11da177e4SLinus Torvalds# 2685784aaSDan Williams# Generic algorithms support 3685784aaSDan Williams# 4685784aaSDan Williamsconfig XOR_BLOCKS 5685784aaSDan Williams tristate 6685784aaSDan Williams 7685784aaSDan Williams# 89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 99bc89cd8SDan Williams# 109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 119bc89cd8SDan Williams 129bc89cd8SDan Williams# 131da177e4SLinus Torvalds# Cryptographic API Configuration 141da177e4SLinus Torvalds# 152e290f43SJan Engelhardtmenuconfig CRYPTO 16c3715cb9SSebastian Siewior tristate "Cryptographic API" 171da177e4SLinus Torvalds help 181da177e4SLinus Torvalds This option provides the core Cryptographic API. 191da177e4SLinus Torvalds 20cce9e06dSHerbert Xuif CRYPTO 21cce9e06dSHerbert Xu 22584fffc8SSebastian Siewiorcomment "Crypto core or helper" 23584fffc8SSebastian Siewior 24ccb778e1SNeil Hormanconfig CRYPTO_FIPS 25ccb778e1SNeil Horman bool "FIPS 200 compliance" 26f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 271f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 28ccb778e1SNeil Horman help 29ccb778e1SNeil Horman This options enables the fips boot option which is 30ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 31ccb778e1SNeil Horman certification. You should say no unless you know what 32e84c5480SChuck Ebbert this is. 33ccb778e1SNeil Horman 34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 35cce9e06dSHerbert Xu tristate 366a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 37cce9e06dSHerbert Xu help 38cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 39cce9e06dSHerbert Xu 406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 416a0fcbb4SHerbert Xu tristate 426a0fcbb4SHerbert Xu 431ae97820SHerbert Xuconfig CRYPTO_AEAD 441ae97820SHerbert Xu tristate 456a0fcbb4SHerbert Xu select CRYPTO_AEAD2 461ae97820SHerbert Xu select CRYPTO_ALGAPI 471ae97820SHerbert Xu 486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 496a0fcbb4SHerbert Xu tristate 506a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 51149a3971SHerbert Xu select CRYPTO_NULL2 52149a3971SHerbert Xu select CRYPTO_RNG2 536a0fcbb4SHerbert Xu 545cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 555cde0af2SHerbert Xu tristate 566a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 575cde0af2SHerbert Xu select CRYPTO_ALGAPI 586a0fcbb4SHerbert Xu 596a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 606a0fcbb4SHerbert Xu tristate 616a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 626a0fcbb4SHerbert Xu select CRYPTO_RNG2 630a2e821dSHuang Ying select CRYPTO_WORKQUEUE 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1082ebda74fSGiovanni Cabiddu 1092ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1102ebda74fSGiovanni Cabiddu tristate 1112ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1122ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1132ebda74fSGiovanni Cabiddu 114cfc2bb32STadeusz Strukconfig CRYPTO_RSA 115cfc2bb32STadeusz Struk tristate "RSA algorithm" 116425e0172STadeusz Struk select CRYPTO_AKCIPHER 11758446fefSTadeusz Struk select CRYPTO_MANAGER 118cfc2bb32STadeusz Struk select MPILIB 119cfc2bb32STadeusz Struk select ASN1 120cfc2bb32STadeusz Struk help 121cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 122cfc2bb32STadeusz Struk 123802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 124802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 125802c7f1cSSalvatore Benedetto select CRYPTO_KPP 126802c7f1cSSalvatore Benedetto select MPILIB 127802c7f1cSSalvatore Benedetto help 128802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 129802c7f1cSSalvatore Benedetto 1303c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1313c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 1323c4b2390SSalvatore Benedetto select CRYTPO_KPP 1333c4b2390SSalvatore Benedetto help 1343c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 135802c7f1cSSalvatore Benedetto 1362b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1372b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1386a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1392b8c19dbSHerbert Xu help 1402b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1412b8c19dbSHerbert Xu cbc(aes). 1422b8c19dbSHerbert Xu 1436a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1446a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1456a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1466a0fcbb4SHerbert Xu select CRYPTO_HASH2 1476a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 148946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1494e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1502ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1516a0fcbb4SHerbert Xu 152a38f7907SSteffen Klassertconfig CRYPTO_USER 153a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1545db017aaSHerbert Xu depends on NET 155a38f7907SSteffen Klassert select CRYPTO_MANAGER 156a38f7907SSteffen Klassert help 157d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 158a38f7907SSteffen Klassert cbc(aes). 159a38f7907SSteffen Klassert 160326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 161326a6346SHerbert Xu bool "Disable run-time self tests" 16200ca28a5SHerbert Xu default y 16300ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1640b767f96SAlexander Shishkin help 165326a6346SHerbert Xu Disable run-time self tests that normally take place at 166326a6346SHerbert Xu algorithm registration. 1670b767f96SAlexander Shishkin 168584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 16908c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 170584fffc8SSebastian Siewior help 171584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 172584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 173584fffc8SSebastian Siewior option will be selected automatically if you select such a 174584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 175584fffc8SSebastian Siewior an external module that requires these functions. 176584fffc8SSebastian Siewior 177584fffc8SSebastian Siewiorconfig CRYPTO_NULL 178584fffc8SSebastian Siewior tristate "Null algorithms" 179149a3971SHerbert Xu select CRYPTO_NULL2 180584fffc8SSebastian Siewior help 181584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 182584fffc8SSebastian Siewior 183149a3971SHerbert Xuconfig CRYPTO_NULL2 184dd43c4e9SHerbert Xu tristate 185149a3971SHerbert Xu select CRYPTO_ALGAPI2 186149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 187149a3971SHerbert Xu select CRYPTO_HASH2 188149a3971SHerbert Xu 1895068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1903b4afaf2SKees Cook tristate "Parallel crypto engine" 1913b4afaf2SKees Cook depends on SMP 1925068c7a8SSteffen Klassert select PADATA 1935068c7a8SSteffen Klassert select CRYPTO_MANAGER 1945068c7a8SSteffen Klassert select CRYPTO_AEAD 1955068c7a8SSteffen Klassert help 1965068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1975068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1985068c7a8SSteffen Klassert 19925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20025c38d3fSHuang Ying tristate 20125c38d3fSHuang Ying 202584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 203584fffc8SSebastian Siewior tristate "Software async crypto daemon" 204584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 205b8a28251SLoc Ho select CRYPTO_HASH 206584fffc8SSebastian Siewior select CRYPTO_MANAGER 207254eff77SHuang Ying select CRYPTO_WORKQUEUE 208584fffc8SSebastian Siewior help 209584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 210584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 211584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 212584fffc8SSebastian Siewior 2131e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2141e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2151e65b81aSTim Chen select CRYPTO_BLKCIPHER 2161e65b81aSTim Chen select CRYPTO_HASH 2171e65b81aSTim Chen select CRYPTO_MANAGER 2181e65b81aSTim Chen select CRYPTO_WORKQUEUE 2191e65b81aSTim Chen help 2201e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2211e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2221e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2231e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2241e65b81aSTim Chen in the context of this kernel thread and drivers can post 2250e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2261e65b81aSTim Chen 227584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 228584fffc8SSebastian Siewior tristate "Authenc support" 229584fffc8SSebastian Siewior select CRYPTO_AEAD 230584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 231584fffc8SSebastian Siewior select CRYPTO_MANAGER 232584fffc8SSebastian Siewior select CRYPTO_HASH 233e94c6a7aSHerbert Xu select CRYPTO_NULL 234584fffc8SSebastian Siewior help 235584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 236584fffc8SSebastian Siewior This is required for IPSec. 237584fffc8SSebastian Siewior 238584fffc8SSebastian Siewiorconfig CRYPTO_TEST 239584fffc8SSebastian Siewior tristate "Testing module" 240584fffc8SSebastian Siewior depends on m 241da7f033dSHerbert Xu select CRYPTO_MANAGER 242584fffc8SSebastian Siewior help 243584fffc8SSebastian Siewior Quick & dirty crypto test module. 244584fffc8SSebastian Siewior 245a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER 246ffaf9156SJussi Kivilinna tristate 247ffaf9156SJussi Kivilinna select CRYPTO_CRYPTD 248ffaf9156SJussi Kivilinna 249266d0516SHerbert Xuconfig CRYPTO_SIMD 250266d0516SHerbert Xu tristate 251266d0516SHerbert Xu select CRYPTO_CRYPTD 252266d0516SHerbert Xu 253596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 254596d8750SJussi Kivilinna tristate 255596d8750SJussi Kivilinna depends on X86 256065ce327SHerbert Xu select CRYPTO_BLKCIPHER 257596d8750SJussi Kivilinna 258735d37b5SBaolin Wangconfig CRYPTO_ENGINE 259735d37b5SBaolin Wang tristate 260735d37b5SBaolin Wang 261584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 262584fffc8SSebastian Siewior 263584fffc8SSebastian Siewiorconfig CRYPTO_CCM 264584fffc8SSebastian Siewior tristate "CCM support" 265584fffc8SSebastian Siewior select CRYPTO_CTR 266*f15f05b0SArd Biesheuvel select CRYPTO_HASH 267584fffc8SSebastian Siewior select CRYPTO_AEAD 268584fffc8SSebastian Siewior help 269584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 270584fffc8SSebastian Siewior 271584fffc8SSebastian Siewiorconfig CRYPTO_GCM 272584fffc8SSebastian Siewior tristate "GCM/GMAC support" 273584fffc8SSebastian Siewior select CRYPTO_CTR 274584fffc8SSebastian Siewior select CRYPTO_AEAD 2759382d97aSHuang Ying select CRYPTO_GHASH 2769489667dSJussi Kivilinna select CRYPTO_NULL 277584fffc8SSebastian Siewior help 278584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 279584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 280584fffc8SSebastian Siewior 28171ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28271ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28371ebc4d1SMartin Willi select CRYPTO_CHACHA20 28471ebc4d1SMartin Willi select CRYPTO_POLY1305 28571ebc4d1SMartin Willi select CRYPTO_AEAD 28671ebc4d1SMartin Willi help 28771ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28871ebc4d1SMartin Willi 28971ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29071ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29171ebc4d1SMartin Willi IETF protocols. 