1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 1266a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139929d34caSEric Biggersif CRYPTO_MANAGER2 140929d34caSEric Biggers 141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 142326a6346SHerbert Xu bool "Disable run-time self tests" 14300ca28a5SHerbert Xu default y 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158929d34caSEric Biggersendif # if CRYPTO_MANAGER2 159929d34caSEric Biggers 160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 161e590e132SEric Biggers tristate 162584fffc8SSebastian Siewior 163584fffc8SSebastian Siewiorconfig CRYPTO_NULL 164584fffc8SSebastian Siewior tristate "Null algorithms" 165149a3971SHerbert Xu select CRYPTO_NULL2 166584fffc8SSebastian Siewior help 167584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 168584fffc8SSebastian Siewior 169149a3971SHerbert Xuconfig CRYPTO_NULL2 170dd43c4e9SHerbert Xu tristate 171149a3971SHerbert Xu select CRYPTO_ALGAPI2 172149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 173149a3971SHerbert Xu select CRYPTO_HASH2 174149a3971SHerbert Xu 1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1763b4afaf2SKees Cook tristate "Parallel crypto engine" 1773b4afaf2SKees Cook depends on SMP 1785068c7a8SSteffen Klassert select PADATA 1795068c7a8SSteffen Klassert select CRYPTO_MANAGER 1805068c7a8SSteffen Klassert select CRYPTO_AEAD 1815068c7a8SSteffen Klassert help 1825068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1835068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1845068c7a8SSteffen Klassert 185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 186584fffc8SSebastian Siewior tristate "Software async crypto daemon" 187584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 188b8a28251SLoc Ho select CRYPTO_HASH 189584fffc8SSebastian Siewior select CRYPTO_MANAGER 190584fffc8SSebastian Siewior help 191584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 192584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 193584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 194584fffc8SSebastian Siewior 195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 196584fffc8SSebastian Siewior tristate "Authenc support" 197584fffc8SSebastian Siewior select CRYPTO_AEAD 198584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 199584fffc8SSebastian Siewior select CRYPTO_MANAGER 200584fffc8SSebastian Siewior select CRYPTO_HASH 201e94c6a7aSHerbert Xu select CRYPTO_NULL 202584fffc8SSebastian Siewior help 203584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 204584fffc8SSebastian Siewior This is required for IPSec. 205584fffc8SSebastian Siewior 206584fffc8SSebastian Siewiorconfig CRYPTO_TEST 207584fffc8SSebastian Siewior tristate "Testing module" 208584fffc8SSebastian Siewior depends on m 209da7f033dSHerbert Xu select CRYPTO_MANAGER 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Quick & dirty crypto test module. 212584fffc8SSebastian Siewior 213266d0516SHerbert Xuconfig CRYPTO_SIMD 214266d0516SHerbert Xu tristate 215266d0516SHerbert Xu select CRYPTO_CRYPTD 216266d0516SHerbert Xu 217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 218596d8750SJussi Kivilinna tristate 219596d8750SJussi Kivilinna depends on X86 220065ce327SHerbert Xu select CRYPTO_BLKCIPHER 221596d8750SJussi Kivilinna 222735d37b5SBaolin Wangconfig CRYPTO_ENGINE 223735d37b5SBaolin Wang tristate 224735d37b5SBaolin Wang 2253d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2283d6228a5SVitaly Chikunov tristate "RSA algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2303d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2313d6228a5SVitaly Chikunov select MPILIB 2323d6228a5SVitaly Chikunov select ASN1 2333d6228a5SVitaly Chikunov help 2343d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2353d6228a5SVitaly Chikunov 2363d6228a5SVitaly Chikunovconfig CRYPTO_DH 2373d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2383d6228a5SVitaly Chikunov select CRYPTO_KPP 2393d6228a5SVitaly Chikunov select MPILIB 2403d6228a5SVitaly Chikunov help 2413d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2423d6228a5SVitaly Chikunov 2434a2289daSVitaly Chikunovconfig CRYPTO_ECC 2444a2289daSVitaly Chikunov tristate 2454a2289daSVitaly Chikunov 2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2473d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2484a2289daSVitaly Chikunov select CRYPTO_ECC 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2513d6228a5SVitaly Chikunov help 2523d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2533d6228a5SVitaly Chikunov 2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2550d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2560d7a7864SVitaly Chikunov select CRYPTO_ECC 2570d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2580d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2591036633eSVitaly Chikunov select OID_REGISTRY 2601036633eSVitaly Chikunov select ASN1 2610d7a7864SVitaly Chikunov help 2620d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2630d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2640d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2650d7a7864SVitaly Chikunov is implemented. 2660d7a7864SVitaly Chikunov 267584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 268584fffc8SSebastian Siewior 269584fffc8SSebastian Siewiorconfig CRYPTO_CCM 270584fffc8SSebastian Siewior tristate "CCM support" 271584fffc8SSebastian Siewior select CRYPTO_CTR 272f15f05b0SArd Biesheuvel select CRYPTO_HASH 273584fffc8SSebastian Siewior select CRYPTO_AEAD 274c8a3315aSEric Biggers select CRYPTO_MANAGER 275584fffc8SSebastian Siewior help 276584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 277584fffc8SSebastian Siewior 278584fffc8SSebastian Siewiorconfig CRYPTO_GCM 279584fffc8SSebastian Siewior tristate "GCM/GMAC support" 280584fffc8SSebastian Siewior select CRYPTO_CTR 281584fffc8SSebastian Siewior select CRYPTO_AEAD 2829382d97aSHuang Ying select CRYPTO_GHASH 2839489667dSJussi Kivilinna select CRYPTO_NULL 284c8a3315aSEric Biggers select CRYPTO_MANAGER 285584fffc8SSebastian Siewior help 286584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 287584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 288584fffc8SSebastian Siewior 28971ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29071ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29171ebc4d1SMartin Willi select CRYPTO_CHACHA20 29271ebc4d1SMartin Willi select CRYPTO_POLY1305 29371ebc4d1SMartin Willi select CRYPTO_AEAD 294c8a3315aSEric Biggers select CRYPTO_MANAGER 29571ebc4d1SMartin Willi help 29671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 29771ebc4d1SMartin Willi 29871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30071ebc4d1SMartin Willi IETF protocols. 30171ebc4d1SMartin Willi 302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 303f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 304f606a88eSOndrej Mosnacek select CRYPTO_AEAD 305f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 306f606a88eSOndrej Mosnacek help 307f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 308f606a88eSOndrej Mosnacek 309f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 310f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 311f606a88eSOndrej Mosnacek select CRYPTO_AEAD 312f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 313f606a88eSOndrej Mosnacek help 314f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 315f606a88eSOndrej Mosnacek 316f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 317f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 318f606a88eSOndrej Mosnacek select CRYPTO_AEAD 319f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 320f606a88eSOndrej Mosnacek help 321f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 322f606a88eSOndrej Mosnacek 3231d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3241d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3251d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3261d373d4eSOndrej Mosnacek select CRYPTO_AEAD 327de272ca7SEric Biggers select CRYPTO_SIMD 3281d373d4eSOndrej Mosnacek help 3294e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3301d373d4eSOndrej Mosnacek 3311d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3321d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3331d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3341d373d4eSOndrej Mosnacek select CRYPTO_AEAD 335d628132aSEric Biggers select CRYPTO_SIMD 3361d373d4eSOndrej Mosnacek help 3374e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm. 3381d373d4eSOndrej Mosnacek 3391d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3401d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3411d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3421d373d4eSOndrej Mosnacek select CRYPTO_AEAD 343b6708c2dSEric Biggers select CRYPTO_SIMD 3441d373d4eSOndrej Mosnacek help 3454e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm. 3461d373d4eSOndrej Mosnacek 347396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 348396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 349396be41fSOndrej Mosnacek select CRYPTO_AEAD 350396be41fSOndrej Mosnacek help 351396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 352396be41fSOndrej Mosnacek 35356e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 3542808f173SOndrej Mosnacek tristate 3552808f173SOndrej Mosnacek depends on X86 35656e8e57fSOndrej Mosnacek select CRYPTO_AEAD 35747730958SEric Biggers select CRYPTO_SIMD 35856e8e57fSOndrej Mosnacek help 35956e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 36056e8e57fSOndrej Mosnacek algorithm. 