xref: /linux/crypto/Kconfig (revision ecd6d5c9cba5fc6053ba21e3f8a4c536f65ea27a)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
216584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
217584fffc8SSebastian Siewior	tristate "Authenc support"
218584fffc8SSebastian Siewior	select CRYPTO_AEAD
219584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
220584fffc8SSebastian Siewior	select CRYPTO_MANAGER
221584fffc8SSebastian Siewior	select CRYPTO_HASH
222e94c6a7aSHerbert Xu	select CRYPTO_NULL
223584fffc8SSebastian Siewior	help
224584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
225584fffc8SSebastian Siewior	  This is required for IPSec.
226584fffc8SSebastian Siewior
227584fffc8SSebastian Siewiorconfig CRYPTO_TEST
228584fffc8SSebastian Siewior	tristate "Testing module"
229584fffc8SSebastian Siewior	depends on m
230da7f033dSHerbert Xu	select CRYPTO_MANAGER
231584fffc8SSebastian Siewior	help
232584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
233584fffc8SSebastian Siewior
234266d0516SHerbert Xuconfig CRYPTO_SIMD
235266d0516SHerbert Xu	tristate
236266d0516SHerbert Xu	select CRYPTO_CRYPTD
237266d0516SHerbert Xu
238596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
239596d8750SJussi Kivilinna	tristate
240596d8750SJussi Kivilinna	depends on X86
241065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
242596d8750SJussi Kivilinna
243735d37b5SBaolin Wangconfig CRYPTO_ENGINE
244735d37b5SBaolin Wang	tristate
245735d37b5SBaolin Wang
246584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
247584fffc8SSebastian Siewior
248584fffc8SSebastian Siewiorconfig CRYPTO_CCM
249584fffc8SSebastian Siewior	tristate "CCM support"
250584fffc8SSebastian Siewior	select CRYPTO_CTR
251f15f05b0SArd Biesheuvel	select CRYPTO_HASH
252584fffc8SSebastian Siewior	select CRYPTO_AEAD
253584fffc8SSebastian Siewior	help
254584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
255584fffc8SSebastian Siewior
256584fffc8SSebastian Siewiorconfig CRYPTO_GCM
257584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
258584fffc8SSebastian Siewior	select CRYPTO_CTR
259584fffc8SSebastian Siewior	select CRYPTO_AEAD
2609382d97aSHuang Ying	select CRYPTO_GHASH
2619489667dSJussi Kivilinna	select CRYPTO_NULL
262584fffc8SSebastian Siewior	help
263584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
264584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
265584fffc8SSebastian Siewior
26671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
26771ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
26871ebc4d1SMartin Willi	select CRYPTO_CHACHA20
26971ebc4d1SMartin Willi	select CRYPTO_POLY1305
27071ebc4d1SMartin Willi	select CRYPTO_AEAD
27171ebc4d1SMartin Willi	help
27271ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
27371ebc4d1SMartin Willi
27471ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
27571ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
27671ebc4d1SMartin Willi	  IETF protocols.
27771ebc4d1SMartin Willi
278f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
279f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
280f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
281f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
282f606a88eSOndrej Mosnacek	help
283f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
284f606a88eSOndrej Mosnacek
285f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
286f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
287f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
288f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
289f606a88eSOndrej Mosnacek	help
290f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
291f606a88eSOndrej Mosnacek
292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
293f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
294f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
295f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
296f606a88eSOndrej Mosnacek	help
297f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
298f606a88eSOndrej Mosnacek
2991d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3001d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3011d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3021d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3031d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3041d373d4eSOndrej Mosnacek	help
3051d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
3061d373d4eSOndrej Mosnacek
3071d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3081d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3091d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3101d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3111d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3121d373d4eSOndrej Mosnacek	help
3131d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
3141d373d4eSOndrej Mosnacek
3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3161d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3171d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3181d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3191d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3201d373d4eSOndrej Mosnacek	help
3211d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
3221d373d4eSOndrej Mosnacek
323396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
324396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
325396be41fSOndrej Mosnacek	select CRYPTO_AEAD
326396be41fSOndrej Mosnacek	help
327396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
328396be41fSOndrej Mosnacek
32956e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3302808f173SOndrej Mosnacek	tristate
3312808f173SOndrej Mosnacek	depends on X86
33256e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
33356e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
33456e8e57fSOndrej Mosnacek	help
33556e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
33656e8e57fSOndrej Mosnacek	  algorithm.
33756e8e57fSOndrej Mosnacek
3386ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3396ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3406ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3416ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3426ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3436ecc9d9fSOndrej Mosnacek	help
3446ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3456ecc9d9fSOndrej Mosnacek
346396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
347396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
348396be41fSOndrej Mosnacek	select CRYPTO_AEAD
349396be41fSOndrej Mosnacek	help
350396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
351396be41fSOndrej Mosnacek
35256e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3532808f173SOndrej Mosnacek	tristate
3542808f173SOndrej Mosnacek	depends on X86
35556e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
35656e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
35756e8e57fSOndrej Mosnacek	help
35856e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
35956e8e57fSOndrej Mosnacek	  algorithm.
36056e8e57fSOndrej Mosnacek
3616ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3626ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3636ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3646ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3656ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3666ecc9d9fSOndrej Mosnacek	help
3676ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3686ecc9d9fSOndrej Mosnacek	  algorithm.
3696ecc9d9fSOndrej Mosnacek
3706ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
3716ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
3726ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3736ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3746ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3756ecc9d9fSOndrej Mosnacek	help
3766ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
3776ecc9d9fSOndrej Mosnacek	  algorithm.
3786ecc9d9fSOndrej Mosnacek
379584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
380584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
381584fffc8SSebastian Siewior	select CRYPTO_AEAD
382584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
383856e3f40SHerbert Xu	select CRYPTO_NULL
384401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
385584fffc8SSebastian Siewior	help
386584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
387584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
388584fffc8SSebastian Siewior
389a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
390a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
391a10f554fSHerbert Xu	select CRYPTO_AEAD
392a10f554fSHerbert Xu	select CRYPTO_NULL
393401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3943491244cSHerbert Xu	default m
395a10f554fSHerbert Xu	help
396a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
397a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
398a10f554fSHerbert Xu	  algorithm for CBC.