29271ebc4d1SMartin Willi 293584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 294584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 295584fffc8SSebastian Siewior select CRYPTO_AEAD 296584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 297856e3f40SHerbert Xu select CRYPTO_NULL 298401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 299584fffc8SSebastian Siewior help 300584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 301584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 302584fffc8SSebastian Siewior 303a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 304a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 305a10f554fSHerbert Xu select CRYPTO_AEAD 306a10f554fSHerbert Xu select CRYPTO_NULL 307401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3083491244cSHerbert Xu default m 309a10f554fSHerbert Xu help 310a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 311a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 312a10f554fSHerbert Xu algorithm for CBC. 313a10f554fSHerbert Xu 314584fffc8SSebastian Siewiorcomment "Block modes" 315584fffc8SSebastian Siewior 316584fffc8SSebastian Siewiorconfig CRYPTO_CBC 317584fffc8SSebastian Siewior tristate "CBC support" 318584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 319584fffc8SSebastian Siewior select CRYPTO_MANAGER 320584fffc8SSebastian Siewior help 321584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 322584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 323584fffc8SSebastian Siewior 324584fffc8SSebastian Siewiorconfig CRYPTO_CTR 325584fffc8SSebastian Siewior tristate "CTR support" 326584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 327584fffc8SSebastian Siewior select CRYPTO_SEQIV 328584fffc8SSebastian Siewior select CRYPTO_MANAGER 329584fffc8SSebastian Siewior help 330584fffc8SSebastian Siewior CTR: Counter mode 331584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 332584fffc8SSebastian Siewior 333584fffc8SSebastian Siewiorconfig CRYPTO_CTS 334584fffc8SSebastian Siewior tristate "CTS support" 335584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 336584fffc8SSebastian Siewior help 337584fffc8SSebastian Siewior CTS: Cipher Text Stealing 338584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 339584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 340584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 341584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 342584fffc8SSebastian Siewior for AES encryption. 343584fffc8SSebastian Siewior 344584fffc8SSebastian Siewiorconfig CRYPTO_ECB 345584fffc8SSebastian Siewior tristate "ECB support" 346584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 347584fffc8SSebastian Siewior select CRYPTO_MANAGER 348584fffc8SSebastian Siewior help 349584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 350584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 351584fffc8SSebastian Siewior the input block by block. 352584fffc8SSebastian Siewior 353584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3542470a2b2SJussi Kivilinna tristate "LRW support" 355584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 356584fffc8SSebastian Siewior select CRYPTO_MANAGER 357584fffc8SSebastian Siewior select CRYPTO_GF128MUL 358584fffc8SSebastian Siewior help 359584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 360584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 361584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 362584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 363584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 364584fffc8SSebastian Siewior 365584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 366584fffc8SSebastian Siewior tristate "PCBC support" 367584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 368584fffc8SSebastian Siewior select CRYPTO_MANAGER 369584fffc8SSebastian Siewior help 370584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 371584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 372584fffc8SSebastian Siewior 373584fffc8SSebastian Siewiorconfig CRYPTO_XTS 3745bcf8e6dSJussi Kivilinna tristate "XTS support" 375584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 376584fffc8SSebastian Siewior select CRYPTO_MANAGER 377584fffc8SSebastian Siewior select CRYPTO_GF128MUL 378584fffc8SSebastian Siewior help 379584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 380584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 381584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 382584fffc8SSebastian Siewior 3831c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 3841c49678eSStephan Mueller tristate "Key wrapping support" 3851c49678eSStephan Mueller select CRYPTO_BLKCIPHER 3861c49678eSStephan Mueller help 3871c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 3881c49678eSStephan Mueller padding. 3891c49678eSStephan Mueller 390584fffc8SSebastian Siewiorcomment "Hash modes" 391584fffc8SSebastian Siewior 39293b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 39393b5e86aSJussi Kivilinna tristate "CMAC support" 39493b5e86aSJussi Kivilinna select CRYPTO_HASH 39593b5e86aSJussi Kivilinna select CRYPTO_MANAGER 39693b5e86aSJussi Kivilinna help 39793b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 39893b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 39993b5e86aSJussi Kivilinna 40093b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 40193b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 40293b5e86aSJussi Kivilinna 4031da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4048425165dSHerbert Xu tristate "HMAC support" 4050796ae06SHerbert Xu select CRYPTO_HASH 40643518407SHerbert Xu select CRYPTO_MANAGER 4071da177e4SLinus Torvalds help 4081da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4091da177e4SLinus Torvalds This is required for IPSec. 4101da177e4SLinus Torvalds 411333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 412333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 413333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 414333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 415333b0d7eSKazunori MIYAZAWA help 416333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 417333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 418333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 419333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 420333b0d7eSKazunori MIYAZAWA 421f1939f7cSShane Wangconfig CRYPTO_VMAC 422f1939f7cSShane Wang tristate "VMAC support" 423f1939f7cSShane Wang select CRYPTO_HASH 424f1939f7cSShane Wang select CRYPTO_MANAGER 425f1939f7cSShane Wang help 426f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 427f1939f7cSShane Wang very high speed on 64-bit architectures. 428f1939f7cSShane Wang 429f1939f7cSShane Wang See also: 430f1939f7cSShane Wang <http://fastcrypto.org/vmac> 431f1939f7cSShane Wang 432584fffc8SSebastian Siewiorcomment "Digest" 433584fffc8SSebastian Siewior 434584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 435584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4365773a3e6SHerbert Xu select CRYPTO_HASH 4376a0962b2SDarrick J. Wong select CRC32 4381da177e4SLinus Torvalds help 439584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 440584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 44169c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4421da177e4SLinus Torvalds 4438cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4448cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4458cb51ba8SAustin Zhang depends on X86 4468cb51ba8SAustin Zhang select CRYPTO_HASH 4478cb51ba8SAustin Zhang help 4488cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4498cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4508cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4518cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4528cb51ba8SAustin Zhang gain performance compared with software implementation. 4538cb51ba8SAustin Zhang Module will be crc32c-intel. 4548cb51ba8SAustin Zhang 4557cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4566dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 457c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4586dd7a82cSAnton Blanchard select CRYPTO_HASH 4596dd7a82cSAnton Blanchard select CRC32 4606dd7a82cSAnton Blanchard help 4616dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4626dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4636dd7a82cSAnton Blanchard and newer processors for improved performance. 4646dd7a82cSAnton Blanchard 4656dd7a82cSAnton Blanchard 466442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 467442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 468442a7c40SDavid S. Miller depends on SPARC64 469442a7c40SDavid S. Miller select CRYPTO_HASH 470442a7c40SDavid S. Miller select CRC32 471442a7c40SDavid S. Miller help 472442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 473442a7c40SDavid S. Miller when available. 