36156e8e57fSOndrej Mosnacek 3626ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3636ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3646ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3656ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3666ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3676ecc9d9fSOndrej Mosnacek help 3686ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3696ecc9d9fSOndrej Mosnacek 370396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 371396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 372396be41fSOndrej Mosnacek select CRYPTO_AEAD 373396be41fSOndrej Mosnacek help 374396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 375396be41fSOndrej Mosnacek 37656e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 3772808f173SOndrej Mosnacek tristate 3782808f173SOndrej Mosnacek depends on X86 37956e8e57fSOndrej Mosnacek select CRYPTO_AEAD 380e151a8d2SEric Biggers select CRYPTO_SIMD 38156e8e57fSOndrej Mosnacek help 38256e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 38356e8e57fSOndrej Mosnacek algorithm. 38456e8e57fSOndrej Mosnacek 3856ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3866ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3876ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3886ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3896ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3906ecc9d9fSOndrej Mosnacek help 3916ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 3926ecc9d9fSOndrej Mosnacek algorithm. 3936ecc9d9fSOndrej Mosnacek 3946ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 3956ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 3966ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3976ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3986ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3996ecc9d9fSOndrej Mosnacek help 4006ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 4016ecc9d9fSOndrej Mosnacek algorithm. 4026ecc9d9fSOndrej Mosnacek 403584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 404584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 405584fffc8SSebastian Siewior select CRYPTO_AEAD 406584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 407856e3f40SHerbert Xu select CRYPTO_NULL 408401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 409c8a3315aSEric Biggers select CRYPTO_MANAGER 410584fffc8SSebastian Siewior help 411584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 412584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 413584fffc8SSebastian Siewior 414a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 415a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 416a10f554fSHerbert Xu select CRYPTO_AEAD 417a10f554fSHerbert Xu select CRYPTO_NULL 418401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 419c8a3315aSEric Biggers select CRYPTO_MANAGER 420a10f554fSHerbert Xu help 421a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 422a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 423a10f554fSHerbert Xu algorithm for CBC. 424a10f554fSHerbert Xu 425584fffc8SSebastian Siewiorcomment "Block modes" 426584fffc8SSebastian Siewior 427584fffc8SSebastian Siewiorconfig CRYPTO_CBC 428584fffc8SSebastian Siewior tristate "CBC support" 429584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 430584fffc8SSebastian Siewior select CRYPTO_MANAGER 431584fffc8SSebastian Siewior help 432584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 433584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 434584fffc8SSebastian Siewior 435a7d85e06SJames Bottomleyconfig CRYPTO_CFB 436a7d85e06SJames Bottomley tristate "CFB support" 437a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 438a7d85e06SJames Bottomley select CRYPTO_MANAGER 439a7d85e06SJames Bottomley help 440a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 441a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 442a7d85e06SJames Bottomley 443584fffc8SSebastian Siewiorconfig CRYPTO_CTR 444584fffc8SSebastian Siewior tristate "CTR support" 445584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 446584fffc8SSebastian Siewior select CRYPTO_SEQIV 447584fffc8SSebastian Siewior select CRYPTO_MANAGER 448584fffc8SSebastian Siewior help 449584fffc8SSebastian Siewior CTR: Counter mode 450584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 451584fffc8SSebastian Siewior 452584fffc8SSebastian Siewiorconfig CRYPTO_CTS 453584fffc8SSebastian Siewior tristate "CTS support" 454584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 455c8a3315aSEric Biggers select CRYPTO_MANAGER 456584fffc8SSebastian Siewior help 457584fffc8SSebastian Siewior CTS: Cipher Text Stealing 458584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 459ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 460ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 461ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 462584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 463584fffc8SSebastian Siewior for AES encryption. 464584fffc8SSebastian Siewior 465ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 466ecd6d5c9SGilad Ben-Yossef 467584fffc8SSebastian Siewiorconfig CRYPTO_ECB 468584fffc8SSebastian Siewior tristate "ECB support" 469584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 470584fffc8SSebastian Siewior select CRYPTO_MANAGER 471584fffc8SSebastian Siewior help 472584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 473584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 474584fffc8SSebastian Siewior the input block by block. 475584fffc8SSebastian Siewior 476584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4772470a2b2SJussi Kivilinna tristate "LRW support" 478584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 479584fffc8SSebastian Siewior select CRYPTO_MANAGER 480584fffc8SSebastian Siewior select CRYPTO_GF128MUL 481584fffc8SSebastian Siewior help 482584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 483584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 484584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 485584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 486584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 487584fffc8SSebastian Siewior 488e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 489e497c518SGilad Ben-Yossef tristate "OFB support" 490e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 491e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 492e497c518SGilad Ben-Yossef help 493e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 494e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 495e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 496e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 497e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 498e497c518SGilad Ben-Yossef normally even when applied before encryption. 499e497c518SGilad Ben-Yossef 500584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 501584fffc8SSebastian Siewior tristate "PCBC support" 502584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 503584fffc8SSebastian Siewior select CRYPTO_MANAGER 504584fffc8SSebastian Siewior help 505584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 506584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 507584fffc8SSebastian Siewior 508584fffc8SSebastian Siewiorconfig CRYPTO_XTS 5095bcf8e6dSJussi Kivilinna tristate "XTS support" 510584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 511584fffc8SSebastian Siewior select CRYPTO_MANAGER 51212cb3a1cSMilan Broz select CRYPTO_ECB 513584fffc8SSebastian Siewior help 514584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 515584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 516584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 517584fffc8SSebastian Siewior 5181c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 5191c49678eSStephan Mueller tristate "Key wrapping support" 5201c49678eSStephan Mueller select CRYPTO_BLKCIPHER 521c8a3315aSEric Biggers select CRYPTO_MANAGER 5221c49678eSStephan Mueller help 5231c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 5241c49678eSStephan Mueller padding. 