc8SSebastian Siewior	help
1366584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1367584fffc8SSebastian Siewior
1368584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1369584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1370584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1371584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1372584fffc8SSebastian Siewior
1373584fffc8SSebastian Siewior	  See also:
1374584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1375584fffc8SSebastian Siewior
1376584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1377584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1378584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1379584fffc8SSebastian Siewior	help
1380584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1381584fffc8SSebastian Siewior
1382584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1383584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1384584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1385584fffc8SSebastian Siewior
1386584fffc8SSebastian Siewior	  See also:
1387584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1388584fffc8SSebastian Siewior
1389937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1390937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1391937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1392937c30d7SJussi Kivilinna	select CRYPTO_ALGAPI
1393341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1394801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1395596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1396937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1397feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1398feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1399937c30d7SJussi Kivilinna	help
1400937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1401937c30d7SJussi Kivilinna
1402937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1403937c30d7SJussi Kivilinna	  of 8 bits.
1404937c30d7SJussi Kivilinna
14051e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1406937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1407937c30d7SJussi Kivilinna
1408937c30d7SJussi Kivilinna	  See also:
1409937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1410937c30d7SJussi Kivilinna
1411251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1412251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1413251496dbSJussi Kivilinna	depends on X86 && !64BIT
1414251496dbSJussi Kivilinna	select CRYPTO_ALGAPI
1415341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1416801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1417596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1418251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1419feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1420feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1421251496dbSJussi Kivilinna	help
1422251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1423251496dbSJussi Kivilinna
1424251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1425251496dbSJussi Kivilinna	  of 8 bits.
1426251496dbSJussi Kivilinna
1427251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1428251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1429251496dbSJussi Kivilinna
1430251496dbSJussi Kivilinna	  See also:
1431251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1432251496dbSJussi Kivilinna
14337efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
14347efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
14357efe4076SJohannes Goetzfried	depends on X86 && 64BIT
14367efe4076SJohannes Goetzfried	select CRYPTO_ALGAPI
14377efe4076SJohannes Goetzfried	select CRYPTO_CRYPTD
1438801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
14391d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
14407efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
14417efe4076SJohannes Goetzfried	select CRYPTO_LRW
14427efe4076SJohannes Goetzfried	select CRYPTO_XTS
14437efe4076SJohannes Goetzfried	help
14447efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
14457efe4076SJohannes Goetzfried
14467efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
14477efe4076SJohannes Goetzfried	  of 8 bits.
14487efe4076SJohannes Goetzfried
14497efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
14507efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14517efe4076SJohannes Goetzfried
14527efe4076SJohannes Goetzfried	  See also:
14537efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
14547efe4076SJohannes Goetzfried
145556d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
145656d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
145756d76c96SJussi Kivilinna	depends on X86 && 64BIT
145856d76c96SJussi Kivilinna	select CRYPTO_ALGAPI
145956d76c96SJussi Kivilinna	select CRYPTO_CRYPTD
1460801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
146156d76c96SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
146256d76c96SJussi Kivilinna	select CRYPTO_SERPENT
146356d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
146456d76c96SJussi Kivilinna	select CRYPTO_LRW
146556d76c96SJussi Kivilinna	select CRYPTO_XTS
146656d76c96SJussi Kivilinna	help
146756d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
146856d76c96SJussi Kivilinna
146956d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
147056d76c96SJussi Kivilinna	  of 8 bits.
147156d76c96SJussi Kivilinna
147256d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
147356d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
147456d76c96SJussi Kivilinna
147556d76c96SJussi Kivilinna	  See also:
147656d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
147756d76c96SJussi Kivilinna
1478584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1479584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1480584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1481584fffc8SSebastian Siewior	help
1482584fffc8SSebastian Siewior	  TEA cipher algorithm.
1483584fffc8SSebastian Siewior
1484584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1485584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1486584fffc8SSebastian Siewior	  little memory.
1487584fffc8SSebastian Siewior
1488584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1489584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1490584fffc8SSebastian Siewior	  in the TEA algorithm.
1491584fffc8SSebastian Siewior
1492584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1493584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1494584fffc8SSebastian Siewior
1495584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1496584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1497584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1498584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1499584fffc8SSebastian Siewior	help
1500584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1501584fffc8SSebastian Siewior
1502584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1503584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1504584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1505584fffc8SSebastian Siewior	  bits.
