1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139929d34caSEric Biggersif CRYPTO_MANAGER2 140929d34caSEric Biggers 141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 142326a6346SHerbert Xu bool "Disable run-time self tests" 14300ca28a5SHerbert Xu default y 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158929d34caSEric Biggersendif # if CRYPTO_MANAGER2 159929d34caSEric Biggers 160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 161e590e132SEric Biggers tristate 162584fffc8SSebastian Siewior 163584fffc8SSebastian Siewiorconfig CRYPTO_NULL 164584fffc8SSebastian Siewior tristate "Null algorithms" 165149a3971SHerbert Xu select CRYPTO_NULL2 166584fffc8SSebastian Siewior help 167584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 168584fffc8SSebastian Siewior 169149a3971SHerbert Xuconfig CRYPTO_NULL2 170dd43c4e9SHerbert Xu tristate 171149a3971SHerbert Xu select CRYPTO_ALGAPI2 172b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 173149a3971SHerbert Xu select CRYPTO_HASH2 174149a3971SHerbert Xu 1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1763b4afaf2SKees Cook tristate "Parallel crypto engine" 1773b4afaf2SKees Cook depends on SMP 1785068c7a8SSteffen Klassert select PADATA 1795068c7a8SSteffen Klassert select CRYPTO_MANAGER 1805068c7a8SSteffen Klassert select CRYPTO_AEAD 1815068c7a8SSteffen Klassert help 1825068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1835068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1845068c7a8SSteffen Klassert 185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 186584fffc8SSebastian Siewior tristate "Software async crypto daemon" 187b95bba5dSEric Biggers select CRYPTO_SKCIPHER 188b8a28251SLoc Ho select CRYPTO_HASH 189584fffc8SSebastian Siewior select CRYPTO_MANAGER 190584fffc8SSebastian Siewior help 191584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 192584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 193584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 194584fffc8SSebastian Siewior 195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 196584fffc8SSebastian Siewior tristate "Authenc support" 197584fffc8SSebastian Siewior select CRYPTO_AEAD 198b95bba5dSEric Biggers select CRYPTO_SKCIPHER 199584fffc8SSebastian Siewior select CRYPTO_MANAGER 200584fffc8SSebastian Siewior select CRYPTO_HASH 201e94c6a7aSHerbert Xu select CRYPTO_NULL 202584fffc8SSebastian Siewior help 203584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 204584fffc8SSebastian Siewior This is required for IPSec. 205584fffc8SSebastian Siewior 206584fffc8SSebastian Siewiorconfig CRYPTO_TEST 207584fffc8SSebastian Siewior tristate "Testing module" 208584fffc8SSebastian Siewior depends on m 209da7f033dSHerbert Xu select CRYPTO_MANAGER 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Quick & dirty crypto test module. 212584fffc8SSebastian Siewior 213266d0516SHerbert Xuconfig CRYPTO_SIMD 214266d0516SHerbert Xu tristate 215266d0516SHerbert Xu select CRYPTO_CRYPTD 216266d0516SHerbert Xu 217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 218596d8750SJussi Kivilinna tristate 219596d8750SJussi Kivilinna depends on X86 220b95bba5dSEric Biggers select CRYPTO_SKCIPHER 221596d8750SJussi Kivilinna 222735d37b5SBaolin Wangconfig CRYPTO_ENGINE 223735d37b5SBaolin Wang tristate 224735d37b5SBaolin Wang 2253d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2283d6228a5SVitaly Chikunov tristate "RSA algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2303d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2313d6228a5SVitaly Chikunov select MPILIB 2323d6228a5SVitaly Chikunov select ASN1 2333d6228a5SVitaly Chikunov help 2343d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2353d6228a5SVitaly Chikunov 2363d6228a5SVitaly Chikunovconfig CRYPTO_DH 2373d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2383d6228a5SVitaly Chikunov select CRYPTO_KPP 2393d6228a5SVitaly Chikunov select MPILIB 2403d6228a5SVitaly Chikunov help 2413d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2423d6228a5SVitaly Chikunov 2434a2289daSVitaly Chikunovconfig CRYPTO_ECC 2444a2289daSVitaly Chikunov tristate 2454a2289daSVitaly Chikunov 2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2473d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2484a2289daSVitaly Chikunov select CRYPTO_ECC 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2513d6228a5SVitaly Chikunov help 2523d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2533d6228a5SVitaly Chikunov 2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2550d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2560d7a7864SVitaly Chikunov select CRYPTO_ECC 2570d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2580d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2591036633eSVitaly Chikunov select OID_REGISTRY 2601036633eSVitaly Chikunov select ASN1 2610d7a7864SVitaly Chikunov help 2620d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2630d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2640d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2650d7a7864SVitaly Chikunov is implemented. 2660d7a7864SVitaly Chikunov 267584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 268584fffc8SSebastian Siewior 269584fffc8SSebastian Siewiorconfig CRYPTO_CCM 270584fffc8SSebastian Siewior tristate "CCM support" 271584fffc8SSebastian Siewior select CRYPTO_CTR 272f15f05b0SArd Biesheuvel select CRYPTO_HASH 273584fffc8SSebastian Siewior select CRYPTO_AEAD 274c8a3315aSEric Biggers select CRYPTO_MANAGER 275584fffc8SSebastian Siewior help 276584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 277584fffc8SSebastian Siewior 278584fffc8SSebastian Siewiorconfig CRYPTO_GCM 279584fffc8SSebastian Siewior tristate "GCM/GMAC support" 280584fffc8SSebastian Siewior select CRYPTO_CTR 281584fffc8SSebastian Siewior select CRYPTO_AEAD 2829382d97aSHuang Ying select CRYPTO_GHASH 2839489667dSJussi Kivilinna select CRYPTO_NULL 284c8a3315aSEric Biggers select CRYPTO_MANAGER 285584fffc8SSebastian Siewior help 286584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 287584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 288584fffc8SSebastian Siewior 28971ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29071ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29171ebc4d1SMartin Willi select CRYPTO_CHACHA20 29271ebc4d1SMartin Willi select CRYPTO_POLY1305 29371ebc4d1SMartin Willi select CRYPTO_AEAD 294c8a3315aSEric Biggers select CRYPTO_MANAGER 29571ebc4d1SMartin Willi help 29671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 29771ebc4d1SMartin Willi 29871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30071ebc4d1SMartin Willi IETF protocols. 30171ebc4d1SMartin Willi 302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 303f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 304f606a88eSOndrej Mosnacek select CRYPTO_AEAD 305f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 306f606a88eSOndrej Mosnacek help 307f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 308f606a88eSOndrej Mosnacek 309a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 310a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 311a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 31283053677SArd Biesheuvel depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800 313a4397635SArd Biesheuvel default y 314a4397635SArd Biesheuvel 3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3161d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3171d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3181d373d4eSOndrej Mosnacek select CRYPTO_AEAD 319de272ca7SEric Biggers select CRYPTO_SIMD 3201d373d4eSOndrej Mosnacek help 3214e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3221d373d4eSOndrej Mosnacek 323584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 324584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 325584fffc8SSebastian Siewior select CRYPTO_AEAD 326b95bba5dSEric Biggers select CRYPTO_SKCIPHER 327856e3f40SHerbert Xu select CRYPTO_NULL 328401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 329c8a3315aSEric Biggers select CRYPTO_MANAGER 330584fffc8SSebastian Siewior help 331584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 332584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 333584fffc8SSebastian Siewior 334a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 335a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 336a10f554fSHerbert Xu select CRYPTO_AEAD 337a10f554fSHerbert Xu select CRYPTO_NULL 338401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 339c8a3315aSEric Biggers select CRYPTO_MANAGER 340a10f554fSHerbert Xu help 341a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 342a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 343a10f554fSHerbert Xu algorithm for CBC. 344a10f554fSHerbert Xu 345584fffc8SSebastian Siewiorcomment "Block modes" 346584fffc8SSebastian Siewior 347584fffc8SSebastian Siewiorconfig CRYPTO_CBC 348584fffc8SSebastian Siewior tristate "CBC support" 349b95bba5dSEric Biggers select CRYPTO_SKCIPHER 350584fffc8SSebastian Siewior select CRYPTO_MANAGER 351584fffc8SSebastian Siewior help 352584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 353584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 354584fffc8SSebastian Siewior 355a7d85e06SJames Bottomleyconfig CRYPTO_CFB 356a7d85e06SJames Bottomley tristate "CFB support" 357b95bba5dSEric Biggers select CRYPTO_SKCIPHER 358a7d85e06SJames Bottomley select CRYPTO_MANAGER 359a7d85e06SJames Bottomley help 360a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 361a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 362a7d85e06SJames Bottomley 363584fffc8SSebastian Siewiorconfig CRYPTO_CTR 364584fffc8SSebastian Siewior tristate "CTR support" 365b95bba5dSEric Biggers select CRYPTO_SKCIPHER 366584fffc8SSebastian Siewior select CRYPTO_SEQIV 367584fffc8SSebastian Siewior select CRYPTO_MANAGER 368584fffc8SSebastian Siewior help 369584fffc8SSebastian Siewior CTR: Counter mode 370584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 371584fffc8SSebastian Siewior 372584fffc8SSebastian Siewiorconfig CRYPTO_CTS 373584fffc8SSebastian Siewior tristate "CTS support" 374b95bba5dSEric Biggers select CRYPTO_SKCIPHER 375c8a3315aSEric Biggers select CRYPTO_MANAGER 376584fffc8SSebastian Siewior help 377584fffc8SSebastian Siewior CTS: Cipher Text Stealing 378584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 379ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 380ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 381ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 382584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 383584fffc8SSebastian Siewior for AES encryption. 