5251c49678eSStephan Mueller 52626609a21SEric Biggersconfig CRYPTO_NHPOLY1305 52726609a21SEric Biggers tristate 52826609a21SEric Biggers select CRYPTO_HASH 52926609a21SEric Biggers select CRYPTO_POLY1305 53026609a21SEric Biggers 531012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 532012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 533012c8238SEric Biggers depends on X86 && 64BIT 534012c8238SEric Biggers select CRYPTO_NHPOLY1305 535012c8238SEric Biggers help 536012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 537012c8238SEric Biggers Adiantum encryption mode. 538012c8238SEric Biggers 5390f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5400f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5410f961f9fSEric Biggers depends on X86 && 64BIT 5420f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5430f961f9fSEric Biggers help 5440f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5450f961f9fSEric Biggers Adiantum encryption mode. 5460f961f9fSEric Biggers 547059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 548059c2a4dSEric Biggers tristate "Adiantum support" 549059c2a4dSEric Biggers select CRYPTO_CHACHA20 550059c2a4dSEric Biggers select CRYPTO_POLY1305 551059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 552c8a3315aSEric Biggers select CRYPTO_MANAGER 553059c2a4dSEric Biggers help 554059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 555059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 556059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 557059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 558059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 559059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 560059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 561059c2a4dSEric Biggers AES-XTS. 562059c2a4dSEric Biggers 563059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 564059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 565059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 566059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 567059c2a4dSEric Biggers security than XTS, subject to the security bound. 568059c2a4dSEric Biggers 569059c2a4dSEric Biggers If unsure, say N. 570059c2a4dSEric Biggers 571584fffc8SSebastian Siewiorcomment "Hash modes" 572584fffc8SSebastian Siewior 57393b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 57493b5e86aSJussi Kivilinna tristate "CMAC support" 57593b5e86aSJussi Kivilinna select CRYPTO_HASH 57693b5e86aSJussi Kivilinna select CRYPTO_MANAGER 57793b5e86aSJussi Kivilinna help 57893b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 57993b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 58093b5e86aSJussi Kivilinna 58193b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 58293b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 58393b5e86aSJussi Kivilinna 5841da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5858425165dSHerbert Xu tristate "HMAC support" 5860796ae06SHerbert Xu select CRYPTO_HASH 58743518407SHerbert Xu select CRYPTO_MANAGER 5881da177e4SLinus Torvalds help 5891da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5901da177e4SLinus Torvalds This is required for IPSec. 5911da177e4SLinus Torvalds 592333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 593333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 594333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 595333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 596333b0d7eSKazunori MIYAZAWA help 597333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 598333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 599333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 600333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 601333b0d7eSKazunori MIYAZAWA 602f1939f7cSShane Wangconfig CRYPTO_VMAC 603f1939f7cSShane Wang tristate "VMAC support" 604f1939f7cSShane Wang select CRYPTO_HASH 605f1939f7cSShane Wang select CRYPTO_MANAGER 606f1939f7cSShane Wang help 607f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 608f1939f7cSShane Wang very high speed on 64-bit architectures. 609f1939f7cSShane Wang 610f1939f7cSShane Wang See also: 611f1939f7cSShane Wang <http://fastcrypto.org/vmac> 612f1939f7cSShane Wang 613584fffc8SSebastian Siewiorcomment "Digest" 614584fffc8SSebastian Siewior 615584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 616584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6175773a3e6SHerbert Xu select CRYPTO_HASH 6186a0962b2SDarrick J. Wong select CRC32 6191da177e4SLinus Torvalds help 620584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 621584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 62269c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6231da177e4SLinus Torvalds 6248cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6258cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6268cb51ba8SAustin Zhang depends on X86 6278cb51ba8SAustin Zhang select CRYPTO_HASH 6288cb51ba8SAustin Zhang help 6298cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6308cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6318cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6328cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6338cb51ba8SAustin Zhang gain performance compared with software implementation. 6348cb51ba8SAustin Zhang Module will be crc32c-intel. 6358cb51ba8SAustin Zhang 6367cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6376dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 638c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6396dd7a82cSAnton Blanchard select CRYPTO_HASH 6406dd7a82cSAnton Blanchard select CRC32 6416dd7a82cSAnton Blanchard help 6426dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6436dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6446dd7a82cSAnton Blanchard and newer processors for improved performance. 6456dd7a82cSAnton Blanchard 6466dd7a82cSAnton Blanchard 647442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 648442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 649442a7c40SDavid S. Miller depends on SPARC64 650442a7c40SDavid S. Miller select CRYPTO_HASH 651442a7c40SDavid S. Miller select CRC32 652442a7c40SDavid S. Miller help 653442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 654442a7c40SDavid S. Miller when available. 655442a7c40SDavid S. Miller 65678c37d19SAlexander Boykoconfig CRYPTO_CRC32 65778c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 65878c37d19SAlexander Boyko select CRYPTO_HASH 65978c37d19SAlexander Boyko select CRC32 66078c37d19SAlexander Boyko help 66178c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 66278c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 66378c37d19SAlexander Boyko 66478c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 66578c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 66678c37d19SAlexander Boyko depends on X86 66778c37d19SAlexander Boyko select CRYPTO_HASH 66878c37d19SAlexander Boyko select CRC32 66978c37d19SAlexander Boyko help 67078c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 67178c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 67278c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 673af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 67478c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 67578c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 67678c37d19SAlexander Boyko 6774a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6784a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6794a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6804a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6814a5dc51eSMarcin Nowakowski help 6824a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6834a5dc51eSMarcin Nowakowski instructions, when available. 6844a5dc51eSMarcin Nowakowski 6854a5dc51eSMarcin Nowakowski 68667882e76SNikolay Borisovconfig CRYPTO_XXHASH 68767882e76SNikolay Borisov tristate "xxHash hash algorithm" 68867882e76SNikolay Borisov select CRYPTO_HASH 68967882e76SNikolay Borisov select XXHASH 69067882e76SNikolay Borisov help 69167882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 69267882e76SNikolay Borisov speeds close to RAM limits. 69367882e76SNikolay Borisov 69468411521SHerbert Xuconfig CRYPTO_CRCT10DIF 69568411521SHerbert Xu tristate "CRCT10DIF algorithm" 69668411521SHerbert Xu select CRYPTO_HASH 69768411521SHerbert Xu help 69868411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 69968411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 70068411521SHerbert Xu transforms to be used if they are available. 70168411521SHerbert Xu 70268411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 70368411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 70468411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 70568411521SHerbert Xu select CRYPTO_HASH 70668411521SHerbert Xu help 70768411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 70868411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 70968411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 710af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 71168411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 71268411521SHerbert Xu 713b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 714b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 715b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 716b01df1c1SDaniel Axtens select CRYPTO_HASH 717b01df1c1SDaniel Axtens help 718b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 719b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 720b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 721b01df1c1SDaniel Axtens 722146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 723146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 724146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 725146c8688SDaniel Axtens help 726146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 727146c8688SDaniel Axtens POWER8 vpmsum instructions. 