474442a7c40SDavid S. Miller 47578c37d19SAlexander Boykoconfig CRYPTO_CRC32 47678c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 47778c37d19SAlexander Boyko select CRYPTO_HASH 47878c37d19SAlexander Boyko select CRC32 47978c37d19SAlexander Boyko help 48078c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 48178c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 48278c37d19SAlexander Boyko 48378c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 48478c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 48578c37d19SAlexander Boyko depends on X86 48678c37d19SAlexander Boyko select CRYPTO_HASH 48778c37d19SAlexander Boyko select CRC32 48878c37d19SAlexander Boyko help 48978c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 49078c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 49178c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 49278c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 49378c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 49478c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 49578c37d19SAlexander Boyko 49668411521SHerbert Xuconfig CRYPTO_CRCT10DIF 49768411521SHerbert Xu tristate "CRCT10DIF algorithm" 49868411521SHerbert Xu select CRYPTO_HASH 49968411521SHerbert Xu help 50068411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 50168411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 50268411521SHerbert Xu transforms to be used if they are available. 50368411521SHerbert Xu 50468411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 50568411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 50668411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 50768411521SHerbert Xu select CRYPTO_HASH 50868411521SHerbert Xu help 50968411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 51068411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 51168411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 51268411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 51368411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 51468411521SHerbert Xu 5152cdc6899SHuang Yingconfig CRYPTO_GHASH 5162cdc6899SHuang Ying tristate "GHASH digest algorithm" 5172cdc6899SHuang Ying select CRYPTO_GF128MUL 518578c60fbSArnd Bergmann select CRYPTO_HASH 5192cdc6899SHuang Ying help 5202cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5212cdc6899SHuang Ying 522f979e014SMartin Williconfig CRYPTO_POLY1305 523f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 524578c60fbSArnd Bergmann select CRYPTO_HASH 525f979e014SMartin Willi help 526f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 527f979e014SMartin Willi 528f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 529f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 530f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 531f979e014SMartin Willi 532c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 533b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 534c70f4abeSMartin Willi depends on X86 && 64BIT 535c70f4abeSMartin Willi select CRYPTO_POLY1305 536c70f4abeSMartin Willi help 537c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 538c70f4abeSMartin Willi 539c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 540c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 541c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 542c70f4abeSMartin Willi instructions. 543c70f4abeSMartin Willi 5441da177e4SLinus Torvaldsconfig CRYPTO_MD4 5451da177e4SLinus Torvalds tristate "MD4 digest algorithm" 546808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 5471da177e4SLinus Torvalds help 5481da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 5491da177e4SLinus Torvalds 5501da177e4SLinus Torvaldsconfig CRYPTO_MD5 5511da177e4SLinus Torvalds tristate "MD5 digest algorithm" 55214b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 5531da177e4SLinus Torvalds help 5541da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 5551da177e4SLinus Torvalds 556d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 557d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 558d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 559d69e75deSAaro Koskinen select CRYPTO_MD5 560d69e75deSAaro Koskinen select CRYPTO_HASH 561d69e75deSAaro Koskinen help 562d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 563d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 564d69e75deSAaro Koskinen 565e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 566e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 567e8e59953SMarkus Stockhausen depends on PPC 568e8e59953SMarkus Stockhausen select CRYPTO_HASH 569e8e59953SMarkus Stockhausen help 570e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 571e8e59953SMarkus Stockhausen in PPC assembler. 572e8e59953SMarkus Stockhausen 573fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 574fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 575fa4dfedcSDavid S. Miller depends on SPARC64 576fa4dfedcSDavid S. Miller select CRYPTO_MD5 577fa4dfedcSDavid S. Miller select CRYPTO_HASH 578fa4dfedcSDavid S. Miller help 579fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 580fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 581fa4dfedcSDavid S. Miller 582584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 583584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 58419e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 585584fffc8SSebastian Siewior help 586584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 587584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 588584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 589584fffc8SSebastian Siewior of the algorithm. 590584fffc8SSebastian Siewior 59182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 59282798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 5937c4468bcSHerbert Xu select CRYPTO_HASH 59482798f90SAdrian-Ken Rueegsegger help 59582798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 59682798f90SAdrian-Ken Rueegsegger 59782798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 59835ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 59982798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 60082798f90SAdrian-Ken Rueegsegger 60182798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6026d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 60382798f90SAdrian-Ken Rueegsegger 60482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 60582798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 606e5835fbaSHerbert Xu select CRYPTO_HASH 60782798f90SAdrian-Ken Rueegsegger help 60882798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 60982798f90SAdrian-Ken Rueegsegger 61082798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 61182798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 612b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 613b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 61482798f90SAdrian-Ken Rueegsegger 615b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 616b6d44341SAdrian Bunk against RIPEMD-160. 617534fe2c1SAdrian-Ken Rueegsegger 618534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6196d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 620534fe2c1SAdrian-Ken Rueegsegger 621534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 622534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 623d8a5e2e9SHerbert Xu select CRYPTO_HASH 624534fe2c1SAdrian-Ken Rueegsegger help 625b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 626b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 627b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 628b6d44341SAdrian Bunk (than RIPEMD-128). 629534fe2c1SAdrian-Ken Rueegsegger 630534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6316d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 632534fe2c1SAdrian-Ken Rueegsegger 633534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 634534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6353b8efb4cSHerbert Xu select CRYPTO_HASH 636534fe2c1SAdrian-Ken Rueegsegger help 637b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 638b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 639b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 640b6d44341SAdrian Bunk (than RIPEMD-160). 641534fe2c1SAdrian-Ken Rueegsegger 64282798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6436d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 64482798f90SAdrian-Ken Rueegsegger 6451da177e4SLinus Torvaldsconfig CRYPTO_SHA1 6461da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 64754ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 6481da177e4SLinus Torvalds help 6491da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 6501da177e4SLinus Torvalds 65166be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 652e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 65366be8951SMathias Krause depends on X86 && 64BIT 65466be8951SMathias Krause select CRYPTO_SHA1 65566be8951SMathias Krause select CRYPTO_HASH 65666be8951SMathias Krause help 65766be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 65866be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 659e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 660e38b6b7fStim when available. 66166be8951SMathias Krause 6628275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 663e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 6648275d1aaSTim Chen depends on X86 && 64BIT 6658275d1aaSTim Chen select CRYPTO_SHA256 6668275d1aaSTim Chen select CRYPTO_HASH 6678275d1aaSTim Chen help 6688275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 6698275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 6708275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 671e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 672e38b6b7fStim Instructions) when available. 6738275d1aaSTim Chen 67487de4579STim Chenconfig CRYPTO_SHA512_SSSE3 67587de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 67687de4579STim Chen depends on X86 && 64BIT 67787de4579STim Chen select CRYPTO_SHA512 67887de4579STim Chen select CRYPTO_HASH 67987de4579STim Chen help 68087de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 68187de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 68287de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 68387de4579STim Chen version 2 (AVX2) instructions, when available. 