384584fffc8SSebastian Siewior 385ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 386ecd6d5c9SGilad Ben-Yossef 387584fffc8SSebastian Siewiorconfig CRYPTO_ECB 388584fffc8SSebastian Siewior tristate "ECB support" 389b95bba5dSEric Biggers select CRYPTO_SKCIPHER 390584fffc8SSebastian Siewior select CRYPTO_MANAGER 391584fffc8SSebastian Siewior help 392584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 393584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 394584fffc8SSebastian Siewior the input block by block. 395584fffc8SSebastian Siewior 396584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3972470a2b2SJussi Kivilinna tristate "LRW support" 398b95bba5dSEric Biggers select CRYPTO_SKCIPHER 399584fffc8SSebastian Siewior select CRYPTO_MANAGER 400584fffc8SSebastian Siewior select CRYPTO_GF128MUL 401584fffc8SSebastian Siewior help 402584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 403584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 404584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 405584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 406584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 407584fffc8SSebastian Siewior 408e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 409e497c518SGilad Ben-Yossef tristate "OFB support" 410b95bba5dSEric Biggers select CRYPTO_SKCIPHER 411e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 412e497c518SGilad Ben-Yossef help 413e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 414e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 415e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 416e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 417e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 418e497c518SGilad Ben-Yossef normally even when applied before encryption. 419e497c518SGilad Ben-Yossef 420584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 421584fffc8SSebastian Siewior tristate "PCBC support" 422b95bba5dSEric Biggers select CRYPTO_SKCIPHER 423584fffc8SSebastian Siewior select CRYPTO_MANAGER 424584fffc8SSebastian Siewior help 425584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 426584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 427584fffc8SSebastian Siewior 428584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4295bcf8e6dSJussi Kivilinna tristate "XTS support" 430b95bba5dSEric Biggers select CRYPTO_SKCIPHER 431584fffc8SSebastian Siewior select CRYPTO_MANAGER 43212cb3a1cSMilan Broz select CRYPTO_ECB 433584fffc8SSebastian Siewior help 434584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 435584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 436584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 437584fffc8SSebastian Siewior 4381c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4391c49678eSStephan Mueller tristate "Key wrapping support" 440b95bba5dSEric Biggers select CRYPTO_SKCIPHER 441c8a3315aSEric Biggers select CRYPTO_MANAGER 4421c49678eSStephan Mueller help 4431c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4441c49678eSStephan Mueller padding. 4451c49678eSStephan Mueller 44626609a21SEric Biggersconfig CRYPTO_NHPOLY1305 44726609a21SEric Biggers tristate 44826609a21SEric Biggers select CRYPTO_HASH 44948ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 45026609a21SEric Biggers 451012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 452012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 453012c8238SEric Biggers depends on X86 && 64BIT 454012c8238SEric Biggers select CRYPTO_NHPOLY1305 455012c8238SEric Biggers help 456012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 457012c8238SEric Biggers Adiantum encryption mode. 458012c8238SEric Biggers 4590f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4600f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4610f961f9fSEric Biggers depends on X86 && 64BIT 4620f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4630f961f9fSEric Biggers help 4640f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4650f961f9fSEric Biggers Adiantum encryption mode. 4660f961f9fSEric Biggers 467059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 468059c2a4dSEric Biggers tristate "Adiantum support" 469059c2a4dSEric Biggers select CRYPTO_CHACHA20 47048ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 471059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 472c8a3315aSEric Biggers select CRYPTO_MANAGER 473059c2a4dSEric Biggers help 474059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 475059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 476059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 477059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 478059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 479059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 480059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 481059c2a4dSEric Biggers AES-XTS. 482059c2a4dSEric Biggers 483059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 484059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 485059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 486059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 487059c2a4dSEric Biggers security than XTS, subject to the security bound. 488059c2a4dSEric Biggers 489059c2a4dSEric Biggers If unsure, say N. 490059c2a4dSEric Biggers 491be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 492be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 493be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 494be1eb7f7SArd Biesheuvel help 495be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 496be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 497be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 498be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 499be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 500be1eb7f7SArd Biesheuvel encryption. 501be1eb7f7SArd Biesheuvel 502be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 503be1eb7f7SArd Biesheuvel instantiated either as a skcipher or as a aead (depending on the 504be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 505be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 506be1eb7f7SArd Biesheuvel ESSIV to the input IV. Note that in the aead case, it is assumed 507be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 508be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 509be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 510be1eb7f7SArd Biesheuvel 511be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 512be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 513be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 514be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 515be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 516be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 517be1eb7f7SArd Biesheuvel block encryption) 518be1eb7f7SArd Biesheuvel 519584fffc8SSebastian Siewiorcomment "Hash modes" 520584fffc8SSebastian Siewior 52193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 52293b5e86aSJussi Kivilinna tristate "CMAC support" 52393b5e86aSJussi Kivilinna select CRYPTO_HASH 52493b5e86aSJussi Kivilinna select CRYPTO_MANAGER 52593b5e86aSJussi Kivilinna help 52693b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 52793b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 52893b5e86aSJussi Kivilinna 52993b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 53093b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 53193b5e86aSJussi Kivilinna 5321da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5338425165dSHerbert Xu tristate "HMAC support" 5340796ae06SHerbert Xu select CRYPTO_HASH 53543518407SHerbert Xu select CRYPTO_MANAGER 5361da177e4SLinus Torvalds help 5371da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5381da177e4SLinus Torvalds This is required for IPSec. 5391da177e4SLinus Torvalds 540333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 541333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 542333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 543333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 544333b0d7eSKazunori MIYAZAWA help 545333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 546333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 547333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 548333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 549333b0d7eSKazunori MIYAZAWA 550f1939f7cSShane Wangconfig CRYPTO_VMAC 551f1939f7cSShane Wang tristate "VMAC support" 552f1939f7cSShane Wang select CRYPTO_HASH 553f1939f7cSShane Wang select CRYPTO_MANAGER 554f1939f7cSShane Wang help 555f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 556f1939f7cSShane Wang very high speed on 64-bit architectures. 557f1939f7cSShane Wang 558f1939f7cSShane Wang See also: 559f1939f7cSShane Wang <http://fastcrypto.org/vmac> 560f1939f7cSShane Wang 561584fffc8SSebastian Siewiorcomment "Digest" 562584fffc8SSebastian Siewior 563584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 564584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5655773a3e6SHerbert Xu select CRYPTO_HASH 5666a0962b2SDarrick J. Wong select CRC32 5671da177e4SLinus Torvalds help 568584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 569584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 57069c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5711da177e4SLinus Torvalds 5728cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5738cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5748cb51ba8SAustin Zhang depends on X86 5758cb51ba8SAustin Zhang select CRYPTO_HASH 5768cb51ba8SAustin Zhang help 5778cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5788cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5798cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5808cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5818cb51ba8SAustin Zhang gain performance compared with software implementation. 5828cb51ba8SAustin Zhang Module will be crc32c-intel. 5838cb51ba8SAustin Zhang 5847cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5856dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 586c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5876dd7a82cSAnton Blanchard select CRYPTO_HASH 5886dd7a82cSAnton Blanchard select CRC32 5896dd7a82cSAnton Blanchard help 5906dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 5916dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 5926dd7a82cSAnton Blanchard and newer processors for improved performance. 