399a10f554fSHerbert Xu
400584fffc8SSebastian Siewiorcomment "Block modes"
401584fffc8SSebastian Siewior
402584fffc8SSebastian Siewiorconfig CRYPTO_CBC
403584fffc8SSebastian Siewior	tristate "CBC support"
404584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
405584fffc8SSebastian Siewior	select CRYPTO_MANAGER
406584fffc8SSebastian Siewior	help
407584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
408584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
409584fffc8SSebastian Siewior
410a7d85e06SJames Bottomleyconfig CRYPTO_CFB
411a7d85e06SJames Bottomley	tristate "CFB support"
412a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
413a7d85e06SJames Bottomley	select CRYPTO_MANAGER
414a7d85e06SJames Bottomley	help
415a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
416a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
417a7d85e06SJames Bottomley
418584fffc8SSebastian Siewiorconfig CRYPTO_CTR
419584fffc8SSebastian Siewior	tristate "CTR support"
420584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
421584fffc8SSebastian Siewior	select CRYPTO_SEQIV
422584fffc8SSebastian Siewior	select CRYPTO_MANAGER
423584fffc8SSebastian Siewior	help
424584fffc8SSebastian Siewior	  CTR: Counter mode
425584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
426584fffc8SSebastian Siewior
427584fffc8SSebastian Siewiorconfig CRYPTO_CTS
428584fffc8SSebastian Siewior	tristate "CTS support"
429584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
430584fffc8SSebastian Siewior	help
431584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
432584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
433*ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
434*ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
435*ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
436584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
437584fffc8SSebastian Siewior	  for AES encryption.
438584fffc8SSebastian Siewior
439*ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
440*ecd6d5c9SGilad Ben-Yossef
441584fffc8SSebastian Siewiorconfig CRYPTO_ECB
442584fffc8SSebastian Siewior	tristate "ECB support"
443584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
444584fffc8SSebastian Siewior	select CRYPTO_MANAGER
445584fffc8SSebastian Siewior	help
446584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
447584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
448584fffc8SSebastian Siewior	  the input block by block.
449584fffc8SSebastian Siewior
450584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4512470a2b2SJussi Kivilinna	tristate "LRW support"
452584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
453584fffc8SSebastian Siewior	select CRYPTO_MANAGER
454584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
455584fffc8SSebastian Siewior	help
456584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
457584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
458584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
459584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
460584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
461584fffc8SSebastian Siewior
462e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
463e497c518SGilad Ben-Yossef	tristate "OFB support"
464e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
465e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
466e497c518SGilad Ben-Yossef	help
467e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
468e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
469e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
470e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
471e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
472e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
473e497c518SGilad Ben-Yossef
474584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
475584fffc8SSebastian Siewior	tristate "PCBC support"
476584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
477584fffc8SSebastian Siewior	select CRYPTO_MANAGER
478584fffc8SSebastian Siewior	help
479584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
480584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
481584fffc8SSebastian Siewior
482584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4835bcf8e6dSJussi Kivilinna	tristate "XTS support"
484584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
485584fffc8SSebastian Siewior	select CRYPTO_MANAGER
48612cb3a1cSMilan Broz	select CRYPTO_ECB
487584fffc8SSebastian Siewior	help
488584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
489584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
490584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
491584fffc8SSebastian Siewior
4921c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4931c49678eSStephan Mueller	tristate "Key wrapping support"
4941c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
4951c49678eSStephan Mueller	help
4961c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4971c49678eSStephan Mueller	  padding.
4981c49678eSStephan Mueller
499584fffc8SSebastian Siewiorcomment "Hash modes"
500584fffc8SSebastian Siewior
50193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
50293b5e86aSJussi Kivilinna	tristate "CMAC support"
50393b5e86aSJussi Kivilinna	select CRYPTO_HASH
50493b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
50593b5e86aSJussi Kivilinna	help
50693b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
50793b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
50893b5e86aSJussi Kivilinna
50993b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
51093b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
51193b5e86aSJussi Kivilinna
5121da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5138425165dSHerbert Xu	tristate "HMAC support"
5140796ae06SHerbert Xu	select CRYPTO_HASH
51543518407SHerbert Xu	select CRYPTO_MANAGER
5161da177e4SLinus Torvalds	help
5171da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5181da177e4SLinus Torvalds	  This is required for IPSec.
5191da177e4SLinus Torvalds
520333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
521333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
522333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
523333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
524333b0d7eSKazunori MIYAZAWA	help
525333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
526333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
527333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
528333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
529333b0d7eSKazunori MIYAZAWA
530f1939f7cSShane Wangconfig CRYPTO_VMAC
531f1939f7cSShane Wang	tristate "VMAC support"
532f1939f7cSShane Wang	select CRYPTO_HASH
533f1939f7cSShane Wang	select CRYPTO_MANAGER
534f1939f7cSShane Wang	help
535f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
536f1939f7cSShane Wang	  very high speed on 64-bit architectures.
537f1939f7cSShane Wang
538f1939f7cSShane Wang	  See also:
539f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
540f1939f7cSShane Wang
541584fffc8SSebastian Siewiorcomment "Digest"
542584fffc8SSebastian Siewior
543584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
544584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5455773a3e6SHerbert Xu	select CRYPTO_HASH
5466a0962b2SDarrick J. Wong	select CRC32
5471da177e4SLinus Torvalds	help
548584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
549584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
55069c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5511da177e4SLinus Torvalds
5528cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5538cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5548cb51ba8SAustin Zhang	depends on X86
5558cb51ba8SAustin Zhang	select CRYPTO_HASH
5568cb51ba8SAustin Zhang	help
5578cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5588cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5598cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5608cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5618cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5628cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5638cb51ba8SAustin Zhang
5647cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5656dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
566c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5676dd7a82cSAnton Blanchard	select CRYPTO_HASH
5686dd7a82cSAnton Blanchard	select CRC32
5696dd7a82cSAnton Blanchard	help
5706dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5716dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5726dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5736dd7a82cSAnton Blanchard
5746dd7a82cSAnton Blanchard
575442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
576442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
577442a7c40SDavid S. Miller	depends on SPARC64
578442a7c40SDavid S. Miller	select CRYPTO_HASH
579442a7c40SDavid S. Miller	select CRC32
580442a7c40SDavid S. Miller	help
581442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
582442a7c40SDavid S. Miller	  when available.