68487de4579STim Chen 685efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 686efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 687efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 688efdb6f6eSAaro Koskinen select CRYPTO_SHA1 689efdb6f6eSAaro Koskinen select CRYPTO_HASH 690efdb6f6eSAaro Koskinen help 691efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 692efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 693efdb6f6eSAaro Koskinen 6944ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 6954ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 6964ff28d4cSDavid S. Miller depends on SPARC64 6974ff28d4cSDavid S. Miller select CRYPTO_SHA1 6984ff28d4cSDavid S. Miller select CRYPTO_HASH 6994ff28d4cSDavid S. Miller help 7004ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7014ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7024ff28d4cSDavid S. Miller 703323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 704323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 705323a6bf1SMichael Ellerman depends on PPC 706323a6bf1SMichael Ellerman help 707323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 708323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 709323a6bf1SMichael Ellerman 710d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 711d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 712d9850fc5SMarkus Stockhausen depends on PPC && SPE 713d9850fc5SMarkus Stockhausen help 714d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 715d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 716d9850fc5SMarkus Stockhausen 7171e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7181e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7191e65b81aSTim Chen depends on X86 && 64BIT 7201e65b81aSTim Chen select CRYPTO_SHA1 7211e65b81aSTim Chen select CRYPTO_HASH 7221e65b81aSTim Chen select CRYPTO_MCRYPTD 7231e65b81aSTim Chen help 7241e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7251e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7261e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7271e65b81aSTim Chen better throughput. It should not be enabled by default but 7281e65b81aSTim Chen used when there is significant amount of work to keep the keep 7291e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7301e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7311e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7321e65b81aSTim Chen 7339be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7349be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7359be7e244SMegha Dey depends on X86 && 64BIT 7369be7e244SMegha Dey select CRYPTO_SHA256 7379be7e244SMegha Dey select CRYPTO_HASH 7389be7e244SMegha Dey select CRYPTO_MCRYPTD 7399be7e244SMegha Dey help 7409be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7419be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7429be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7439be7e244SMegha Dey better throughput. It should not be enabled by default but 7449be7e244SMegha Dey used when there is significant amount of work to keep the keep 7459be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 7469be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 7479be7e244SMegha Dey process the crypto jobs, adding a slight latency. 7489be7e244SMegha Dey 749026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 750026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 751026bb8aaSMegha Dey depends on X86 && 64BIT 752026bb8aaSMegha Dey select CRYPTO_SHA512 753026bb8aaSMegha Dey select CRYPTO_HASH 754026bb8aaSMegha Dey select CRYPTO_MCRYPTD 755026bb8aaSMegha Dey help 756026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 757026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 758026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 759026bb8aaSMegha Dey better throughput. It should not be enabled by default but 760026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 761026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 762026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 763026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 764026bb8aaSMegha Dey 7651da177e4SLinus Torvaldsconfig CRYPTO_SHA256 766cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 76750e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 7681da177e4SLinus Torvalds help 7691da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 7701da177e4SLinus Torvalds 7711da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 7721da177e4SLinus Torvalds security against collision attacks. 7731da177e4SLinus Torvalds 774cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 775cd12fb90SJonathan Lynch of security against collision attacks. 776cd12fb90SJonathan Lynch 7772ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 7782ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 7792ecc1e95SMarkus Stockhausen depends on PPC && SPE 7802ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 7812ecc1e95SMarkus Stockhausen select CRYPTO_HASH 7822ecc1e95SMarkus Stockhausen help 7832ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 7842ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 7852ecc1e95SMarkus Stockhausen 786efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 787efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 788efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 789efdb6f6eSAaro Koskinen select CRYPTO_SHA256 790efdb6f6eSAaro Koskinen select CRYPTO_HASH 791efdb6f6eSAaro Koskinen help 792efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 793efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 794efdb6f6eSAaro Koskinen 79586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 79686c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 79786c93b24SDavid S. Miller depends on SPARC64 79886c93b24SDavid S. Miller select CRYPTO_SHA256 79986c93b24SDavid S. Miller select CRYPTO_HASH 80086c93b24SDavid S. Miller help 80186c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 80286c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 80386c93b24SDavid S. Miller 8041da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8051da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 806bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8071da177e4SLinus Torvalds help 8081da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8091da177e4SLinus Torvalds 8101da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8111da177e4SLinus Torvalds security against collision attacks. 8121da177e4SLinus Torvalds 8131da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8141da177e4SLinus Torvalds of security against collision attacks. 8151da177e4SLinus Torvalds 816efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 817efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 818efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 819efdb6f6eSAaro Koskinen select CRYPTO_SHA512 820efdb6f6eSAaro Koskinen select CRYPTO_HASH 821efdb6f6eSAaro Koskinen help 822efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 823efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 824efdb6f6eSAaro Koskinen 825775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 826775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 827775e0c69SDavid S. Miller depends on SPARC64 828775e0c69SDavid S. Miller select CRYPTO_SHA512 829775e0c69SDavid S. Miller select CRYPTO_HASH 830775e0c69SDavid S. Miller help 831775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 832775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 833775e0c69SDavid S. Miller 83453964b9eSJeff Garzikconfig CRYPTO_SHA3 83553964b9eSJeff Garzik tristate "SHA3 digest algorithm" 83653964b9eSJeff Garzik select CRYPTO_HASH 83753964b9eSJeff Garzik help 83853964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 83953964b9eSJeff Garzik cryptographic sponge function family called Keccak. 84053964b9eSJeff Garzik 84153964b9eSJeff Garzik References: 84253964b9eSJeff Garzik http://keccak.noekeon.org/ 84353964b9eSJeff Garzik 8441da177e4SLinus Torvaldsconfig CRYPTO_TGR192 8451da177e4SLinus Torvalds tristate "Tiger digest algorithms" 846f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 8471da177e4SLinus Torvalds help 8481da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 8491da177e4SLinus Torvalds 8501da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 8511da177e4SLinus Torvalds still having decent performance on 32-bit processors. 8521da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 8531da177e4SLinus Torvalds 8541da177e4SLinus Torvalds See also: 8551da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 8561da177e4SLinus Torvalds 857584fffc8SSebastian Siewiorconfig CRYPTO_WP512 858584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 8594946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 8601da177e4SLinus Torvalds help 861584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 8621da177e4SLinus Torvalds 863584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 864584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 8651da177e4SLinus Torvalds 8661da177e4SLinus Torvalds See also: 8676d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 8681da177e4SLinus Torvalds 8690e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 8700e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 8718af00860SRichard Weinberger depends on X86 && 64BIT 8720e1227d3SHuang Ying select CRYPTO_CRYPTD 8730e1227d3SHuang Ying help 8740e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 8750e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 8760e1227d3SHuang Ying 877584fffc8SSebastian Siewiorcomment "Ciphers" 8781da177e4SLinus Torvalds 8791da177e4SLinus Torvaldsconfig CRYPTO_AES 8801da177e4SLinus Torvalds tristate "AES cipher algorithms" 881cce9e06dSHerbert Xu select CRYPTO_ALGAPI 8821da177e4SLinus Torvalds help 8831da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 8841da177e4SLinus Torvalds algorithm. 8851da177e4SLinus Torvalds 8861da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 8871da177e4SLinus Torvalds both hardware and software across a wide range of computing 8881da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 8891da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 8901da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 8911da177e4SLinus Torvalds suited for restricted-space environments, in which it also 8921da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 8931da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 8941da177e4SLinus Torvalds 8951da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 8961da177e4SLinus Torvalds 8971da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 8981da177e4SLinus Torvalds 899b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 900b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 901b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 902b5e0b032SArd Biesheuvel help 903b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 904b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 905b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 906b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 907b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 908b5e0b032SArd Biesheuvel with a more dramatic performance hit) 909b5e0b032SArd Biesheuvel 910b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 911b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 912b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 913b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 914b5e0b032SArd Biesheuvel block. 