1506584fffc8SSebastian Siewior
1507584fffc8SSebastian Siewior	  See also:
1508584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1509584fffc8SSebastian Siewior
1510584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1511584fffc8SSebastian Siewior	tristate
1512584fffc8SSebastian Siewior	help
1513584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1514584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1515584fffc8SSebastian Siewior
1516584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1517584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1518584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1519584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1520584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1521584fffc8SSebastian Siewior	help
1522584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1523584fffc8SSebastian Siewior
1524584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1525584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1526584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1527584fffc8SSebastian Siewior	  bits.
1528584fffc8SSebastian Siewior
1529584fffc8SSebastian Siewior	  See also:
1530584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1531584fffc8SSebastian Siewior
1532584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1533584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1534584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1535584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1536584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1537584fffc8SSebastian Siewior	help
1538584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1539584fffc8SSebastian Siewior
1540584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1541584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1542584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1543584fffc8SSebastian Siewior	  bits.
1544584fffc8SSebastian Siewior
1545584fffc8SSebastian Siewior	  See also:
1546584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1547584fffc8SSebastian Siewior
15488280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
15498280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1550f21a7c19SAl Viro	depends on X86 && 64BIT
15518280daadSJussi Kivilinna	select CRYPTO_ALGAPI
15528280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
15538280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1554414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1555e7cda5d2SJussi Kivilinna	select CRYPTO_LRW
1556e7cda5d2SJussi Kivilinna	select CRYPTO_XTS
15578280daadSJussi Kivilinna	help
15588280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
15598280daadSJussi Kivilinna
15608280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
15618280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
15628280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
15638280daadSJussi Kivilinna	  bits.
15648280daadSJussi Kivilinna
15658280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
15668280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
15678280daadSJussi Kivilinna
15688280daadSJussi Kivilinna	  See also:
15698280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
15708280daadSJussi Kivilinna
1571107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1572107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1573107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1574107778b5SJohannes Goetzfried	select CRYPTO_ALGAPI
1575107778b5SJohannes Goetzfried	select CRYPTO_CRYPTD
1576801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1577a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1578107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1579107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1580107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1581107778b5SJohannes Goetzfried	select CRYPTO_LRW
1582107778b5SJohannes Goetzfried	select CRYPTO_XTS
1583107778b5SJohannes Goetzfried	help
1584107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1585107778b5SJohannes Goetzfried
1586107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1587107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1588107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1589107778b5SJohannes Goetzfried	  bits.
1590107778b5SJohannes Goetzfried
1591107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1592107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1593107778b5SJohannes Goetzfried
1594107778b5SJohannes Goetzfried	  See also:
1595107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1596107778b5SJohannes Goetzfried
1597584fffc8SSebastian Siewiorcomment "Compression"
1598584fffc8SSebastian Siewior
15991da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16001da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1601cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1602f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16031da177e4SLinus Torvalds	select ZLIB_INFLATE
16041da177e4SLinus Torvalds	select ZLIB_DEFLATE
16051da177e4SLinus Torvalds	help
16061da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16071da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16081da177e4SLinus Torvalds
16091da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16101da177e4SLinus Torvalds
16110b77abb3SZoltan Sogorconfig CRYPTO_LZO
16120b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16130b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1614ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16150b77abb3SZoltan Sogor	select LZO_COMPRESS
16160b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16170b77abb3SZoltan Sogor	help
16180b77abb3SZoltan Sogor	  This is the LZO algorithm.
16190b77abb3SZoltan Sogor
162035a1fc18SSeth Jenningsconfig CRYPTO_842
162135a1fc18SSeth Jennings	tristate "842 compression algorithm"
16222062c5b6SDan Streetman	select CRYPTO_ALGAPI
16236a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
16242062c5b6SDan Streetman	select 842_COMPRESS
16252062c5b6SDan Streetman	select 842_DECOMPRESS
162635a1fc18SSeth Jennings	help
162735a1fc18SSeth Jennings	  This is the 842 algorithm.
162835a1fc18SSeth Jennings
16290ea8530dSChanho Minconfig CRYPTO_LZ4
16300ea8530dSChanho Min	tristate "LZ4 compression algorithm"
16310ea8530dSChanho Min	select CRYPTO_ALGAPI
16328cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
16330ea8530dSChanho Min	select LZ4_COMPRESS
16340ea8530dSChanho Min	select LZ4_DECOMPRESS
16350ea8530dSChanho Min	help
16360ea8530dSChanho Min	  This is the LZ4 algorithm.