583442a7c40SDavid S. Miller
58478c37d19SAlexander Boykoconfig CRYPTO_CRC32
58578c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
58678c37d19SAlexander Boyko	select CRYPTO_HASH
58778c37d19SAlexander Boyko	select CRC32
58878c37d19SAlexander Boyko	help
58978c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
59078c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
59178c37d19SAlexander Boyko
59278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
59378c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
59478c37d19SAlexander Boyko	depends on X86
59578c37d19SAlexander Boyko	select CRYPTO_HASH
59678c37d19SAlexander Boyko	select CRC32
59778c37d19SAlexander Boyko	help
59878c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
59978c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
60078c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
60178c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
60278c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
60378c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
60478c37d19SAlexander Boyko
6054a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6064a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6074a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6084a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6094a5dc51eSMarcin Nowakowski	help
6104a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6114a5dc51eSMarcin Nowakowski	  instructions, when available.
6124a5dc51eSMarcin Nowakowski
6134a5dc51eSMarcin Nowakowski
61468411521SHerbert Xuconfig CRYPTO_CRCT10DIF
61568411521SHerbert Xu	tristate "CRCT10DIF algorithm"
61668411521SHerbert Xu	select CRYPTO_HASH
61768411521SHerbert Xu	help
61868411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
61968411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
62068411521SHerbert Xu	  transforms to be used if they are available.
62168411521SHerbert Xu
62268411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
62368411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
62468411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
62568411521SHerbert Xu	select CRYPTO_HASH
62668411521SHerbert Xu	help
62768411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
62868411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
62968411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
63068411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
63168411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
63268411521SHerbert Xu
633b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
634b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
635b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
636b01df1c1SDaniel Axtens	select CRYPTO_HASH
637b01df1c1SDaniel Axtens	help
638b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
639b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
640b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
641b01df1c1SDaniel Axtens
642146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
643146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
644146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
645146c8688SDaniel Axtens	help
646146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
647146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
648146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
649146c8688SDaniel Axtens
6502cdc6899SHuang Yingconfig CRYPTO_GHASH
6512cdc6899SHuang Ying	tristate "GHASH digest algorithm"
6522cdc6899SHuang Ying	select CRYPTO_GF128MUL
653578c60fbSArnd Bergmann	select CRYPTO_HASH
6542cdc6899SHuang Ying	help
6552cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
6562cdc6899SHuang Ying
657f979e014SMartin Williconfig CRYPTO_POLY1305
658f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
659578c60fbSArnd Bergmann	select CRYPTO_HASH
660f979e014SMartin Willi	help
661f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
662f979e014SMartin Willi
663f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
664f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
665f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
666f979e014SMartin Willi
667c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
668b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
669c70f4abeSMartin Willi	depends on X86 && 64BIT
670c70f4abeSMartin Willi	select CRYPTO_POLY1305
671c70f4abeSMartin Willi	help
672c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
673c70f4abeSMartin Willi
674c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
675c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
676c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
677c70f4abeSMartin Willi	  instructions.
678c70f4abeSMartin Willi
6791da177e4SLinus Torvaldsconfig CRYPTO_MD4
6801da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
681808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6821da177e4SLinus Torvalds	help
6831da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
6841da177e4SLinus Torvalds
6851da177e4SLinus Torvaldsconfig CRYPTO_MD5
6861da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
68714b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6881da177e4SLinus Torvalds	help
6891da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
6901da177e4SLinus Torvalds
691d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
692d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
693d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
694d69e75deSAaro Koskinen	select CRYPTO_MD5
695d69e75deSAaro Koskinen	select CRYPTO_HASH
696d69e75deSAaro Koskinen	help
697d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
698d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
699d69e75deSAaro Koskinen
700e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
701e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
702e8e59953SMarkus Stockhausen	depends on PPC
703e8e59953SMarkus Stockhausen	select CRYPTO_HASH
704e8e59953SMarkus Stockhausen	help
705e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
706e8e59953SMarkus Stockhausen	  in PPC assembler.
707e8e59953SMarkus Stockhausen
708fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
709fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
710fa4dfedcSDavid S. Miller	depends on SPARC64
711fa4dfedcSDavid S. Miller	select CRYPTO_MD5
712fa4dfedcSDavid S. Miller	select CRYPTO_HASH
713fa4dfedcSDavid S. Miller	help
714fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
715fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
716fa4dfedcSDavid S. Miller
717584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
718584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
71919e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
720584fffc8SSebastian Siewior	help
721584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
722584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
723584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
724584fffc8SSebastian Siewior	  of the algorithm.
725584fffc8SSebastian Siewior
72682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
72782798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7287c4468bcSHerbert Xu	select CRYPTO_HASH
72982798f90SAdrian-Ken Rueegsegger	help
73082798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
73182798f90SAdrian-Ken Rueegsegger
73282798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
73335ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
73482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
73582798f90SAdrian-Ken Rueegsegger
73682798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7376d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
73882798f90SAdrian-Ken Rueegsegger
73982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
74082798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
741e5835fbaSHerbert Xu	select CRYPTO_HASH
74282798f90SAdrian-Ken Rueegsegger	help
74382798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
74482798f90SAdrian-Ken Rueegsegger
74582798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
74682798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
747b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
748b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
74982798f90SAdrian-Ken Rueegsegger
750b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
751b6d44341SAdrian Bunk	  against RIPEMD-160.
752534fe2c1SAdrian-Ken Rueegsegger
753534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7546d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
755534fe2c1SAdrian-Ken Rueegsegger
756534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
757534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
758d8a5e2e9SHerbert Xu	select CRYPTO_HASH
759534fe2c1SAdrian-Ken Rueegsegger	help
760b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
761b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
762b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
763b6d44341SAdrian Bunk	  (than RIPEMD-128).
764534fe2c1SAdrian-Ken Rueegsegger
765534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7666d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
767534fe2c1SAdrian-Ken Rueegsegger
768534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
769534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
7703b8efb4cSHerbert Xu	select CRYPTO_HASH
771534fe2c1SAdrian-Ken Rueegsegger	help
772b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
773b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
774b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
775b6d44341SAdrian Bunk	  (than RIPEMD-160).