728146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 729146c8688SDaniel Axtens 7302cdc6899SHuang Yingconfig CRYPTO_GHASH 7312cdc6899SHuang Ying tristate "GHASH digest algorithm" 7322cdc6899SHuang Ying select CRYPTO_GF128MUL 733578c60fbSArnd Bergmann select CRYPTO_HASH 7342cdc6899SHuang Ying help 7352cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 7362cdc6899SHuang Ying 737f979e014SMartin Williconfig CRYPTO_POLY1305 738f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 739578c60fbSArnd Bergmann select CRYPTO_HASH 740f979e014SMartin Willi help 741f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 742f979e014SMartin Willi 743f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 744f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 745f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 746f979e014SMartin Willi 747c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 748b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 749c70f4abeSMartin Willi depends on X86 && 64BIT 750c70f4abeSMartin Willi select CRYPTO_POLY1305 751c70f4abeSMartin Willi help 752c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 753c70f4abeSMartin Willi 754c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 755c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 756c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 757c70f4abeSMartin Willi instructions. 758c70f4abeSMartin Willi 7591da177e4SLinus Torvaldsconfig CRYPTO_MD4 7601da177e4SLinus Torvalds tristate "MD4 digest algorithm" 761808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7621da177e4SLinus Torvalds help 7631da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7641da177e4SLinus Torvalds 7651da177e4SLinus Torvaldsconfig CRYPTO_MD5 7661da177e4SLinus Torvalds tristate "MD5 digest algorithm" 76714b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7681da177e4SLinus Torvalds help 7691da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7701da177e4SLinus Torvalds 771d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 772d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 773d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 774d69e75deSAaro Koskinen select CRYPTO_MD5 775d69e75deSAaro Koskinen select CRYPTO_HASH 776d69e75deSAaro Koskinen help 777d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 778d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 779d69e75deSAaro Koskinen 780e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 781e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 782e8e59953SMarkus Stockhausen depends on PPC 783e8e59953SMarkus Stockhausen select CRYPTO_HASH 784e8e59953SMarkus Stockhausen help 785e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 786e8e59953SMarkus Stockhausen in PPC assembler. 787e8e59953SMarkus Stockhausen 788fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 789fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 790fa4dfedcSDavid S. Miller depends on SPARC64 791fa4dfedcSDavid S. Miller select CRYPTO_MD5 792fa4dfedcSDavid S. Miller select CRYPTO_HASH 793fa4dfedcSDavid S. Miller help 794fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 795fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 796fa4dfedcSDavid S. Miller 797584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 798584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 79919e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 800584fffc8SSebastian Siewior help 801584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 802584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 803584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 804584fffc8SSebastian Siewior of the algorithm. 805584fffc8SSebastian Siewior 80682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 80782798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 8087c4468bcSHerbert Xu select CRYPTO_HASH 80982798f90SAdrian-Ken Rueegsegger help 81082798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 81182798f90SAdrian-Ken Rueegsegger 81282798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 81335ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 81482798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 81582798f90SAdrian-Ken Rueegsegger 81682798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8176d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 81882798f90SAdrian-Ken Rueegsegger 81982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 82082798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 821e5835fbaSHerbert Xu select CRYPTO_HASH 82282798f90SAdrian-Ken Rueegsegger help 82382798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 82482798f90SAdrian-Ken Rueegsegger 82582798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 82682798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 827b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 828b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 82982798f90SAdrian-Ken Rueegsegger 830b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 831b6d44341SAdrian Bunk against RIPEMD-160. 832534fe2c1SAdrian-Ken Rueegsegger 833534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8346d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 835534fe2c1SAdrian-Ken Rueegsegger 836534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 837534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 838d8a5e2e9SHerbert Xu select CRYPTO_HASH 839534fe2c1SAdrian-Ken Rueegsegger help 840b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 841b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 842b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 843b6d44341SAdrian Bunk (than RIPEMD-128). 844534fe2c1SAdrian-Ken Rueegsegger 845534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8466d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 847534fe2c1SAdrian-Ken Rueegsegger 848534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 849534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8503b8efb4cSHerbert Xu select CRYPTO_HASH 851534fe2c1SAdrian-Ken Rueegsegger help 852b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 853b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 854b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 855b6d44341SAdrian Bunk (than RIPEMD-160). 856534fe2c1SAdrian-Ken Rueegsegger 85782798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8586d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 85982798f90SAdrian-Ken Rueegsegger 8601da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8611da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 86254ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8631da177e4SLinus Torvalds help 8641da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8651da177e4SLinus Torvalds 86666be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 867e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 86866be8951SMathias Krause depends on X86 && 64BIT 86966be8951SMathias Krause select CRYPTO_SHA1 87066be8951SMathias Krause select CRYPTO_HASH 87166be8951SMathias Krause help 87266be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 87366be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 874e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 875e38b6b7fStim when available. 87666be8951SMathias Krause 8778275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 878e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8798275d1aaSTim Chen depends on X86 && 64BIT 8808275d1aaSTim Chen select CRYPTO_SHA256 8818275d1aaSTim Chen select CRYPTO_HASH 8828275d1aaSTim Chen help 8838275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8848275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8858275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 886e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 887e38b6b7fStim Instructions) when available. 8888275d1aaSTim Chen 88987de4579STim Chenconfig CRYPTO_SHA512_SSSE3 89087de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 89187de4579STim Chen depends on X86 && 64BIT 89287de4579STim Chen select CRYPTO_SHA512 89387de4579STim Chen select CRYPTO_HASH 89487de4579STim Chen help 89587de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 89687de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 89787de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 89887de4579STim Chen version 2 (AVX2) instructions, when available. 89987de4579STim Chen 900efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 901efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 902efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 903efdb6f6eSAaro Koskinen select CRYPTO_SHA1 904efdb6f6eSAaro Koskinen select CRYPTO_HASH 905efdb6f6eSAaro Koskinen help 906efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 907efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 908efdb6f6eSAaro Koskinen 9094ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9104ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9114ff28d4cSDavid S. Miller depends on SPARC64 9124ff28d4cSDavid S. Miller select CRYPTO_SHA1 9134ff28d4cSDavid S. Miller select CRYPTO_HASH 9144ff28d4cSDavid S. Miller help 9154ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9164ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9174ff28d4cSDavid S. Miller 918323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 919323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 920323a6bf1SMichael Ellerman depends on PPC 921323a6bf1SMichael Ellerman help 922323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 923323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 924323a6bf1SMichael Ellerman 925d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 926d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 927d9850fc5SMarkus Stockhausen depends on PPC && SPE 928d9850fc5SMarkus Stockhausen help 929d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 930d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 931d9850fc5SMarkus Stockhausen 9321da177e4SLinus Torvaldsconfig CRYPTO_SHA256 933cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 93450e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 9351da177e4SLinus Torvalds help 9361da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9371da177e4SLinus Torvalds 9381da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9391da177e4SLinus Torvalds security against collision attacks. 