5936dd7a82cSAnton Blanchard 5946dd7a82cSAnton Blanchard 595442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 596442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 597442a7c40SDavid S. Miller depends on SPARC64 598442a7c40SDavid S. Miller select CRYPTO_HASH 599442a7c40SDavid S. Miller select CRC32 600442a7c40SDavid S. Miller help 601442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 602442a7c40SDavid S. Miller when available. 603442a7c40SDavid S. Miller 60478c37d19SAlexander Boykoconfig CRYPTO_CRC32 60578c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 60678c37d19SAlexander Boyko select CRYPTO_HASH 60778c37d19SAlexander Boyko select CRC32 60878c37d19SAlexander Boyko help 60978c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 61078c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 61178c37d19SAlexander Boyko 61278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 61378c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 61478c37d19SAlexander Boyko depends on X86 61578c37d19SAlexander Boyko select CRYPTO_HASH 61678c37d19SAlexander Boyko select CRC32 61778c37d19SAlexander Boyko help 61878c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 61978c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 62078c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 621af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 62278c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 62378c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 62478c37d19SAlexander Boyko 6254a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6264a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6274a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6284a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6294a5dc51eSMarcin Nowakowski help 6304a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6314a5dc51eSMarcin Nowakowski instructions, when available. 6324a5dc51eSMarcin Nowakowski 6334a5dc51eSMarcin Nowakowski 63467882e76SNikolay Borisovconfig CRYPTO_XXHASH 63567882e76SNikolay Borisov tristate "xxHash hash algorithm" 63667882e76SNikolay Borisov select CRYPTO_HASH 63767882e76SNikolay Borisov select XXHASH 63867882e76SNikolay Borisov help 63967882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 64067882e76SNikolay Borisov speeds close to RAM limits. 64167882e76SNikolay Borisov 64291d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 64391d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 64491d68933SDavid Sterba select CRYPTO_HASH 64591d68933SDavid Sterba help 64691d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 64791d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 64891d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 64991d68933SDavid Sterba 65091d68933SDavid Sterba This module provides the following algorithms: 65191d68933SDavid Sterba 65291d68933SDavid Sterba - blake2b-160 65391d68933SDavid Sterba - blake2b-256 65491d68933SDavid Sterba - blake2b-384 65591d68933SDavid Sterba - blake2b-512 65691d68933SDavid Sterba 65791d68933SDavid Sterba See https://blake2.net for further information. 65891d68933SDavid Sterba 65968411521SHerbert Xuconfig CRYPTO_CRCT10DIF 66068411521SHerbert Xu tristate "CRCT10DIF algorithm" 66168411521SHerbert Xu select CRYPTO_HASH 66268411521SHerbert Xu help 66368411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 66468411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 66568411521SHerbert Xu transforms to be used if they are available. 66668411521SHerbert Xu 66768411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 66868411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 66968411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 67068411521SHerbert Xu select CRYPTO_HASH 67168411521SHerbert Xu help 67268411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 67368411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 67468411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 675af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 67668411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 67768411521SHerbert Xu 678b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 679b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 680b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 681b01df1c1SDaniel Axtens select CRYPTO_HASH 682b01df1c1SDaniel Axtens help 683b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 684b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 685b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 686b01df1c1SDaniel Axtens 687146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 688146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 689146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 690146c8688SDaniel Axtens help 691146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 692146c8688SDaniel Axtens POWER8 vpmsum instructions. 693146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 694146c8688SDaniel Axtens 6952cdc6899SHuang Yingconfig CRYPTO_GHASH 6968dfa20fcSEric Biggers tristate "GHASH hash function" 6972cdc6899SHuang Ying select CRYPTO_GF128MUL 698578c60fbSArnd Bergmann select CRYPTO_HASH 6992cdc6899SHuang Ying help 7008dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7018dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7022cdc6899SHuang Ying 703f979e014SMartin Williconfig CRYPTO_POLY1305 704f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 705578c60fbSArnd Bergmann select CRYPTO_HASH 70648ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 707f979e014SMartin Willi help 708f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 709f979e014SMartin Willi 710f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 711f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 712f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 713f979e014SMartin Willi 714c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 715b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 716c70f4abeSMartin Willi depends on X86 && 64BIT 7171b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 718*f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 719c70f4abeSMartin Willi help 720c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 721c70f4abeSMartin Willi 722c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 723c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 724c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 725c70f4abeSMartin Willi instructions. 726c70f4abeSMartin Willi 7271da177e4SLinus Torvaldsconfig CRYPTO_MD4 7281da177e4SLinus Torvalds tristate "MD4 digest algorithm" 729808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7301da177e4SLinus Torvalds help 7311da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7321da177e4SLinus Torvalds 7331da177e4SLinus Torvaldsconfig CRYPTO_MD5 7341da177e4SLinus Torvalds tristate "MD5 digest algorithm" 73514b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7361da177e4SLinus Torvalds help 7371da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7381da177e4SLinus Torvalds 739d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 740d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 741d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 742d69e75deSAaro Koskinen select CRYPTO_MD5 743d69e75deSAaro Koskinen select CRYPTO_HASH 744d69e75deSAaro Koskinen help 745d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 746d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 747d69e75deSAaro Koskinen 748e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 749e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 750e8e59953SMarkus Stockhausen depends on PPC 751e8e59953SMarkus Stockhausen select CRYPTO_HASH 752e8e59953SMarkus Stockhausen help 753e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 754e8e59953SMarkus Stockhausen in PPC assembler. 755e8e59953SMarkus Stockhausen 756fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 757fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 758fa4dfedcSDavid S. Miller depends on SPARC64 759fa4dfedcSDavid S. Miller select CRYPTO_MD5 760fa4dfedcSDavid S. Miller select CRYPTO_HASH 761fa4dfedcSDavid S. Miller help 762fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 763fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 764fa4dfedcSDavid S. Miller 765584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 766584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 76719e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 768584fffc8SSebastian Siewior help 769584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 770584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 771584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 772584fffc8SSebastian Siewior of the algorithm. 773584fffc8SSebastian Siewior 77482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 77582798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7767c4468bcSHerbert Xu select CRYPTO_HASH 77782798f90SAdrian-Ken Rueegsegger help 77882798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 77982798f90SAdrian-Ken Rueegsegger 78082798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 78135ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 78282798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 78382798f90SAdrian-Ken Rueegsegger 78482798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7856d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 78682798f90SAdrian-Ken Rueegsegger 78782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 78882798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 789e5835fbaSHerbert Xu select CRYPTO_HASH 79082798f90SAdrian-Ken Rueegsegger help 79182798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 79282798f90SAdrian-Ken Rueegsegger 79382798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 79482798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 795b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 796b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 79782798f90SAdrian-Ken Rueegsegger 798b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 799b6d44341SAdrian Bunk against RIPEMD-160. 800534fe2c1SAdrian-Ken Rueegsegger 801534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8026d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 803534fe2c1SAdrian-Ken Rueegsegger 804534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 805534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 806d8a5e2e9SHerbert Xu select CRYPTO_HASH 807534fe2c1SAdrian-Ken Rueegsegger help 808b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 809b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 810b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 811b6d44341SAdrian Bunk (than RIPEMD-128). 