915b5e0b032SArd Biesheuvel 9161da177e4SLinus Torvaldsconfig CRYPTO_AES_586 9171da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 918cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 919cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9205157dea8SSebastian Siewior select CRYPTO_AES 9211da177e4SLinus Torvalds help 9221da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9231da177e4SLinus Torvalds algorithm. 9241da177e4SLinus Torvalds 9251da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9261da177e4SLinus Torvalds both hardware and software across a wide range of computing 9271da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9281da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9291da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9301da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9311da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9321da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9331da177e4SLinus Torvalds 9341da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9351da177e4SLinus Torvalds 9361da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 9371da177e4SLinus Torvalds 938a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 939a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 940cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 941cce9e06dSHerbert Xu select CRYPTO_ALGAPI 94281190b32SSebastian Siewior select CRYPTO_AES 943a2a892a2SAndreas Steinmetz help 944a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 945a2a892a2SAndreas Steinmetz algorithm. 946a2a892a2SAndreas Steinmetz 947a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 948a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 949a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 950a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 951a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 952a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 953a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 954a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 955a2a892a2SAndreas Steinmetz 956a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 957a2a892a2SAndreas Steinmetz 958a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 959a2a892a2SAndreas Steinmetz 96054b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 96154b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 9628af00860SRichard Weinberger depends on X86 96385671860SHerbert Xu select CRYPTO_AEAD 9640d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 9650d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 96654b6a1bdSHuang Ying select CRYPTO_ALGAPI 96785671860SHerbert Xu select CRYPTO_BLKCIPHER 9687643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 96985671860SHerbert Xu select CRYPTO_SIMD 97054b6a1bdSHuang Ying help 97154b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 97254b6a1bdSHuang Ying 97354b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 97454b6a1bdSHuang Ying algorithm. 97554b6a1bdSHuang Ying 97654b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 97754b6a1bdSHuang Ying both hardware and software across a wide range of computing 97854b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 97954b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 98054b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 98154b6a1bdSHuang Ying suited for restricted-space environments, in which it also 98254b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 98354b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 98454b6a1bdSHuang Ying 98554b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 98654b6a1bdSHuang Ying 98754b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 98854b6a1bdSHuang Ying 9890d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 9900d258efbSMathias Krause for some popular block cipher mode is supported too, including 9910d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 9920d258efbSMathias Krause acceleration for CTR. 9932cf4ac8bSHuang Ying 9949bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 9959bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 9969bf4852dSDavid S. Miller depends on SPARC64 9979bf4852dSDavid S. Miller select CRYPTO_CRYPTD 9989bf4852dSDavid S. Miller select CRYPTO_ALGAPI 9999bf4852dSDavid S. Miller help 10009bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10019bf4852dSDavid S. Miller 10029bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10039bf4852dSDavid S. Miller algorithm. 10049bf4852dSDavid S. Miller 10059bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10069bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10079bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10089bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10099bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10109bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10119bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10129bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10139bf4852dSDavid S. Miller 10149bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10159bf4852dSDavid S. Miller 10169bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10179bf4852dSDavid S. Miller 10189bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10199bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10209bf4852dSDavid S. Miller ECB and CBC. 10219bf4852dSDavid S. Miller 1022504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1023504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1024504c6143SMarkus Stockhausen depends on PPC && SPE 1025504c6143SMarkus Stockhausen help 1026504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1027504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1028504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1029504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1030504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1031504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1032504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1033504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1034504c6143SMarkus Stockhausen 10351da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 10361da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1037cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10381da177e4SLinus Torvalds help 10391da177e4SLinus Torvalds Anubis cipher algorithm. 10401da177e4SLinus Torvalds 10411da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 10421da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 10431da177e4SLinus Torvalds in the NESSIE competition. 10441da177e4SLinus Torvalds 10451da177e4SLinus Torvalds See also: 10466d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 10476d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 10481da177e4SLinus Torvalds 1049584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1050584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1051b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1052e2ee95b8SHye-Shik Chang help 1053584fffc8SSebastian Siewior ARC4 cipher algorithm. 1054e2ee95b8SHye-Shik Chang 1055584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1056584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1057584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1058584fffc8SSebastian Siewior weakness of the algorithm. 1059584fffc8SSebastian Siewior 1060584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1061584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1062584fffc8SSebastian Siewior select CRYPTO_ALGAPI 106352ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1064584fffc8SSebastian Siewior help 1065584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1066584fffc8SSebastian Siewior 1067584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1068584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1069584fffc8SSebastian Siewior designed for use on "large microprocessors". 1070e2ee95b8SHye-Shik Chang 1071e2ee95b8SHye-Shik Chang See also: 1072584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1073584fffc8SSebastian Siewior 107452ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 107552ba867cSJussi Kivilinna tristate 107652ba867cSJussi Kivilinna help 107752ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 107852ba867cSJussi Kivilinna generic c and the assembler implementations. 107952ba867cSJussi Kivilinna 108052ba867cSJussi Kivilinna See also: 108152ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 108252ba867cSJussi Kivilinna 108364b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 108464b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1085f21a7c19SAl Viro depends on X86 && 64BIT 108664b94ceaSJussi Kivilinna select CRYPTO_ALGAPI 108764b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 108864b94ceaSJussi Kivilinna help 108964b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 109064b94ceaSJussi Kivilinna 109164b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 109264b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 109364b94ceaSJussi Kivilinna designed for use on "large microprocessors". 109464b94ceaSJussi Kivilinna 109564b94ceaSJussi Kivilinna See also: 109664b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 109764b94ceaSJussi Kivilinna 1098584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1099584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1100584fffc8SSebastian Siewior depends on CRYPTO 1101584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1102584fffc8SSebastian Siewior help 1103584fffc8SSebastian Siewior Camellia cipher algorithms module. 