9401da177e4SLinus Torvalds 941cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 942cd12fb90SJonathan Lynch of security against collision attacks. 943cd12fb90SJonathan Lynch 9442ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9452ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9462ecc1e95SMarkus Stockhausen depends on PPC && SPE 9472ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9482ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9492ecc1e95SMarkus Stockhausen help 9502ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9512ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9522ecc1e95SMarkus Stockhausen 953efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 954efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 955efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 956efdb6f6eSAaro Koskinen select CRYPTO_SHA256 957efdb6f6eSAaro Koskinen select CRYPTO_HASH 958efdb6f6eSAaro Koskinen help 959efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 960efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 961efdb6f6eSAaro Koskinen 96286c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 96386c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 96486c93b24SDavid S. Miller depends on SPARC64 96586c93b24SDavid S. Miller select CRYPTO_SHA256 96686c93b24SDavid S. Miller select CRYPTO_HASH 96786c93b24SDavid S. Miller help 96886c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 96986c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 97086c93b24SDavid S. Miller 9711da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9721da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 973bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9741da177e4SLinus Torvalds help 9751da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9761da177e4SLinus Torvalds 9771da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9781da177e4SLinus Torvalds security against collision attacks. 9791da177e4SLinus Torvalds 9801da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9811da177e4SLinus Torvalds of security against collision attacks. 9821da177e4SLinus Torvalds 983efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 984efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 985efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 986efdb6f6eSAaro Koskinen select CRYPTO_SHA512 987efdb6f6eSAaro Koskinen select CRYPTO_HASH 988efdb6f6eSAaro Koskinen help 989efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 990efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 991efdb6f6eSAaro Koskinen 992775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 993775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 994775e0c69SDavid S. Miller depends on SPARC64 995775e0c69SDavid S. Miller select CRYPTO_SHA512 996775e0c69SDavid S. Miller select CRYPTO_HASH 997775e0c69SDavid S. Miller help 998775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 999775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1000775e0c69SDavid S. Miller 100153964b9eSJeff Garzikconfig CRYPTO_SHA3 100253964b9eSJeff Garzik tristate "SHA3 digest algorithm" 100353964b9eSJeff Garzik select CRYPTO_HASH 100453964b9eSJeff Garzik help 100553964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 100653964b9eSJeff Garzik cryptographic sponge function family called Keccak. 100753964b9eSJeff Garzik 100853964b9eSJeff Garzik References: 100953964b9eSJeff Garzik http://keccak.noekeon.org/ 101053964b9eSJeff Garzik 10114f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10124f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10134f0fc160SGilad Ben-Yossef select CRYPTO_HASH 10144f0fc160SGilad Ben-Yossef help 10154f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10164f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10174f0fc160SGilad Ben-Yossef 10184f0fc160SGilad Ben-Yossef References: 10194f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10204f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10214f0fc160SGilad Ben-Yossef 1022fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1023fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1024fe18957eSVitaly Chikunov select CRYPTO_HASH 1025fe18957eSVitaly Chikunov help 1026fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1027fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1028fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1029fe18957eSVitaly Chikunov 1030fe18957eSVitaly Chikunov References: 1031fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1032fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1033fe18957eSVitaly Chikunov 10341da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10351da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1036f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10371da177e4SLinus Torvalds help 10381da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10391da177e4SLinus Torvalds 10401da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10411da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10421da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10431da177e4SLinus Torvalds 10441da177e4SLinus Torvalds See also: 10451da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10461da177e4SLinus Torvalds 1047584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1048584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10494946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10501da177e4SLinus Torvalds help 1051584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10521da177e4SLinus Torvalds 1053584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1054584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10551da177e4SLinus Torvalds 10561da177e4SLinus Torvalds See also: 10576d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10581da177e4SLinus Torvalds 10590e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10600e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10618af00860SRichard Weinberger depends on X86 && 64BIT 10620e1227d3SHuang Ying select CRYPTO_CRYPTD 10630e1227d3SHuang Ying help 10640e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10650e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10660e1227d3SHuang Ying 1067584fffc8SSebastian Siewiorcomment "Ciphers" 10681da177e4SLinus Torvalds 1069*e59c1c98SArd Biesheuvelconfig CRYPTO_LIB_AES 1070*e59c1c98SArd Biesheuvel tristate 1071*e59c1c98SArd Biesheuvel 10721da177e4SLinus Torvaldsconfig CRYPTO_AES 10731da177e4SLinus Torvalds tristate "AES cipher algorithms" 1074cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10751da177e4SLinus Torvalds help 10761da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10771da177e4SLinus Torvalds algorithm. 10781da177e4SLinus Torvalds 10791da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10801da177e4SLinus Torvalds both hardware and software across a wide range of computing 10811da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10821da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10831da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10841da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10851da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10861da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10871da177e4SLinus Torvalds 10881da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10891da177e4SLinus Torvalds 10901da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10911da177e4SLinus Torvalds 1092b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1093b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1094b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1095*e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1096b5e0b032SArd Biesheuvel help 1097b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1098b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1099b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1100b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1101b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1102b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1103b5e0b032SArd Biesheuvel 1104b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1105b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1106b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1107b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11080a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11090a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1110b5e0b032SArd Biesheuvel 11111da177e4SLinus Torvaldsconfig CRYPTO_AES_586 11121da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1113cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1114cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11155157dea8SSebastian Siewior select CRYPTO_AES 11161da177e4SLinus Torvalds help 11171da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11181da177e4SLinus Torvalds algorithm. 