776534fe2c1SAdrian-Ken Rueegsegger
77782798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7786d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
77982798f90SAdrian-Ken Rueegsegger
7801da177e4SLinus Torvaldsconfig CRYPTO_SHA1
7811da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
78254ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7831da177e4SLinus Torvalds	help
7841da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
7851da177e4SLinus Torvalds
78666be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
787e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
78866be8951SMathias Krause	depends on X86 && 64BIT
78966be8951SMathias Krause	select CRYPTO_SHA1
79066be8951SMathias Krause	select CRYPTO_HASH
79166be8951SMathias Krause	help
79266be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
79366be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
794e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
795e38b6b7fStim	  when available.
79666be8951SMathias Krause
7978275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
798e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
7998275d1aaSTim Chen	depends on X86 && 64BIT
8008275d1aaSTim Chen	select CRYPTO_SHA256
8018275d1aaSTim Chen	select CRYPTO_HASH
8028275d1aaSTim Chen	help
8038275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8048275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8058275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
806e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
807e38b6b7fStim	  Instructions) when available.
8088275d1aaSTim Chen
80987de4579STim Chenconfig CRYPTO_SHA512_SSSE3
81087de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
81187de4579STim Chen	depends on X86 && 64BIT
81287de4579STim Chen	select CRYPTO_SHA512
81387de4579STim Chen	select CRYPTO_HASH
81487de4579STim Chen	help
81587de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
81687de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
81787de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
81887de4579STim Chen	  version 2 (AVX2) instructions, when available.
81987de4579STim Chen
820efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
821efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
822efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
823efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
824efdb6f6eSAaro Koskinen	select CRYPTO_HASH
825efdb6f6eSAaro Koskinen	help
826efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
827efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
828efdb6f6eSAaro Koskinen
8294ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8304ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8314ff28d4cSDavid S. Miller	depends on SPARC64
8324ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8334ff28d4cSDavid S. Miller	select CRYPTO_HASH
8344ff28d4cSDavid S. Miller	help
8354ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8364ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8374ff28d4cSDavid S. Miller
838323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
839323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
840323a6bf1SMichael Ellerman	depends on PPC
841323a6bf1SMichael Ellerman	help
842323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
843323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
844323a6bf1SMichael Ellerman
845d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
846d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
847d9850fc5SMarkus Stockhausen	depends on PPC && SPE
848d9850fc5SMarkus Stockhausen	help
849d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
850d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
851d9850fc5SMarkus Stockhausen
8521da177e4SLinus Torvaldsconfig CRYPTO_SHA256
853cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
85450e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8551da177e4SLinus Torvalds	help
8561da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
8571da177e4SLinus Torvalds
8581da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
8591da177e4SLinus Torvalds	  security against collision attacks.
8601da177e4SLinus Torvalds
861cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
862cd12fb90SJonathan Lynch	  of security against collision attacks.
863cd12fb90SJonathan Lynch
8642ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
8652ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
8662ecc1e95SMarkus Stockhausen	depends on PPC && SPE
8672ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
8682ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8692ecc1e95SMarkus Stockhausen	help
8702ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8712ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
8722ecc1e95SMarkus Stockhausen
873efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
874efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
875efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
876efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
877efdb6f6eSAaro Koskinen	select CRYPTO_HASH
878efdb6f6eSAaro Koskinen	help
879efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
880efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
881efdb6f6eSAaro Koskinen
88286c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
88386c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
88486c93b24SDavid S. Miller	depends on SPARC64
88586c93b24SDavid S. Miller	select CRYPTO_SHA256
88686c93b24SDavid S. Miller	select CRYPTO_HASH
88786c93b24SDavid S. Miller	help
88886c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
88986c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
89086c93b24SDavid S. Miller
8911da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8921da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
893bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8941da177e4SLinus Torvalds	help
8951da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8961da177e4SLinus Torvalds
8971da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8981da177e4SLinus Torvalds	  security against collision attacks.
8991da177e4SLinus Torvalds
9001da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9011da177e4SLinus Torvalds	  of security against collision attacks.
9021da177e4SLinus Torvalds
903efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
904efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
905efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
906efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
907efdb6f6eSAaro Koskinen	select CRYPTO_HASH
908efdb6f6eSAaro Koskinen	help
909efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
910efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
911efdb6f6eSAaro Koskinen
912775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
913775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
914775e0c69SDavid S. Miller	depends on SPARC64
915775e0c69SDavid S. Miller	select CRYPTO_SHA512
916775e0c69SDavid S. Miller	select CRYPTO_HASH
917775e0c69SDavid S. Miller	help
918775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
919775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
920775e0c69SDavid S. Miller
92153964b9eSJeff Garzikconfig CRYPTO_SHA3
92253964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
92353964b9eSJeff Garzik	select CRYPTO_HASH
92453964b9eSJeff Garzik	help
92553964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
92653964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
92753964b9eSJeff Garzik
92853964b9eSJeff Garzik	  References:
92953964b9eSJeff Garzik	  http://keccak.noekeon.org/
93053964b9eSJeff Garzik
9314f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9324f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9334f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9344f0fc160SGilad Ben-Yossef	help
9354f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9364f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9374f0fc160SGilad Ben-Yossef
9384f0fc160SGilad Ben-Yossef	  References:
9394f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9404f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9414f0fc160SGilad Ben-Yossef
9421da177e4SLinus Torvaldsconfig CRYPTO_TGR192
9431da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
944f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9451da177e4SLinus Torvalds	help
9461da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
9471da177e4SLinus Torvalds
9481da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
9491da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
9501da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
9511da177e4SLinus Torvalds
9521da177e4SLinus Torvalds	  See also:
9531da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
9541da177e4SLinus Torvalds
955584fffc8SSebastian Siewiorconfig CRYPTO_WP512
956584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
9574946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9581da177e4SLinus Torvalds	help
959584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
9601da177e4SLinus Torvalds
961584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
962584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
9631da177e4SLinus Torvalds
9641da177e4SLinus Torvalds	  See also:
9656d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
9661da177e4SLinus Torvalds
9670e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
9680e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
9698af00860SRichard Weinberger	depends on X86 && 64BIT
9700e1227d3SHuang Ying	select CRYPTO_CRYPTD
9710e1227d3SHuang Ying	help
9720e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
9730e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
9740e1227d3SHuang Ying
975584fffc8SSebastian Siewiorcomment "Ciphers"
9761da177e4SLinus Torvalds
9771da177e4SLinus Torvaldsconfig CRYPTO_AES
9781da177e4SLinus Torvalds	tristate "AES cipher algorithms"
979cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9801da177e4SLinus Torvalds	help
9811da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9821da177e4SLinus Torvalds	  algorithm.