1104584fffc8SSebastian Siewior 1105584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1106584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1107584fffc8SSebastian Siewior 1108584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1109584fffc8SSebastian Siewior 1110584fffc8SSebastian Siewior See also: 1111584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1112584fffc8SSebastian Siewior 11130b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11140b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1115f21a7c19SAl Viro depends on X86 && 64BIT 11160b95ec56SJussi Kivilinna depends on CRYPTO 11170b95ec56SJussi Kivilinna select CRYPTO_ALGAPI 1118964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11190b95ec56SJussi Kivilinna select CRYPTO_LRW 11200b95ec56SJussi Kivilinna select CRYPTO_XTS 11210b95ec56SJussi Kivilinna help 11220b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11230b95ec56SJussi Kivilinna 11240b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11250b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11260b95ec56SJussi Kivilinna 11270b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11280b95ec56SJussi Kivilinna 11290b95ec56SJussi Kivilinna See also: 11300b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11310b95ec56SJussi Kivilinna 1132d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1133d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1134d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1135d9b1d2e7SJussi Kivilinna depends on CRYPTO 1136d9b1d2e7SJussi Kivilinna select CRYPTO_ALGAPI 1137d9b1d2e7SJussi Kivilinna select CRYPTO_CRYPTD 1138801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1139d9b1d2e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1140d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1141d9b1d2e7SJussi Kivilinna select CRYPTO_LRW 1142d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1143d9b1d2e7SJussi Kivilinna help 1144d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1145d9b1d2e7SJussi Kivilinna 1146d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1147d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1148d9b1d2e7SJussi Kivilinna 1149d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1150d9b1d2e7SJussi Kivilinna 1151d9b1d2e7SJussi Kivilinna See also: 1152d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1153d9b1d2e7SJussi Kivilinna 1154f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1155f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1156f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1157f3f935a7SJussi Kivilinna depends on CRYPTO 1158f3f935a7SJussi Kivilinna select CRYPTO_ALGAPI 1159f3f935a7SJussi Kivilinna select CRYPTO_CRYPTD 1160801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1161f3f935a7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1162f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1163f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1164f3f935a7SJussi Kivilinna select CRYPTO_LRW 1165f3f935a7SJussi Kivilinna select CRYPTO_XTS 1166f3f935a7SJussi Kivilinna help 1167f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1168f3f935a7SJussi Kivilinna 1169f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1170f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1171f3f935a7SJussi Kivilinna 1172f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1173f3f935a7SJussi Kivilinna 1174f3f935a7SJussi Kivilinna See also: 1175f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1176f3f935a7SJussi Kivilinna 117781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 117881658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 117981658ad0SDavid S. Miller depends on SPARC64 118081658ad0SDavid S. Miller depends on CRYPTO 118181658ad0SDavid S. Miller select CRYPTO_ALGAPI 118281658ad0SDavid S. Miller help 118381658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 118481658ad0SDavid S. Miller 118581658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 118681658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 118781658ad0SDavid S. Miller 118881658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 118981658ad0SDavid S. Miller 119081658ad0SDavid S. Miller See also: 119181658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 119281658ad0SDavid S. Miller 1193044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1194044ab525SJussi Kivilinna tristate 1195044ab525SJussi Kivilinna help 1196044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1197044ab525SJussi Kivilinna generic c and the assembler implementations. 1198044ab525SJussi Kivilinna 1199584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1200584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1201584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1202044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1203584fffc8SSebastian Siewior help 1204584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1205584fffc8SSebastian Siewior described in RFC2144. 1206584fffc8SSebastian Siewior 12074d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12084d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12094d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12104d6d6a2cSJohannes Goetzfried select CRYPTO_ALGAPI 12114d6d6a2cSJohannes Goetzfried select CRYPTO_CRYPTD 1212801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1213044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12144d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12154d6d6a2cSJohannes Goetzfried help 12164d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12174d6d6a2cSJohannes Goetzfried described in RFC2144. 12184d6d6a2cSJohannes Goetzfried 12194d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12204d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12214d6d6a2cSJohannes Goetzfried 1222584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1223584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1224584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1225044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1226584fffc8SSebastian Siewior help 1227584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1228584fffc8SSebastian Siewior described in RFC2612. 1229584fffc8SSebastian Siewior 12304ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12314ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12324ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12334ea1277dSJohannes Goetzfried select CRYPTO_ALGAPI 12344ea1277dSJohannes Goetzfried select CRYPTO_CRYPTD 1235801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 12364ea1277dSJohannes Goetzfried select CRYPTO_GLUE_HELPER_X86 1237044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12384ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12394ea1277dSJohannes Goetzfried select CRYPTO_LRW 12404ea1277dSJohannes Goetzfried select CRYPTO_XTS 12414ea1277dSJohannes Goetzfried help 12424ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12434ea1277dSJohannes Goetzfried described in RFC2612. 12444ea1277dSJohannes Goetzfried 12454ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12464ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12474ea1277dSJohannes Goetzfried 1248584fffc8SSebastian Siewiorconfig CRYPTO_DES 1249584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1250584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1251584fffc8SSebastian Siewior help 1252584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1253584fffc8SSebastian Siewior 1254c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1255c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 125697da37b3SDave Jones depends on SPARC64 1257c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1258c5aac2dfSDavid S. Miller select CRYPTO_DES 1259c5aac2dfSDavid S. Miller help 1260c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1261c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1262c5aac2dfSDavid S. Miller 12636574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 12646574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 12656574e6c6SJussi Kivilinna depends on X86 && 64BIT 12666574e6c6SJussi Kivilinna select CRYPTO_ALGAPI 12676574e6c6SJussi Kivilinna select CRYPTO_DES 12686574e6c6SJussi Kivilinna help 12696574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 12706574e6c6SJussi Kivilinna 12716574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 12726574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 12736574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 12746574e6c6SJussi Kivilinna one that processes three blocks parallel. 12756574e6c6SJussi Kivilinna 1276584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1277584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1278584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1279584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1280584fffc8SSebastian Siewior help 1281584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1282584fffc8SSebastian Siewior 1283584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1284584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1285584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1286584fffc8SSebastian Siewior help 1287584fffc8SSebastian Siewior Khazad cipher algorithm. 1288584fffc8SSebastian Siewior 1289584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1290584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1291584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1292584fffc8SSebastian Siewior 1293584fffc8SSebastian Siewior See also: 12946d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1295e2ee95b8SHye-Shik Chang 12962407d608STan Swee Hengconfig CRYPTO_SALSA20 12973b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 12982407d608STan Swee Heng select CRYPTO_BLKCIPHER 12992407d608STan Swee Heng help 13002407d608STan Swee Heng Salsa20 stream cipher algorithm. 