812534fe2c1SAdrian-Ken Rueegsegger 813534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8146d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 815534fe2c1SAdrian-Ken Rueegsegger 816534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 817534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8183b8efb4cSHerbert Xu select CRYPTO_HASH 819534fe2c1SAdrian-Ken Rueegsegger help 820b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 821b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 822b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 823b6d44341SAdrian Bunk (than RIPEMD-160). 824534fe2c1SAdrian-Ken Rueegsegger 82582798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8266d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 82782798f90SAdrian-Ken Rueegsegger 8281da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8291da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 83054ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8311da177e4SLinus Torvalds help 8321da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8331da177e4SLinus Torvalds 83466be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 835e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 83666be8951SMathias Krause depends on X86 && 64BIT 83766be8951SMathias Krause select CRYPTO_SHA1 83866be8951SMathias Krause select CRYPTO_HASH 83966be8951SMathias Krause help 84066be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 84166be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 842e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 843e38b6b7fStim when available. 84466be8951SMathias Krause 8458275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 846e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8478275d1aaSTim Chen depends on X86 && 64BIT 8488275d1aaSTim Chen select CRYPTO_SHA256 8498275d1aaSTim Chen select CRYPTO_HASH 8508275d1aaSTim Chen help 8518275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8528275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8538275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 854e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 855e38b6b7fStim Instructions) when available. 8568275d1aaSTim Chen 85787de4579STim Chenconfig CRYPTO_SHA512_SSSE3 85887de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 85987de4579STim Chen depends on X86 && 64BIT 86087de4579STim Chen select CRYPTO_SHA512 86187de4579STim Chen select CRYPTO_HASH 86287de4579STim Chen help 86387de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 86487de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 86587de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 86687de4579STim Chen version 2 (AVX2) instructions, when available. 86787de4579STim Chen 868efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 869efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 870efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 871efdb6f6eSAaro Koskinen select CRYPTO_SHA1 872efdb6f6eSAaro Koskinen select CRYPTO_HASH 873efdb6f6eSAaro Koskinen help 874efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 875efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 876efdb6f6eSAaro Koskinen 8774ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8784ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8794ff28d4cSDavid S. Miller depends on SPARC64 8804ff28d4cSDavid S. Miller select CRYPTO_SHA1 8814ff28d4cSDavid S. Miller select CRYPTO_HASH 8824ff28d4cSDavid S. Miller help 8834ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8844ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 8854ff28d4cSDavid S. Miller 886323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 887323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 888323a6bf1SMichael Ellerman depends on PPC 889323a6bf1SMichael Ellerman help 890323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 891323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 892323a6bf1SMichael Ellerman 893d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 894d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 895d9850fc5SMarkus Stockhausen depends on PPC && SPE 896d9850fc5SMarkus Stockhausen help 897d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 898d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 899d9850fc5SMarkus Stockhausen 9001da177e4SLinus Torvaldsconfig CRYPTO_SHA256 901cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 90250e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 90308c327f6SHans de Goede select CRYPTO_LIB_SHA256 9041da177e4SLinus Torvalds help 9051da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9061da177e4SLinus Torvalds 9071da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9081da177e4SLinus Torvalds security against collision attacks. 9091da177e4SLinus Torvalds 910cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 911cd12fb90SJonathan Lynch of security against collision attacks. 912cd12fb90SJonathan Lynch 9132ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9142ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9152ecc1e95SMarkus Stockhausen depends on PPC && SPE 9162ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9172ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9182ecc1e95SMarkus Stockhausen help 9192ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9202ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9212ecc1e95SMarkus Stockhausen 922efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 923efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 924efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 925efdb6f6eSAaro Koskinen select CRYPTO_SHA256 926efdb6f6eSAaro Koskinen select CRYPTO_HASH 927efdb6f6eSAaro Koskinen help 928efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 929efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 930efdb6f6eSAaro Koskinen 93186c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 93286c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 93386c93b24SDavid S. Miller depends on SPARC64 93486c93b24SDavid S. Miller select CRYPTO_SHA256 93586c93b24SDavid S. Miller select CRYPTO_HASH 93686c93b24SDavid S. Miller help 93786c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 93886c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 93986c93b24SDavid S. Miller 9401da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9411da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 942bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9431da177e4SLinus Torvalds help 9441da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9451da177e4SLinus Torvalds 9461da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9471da177e4SLinus Torvalds security against collision attacks. 9481da177e4SLinus Torvalds 9491da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9501da177e4SLinus Torvalds of security against collision attacks. 9511da177e4SLinus Torvalds 952efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 953efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 954efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 955efdb6f6eSAaro Koskinen select CRYPTO_SHA512 956efdb6f6eSAaro Koskinen select CRYPTO_HASH 957efdb6f6eSAaro Koskinen help 958efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 959efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 960efdb6f6eSAaro Koskinen 961775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 962775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 963775e0c69SDavid S. Miller depends on SPARC64 964775e0c69SDavid S. Miller select CRYPTO_SHA512 965775e0c69SDavid S. Miller select CRYPTO_HASH 966775e0c69SDavid S. Miller help 967775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 968775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 969775e0c69SDavid S. Miller 97053964b9eSJeff Garzikconfig CRYPTO_SHA3 97153964b9eSJeff Garzik tristate "SHA3 digest algorithm" 97253964b9eSJeff Garzik select CRYPTO_HASH 97353964b9eSJeff Garzik help 97453964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 97553964b9eSJeff Garzik cryptographic sponge function family called Keccak. 97653964b9eSJeff Garzik 97753964b9eSJeff Garzik References: 97853964b9eSJeff Garzik http://keccak.noekeon.org/ 97953964b9eSJeff Garzik 9804f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9814f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9824f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9834f0fc160SGilad Ben-Yossef help 9844f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9854f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9864f0fc160SGilad Ben-Yossef 9874f0fc160SGilad Ben-Yossef References: 9884f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9894f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9904f0fc160SGilad Ben-Yossef 991fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 992fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 993fe18957eSVitaly Chikunov select CRYPTO_HASH 994fe18957eSVitaly Chikunov help 995fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 996fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 997fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 998fe18957eSVitaly Chikunov 999fe18957eSVitaly Chikunov References: 1000fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1001fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1002fe18957eSVitaly Chikunov 10031da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10041da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1005f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10061da177e4SLinus Torvalds help 10071da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10081da177e4SLinus Torvalds 10091da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10101da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10111da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10121da177e4SLinus Torvalds 10131da177e4SLinus Torvalds See also: 10141da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10151da177e4SLinus Torvalds 1016584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1017584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10184946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10191da177e4SLinus Torvalds help 1020584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10211da177e4SLinus Torvalds 1022584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1023584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10241da177e4SLinus Torvalds 10251da177e4SLinus Torvalds See also: 10266d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10271da177e4SLinus Torvalds 10280e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10298dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10308af00860SRichard Weinberger depends on X86 && 64BIT 10310e1227d3SHuang Ying select CRYPTO_CRYPTD 10320e1227d3SHuang Ying help 10338dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10348dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10350e1227d3SHuang Ying 1036584fffc8SSebastian Siewiorcomment "Ciphers" 10371da177e4SLinus Torvalds 10381da177e4SLinus Torvaldsconfig CRYPTO_AES 10391da177e4SLinus Torvalds tristate "AES cipher algorithms" 1040cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10415bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10421da177e4SLinus Torvalds help 10431da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10441da177e4SLinus Torvalds algorithm. 