11191da177e4SLinus Torvalds 11201da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11211da177e4SLinus Torvalds both hardware and software across a wide range of computing 11221da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11231da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 11241da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 11251da177e4SLinus Torvalds suited for restricted-space environments, in which it also 11261da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 11271da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11281da177e4SLinus Torvalds 11291da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11301da177e4SLinus Torvalds 11311da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 11321da177e4SLinus Torvalds 1133a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1134a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1135cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1136cce9e06dSHerbert Xu select CRYPTO_ALGAPI 113781190b32SSebastian Siewior select CRYPTO_AES 1138a2a892a2SAndreas Steinmetz help 1139a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1140a2a892a2SAndreas Steinmetz algorithm. 1141a2a892a2SAndreas Steinmetz 1142a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1143a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1144a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1145a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1146a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1147a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1148a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1149a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1150a2a892a2SAndreas Steinmetz 1151a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1152a2a892a2SAndreas Steinmetz 1153a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1154a2a892a2SAndreas Steinmetz 115554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 115654b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11578af00860SRichard Weinberger depends on X86 115885671860SHerbert Xu select CRYPTO_AEAD 11590d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11600d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 116154b6a1bdSHuang Ying select CRYPTO_ALGAPI 116285671860SHerbert Xu select CRYPTO_BLKCIPHER 11637643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 116485671860SHerbert Xu select CRYPTO_SIMD 116554b6a1bdSHuang Ying help 116654b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 116754b6a1bdSHuang Ying 116854b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 116954b6a1bdSHuang Ying algorithm. 117054b6a1bdSHuang Ying 117154b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 117254b6a1bdSHuang Ying both hardware and software across a wide range of computing 117354b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 117454b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 117554b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 117654b6a1bdSHuang Ying suited for restricted-space environments, in which it also 117754b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 117854b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 117954b6a1bdSHuang Ying 118054b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 118154b6a1bdSHuang Ying 118254b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 118354b6a1bdSHuang Ying 11840d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11850d258efbSMathias Krause for some popular block cipher mode is supported too, including 1186944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11870d258efbSMathias Krause acceleration for CTR. 11882cf4ac8bSHuang Ying 11899bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11909bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11919bf4852dSDavid S. Miller depends on SPARC64 11929bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11939bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11949bf4852dSDavid S. Miller help 11959bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11969bf4852dSDavid S. Miller 11979bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11989bf4852dSDavid S. Miller algorithm. 11999bf4852dSDavid S. Miller 12009bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 12019bf4852dSDavid S. Miller both hardware and software across a wide range of computing 12029bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 12039bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 12049bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 12059bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 12069bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 12079bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 12089bf4852dSDavid S. Miller 12099bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 12109bf4852dSDavid S. Miller 12119bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 12129bf4852dSDavid S. Miller 12139bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 12149bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 12159bf4852dSDavid S. Miller ECB and CBC. 12169bf4852dSDavid S. Miller 1217504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1218504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1219504c6143SMarkus Stockhausen depends on PPC && SPE 1220504c6143SMarkus Stockhausen help 1221504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1222504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1223504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1224504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1225504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1226504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1227504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1228504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1229504c6143SMarkus Stockhausen 12301da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12311da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1232cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12331da177e4SLinus Torvalds help 12341da177e4SLinus Torvalds Anubis cipher algorithm. 12351da177e4SLinus Torvalds 12361da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12371da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12381da177e4SLinus Torvalds in the NESSIE competition. 12391da177e4SLinus Torvalds 12401da177e4SLinus Torvalds See also: 12416d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12426d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12431da177e4SLinus Torvalds 1244dc51f257SArd Biesheuvelconfig CRYPTO_LIB_ARC4 1245dc51f257SArd Biesheuvel tristate 1246dc51f257SArd Biesheuvel 1247584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1248584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1249b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1250dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1251e2ee95b8SHye-Shik Chang help 1252584fffc8SSebastian Siewior ARC4 cipher algorithm. 1253e2ee95b8SHye-Shik Chang 1254584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1255584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1256584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1257584fffc8SSebastian Siewior weakness of the algorithm. 1258584fffc8SSebastian Siewior 1259584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1260584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1261584fffc8SSebastian Siewior select CRYPTO_ALGAPI 126252ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1263584fffc8SSebastian Siewior help 1264584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1265584fffc8SSebastian Siewior 1266584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1267584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1268584fffc8SSebastian Siewior designed for use on "large microprocessors". 1269e2ee95b8SHye-Shik Chang 1270e2ee95b8SHye-Shik Chang See also: 1271584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1272584fffc8SSebastian Siewior 127352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 127452ba867cSJussi Kivilinna tristate 127552ba867cSJussi Kivilinna help 127652ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 127752ba867cSJussi Kivilinna generic c and the assembler implementations. 127852ba867cSJussi Kivilinna 127952ba867cSJussi Kivilinna See also: 128052ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 128152ba867cSJussi Kivilinna 128264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 128364b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1284f21a7c19SAl Viro depends on X86 && 64BIT 1285c1679171SEric Biggers select CRYPTO_BLKCIPHER 128664b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 128764b94ceaSJussi Kivilinna help 128864b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 128964b94ceaSJussi Kivilinna 129064b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 129164b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 129264b94ceaSJussi Kivilinna designed for use on "large microprocessors". 129364b94ceaSJussi Kivilinna 129464b94ceaSJussi Kivilinna See also: 129564b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 129664b94ceaSJussi Kivilinna 1297584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1298584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1299584fffc8SSebastian Siewior depends on CRYPTO 1300584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1301584fffc8SSebastian Siewior help 1302584fffc8SSebastian Siewior Camellia cipher algorithms module. 