9831da177e4SLinus Torvalds
9841da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9851da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9861da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9871da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9881da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9891da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9901da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9911da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9921da177e4SLinus Torvalds
9931da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9941da177e4SLinus Torvalds
9951da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
9961da177e4SLinus Torvalds
997b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
998b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
999b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1000b5e0b032SArd Biesheuvel	help
1001b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1002b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1003b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1004b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1005b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1006b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1007b5e0b032SArd Biesheuvel
1008b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1009b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1010b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1011b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10120a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10130a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1014b5e0b032SArd Biesheuvel
10151da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10161da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1017cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1018cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10195157dea8SSebastian Siewior	select CRYPTO_AES
10201da177e4SLinus Torvalds	help
10211da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10221da177e4SLinus Torvalds	  algorithm.
10231da177e4SLinus Torvalds
10241da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10251da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10261da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10271da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10281da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10291da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10301da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10311da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10321da177e4SLinus Torvalds
10331da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10341da177e4SLinus Torvalds
10351da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10361da177e4SLinus Torvalds
1037a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1038a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1039cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1040cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
104181190b32SSebastian Siewior	select CRYPTO_AES
1042a2a892a2SAndreas Steinmetz	help
1043a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1044a2a892a2SAndreas Steinmetz	  algorithm.
1045a2a892a2SAndreas Steinmetz
1046a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1047a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1048a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1049a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1050a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1051a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1052a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1053a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1054a2a892a2SAndreas Steinmetz
1055a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1056a2a892a2SAndreas Steinmetz
1057a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1058a2a892a2SAndreas Steinmetz
105954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
106054b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
10618af00860SRichard Weinberger	depends on X86
106285671860SHerbert Xu	select CRYPTO_AEAD
10630d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
10640d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
106554b6a1bdSHuang Ying	select CRYPTO_ALGAPI
106685671860SHerbert Xu	select CRYPTO_BLKCIPHER
10677643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
106885671860SHerbert Xu	select CRYPTO_SIMD
106954b6a1bdSHuang Ying	help
107054b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
107154b6a1bdSHuang Ying
107254b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
107354b6a1bdSHuang Ying	  algorithm.
107454b6a1bdSHuang Ying
107554b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
107654b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
107754b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
107854b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
107954b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
108054b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
108154b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
108254b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
108354b6a1bdSHuang Ying
108454b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
108554b6a1bdSHuang Ying
108654b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
108754b6a1bdSHuang Ying
10880d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
10890d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1090944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
10910d258efbSMathias Krause	  acceleration for CTR.
10922cf4ac8bSHuang Ying
10939bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
10949bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
10959bf4852dSDavid S. Miller	depends on SPARC64
10969bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
10979bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
10989bf4852dSDavid S. Miller	help
10999bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11009bf4852dSDavid S. Miller
11019bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11029bf4852dSDavid S. Miller	  algorithm.
11039bf4852dSDavid S. Miller
11049bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11059bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11069bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11079bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11089bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11099bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11109bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11119bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11129bf4852dSDavid S. Miller
11139bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11149bf4852dSDavid S. Miller
11159bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11169bf4852dSDavid S. Miller
11179bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11189bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11199bf4852dSDavid S. Miller	  ECB and CBC.
11209bf4852dSDavid S. Miller
1121504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1122504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1123504c6143SMarkus Stockhausen	depends on PPC && SPE
1124504c6143SMarkus Stockhausen	help
1125504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1126504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1127504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1128504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1129504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1130504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1131504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1132504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1133504c6143SMarkus Stockhausen
11341da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11351da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1136cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11371da177e4SLinus Torvalds	help
11381da177e4SLinus Torvalds	  Anubis cipher algorithm.
11391da177e4SLinus Torvalds
11401da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11411da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11421da177e4SLinus Torvalds	  in the NESSIE competition.
11431da177e4SLinus Torvalds
11441da177e4SLinus Torvalds	  See also:
11456d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11466d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11471da177e4SLinus Torvalds
1148584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1149584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1150b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1151e2ee95b8SHye-Shik Chang	help
1152584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1153e2ee95b8SHye-Shik Chang
1154584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1155584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1156584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1157584fffc8SSebastian Siewior	  weakness of the algorithm.
1158584fffc8SSebastian Siewior
1159584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1160584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1161584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
116252ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1163584fffc8SSebastian Siewior	help
1164584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1165584fffc8SSebastian Siewior
1166584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1167584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1168584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1169e2ee95b8SHye-Shik Chang
1170e2ee95b8SHye-Shik Chang	  See also:
1171584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1172584fffc8SSebastian Siewior
117352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
117452ba867cSJussi Kivilinna	tristate
117552ba867cSJussi Kivilinna	help
117652ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
117752ba867cSJussi Kivilinna	  generic c and the assembler implementations.