10451da177e4SLinus Torvalds 10461da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10471da177e4SLinus Torvalds both hardware and software across a wide range of computing 10481da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10491da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10501da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10511da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10521da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10531da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10541da177e4SLinus Torvalds 10551da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10561da177e4SLinus Torvalds 10571da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10581da177e4SLinus Torvalds 1059b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1060b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1061b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1062e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1063b5e0b032SArd Biesheuvel help 1064b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1065b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1066b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1067b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1068b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1069b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1070b5e0b032SArd Biesheuvel 1071b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1072b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1073b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1074b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10750a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10760a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1077b5e0b032SArd Biesheuvel 107854b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 107954b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 10808af00860SRichard Weinberger depends on X86 108185671860SHerbert Xu select CRYPTO_AEAD 10822c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 108354b6a1bdSHuang Ying select CRYPTO_ALGAPI 1084b95bba5dSEric Biggers select CRYPTO_SKCIPHER 10857643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 108685671860SHerbert Xu select CRYPTO_SIMD 108754b6a1bdSHuang Ying help 108854b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 108954b6a1bdSHuang Ying 109054b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 109154b6a1bdSHuang Ying algorithm. 109254b6a1bdSHuang Ying 109354b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 109454b6a1bdSHuang Ying both hardware and software across a wide range of computing 109554b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 109654b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 109754b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 109854b6a1bdSHuang Ying suited for restricted-space environments, in which it also 109954b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 110054b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 110154b6a1bdSHuang Ying 110254b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 110354b6a1bdSHuang Ying 110454b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 110554b6a1bdSHuang Ying 11060d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11070d258efbSMathias Krause for some popular block cipher mode is supported too, including 1108944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11090d258efbSMathias Krause acceleration for CTR. 11102cf4ac8bSHuang Ying 11119bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11129bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11139bf4852dSDavid S. Miller depends on SPARC64 1114b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11159bf4852dSDavid S. Miller help 11169bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11179bf4852dSDavid S. Miller 11189bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11199bf4852dSDavid S. Miller algorithm. 11209bf4852dSDavid S. Miller 11219bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11229bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11239bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11249bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11259bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11269bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11279bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11289bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11299bf4852dSDavid S. Miller 11309bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11319bf4852dSDavid S. Miller 11329bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11339bf4852dSDavid S. Miller 11349bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11359bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11369bf4852dSDavid S. Miller ECB and CBC. 11379bf4852dSDavid S. Miller 1138504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1139504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1140504c6143SMarkus Stockhausen depends on PPC && SPE 1141b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1142504c6143SMarkus Stockhausen help 1143504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1144504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1145504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1146504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1147504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1148504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1149504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1150504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1151504c6143SMarkus Stockhausen 11521da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11531da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1154cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11551da177e4SLinus Torvalds help 11561da177e4SLinus Torvalds Anubis cipher algorithm. 11571da177e4SLinus Torvalds 11581da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11591da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11601da177e4SLinus Torvalds in the NESSIE competition. 11611da177e4SLinus Torvalds 11621da177e4SLinus Torvalds See also: 11636d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11646d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11651da177e4SLinus Torvalds 1166584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1167584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1168b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1169dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1170e2ee95b8SHye-Shik Chang help 1171584fffc8SSebastian Siewior ARC4 cipher algorithm. 1172e2ee95b8SHye-Shik Chang 1173584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1174584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1175584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1176584fffc8SSebastian Siewior weakness of the algorithm. 1177584fffc8SSebastian Siewior 1178584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1179584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1180584fffc8SSebastian Siewior select CRYPTO_ALGAPI 118152ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1182584fffc8SSebastian Siewior help 1183584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1184584fffc8SSebastian Siewior 1185584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1186584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1187584fffc8SSebastian Siewior designed for use on "large microprocessors". 1188e2ee95b8SHye-Shik Chang 1189e2ee95b8SHye-Shik Chang See also: 1190584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1191584fffc8SSebastian Siewior 119252ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 119352ba867cSJussi Kivilinna tristate 119452ba867cSJussi Kivilinna help 119552ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 119652ba867cSJussi Kivilinna generic c and the assembler implementations. 119752ba867cSJussi Kivilinna 119852ba867cSJussi Kivilinna See also: 119952ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 120052ba867cSJussi Kivilinna 120164b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 120264b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1203f21a7c19SAl Viro depends on X86 && 64BIT 1204b95bba5dSEric Biggers select CRYPTO_SKCIPHER 120564b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 120664b94ceaSJussi Kivilinna help 120764b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 120864b94ceaSJussi Kivilinna 120964b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 121064b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 121164b94ceaSJussi Kivilinna designed for use on "large microprocessors". 121264b94ceaSJussi Kivilinna 121364b94ceaSJussi Kivilinna See also: 121464b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 121564b94ceaSJussi Kivilinna 1216584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1217584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1218584fffc8SSebastian Siewior depends on CRYPTO 1219584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1220584fffc8SSebastian Siewior help 1221584fffc8SSebastian Siewior Camellia cipher algorithms module. 