1303584fffc8SSebastian Siewior 1304584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1305584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1306584fffc8SSebastian Siewior 1307584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1308584fffc8SSebastian Siewior 1309584fffc8SSebastian Siewior See also: 1310584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1311584fffc8SSebastian Siewior 13120b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 13130b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1314f21a7c19SAl Viro depends on X86 && 64BIT 13150b95ec56SJussi Kivilinna depends on CRYPTO 13161af6d037SEric Biggers select CRYPTO_BLKCIPHER 1317964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 13180b95ec56SJussi Kivilinna help 13190b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 13200b95ec56SJussi Kivilinna 13210b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 13220b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 13230b95ec56SJussi Kivilinna 13240b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 13250b95ec56SJussi Kivilinna 13260b95ec56SJussi Kivilinna See also: 13270b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 13280b95ec56SJussi Kivilinna 1329d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1330d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1331d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1332d9b1d2e7SJussi Kivilinna depends on CRYPTO 133344893bc2SEric Biggers select CRYPTO_BLKCIPHER 1334d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 133544893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 133644893bc2SEric Biggers select CRYPTO_SIMD 1337d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1338d9b1d2e7SJussi Kivilinna help 1339d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1340d9b1d2e7SJussi Kivilinna 1341d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1342d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1343d9b1d2e7SJussi Kivilinna 1344d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1345d9b1d2e7SJussi Kivilinna 1346d9b1d2e7SJussi Kivilinna See also: 1347d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1348d9b1d2e7SJussi Kivilinna 1349f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1350f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1351f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1352f3f935a7SJussi Kivilinna depends on CRYPTO 1353f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1354f3f935a7SJussi Kivilinna help 1355f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1356f3f935a7SJussi Kivilinna 1357f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1358f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1359f3f935a7SJussi Kivilinna 1360f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1361f3f935a7SJussi Kivilinna 1362f3f935a7SJussi Kivilinna See also: 1363f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1364f3f935a7SJussi Kivilinna 136581658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 136681658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 136781658ad0SDavid S. Miller depends on SPARC64 136881658ad0SDavid S. Miller depends on CRYPTO 136981658ad0SDavid S. Miller select CRYPTO_ALGAPI 137081658ad0SDavid S. Miller help 137181658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 137281658ad0SDavid S. Miller 137381658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 137481658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 137581658ad0SDavid S. Miller 137681658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 137781658ad0SDavid S. Miller 137881658ad0SDavid S. Miller See also: 137981658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 138081658ad0SDavid S. Miller 1381044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1382044ab525SJussi Kivilinna tristate 1383044ab525SJussi Kivilinna help 1384044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1385044ab525SJussi Kivilinna generic c and the assembler implementations. 1386044ab525SJussi Kivilinna 1387584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1388584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1389584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1390044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1391584fffc8SSebastian Siewior help 1392584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1393584fffc8SSebastian Siewior described in RFC2144. 1394584fffc8SSebastian Siewior 13954d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13964d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13974d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13981e63183aSEric Biggers select CRYPTO_BLKCIPHER 13994d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 14001e63183aSEric Biggers select CRYPTO_CAST_COMMON 14011e63183aSEric Biggers select CRYPTO_SIMD 14024d6d6a2cSJohannes Goetzfried help 14034d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 14044d6d6a2cSJohannes Goetzfried described in RFC2144. 14054d6d6a2cSJohannes Goetzfried 14064d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 14074d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 14084d6d6a2cSJohannes Goetzfried 1409584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1410584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1411584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1412044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1413584fffc8SSebastian Siewior help 1414584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1415584fffc8SSebastian Siewior described in RFC2612. 1416584fffc8SSebastian Siewior 14174ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 14184ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 14194ea1277dSJohannes Goetzfried depends on X86 && 64BIT 14204bd96924SEric Biggers select CRYPTO_BLKCIPHER 14214ea1277dSJohannes Goetzfried select CRYPTO_CAST6 14224bd96924SEric Biggers select CRYPTO_CAST_COMMON 14234bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 14244bd96924SEric Biggers select CRYPTO_SIMD 14254ea1277dSJohannes Goetzfried select CRYPTO_XTS 14264ea1277dSJohannes Goetzfried help 14274ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 14284ea1277dSJohannes Goetzfried described in RFC2612. 14294ea1277dSJohannes Goetzfried 14304ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 14314ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14324ea1277dSJohannes Goetzfried 1433584fffc8SSebastian Siewiorconfig CRYPTO_DES 1434584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1435584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1436584fffc8SSebastian Siewior help 1437584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1438584fffc8SSebastian Siewior 1439c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1440c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 144197da37b3SDave Jones depends on SPARC64 1442c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1443c5aac2dfSDavid S. Miller select CRYPTO_DES 1444c5aac2dfSDavid S. Miller help 1445c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1446c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1447c5aac2dfSDavid S. Miller 14486574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14496574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14506574e6c6SJussi Kivilinna depends on X86 && 64BIT 145109c0f03bSEric Biggers select CRYPTO_BLKCIPHER 14526574e6c6SJussi Kivilinna select CRYPTO_DES 14536574e6c6SJussi Kivilinna help 14546574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14556574e6c6SJussi Kivilinna 14566574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14576574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14586574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14596574e6c6SJussi Kivilinna one that processes three blocks parallel. 14606574e6c6SJussi Kivilinna 1461584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1462584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1463584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1464584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1465584fffc8SSebastian Siewior help 1466584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1467584fffc8SSebastian Siewior 1468584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1469584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1470584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1471584fffc8SSebastian Siewior help 1472584fffc8SSebastian Siewior Khazad cipher algorithm. 1473584fffc8SSebastian Siewior 1474584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1475584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1476584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1477584fffc8SSebastian Siewior 1478584fffc8SSebastian Siewior See also: 14796d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1480e2ee95b8SHye-Shik Chang 14812407d608STan Swee Hengconfig CRYPTO_SALSA20 14823b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14832407d608STan Swee Heng select CRYPTO_BLKCIPHER 14842407d608STan Swee Heng help 14852407d608STan Swee Heng Salsa20 stream cipher algorithm. 