117852ba867cSJussi Kivilinna
117952ba867cSJussi Kivilinna	  See also:
118052ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
118152ba867cSJussi Kivilinna
118264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
118364b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1184f21a7c19SAl Viro	depends on X86 && 64BIT
1185c1679171SEric Biggers	select CRYPTO_BLKCIPHER
118664b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
118764b94ceaSJussi Kivilinna	help
118864b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
118964b94ceaSJussi Kivilinna
119064b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
119164b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
119264b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
119364b94ceaSJussi Kivilinna
119464b94ceaSJussi Kivilinna	  See also:
119564b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
119664b94ceaSJussi Kivilinna
1197584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1198584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1199584fffc8SSebastian Siewior	depends on CRYPTO
1200584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1201584fffc8SSebastian Siewior	help
1202584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1203584fffc8SSebastian Siewior
1204584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1205584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1206584fffc8SSebastian Siewior
1207584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1208584fffc8SSebastian Siewior
1209584fffc8SSebastian Siewior	  See also:
1210584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1211584fffc8SSebastian Siewior
12120b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12130b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1214f21a7c19SAl Viro	depends on X86 && 64BIT
12150b95ec56SJussi Kivilinna	depends on CRYPTO
12161af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1217964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12180b95ec56SJussi Kivilinna	help
12190b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12200b95ec56SJussi Kivilinna
12210b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12220b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12230b95ec56SJussi Kivilinna
12240b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12250b95ec56SJussi Kivilinna
12260b95ec56SJussi Kivilinna	  See also:
12270b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12280b95ec56SJussi Kivilinna
1229d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1230d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1231d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1232d9b1d2e7SJussi Kivilinna	depends on CRYPTO
123344893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1234d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
123544893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
123644893bc2SEric Biggers	select CRYPTO_SIMD
1237d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1238d9b1d2e7SJussi Kivilinna	help
1239d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1240d9b1d2e7SJussi Kivilinna
1241d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1242d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1243d9b1d2e7SJussi Kivilinna
1244d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1245d9b1d2e7SJussi Kivilinna
1246d9b1d2e7SJussi Kivilinna	  See also:
1247d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1248d9b1d2e7SJussi Kivilinna
1249f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1250f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1251f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1252f3f935a7SJussi Kivilinna	depends on CRYPTO
1253f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1254f3f935a7SJussi Kivilinna	help
1255f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1256f3f935a7SJussi Kivilinna
1257f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1258f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1259f3f935a7SJussi Kivilinna
1260f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1261f3f935a7SJussi Kivilinna
1262f3f935a7SJussi Kivilinna	  See also:
1263f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1264f3f935a7SJussi Kivilinna
126581658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
126681658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
126781658ad0SDavid S. Miller	depends on SPARC64
126881658ad0SDavid S. Miller	depends on CRYPTO
126981658ad0SDavid S. Miller	select CRYPTO_ALGAPI
127081658ad0SDavid S. Miller	help
127181658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
127281658ad0SDavid S. Miller
127381658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
127481658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
127581658ad0SDavid S. Miller
127681658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
127781658ad0SDavid S. Miller
127881658ad0SDavid S. Miller	  See also:
127981658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
128081658ad0SDavid S. Miller
1281044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1282044ab525SJussi Kivilinna	tristate
1283044ab525SJussi Kivilinna	help
1284044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1285044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1286044ab525SJussi Kivilinna
1287584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1288584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1289584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1290044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1291584fffc8SSebastian Siewior	help
1292584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1293584fffc8SSebastian Siewior	  described in RFC2144.
1294584fffc8SSebastian Siewior
12954d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12964d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12974d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12981e63183aSEric Biggers	select CRYPTO_BLKCIPHER
12994d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13001e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13011e63183aSEric Biggers	select CRYPTO_SIMD
13024d6d6a2cSJohannes Goetzfried	help
13034d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13044d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13054d6d6a2cSJohannes Goetzfried
13064d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13074d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13084d6d6a2cSJohannes Goetzfried
1309584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1310584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1311584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1312044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1313584fffc8SSebastian Siewior	help
1314584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1315584fffc8SSebastian Siewior	  described in RFC2612.
1316584fffc8SSebastian Siewior
13174ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13184ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13194ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13204bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13214ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13224bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13234bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13244bd96924SEric Biggers	select CRYPTO_SIMD
13254ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13264ea1277dSJohannes Goetzfried	help
13274ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13284ea1277dSJohannes Goetzfried	  described in RFC2612.
13294ea1277dSJohannes Goetzfried
13304ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13314ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13324ea1277dSJohannes Goetzfried
1333584fffc8SSebastian Siewiorconfig CRYPTO_DES
1334584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1335584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1336584fffc8SSebastian Siewior	help
1337584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1338584fffc8SSebastian Siewior
1339c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1340c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
134197da37b3SDave Jones	depends on SPARC64
1342c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1343c5aac2dfSDavid S. Miller	select CRYPTO_DES
1344c5aac2dfSDavid S. Miller	help
1345c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1346c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1347c5aac2dfSDavid S. Miller
13486574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13496574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13506574e6c6SJussi Kivilinna	depends on X86 && 64BIT
135109c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
13526574e6c6SJussi Kivilinna	select CRYPTO_DES
13536574e6c6SJussi Kivilinna	help
13546574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13556574e6c6SJussi Kivilinna
13566574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13576574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13586574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13596574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13606574e6c6SJussi Kivilinna
1361584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1362584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1363584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1364584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1365584fffc8SSebastian Siewior	help
1366584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1367584fffc8SSebastian Siewior
1368584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1369584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1370584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1371584fffc8SSebastian Siewior	help
1372584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1373584fffc8SSebastian Siewior
1374584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1375584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1376584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1377584fffc8SSebastian Siewior
1378584fffc8SSebastian Siewior	  See also:
13796d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1380e2ee95b8SHye-Shik Chang
13812407d608STan Swee Hengconfig CRYPTO_SALSA20
13823b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
13832407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13842407d608STan Swee Heng	help
13852407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13862407d608STan Swee Heng
13872407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13882407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13892407d608STan Swee Heng
13902407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13912407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13921da177e4SLinus Torvalds
1393c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1394c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1395c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1396c08d0e64SMartin Willi	help
1397c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1398c08d0e64SMartin Willi
1399c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1400c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1401c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1402c08d0e64SMartin Willi
1403c08d0e64SMartin Willi	  See also:
1404c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1405c08d0e64SMartin Willi
1406c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14073d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1408c9320b6dSMartin Willi	depends on X86 && 64BIT
1409c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1410c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1411c9320b6dSMartin Willi	help
1412c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1413c9320b6dSMartin Willi
1414c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1415c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1416c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1417c9320b6dSMartin Willi
1418c9320b6dSMartin Willi	  See also:
1419c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1420c9320b6dSMartin Willi
1421584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1422584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1423584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1424584fffc8SSebastian Siewior	help
1425584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1426584fffc8SSebastian Siewior
1427584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1428584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1429584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1430584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1431584fffc8SSebastian Siewior
1432584fffc8SSebastian Siewior	  See also:
1433584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1434584fffc8SSebastian Siewior
1435584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1436584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1437584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1438584fffc8SSebastian Siewior	help
1439584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1440584fffc8SSebastian Siewior
1441584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1442584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1443584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1444584fffc8SSebastian Siewior
1445584fffc8SSebastian Siewior	  See also:
1446584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1447584fffc8SSebastian Siewior
1448937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1449937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1450937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1451e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1452596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1453937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1454e0f409dcSEric Biggers	select CRYPTO_SIMD
1455937c30d7SJussi Kivilinna	help
1456937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1457937c30d7SJussi Kivilinna
1458937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1459937c30d7SJussi Kivilinna	  of 8 bits.