1222584fffc8SSebastian Siewior 1223584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1224584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1225584fffc8SSebastian Siewior 1226584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1227584fffc8SSebastian Siewior 1228584fffc8SSebastian Siewior See also: 1229584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1230584fffc8SSebastian Siewior 12310b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12320b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1233f21a7c19SAl Viro depends on X86 && 64BIT 12340b95ec56SJussi Kivilinna depends on CRYPTO 1235b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1236964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12370b95ec56SJussi Kivilinna help 12380b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12390b95ec56SJussi Kivilinna 12400b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12410b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12420b95ec56SJussi Kivilinna 12430b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12440b95ec56SJussi Kivilinna 12450b95ec56SJussi Kivilinna See also: 12460b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12470b95ec56SJussi Kivilinna 1248d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1249d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1250d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1251d9b1d2e7SJussi Kivilinna depends on CRYPTO 1252b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1253d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 125444893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 125544893bc2SEric Biggers select CRYPTO_SIMD 1256d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1257d9b1d2e7SJussi Kivilinna help 1258d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1259d9b1d2e7SJussi Kivilinna 1260d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1261d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1262d9b1d2e7SJussi Kivilinna 1263d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1264d9b1d2e7SJussi Kivilinna 1265d9b1d2e7SJussi Kivilinna See also: 1266d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1267d9b1d2e7SJussi Kivilinna 1268f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1269f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1270f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1271f3f935a7SJussi Kivilinna depends on CRYPTO 1272f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1273f3f935a7SJussi Kivilinna help 1274f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1275f3f935a7SJussi Kivilinna 1276f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1277f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1278f3f935a7SJussi Kivilinna 1279f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1280f3f935a7SJussi Kivilinna 1281f3f935a7SJussi Kivilinna See also: 1282f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1283f3f935a7SJussi Kivilinna 128481658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 128581658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 128681658ad0SDavid S. Miller depends on SPARC64 128781658ad0SDavid S. Miller depends on CRYPTO 128881658ad0SDavid S. Miller select CRYPTO_ALGAPI 1289b95bba5dSEric Biggers select CRYPTO_SKCIPHER 129081658ad0SDavid S. Miller help 129181658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 129281658ad0SDavid S. Miller 129381658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 129481658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 129581658ad0SDavid S. Miller 129681658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 129781658ad0SDavid S. Miller 129881658ad0SDavid S. Miller See also: 129981658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 130081658ad0SDavid S. Miller 1301044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1302044ab525SJussi Kivilinna tristate 1303044ab525SJussi Kivilinna help 1304044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1305044ab525SJussi Kivilinna generic c and the assembler implementations. 1306044ab525SJussi Kivilinna 1307584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1308584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1309584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1310044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1311584fffc8SSebastian Siewior help 1312584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1313584fffc8SSebastian Siewior described in RFC2144. 1314584fffc8SSebastian Siewior 13154d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13164d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13174d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1318b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13194d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13201e63183aSEric Biggers select CRYPTO_CAST_COMMON 13211e63183aSEric Biggers select CRYPTO_SIMD 13224d6d6a2cSJohannes Goetzfried help 13234d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13244d6d6a2cSJohannes Goetzfried described in RFC2144. 13254d6d6a2cSJohannes Goetzfried 13264d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13274d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13284d6d6a2cSJohannes Goetzfried 1329584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1330584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1331584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1332044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1333584fffc8SSebastian Siewior help 1334584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1335584fffc8SSebastian Siewior described in RFC2612. 1336584fffc8SSebastian Siewior 13374ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13384ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13394ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1340b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13414ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13424bd96924SEric Biggers select CRYPTO_CAST_COMMON 13434bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13444bd96924SEric Biggers select CRYPTO_SIMD 13454ea1277dSJohannes Goetzfried select CRYPTO_XTS 13464ea1277dSJohannes Goetzfried help 13474ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13484ea1277dSJohannes Goetzfried described in RFC2612. 13494ea1277dSJohannes Goetzfried 13504ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13514ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13524ea1277dSJohannes Goetzfried 1353584fffc8SSebastian Siewiorconfig CRYPTO_DES 1354584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1355584fffc8SSebastian Siewior select CRYPTO_ALGAPI 135604007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1357584fffc8SSebastian Siewior help 1358584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1359584fffc8SSebastian Siewior 1360c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1361c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 136297da37b3SDave Jones depends on SPARC64 1363c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 136404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1365b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1366c5aac2dfSDavid S. Miller help 1367c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1368c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1369c5aac2dfSDavid S. Miller 13706574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13716574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13726574e6c6SJussi Kivilinna depends on X86 && 64BIT 1373b95bba5dSEric Biggers select CRYPTO_SKCIPHER 137404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 13756574e6c6SJussi Kivilinna help 13766574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13776574e6c6SJussi Kivilinna 13786574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13796574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13806574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13816574e6c6SJussi Kivilinna one that processes three blocks parallel. 13826574e6c6SJussi Kivilinna 1383584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1384584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1385584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1386b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1387584fffc8SSebastian Siewior help 1388584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1389584fffc8SSebastian Siewior 1390584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1391584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1392584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1393584fffc8SSebastian Siewior help 1394584fffc8SSebastian Siewior Khazad cipher algorithm. 1395584fffc8SSebastian Siewior 1396584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1397584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1398584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1399584fffc8SSebastian Siewior 1400584fffc8SSebastian Siewior See also: 14016d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1402e2ee95b8SHye-Shik Chang 14032407d608STan Swee Hengconfig CRYPTO_SALSA20 14043b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 1405b95bba5dSEric Biggers select CRYPTO_SKCIPHER 14062407d608STan Swee Heng help 14072407d608STan Swee Heng Salsa20 stream cipher algorithm. 14082407d608STan Swee Heng 14092407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14102407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14112407d608STan Swee Heng 14122407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14132407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14141da177e4SLinus Torvalds 1415c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1416aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14175fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1418b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1419c08d0e64SMartin Willi help 1420aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1421c08d0e64SMartin Willi 1422c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1423c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1424de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1425c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1426c08d0e64SMartin Willi 1427de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1428de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1429de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1430de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1431de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1432de61d7aeSEric Biggers 1433aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1434aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1435aa762409SEric Biggers in some performance-sensitive scenarios. 