16370ea8530dSChanho Min
16380ea8530dSChanho Minconfig CRYPTO_LZ4HC
16390ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
16400ea8530dSChanho Min	select CRYPTO_ALGAPI
164191d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
16420ea8530dSChanho Min	select LZ4HC_COMPRESS
16430ea8530dSChanho Min	select LZ4_DECOMPRESS
16440ea8530dSChanho Min	help
16450ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
16460ea8530dSChanho Min
164717f0f4a4SNeil Hormancomment "Random Number Generation"
164817f0f4a4SNeil Horman
164917f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
165017f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
165117f0f4a4SNeil Horman	select CRYPTO_AES
165217f0f4a4SNeil Horman	select CRYPTO_RNG
165317f0f4a4SNeil Horman	help
165417f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
165517f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
16567dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
16577dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
165817f0f4a4SNeil Horman
1659f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1660419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1661419090c6SStephan Mueller	help
1662419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1663419090c6SStephan Mueller	  more of the DRBG types must be selected.
1664419090c6SStephan Mueller
1665f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1666419090c6SStephan Mueller
1667419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1668401e4238SHerbert Xu	bool
1669419090c6SStephan Mueller	default y
1670419090c6SStephan Mueller	select CRYPTO_HMAC
1671826775bbSHerbert Xu	select CRYPTO_SHA256
1672419090c6SStephan Mueller
1673419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1674419090c6SStephan Mueller	bool "Enable Hash DRBG"
1675826775bbSHerbert Xu	select CRYPTO_SHA256
1676419090c6SStephan Mueller	help
1677419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1678419090c6SStephan Mueller
1679419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1680419090c6SStephan Mueller	bool "Enable CTR DRBG"
1681419090c6SStephan Mueller	select CRYPTO_AES
168235591285SStephan Mueller	depends on CRYPTO_CTR
1683419090c6SStephan Mueller	help
1684419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1685419090c6SStephan Mueller
1686f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1687f2c89a10SHerbert Xu	tristate
1688401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1689f2c89a10SHerbert Xu	select CRYPTO_RNG
1690bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1691f2c89a10SHerbert Xu
1692f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1693419090c6SStephan Mueller
1694bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1695bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
16962f313e02SArnd Bergmann	select CRYPTO_RNG
1697bb5530e4SStephan Mueller	help
1698bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1699bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1700bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1701bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1702bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1703bb5530e4SStephan Mueller
170403c8efc1SHerbert Xuconfig CRYPTO_USER_API
170503c8efc1SHerbert Xu	tristate
170603c8efc1SHerbert Xu
1707fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1708fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17097451708fSHerbert Xu	depends on NET
1710fe869cdbSHerbert Xu	select CRYPTO_HASH
1711fe869cdbSHerbert Xu	select CRYPTO_USER_API
1712fe869cdbSHerbert Xu	help
1713fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1714fe869cdbSHerbert Xu	  algorithms.
1715fe869cdbSHerbert Xu
17168ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
17178ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
17187451708fSHerbert Xu	depends on NET
17198ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
17208ff59090SHerbert Xu	select CRYPTO_USER_API
17218ff59090SHerbert Xu	help
17228ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
17238ff59090SHerbert Xu	  key cipher algorithms.
17248ff59090SHerbert Xu
17252f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
17262f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
17272f375538SStephan Mueller	depends on NET
17282f375538SStephan Mueller	select CRYPTO_RNG
17292f375538SStephan Mueller	select CRYPTO_USER_API
17302f375538SStephan Mueller	help
17312f375538SStephan Mueller	  This option enables the user-spaces interface for random
17322f375538SStephan Mueller	  number generator algorithms.
17332f375538SStephan Mueller
1734b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1735b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1736b64a2d95SHerbert Xu	depends on NET
1737b64a2d95SHerbert Xu	select CRYPTO_AEAD
1738b64a2d95SHerbert Xu	select CRYPTO_USER_API
1739b64a2d95SHerbert Xu	help
1740b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1741b64a2d95SHerbert Xu	  cipher algorithms.
1742b64a2d95SHerbert Xu
1743ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1744ee08997fSDmitry Kasatkin	bool
1745ee08997fSDmitry Kasatkin
17461da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1747964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1748cfc411e7SDavid Howellssource certs/Kconfig
17491da177e4SLinus Torvalds
1750cce9e06dSHerbert Xuendif	# if CRYPTO
1751