13012407d608STan Swee Heng 13022407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13032407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13042407d608STan Swee Heng 13052407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13062407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13071da177e4SLinus Torvalds 1308974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13093b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1310974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1311974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1312974e4b75STan Swee Heng help 1313974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1314974e4b75STan Swee Heng 1315974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1316974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1317974e4b75STan Swee Heng 1318974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1319974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1320974e4b75STan Swee Heng 13219a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13223b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13239a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13249a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 13259a7dafbbSTan Swee Heng help 13269a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13279a7dafbbSTan Swee Heng 13289a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13299a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13309a7dafbbSTan Swee Heng 13319a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13329a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13339a7dafbbSTan Swee Heng 1334c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1335c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1336c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1337c08d0e64SMartin Willi help 1338c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1339c08d0e64SMartin Willi 1340c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1341c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1342c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1343c08d0e64SMartin Willi 1344c08d0e64SMartin Willi See also: 1345c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1346c08d0e64SMartin Willi 1347c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13483d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1349c9320b6dSMartin Willi depends on X86 && 64BIT 1350c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1351c9320b6dSMartin Willi select CRYPTO_CHACHA20 1352c9320b6dSMartin Willi help 1353c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1354c9320b6dSMartin Willi 1355c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1356c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1357c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1358c9320b6dSMartin Willi 1359c9320b6dSMartin Willi See also: 1360c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1361c9320b6dSMartin Willi 1362584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1363584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1364584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1365584fffc8SSebastian Siewior help 1366584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1367584fffc8SSebastian Siewior 1368584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1369584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1370584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1371584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1372584fffc8SSebastian Siewior 1373584fffc8SSebastian Siewior See also: 1374584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1375584fffc8SSebastian Siewior 1376584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1377584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1378584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1379584fffc8SSebastian Siewior help 1380584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1381584fffc8SSebastian Siewior 1382584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1383584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1384584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1385584fffc8SSebastian Siewior 1386584fffc8SSebastian Siewior See also: 1387584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1388584fffc8SSebastian Siewior 1389937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1390937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1391937c30d7SJussi Kivilinna depends on X86 && 64BIT 1392937c30d7SJussi Kivilinna select CRYPTO_ALGAPI 1393341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1394801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1395596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1396937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1397feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1398feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1399937c30d7SJussi Kivilinna help 1400937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1401937c30d7SJussi Kivilinna 1402937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1403937c30d7SJussi Kivilinna of 8 bits. 1404937c30d7SJussi Kivilinna 14051e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1406937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1407937c30d7SJussi Kivilinna 1408937c30d7SJussi Kivilinna See also: 1409937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1410937c30d7SJussi Kivilinna 1411251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1412251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1413251496dbSJussi Kivilinna depends on X86 && !64BIT 1414251496dbSJussi Kivilinna select CRYPTO_ALGAPI 1415341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1416801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1417596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1418251496dbSJussi Kivilinna select CRYPTO_SERPENT 1419feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1420feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1421251496dbSJussi Kivilinna help 1422251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1423251496dbSJussi Kivilinna 1424251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1425251496dbSJussi Kivilinna of 8 bits. 1426251496dbSJussi Kivilinna 1427251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1428251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1429251496dbSJussi Kivilinna 1430251496dbSJussi Kivilinna See also: 1431251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1432251496dbSJussi Kivilinna 14337efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14347efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14357efe4076SJohannes Goetzfried depends on X86 && 64BIT 14367efe4076SJohannes Goetzfried select CRYPTO_ALGAPI 14377efe4076SJohannes Goetzfried select CRYPTO_CRYPTD 1438801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 14391d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14407efe4076SJohannes Goetzfried select CRYPTO_SERPENT 14417efe4076SJohannes Goetzfried select CRYPTO_LRW 14427efe4076SJohannes Goetzfried select CRYPTO_XTS 14437efe4076SJohannes Goetzfried help 14447efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14457efe4076SJohannes Goetzfried 14467efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14477efe4076SJohannes Goetzfried of 8 bits. 14487efe4076SJohannes Goetzfried 14497efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14507efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14517efe4076SJohannes Goetzfried 14527efe4076SJohannes Goetzfried See also: 14537efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14547efe4076SJohannes Goetzfried 145556d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 145656d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 145756d76c96SJussi Kivilinna depends on X86 && 64BIT 145856d76c96SJussi Kivilinna select CRYPTO_ALGAPI 145956d76c96SJussi Kivilinna select CRYPTO_CRYPTD 1460801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 146156d76c96SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 146256d76c96SJussi Kivilinna select CRYPTO_SERPENT 146356d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 146456d76c96SJussi Kivilinna select CRYPTO_LRW 146556d76c96SJussi Kivilinna select CRYPTO_XTS 146656d76c96SJussi Kivilinna help 146756d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 146856d76c96SJussi Kivilinna 146956d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 147056d76c96SJussi Kivilinna of 8 bits. 147156d76c96SJussi Kivilinna 147256d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 147356d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 147456d76c96SJussi Kivilinna 147556d76c96SJussi Kivilinna See also: 147656d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 147756d76c96SJussi Kivilinna 1478584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1479584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1480584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1481584fffc8SSebastian Siewior help 1482584fffc8SSebastian Siewior TEA cipher algorithm. 1483584fffc8SSebastian Siewior 1484584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1485584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1486584fffc8SSebastian Siewior little memory. 1487584fffc8SSebastian Siewior 1488584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1489584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1490584fffc8SSebastian Siewior in the TEA algorithm. 1491584fffc8SSebastian Siewior 1492584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1493584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1494584fffc8SSebastian Siewior 1495584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1496584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1497584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1498584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1499584fffc8SSebastian Siewior help 1500584fffc8SSebastian Siewior Twofish cipher algorithm. 1501584fffc8SSebastian Siewior 1502584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1503584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1504584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1505584fffc8SSebastian Siewior bits. 1506584fffc8SSebastian Siewior 1507584fffc8SSebastian Siewior See also: 1508584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1509584fffc8SSebastian Siewior 1510584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1511584fffc8SSebastian Siewior tristate 1512584fffc8SSebastian Siewior help 1513584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1514584fffc8SSebastian Siewior generic c and the assembler implementations. 1515584fffc8SSebastian Siewior 1516584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1517584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1518584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1519584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1520584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1521584fffc8SSebastian Siewior help 1522584fffc8SSebastian Siewior Twofish cipher algorithm. 