1436aa762409SEric Biggers 1437c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14384af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1439c9320b6dSMartin Willi depends on X86 && 64BIT 1440b95bba5dSEric Biggers select CRYPTO_SKCIPHER 144128e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 144284e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1443c9320b6dSMartin Willi help 14447a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14457a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1446c9320b6dSMartin Willi 14473a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14483a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14493a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 14503a2f58f3SArd Biesheuvel select CRYPTO_BLKCIPHER 14513a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14523a2f58f3SArd Biesheuvel 1453584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1454584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1455584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1456584fffc8SSebastian Siewior help 1457584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1458584fffc8SSebastian Siewior 1459584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1460584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1461584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1462584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1463584fffc8SSebastian Siewior 1464584fffc8SSebastian Siewior See also: 1465584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1466584fffc8SSebastian Siewior 1467584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1468584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1469584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1470584fffc8SSebastian Siewior help 1471584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1472584fffc8SSebastian Siewior 1473584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1474584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1475584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1476584fffc8SSebastian Siewior 1477584fffc8SSebastian Siewior See also: 1478584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1479584fffc8SSebastian Siewior 1480937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1481937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1482937c30d7SJussi Kivilinna depends on X86 && 64BIT 1483b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1484596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1485937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1486e0f409dcSEric Biggers select CRYPTO_SIMD 1487937c30d7SJussi Kivilinna help 1488937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1489937c30d7SJussi Kivilinna 1490937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1491937c30d7SJussi Kivilinna of 8 bits. 1492937c30d7SJussi Kivilinna 14931e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1494937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1495937c30d7SJussi Kivilinna 1496937c30d7SJussi Kivilinna See also: 1497937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1498937c30d7SJussi Kivilinna 1499251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1500251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1501251496dbSJussi Kivilinna depends on X86 && !64BIT 1502b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1503596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1504251496dbSJussi Kivilinna select CRYPTO_SERPENT 1505e0f409dcSEric Biggers select CRYPTO_SIMD 1506251496dbSJussi Kivilinna help 1507251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1508251496dbSJussi Kivilinna 1509251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1510251496dbSJussi Kivilinna of 8 bits. 1511251496dbSJussi Kivilinna 1512251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1513251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1514251496dbSJussi Kivilinna 1515251496dbSJussi Kivilinna See also: 1516251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1517251496dbSJussi Kivilinna 15187efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15197efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15207efe4076SJohannes Goetzfried depends on X86 && 64BIT 1521b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15221d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15237efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1524e16bf974SEric Biggers select CRYPTO_SIMD 15257efe4076SJohannes Goetzfried select CRYPTO_XTS 15267efe4076SJohannes Goetzfried help 15277efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15287efe4076SJohannes Goetzfried 15297efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15307efe4076SJohannes Goetzfried of 8 bits. 15317efe4076SJohannes Goetzfried 15327efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15337efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15347efe4076SJohannes Goetzfried 15357efe4076SJohannes Goetzfried See also: 15367efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15377efe4076SJohannes Goetzfried 153856d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 153956d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 154056d76c96SJussi Kivilinna depends on X86 && 64BIT 154156d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 154256d76c96SJussi Kivilinna help 154356d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 154456d76c96SJussi Kivilinna 154556d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 154656d76c96SJussi Kivilinna of 8 bits. 154756d76c96SJussi Kivilinna 154856d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 154956d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 155056d76c96SJussi Kivilinna 155156d76c96SJussi Kivilinna See also: 155256d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 155356d76c96SJussi Kivilinna 1554747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1555747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1556747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1557747c8ce4SGilad Ben-Yossef help 1558747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1559747c8ce4SGilad Ben-Yossef 1560747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1561747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1562747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1563747c8ce4SGilad Ben-Yossef 1564747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1565747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1566747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1567747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1568747c8ce4SGilad Ben-Yossef 1569747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1570747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1571747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1572747c8ce4SGilad Ben-Yossef 1573747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1574747c8ce4SGilad Ben-Yossef 1575747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1576747c8ce4SGilad Ben-Yossef 1577747c8ce4SGilad Ben-Yossef If unsure, say N. 1578747c8ce4SGilad Ben-Yossef 1579584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1580584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1581584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1582584fffc8SSebastian Siewior help 1583584fffc8SSebastian Siewior TEA cipher algorithm. 1584584fffc8SSebastian Siewior 1585584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1586584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1587584fffc8SSebastian Siewior little memory. 1588584fffc8SSebastian Siewior 1589584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1590584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1591584fffc8SSebastian Siewior in the TEA algorithm. 1592584fffc8SSebastian Siewior 1593584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1594584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1595584fffc8SSebastian Siewior 1596584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1597584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1598584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1599584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1600584fffc8SSebastian Siewior help 1601584fffc8SSebastian Siewior Twofish cipher algorithm. 1602584fffc8SSebastian Siewior 1603584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1604584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1605584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1606584fffc8SSebastian Siewior bits. 1607584fffc8SSebastian Siewior 1608584fffc8SSebastian Siewior See also: 1609584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1610584fffc8SSebastian Siewior 1611584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1612584fffc8SSebastian Siewior tristate 1613584fffc8SSebastian Siewior help 1614584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1615584fffc8SSebastian Siewior generic c and the assembler implementations. 1616584fffc8SSebastian Siewior 1617584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1618584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1619584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1620584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1621584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1622584fffc8SSebastian Siewior help 1623584fffc8SSebastian Siewior Twofish cipher algorithm. 