1460937c30d7SJussi Kivilinna
14611e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1462937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1463937c30d7SJussi Kivilinna
1464937c30d7SJussi Kivilinna	  See also:
1465937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1466937c30d7SJussi Kivilinna
1467251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1468251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1469251496dbSJussi Kivilinna	depends on X86 && !64BIT
1470e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1471596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1472251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1473e0f409dcSEric Biggers	select CRYPTO_SIMD
1474251496dbSJussi Kivilinna	help
1475251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1476251496dbSJussi Kivilinna
1477251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1478251496dbSJussi Kivilinna	  of 8 bits.
1479251496dbSJussi Kivilinna
1480251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1481251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1482251496dbSJussi Kivilinna
1483251496dbSJussi Kivilinna	  See also:
1484251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1485251496dbSJussi Kivilinna
14867efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
14877efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
14887efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1489e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
14901d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
14917efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1492e16bf974SEric Biggers	select CRYPTO_SIMD
14937efe4076SJohannes Goetzfried	select CRYPTO_XTS
14947efe4076SJohannes Goetzfried	help
14957efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
14967efe4076SJohannes Goetzfried
14977efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
14987efe4076SJohannes Goetzfried	  of 8 bits.
14997efe4076SJohannes Goetzfried
15007efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15017efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15027efe4076SJohannes Goetzfried
15037efe4076SJohannes Goetzfried	  See also:
15047efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15057efe4076SJohannes Goetzfried
150656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
150756d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
150856d76c96SJussi Kivilinna	depends on X86 && 64BIT
150956d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
151056d76c96SJussi Kivilinna	help
151156d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
151256d76c96SJussi Kivilinna
151356d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
151456d76c96SJussi Kivilinna	  of 8 bits.
151556d76c96SJussi Kivilinna
151656d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
151756d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
151856d76c96SJussi Kivilinna
151956d76c96SJussi Kivilinna	  See also:
152056d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
152156d76c96SJussi Kivilinna
1522747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1523747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1524747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1525747c8ce4SGilad Ben-Yossef	help
1526747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1527747c8ce4SGilad Ben-Yossef
1528747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1529747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1530747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1531747c8ce4SGilad Ben-Yossef
1532747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1533747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1534747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1535747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1536747c8ce4SGilad Ben-Yossef
1537747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1538747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1539747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1540747c8ce4SGilad Ben-Yossef
1541747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1542747c8ce4SGilad Ben-Yossef
1543747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1544747c8ce4SGilad Ben-Yossef
1545747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1546747c8ce4SGilad Ben-Yossef
1547584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1548584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1549584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1550584fffc8SSebastian Siewior	help
1551584fffc8SSebastian Siewior	  TEA cipher algorithm.
1552584fffc8SSebastian Siewior
1553584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1554584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1555584fffc8SSebastian Siewior	  little memory.
1556584fffc8SSebastian Siewior
1557584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1558584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1559584fffc8SSebastian Siewior	  in the TEA algorithm.
1560584fffc8SSebastian Siewior
1561584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1562584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1563584fffc8SSebastian Siewior
1564584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1565584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1566584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1567584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1568584fffc8SSebastian Siewior	help
1569584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1570584fffc8SSebastian Siewior
1571584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1572584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1573584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1574584fffc8SSebastian Siewior	  bits.
1575584fffc8SSebastian Siewior
1576584fffc8SSebastian Siewior	  See also:
1577584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1578584fffc8SSebastian Siewior
1579584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1580584fffc8SSebastian Siewior	tristate
1581584fffc8SSebastian Siewior	help
1582584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1583584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1584584fffc8SSebastian Siewior
1585584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1586584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1587584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1588584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1589584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1590584fffc8SSebastian Siewior	help
1591584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1592584fffc8SSebastian Siewior
1593584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1594584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1595584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1596584fffc8SSebastian Siewior	  bits.
1597584fffc8SSebastian Siewior
1598584fffc8SSebastian Siewior	  See also:
1599584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1600584fffc8SSebastian Siewior
1601584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1602584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1603584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1604584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1605584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1606584fffc8SSebastian Siewior	help
1607584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1608584fffc8SSebastian Siewior
1609584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1610584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1611584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1612584fffc8SSebastian Siewior	  bits.
1613584fffc8SSebastian Siewior
1614584fffc8SSebastian Siewior	  See also:
1615584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1616584fffc8SSebastian Siewior
16178280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16188280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1619f21a7c19SAl Viro	depends on X86 && 64BIT
162037992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16218280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16228280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1623414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16248280daadSJussi Kivilinna	help
16258280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16268280daadSJussi Kivilinna
16278280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16288280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16298280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16308280daadSJussi Kivilinna	  bits.
16318280daadSJussi Kivilinna
16328280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16338280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16348280daadSJussi Kivilinna
16358280daadSJussi Kivilinna	  See also:
16368280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16378280daadSJussi Kivilinna
1638107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1639107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1640107778b5SJohannes Goetzfried	depends on X86 && 64BIT
16410e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1642a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16430e6ab46dSEric Biggers	select CRYPTO_SIMD
1644107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1645107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1646107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1647107778b5SJohannes Goetzfried	help
1648107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1649107778b5SJohannes Goetzfried
1650107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1651107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1652107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1653107778b5SJohannes Goetzfried	  bits.
1654107778b5SJohannes Goetzfried
1655107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1656107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1657107778b5SJohannes Goetzfried
1658107778b5SJohannes Goetzfried	  See also:
1659107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1660107778b5SJohannes Goetzfried
1661584fffc8SSebastian Siewiorcomment "Compression"
1662584fffc8SSebastian Siewior
16631da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16641da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1665cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1666f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16671da177e4SLinus Torvalds	select ZLIB_INFLATE
16681da177e4SLinus Torvalds	select ZLIB_DEFLATE
16691da177e4SLinus Torvalds	help
16701da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16711da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16721da177e4SLinus Torvalds
16731da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16741da177e4SLinus Torvalds
16750b77abb3SZoltan Sogorconfig CRYPTO_LZO
16760b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16770b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1678ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16790b77abb3SZoltan Sogor	select LZO_COMPRESS
16800b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16810b77abb3SZoltan Sogor	help
16820b77abb3SZoltan Sogor	  This is the LZO algorithm.