1523584fffc8SSebastian Siewior 1524584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1525584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1526584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1527584fffc8SSebastian Siewior bits. 1528584fffc8SSebastian Siewior 1529584fffc8SSebastian Siewior See also: 1530584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1531584fffc8SSebastian Siewior 1532584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1533584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1534584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1535584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1536584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1537584fffc8SSebastian Siewior help 1538584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1539584fffc8SSebastian Siewior 1540584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1541584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1542584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1543584fffc8SSebastian Siewior bits. 1544584fffc8SSebastian Siewior 1545584fffc8SSebastian Siewior See also: 1546584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1547584fffc8SSebastian Siewior 15488280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 15498280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1550f21a7c19SAl Viro depends on X86 && 64BIT 15518280daadSJussi Kivilinna select CRYPTO_ALGAPI 15528280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 15538280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1554414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1555e7cda5d2SJussi Kivilinna select CRYPTO_LRW 1556e7cda5d2SJussi Kivilinna select CRYPTO_XTS 15578280daadSJussi Kivilinna help 15588280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 15598280daadSJussi Kivilinna 15608280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 15618280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 15628280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 15638280daadSJussi Kivilinna bits. 15648280daadSJussi Kivilinna 15658280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 15668280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 15678280daadSJussi Kivilinna 15688280daadSJussi Kivilinna See also: 15698280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 15708280daadSJussi Kivilinna 1571107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1572107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1573107778b5SJohannes Goetzfried depends on X86 && 64BIT 1574107778b5SJohannes Goetzfried select CRYPTO_ALGAPI 1575107778b5SJohannes Goetzfried select CRYPTO_CRYPTD 1576801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1577a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1578107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1579107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1580107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1581107778b5SJohannes Goetzfried select CRYPTO_LRW 1582107778b5SJohannes Goetzfried select CRYPTO_XTS 1583107778b5SJohannes Goetzfried help 1584107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1585107778b5SJohannes Goetzfried 1586107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1587107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1588107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1589107778b5SJohannes Goetzfried bits. 1590107778b5SJohannes Goetzfried 1591107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1592107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1593107778b5SJohannes Goetzfried 1594107778b5SJohannes Goetzfried See also: 1595107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1596107778b5SJohannes Goetzfried 1597584fffc8SSebastian Siewiorcomment "Compression" 1598584fffc8SSebastian Siewior 15991da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16001da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1601cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1602f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16031da177e4SLinus Torvalds select ZLIB_INFLATE 16041da177e4SLinus Torvalds select ZLIB_DEFLATE 16051da177e4SLinus Torvalds help 16061da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16071da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16081da177e4SLinus Torvalds 16091da177e4SLinus Torvalds You will most probably want this if using IPSec. 16101da177e4SLinus Torvalds 16110b77abb3SZoltan Sogorconfig CRYPTO_LZO 16120b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16130b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1614ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16150b77abb3SZoltan Sogor select LZO_COMPRESS 16160b77abb3SZoltan Sogor select LZO_DECOMPRESS 16170b77abb3SZoltan Sogor help 16180b77abb3SZoltan Sogor This is the LZO algorithm. 16190b77abb3SZoltan Sogor 162035a1fc18SSeth Jenningsconfig CRYPTO_842 162135a1fc18SSeth Jennings tristate "842 compression algorithm" 16222062c5b6SDan Streetman select CRYPTO_ALGAPI 16236a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16242062c5b6SDan Streetman select 842_COMPRESS 16252062c5b6SDan Streetman select 842_DECOMPRESS 162635a1fc18SSeth Jennings help 162735a1fc18SSeth Jennings This is the 842 algorithm. 162835a1fc18SSeth Jennings 16290ea8530dSChanho Minconfig CRYPTO_LZ4 16300ea8530dSChanho Min tristate "LZ4 compression algorithm" 16310ea8530dSChanho Min select CRYPTO_ALGAPI 16328cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16330ea8530dSChanho Min select LZ4_COMPRESS 16340ea8530dSChanho Min select LZ4_DECOMPRESS 16350ea8530dSChanho Min help 16360ea8530dSChanho Min This is the LZ4 algorithm. 16370ea8530dSChanho Min 16380ea8530dSChanho Minconfig CRYPTO_LZ4HC 16390ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16400ea8530dSChanho Min select CRYPTO_ALGAPI 164191d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16420ea8530dSChanho Min select LZ4HC_COMPRESS 16430ea8530dSChanho Min select LZ4_DECOMPRESS 16440ea8530dSChanho Min help 16450ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16460ea8530dSChanho Min 164717f0f4a4SNeil Hormancomment "Random Number Generation" 164817f0f4a4SNeil Horman 164917f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 165017f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 165117f0f4a4SNeil Horman select CRYPTO_AES 165217f0f4a4SNeil Horman select CRYPTO_RNG 165317f0f4a4SNeil Horman help 165417f0f4a4SNeil Horman This option enables the generic pseudo random number generator 165517f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 16567dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 16577dd607e8SJiri Kosina CRYPTO_FIPS is selected 165817f0f4a4SNeil Horman 1659f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1660419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1661419090c6SStephan Mueller help 1662419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1663419090c6SStephan Mueller more of the DRBG types must be selected. 1664419090c6SStephan Mueller 1665f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1666419090c6SStephan Mueller 1667419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1668401e4238SHerbert Xu bool 1669419090c6SStephan Mueller default y 1670419090c6SStephan Mueller select CRYPTO_HMAC 1671826775bbSHerbert Xu select CRYPTO_SHA256 1672419090c6SStephan Mueller 1673419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1674419090c6SStephan Mueller bool "Enable Hash DRBG" 1675826775bbSHerbert Xu select CRYPTO_SHA256 1676419090c6SStephan Mueller help 1677419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1678419090c6SStephan Mueller 1679419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1680419090c6SStephan Mueller bool "Enable CTR DRBG" 1681419090c6SStephan Mueller select CRYPTO_AES 168235591285SStephan Mueller depends on CRYPTO_CTR 1683419090c6SStephan Mueller help 1684419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1685419090c6SStephan Mueller 1686f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1687f2c89a10SHerbert Xu tristate 1688401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1689f2c89a10SHerbert Xu select CRYPTO_RNG 1690bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1691f2c89a10SHerbert Xu 1692f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1693419090c6SStephan Mueller 1694bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1695bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 16962f313e02SArnd Bergmann select CRYPTO_RNG 1697bb5530e4SStephan Mueller help 1698bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1699bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1700bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1701bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1702bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1703bb5530e4SStephan Mueller 170403c8efc1SHerbert Xuconfig CRYPTO_USER_API 170503c8efc1SHerbert Xu tristate 170603c8efc1SHerbert Xu 1707fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1708fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17097451708fSHerbert Xu depends on NET 1710fe869cdbSHerbert Xu select CRYPTO_HASH 1711fe869cdbSHerbert Xu select CRYPTO_USER_API 1712fe869cdbSHerbert Xu help 1713fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1714fe869cdbSHerbert Xu algorithms. 1715fe869cdbSHerbert Xu 17168ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17178ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17187451708fSHerbert Xu depends on NET 17198ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17208ff59090SHerbert Xu select CRYPTO_USER_API 17218ff59090SHerbert Xu help 17228ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17238ff59090SHerbert Xu key cipher algorithms. 17248ff59090SHerbert Xu 17252f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17262f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17272f375538SStephan Mueller depends on NET 17282f375538SStephan Mueller select CRYPTO_RNG 17292f375538SStephan Mueller select CRYPTO_USER_API 17302f375538SStephan Mueller help 17312f375538SStephan Mueller This option enables the user-spaces interface for random 17322f375538SStephan Mueller number generator algorithms. 17332f375538SStephan Mueller 1734b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1735b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1736b64a2d95SHerbert Xu depends on NET 1737b64a2d95SHerbert Xu select CRYPTO_AEAD 1738b64a2d95SHerbert Xu select CRYPTO_USER_API 1739b64a2d95SHerbert Xu help 1740b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1741b64a2d95SHerbert Xu cipher algorithms. 1742b64a2d95SHerbert Xu 1743ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1744ee08997fSDmitry Kasatkin bool 1745ee08997fSDmitry Kasatkin 17461da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1747964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1748cfc411e7SDavid Howellssource certs/Kconfig 17491da177e4SLinus Torvalds 1750cce9e06dSHerbert Xuendif # if CRYPTO 1751