1624584fffc8SSebastian Siewior 1625584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1626584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1627584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1628584fffc8SSebastian Siewior bits. 1629584fffc8SSebastian Siewior 1630584fffc8SSebastian Siewior See also: 1631584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1632584fffc8SSebastian Siewior 1633584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1634584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1635584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1636584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1637584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1638584fffc8SSebastian Siewior help 1639584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1640584fffc8SSebastian Siewior 1641584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1642584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1643584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1644584fffc8SSebastian Siewior bits. 1645584fffc8SSebastian Siewior 1646584fffc8SSebastian Siewior See also: 1647584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1648584fffc8SSebastian Siewior 16498280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16508280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1651f21a7c19SAl Viro depends on X86 && 64BIT 1652b95bba5dSEric Biggers select CRYPTO_SKCIPHER 16538280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16548280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1655414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16568280daadSJussi Kivilinna help 16578280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16588280daadSJussi Kivilinna 16598280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16608280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16618280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16628280daadSJussi Kivilinna bits. 16638280daadSJussi Kivilinna 16648280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16658280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16668280daadSJussi Kivilinna 16678280daadSJussi Kivilinna See also: 16688280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16698280daadSJussi Kivilinna 1670107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1671107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1672107778b5SJohannes Goetzfried depends on X86 && 64BIT 1673b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1674a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16750e6ab46dSEric Biggers select CRYPTO_SIMD 1676107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1677107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1678107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1679107778b5SJohannes Goetzfried help 1680107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1681107778b5SJohannes Goetzfried 1682107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1683107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1684107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1685107778b5SJohannes Goetzfried bits. 1686107778b5SJohannes Goetzfried 1687107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1688107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1689107778b5SJohannes Goetzfried 1690107778b5SJohannes Goetzfried See also: 1691107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1692107778b5SJohannes Goetzfried 1693584fffc8SSebastian Siewiorcomment "Compression" 1694584fffc8SSebastian Siewior 16951da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16961da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1697cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1698f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16991da177e4SLinus Torvalds select ZLIB_INFLATE 17001da177e4SLinus Torvalds select ZLIB_DEFLATE 17011da177e4SLinus Torvalds help 17021da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17031da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17041da177e4SLinus Torvalds 17051da177e4SLinus Torvalds You will most probably want this if using IPSec. 17061da177e4SLinus Torvalds 17070b77abb3SZoltan Sogorconfig CRYPTO_LZO 17080b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17090b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1710ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17110b77abb3SZoltan Sogor select LZO_COMPRESS 17120b77abb3SZoltan Sogor select LZO_DECOMPRESS 17130b77abb3SZoltan Sogor help 17140b77abb3SZoltan Sogor This is the LZO algorithm. 17150b77abb3SZoltan Sogor 171635a1fc18SSeth Jenningsconfig CRYPTO_842 171735a1fc18SSeth Jennings tristate "842 compression algorithm" 17182062c5b6SDan Streetman select CRYPTO_ALGAPI 17196a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17202062c5b6SDan Streetman select 842_COMPRESS 17212062c5b6SDan Streetman select 842_DECOMPRESS 172235a1fc18SSeth Jennings help 172335a1fc18SSeth Jennings This is the 842 algorithm. 172435a1fc18SSeth Jennings 17250ea8530dSChanho Minconfig CRYPTO_LZ4 17260ea8530dSChanho Min tristate "LZ4 compression algorithm" 17270ea8530dSChanho Min select CRYPTO_ALGAPI 17288cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17290ea8530dSChanho Min select LZ4_COMPRESS 17300ea8530dSChanho Min select LZ4_DECOMPRESS 17310ea8530dSChanho Min help 17320ea8530dSChanho Min This is the LZ4 algorithm. 17330ea8530dSChanho Min 17340ea8530dSChanho Minconfig CRYPTO_LZ4HC 17350ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17360ea8530dSChanho Min select CRYPTO_ALGAPI 173791d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17380ea8530dSChanho Min select LZ4HC_COMPRESS 17390ea8530dSChanho Min select LZ4_DECOMPRESS 17400ea8530dSChanho Min help 17410ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17420ea8530dSChanho Min 1743d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1744d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1745d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1746d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1747d28fc3dbSNick Terrell select ZSTD_COMPRESS 1748d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1749d28fc3dbSNick Terrell help 1750d28fc3dbSNick Terrell This is the zstd algorithm. 1751d28fc3dbSNick Terrell 175217f0f4a4SNeil Hormancomment "Random Number Generation" 175317f0f4a4SNeil Horman 175417f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 175517f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 175617f0f4a4SNeil Horman select CRYPTO_AES 175717f0f4a4SNeil Horman select CRYPTO_RNG 175817f0f4a4SNeil Horman help 175917f0f4a4SNeil Horman This option enables the generic pseudo random number generator 176017f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17617dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17627dd607e8SJiri Kosina CRYPTO_FIPS is selected 176317f0f4a4SNeil Horman 1764f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1765419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1766419090c6SStephan Mueller help 1767419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1768419090c6SStephan Mueller more of the DRBG types must be selected. 1769419090c6SStephan Mueller 1770f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1771419090c6SStephan Mueller 1772419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1773401e4238SHerbert Xu bool 1774419090c6SStephan Mueller default y 1775419090c6SStephan Mueller select CRYPTO_HMAC 1776826775bbSHerbert Xu select CRYPTO_SHA256 1777419090c6SStephan Mueller 1778419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1779419090c6SStephan Mueller bool "Enable Hash DRBG" 1780826775bbSHerbert Xu select CRYPTO_SHA256 1781419090c6SStephan Mueller help 1782419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1783419090c6SStephan Mueller 1784419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1785419090c6SStephan Mueller bool "Enable CTR DRBG" 1786419090c6SStephan Mueller select CRYPTO_AES 178735591285SStephan Mueller depends on CRYPTO_CTR 1788419090c6SStephan Mueller help 1789419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1790419090c6SStephan Mueller 1791f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1792f2c89a10SHerbert Xu tristate 1793401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1794f2c89a10SHerbert Xu select CRYPTO_RNG 1795bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1796f2c89a10SHerbert Xu 1797f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1798419090c6SStephan Mueller 1799bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1800bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18012f313e02SArnd Bergmann select CRYPTO_RNG 1802bb5530e4SStephan Mueller help 1803bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1804bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1805bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1806bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1807bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1808bb5530e4SStephan Mueller 180903c8efc1SHerbert Xuconfig CRYPTO_USER_API 181003c8efc1SHerbert Xu tristate 181103c8efc1SHerbert Xu 1812fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1813fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18147451708fSHerbert Xu depends on NET 1815fe869cdbSHerbert Xu select CRYPTO_HASH 1816fe869cdbSHerbert Xu select CRYPTO_USER_API 1817fe869cdbSHerbert Xu help 1818fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1819fe869cdbSHerbert Xu algorithms. 1820fe869cdbSHerbert Xu 18218ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18228ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18237451708fSHerbert Xu depends on NET 1824b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18258ff59090SHerbert Xu select CRYPTO_USER_API 18268ff59090SHerbert Xu help 18278ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18288ff59090SHerbert Xu key cipher algorithms. 18298ff59090SHerbert Xu 18302f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18312f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18322f375538SStephan Mueller depends on NET 18332f375538SStephan Mueller select CRYPTO_RNG 18342f375538SStephan Mueller select CRYPTO_USER_API 18352f375538SStephan Mueller help 18362f375538SStephan Mueller This option enables the user-spaces interface for random 18372f375538SStephan Mueller number generator algorithms. 18382f375538SStephan Mueller 1839b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1840b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1841b64a2d95SHerbert Xu depends on NET 1842b64a2d95SHerbert Xu select CRYPTO_AEAD 1843b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184472548b09SStephan Mueller select CRYPTO_NULL 1845b64a2d95SHerbert Xu select CRYPTO_USER_API 1846b64a2d95SHerbert Xu help 1847b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1848b64a2d95SHerbert Xu cipher algorithms. 1849b64a2d95SHerbert Xu 1850cac5818cSCorentin Labbeconfig CRYPTO_STATS 1851cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1852a6a31385SCorentin Labbe depends on CRYPTO_USER 1853cac5818cSCorentin Labbe help 1854cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1855cac5818cSCorentin Labbe This will collect: 1856cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1857cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1858cac5818cSCorentin Labbe - size and numbers of hash operations 1859cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1860cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1861cac5818cSCorentin Labbe 1862ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1863ee08997fSDmitry Kasatkin bool 1864ee08997fSDmitry Kasatkin 1865746b2e02SArd Biesheuvelsource "lib/crypto/Kconfig" 18661da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 18678636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 18688636a1f9SMasahiro Yamadasource "certs/Kconfig" 18691da177e4SLinus Torvalds 1870cce9e06dSHerbert Xuendif # if CRYPTO 1871