16830b77abb3SZoltan Sogor
168435a1fc18SSeth Jenningsconfig CRYPTO_842
168535a1fc18SSeth Jennings	tristate "842 compression algorithm"
16862062c5b6SDan Streetman	select CRYPTO_ALGAPI
16876a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
16882062c5b6SDan Streetman	select 842_COMPRESS
16892062c5b6SDan Streetman	select 842_DECOMPRESS
169035a1fc18SSeth Jennings	help
169135a1fc18SSeth Jennings	  This is the 842 algorithm.
169235a1fc18SSeth Jennings
16930ea8530dSChanho Minconfig CRYPTO_LZ4
16940ea8530dSChanho Min	tristate "LZ4 compression algorithm"
16950ea8530dSChanho Min	select CRYPTO_ALGAPI
16968cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
16970ea8530dSChanho Min	select LZ4_COMPRESS
16980ea8530dSChanho Min	select LZ4_DECOMPRESS
16990ea8530dSChanho Min	help
17000ea8530dSChanho Min	  This is the LZ4 algorithm.
17010ea8530dSChanho Min
17020ea8530dSChanho Minconfig CRYPTO_LZ4HC
17030ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17040ea8530dSChanho Min	select CRYPTO_ALGAPI
170591d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17060ea8530dSChanho Min	select LZ4HC_COMPRESS
17070ea8530dSChanho Min	select LZ4_DECOMPRESS
17080ea8530dSChanho Min	help
17090ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17100ea8530dSChanho Min
1711d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1712d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1713d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1714d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1715d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1716d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1717d28fc3dbSNick Terrell	help
1718d28fc3dbSNick Terrell	  This is the zstd algorithm.
1719d28fc3dbSNick Terrell
172017f0f4a4SNeil Hormancomment "Random Number Generation"
172117f0f4a4SNeil Horman
172217f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
172317f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
172417f0f4a4SNeil Horman	select CRYPTO_AES
172517f0f4a4SNeil Horman	select CRYPTO_RNG
172617f0f4a4SNeil Horman	help
172717f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
172817f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17297dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17307dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
173117f0f4a4SNeil Horman
1732f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1733419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1734419090c6SStephan Mueller	help
1735419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1736419090c6SStephan Mueller	  more of the DRBG types must be selected.
1737419090c6SStephan Mueller
1738f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1739419090c6SStephan Mueller
1740419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1741401e4238SHerbert Xu	bool
1742419090c6SStephan Mueller	default y
1743419090c6SStephan Mueller	select CRYPTO_HMAC
1744826775bbSHerbert Xu	select CRYPTO_SHA256
1745419090c6SStephan Mueller
1746419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1747419090c6SStephan Mueller	bool "Enable Hash DRBG"
1748826775bbSHerbert Xu	select CRYPTO_SHA256
1749419090c6SStephan Mueller	help
1750419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1751419090c6SStephan Mueller
1752419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1753419090c6SStephan Mueller	bool "Enable CTR DRBG"
1754419090c6SStephan Mueller	select CRYPTO_AES
175535591285SStephan Mueller	depends on CRYPTO_CTR
1756419090c6SStephan Mueller	help
1757419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1758419090c6SStephan Mueller
1759f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1760f2c89a10SHerbert Xu	tristate
1761401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1762f2c89a10SHerbert Xu	select CRYPTO_RNG
1763bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1764f2c89a10SHerbert Xu
1765f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1766419090c6SStephan Mueller
1767bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1768bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
17692f313e02SArnd Bergmann	select CRYPTO_RNG
1770bb5530e4SStephan Mueller	help
1771bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1772bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1773bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1774bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1775bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1776bb5530e4SStephan Mueller
177703c8efc1SHerbert Xuconfig CRYPTO_USER_API
177803c8efc1SHerbert Xu	tristate
177903c8efc1SHerbert Xu
1780fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1781fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17827451708fSHerbert Xu	depends on NET
1783fe869cdbSHerbert Xu	select CRYPTO_HASH
1784fe869cdbSHerbert Xu	select CRYPTO_USER_API
1785fe869cdbSHerbert Xu	help
1786fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1787fe869cdbSHerbert Xu	  algorithms.
1788fe869cdbSHerbert Xu
17898ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
17908ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
17917451708fSHerbert Xu	depends on NET
17928ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
17938ff59090SHerbert Xu	select CRYPTO_USER_API
17948ff59090SHerbert Xu	help
17958ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
17968ff59090SHerbert Xu	  key cipher algorithms.
17978ff59090SHerbert Xu
17982f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
17992f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18002f375538SStephan Mueller	depends on NET
18012f375538SStephan Mueller	select CRYPTO_RNG
18022f375538SStephan Mueller	select CRYPTO_USER_API
18032f375538SStephan Mueller	help
18042f375538SStephan Mueller	  This option enables the user-spaces interface for random
18052f375538SStephan Mueller	  number generator algorithms.
18062f375538SStephan Mueller
1807b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1808b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1809b64a2d95SHerbert Xu	depends on NET
1810b64a2d95SHerbert Xu	select CRYPTO_AEAD
181172548b09SStephan Mueller	select CRYPTO_BLKCIPHER
181272548b09SStephan Mueller	select CRYPTO_NULL
1813b64a2d95SHerbert Xu	select CRYPTO_USER_API
1814b64a2d95SHerbert Xu	help
1815b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1816b64a2d95SHerbert Xu	  cipher algorithms.
1817b64a2d95SHerbert Xu
1818cac5818cSCorentin Labbeconfig CRYPTO_STATS
1819cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1820cac5818cSCorentin Labbe	help
1821cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1822cac5818cSCorentin Labbe	  This will collect:
1823cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1824cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1825cac5818cSCorentin Labbe	  - size and numbers of hash operations
1826cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1827cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1828cac5818cSCorentin Labbe
1829ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1830ee08997fSDmitry Kasatkin	bool
1831ee08997fSDmitry Kasatkin
18321da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1833964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1834cfc411e7SDavid Howellssource certs/Kconfig
18351da177e4SLinus Torvalds
1836cce9e06dSHerbert Xuendif	# if CRYPTO
1837