14862407d608STan Swee Heng 14872407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14882407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14892407d608STan Swee Heng 14902407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14912407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14921da177e4SLinus Torvalds 1493c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1494aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1495c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1496c08d0e64SMartin Willi help 1497aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1498c08d0e64SMartin Willi 1499c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1500c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1501de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1502c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1503c08d0e64SMartin Willi 1504de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1505de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1506de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1507de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1508de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1509de61d7aeSEric Biggers 1510aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1511aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1512aa762409SEric Biggers in some performance-sensitive scenarios. 1513aa762409SEric Biggers 1514c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 15154af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1516c9320b6dSMartin Willi depends on X86 && 64BIT 1517c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1518c9320b6dSMartin Willi select CRYPTO_CHACHA20 1519c9320b6dSMartin Willi help 15207a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 15217a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1522c9320b6dSMartin Willi 1523584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1524584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1525584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1526584fffc8SSebastian Siewior help 1527584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1528584fffc8SSebastian Siewior 1529584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1530584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1531584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1532584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1533584fffc8SSebastian Siewior 1534584fffc8SSebastian Siewior See also: 1535584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1536584fffc8SSebastian Siewior 1537584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1538584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1539584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1540584fffc8SSebastian Siewior help 1541584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1542584fffc8SSebastian Siewior 1543584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1544584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1545584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1546584fffc8SSebastian Siewior 1547584fffc8SSebastian Siewior See also: 1548584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1549584fffc8SSebastian Siewior 1550937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1551937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1552937c30d7SJussi Kivilinna depends on X86 && 64BIT 1553e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1554596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1555937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1556e0f409dcSEric Biggers select CRYPTO_SIMD 1557937c30d7SJussi Kivilinna help 1558937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1559937c30d7SJussi Kivilinna 1560937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1561937c30d7SJussi Kivilinna of 8 bits. 1562937c30d7SJussi Kivilinna 15631e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1564937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1565937c30d7SJussi Kivilinna 1566937c30d7SJussi Kivilinna See also: 1567937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1568937c30d7SJussi Kivilinna 1569251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1570251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1571251496dbSJussi Kivilinna depends on X86 && !64BIT 1572e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1573596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1574251496dbSJussi Kivilinna select CRYPTO_SERPENT 1575e0f409dcSEric Biggers select CRYPTO_SIMD 1576251496dbSJussi Kivilinna help 1577251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1578251496dbSJussi Kivilinna 1579251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1580251496dbSJussi Kivilinna of 8 bits. 1581251496dbSJussi Kivilinna 1582251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1583251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1584251496dbSJussi Kivilinna 1585251496dbSJussi Kivilinna See also: 1586251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1587251496dbSJussi Kivilinna 15887efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15897efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15907efe4076SJohannes Goetzfried depends on X86 && 64BIT 1591e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15921d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15937efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1594e16bf974SEric Biggers select CRYPTO_SIMD 15957efe4076SJohannes Goetzfried select CRYPTO_XTS 15967efe4076SJohannes Goetzfried help 15977efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15987efe4076SJohannes Goetzfried 15997efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 16007efe4076SJohannes Goetzfried of 8 bits. 16017efe4076SJohannes Goetzfried 16027efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 16037efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 16047efe4076SJohannes Goetzfried 16057efe4076SJohannes Goetzfried See also: 16067efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 16077efe4076SJohannes Goetzfried 160856d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 160956d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 161056d76c96SJussi Kivilinna depends on X86 && 64BIT 161156d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 161256d76c96SJussi Kivilinna help 161356d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 161456d76c96SJussi Kivilinna 161556d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 161656d76c96SJussi Kivilinna of 8 bits. 161756d76c96SJussi Kivilinna 161856d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 161956d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 162056d76c96SJussi Kivilinna 162156d76c96SJussi Kivilinna See also: 162256d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 162356d76c96SJussi Kivilinna 1624747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1625747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1626747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1627747c8ce4SGilad Ben-Yossef help 1628747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1629747c8ce4SGilad Ben-Yossef 1630747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1631747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1632747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1633747c8ce4SGilad Ben-Yossef 1634747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1635747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1636747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1637747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1638747c8ce4SGilad Ben-Yossef 1639747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1640747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1641747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1642747c8ce4SGilad Ben-Yossef 1643747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1644747c8ce4SGilad Ben-Yossef 1645747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1646747c8ce4SGilad Ben-Yossef 1647747c8ce4SGilad Ben-Yossef If unsure, say N. 1648747c8ce4SGilad Ben-Yossef 1649584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1650584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1651584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1652584fffc8SSebastian Siewior help 1653584fffc8SSebastian Siewior TEA cipher algorithm. 1654584fffc8SSebastian Siewior 1655584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1656584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1657584fffc8SSebastian Siewior little memory. 1658584fffc8SSebastian Siewior 1659584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1660584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1661584fffc8SSebastian Siewior in the TEA algorithm. 1662584fffc8SSebastian Siewior 1663584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1664584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1665584fffc8SSebastian Siewior 1666584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1667584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1668584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1669584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1670584fffc8SSebastian Siewior help 1671584fffc8SSebastian Siewior Twofish cipher algorithm. 1672584fffc8SSebastian Siewior 1673584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1674584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1675584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1676584fffc8SSebastian Siewior bits. 1677584fffc8SSebastian Siewior 1678584fffc8SSebastian Siewior See also: 1679584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1680584fffc8SSebastian Siewior 1681584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1682584fffc8SSebastian Siewior tristate 1683584fffc8SSebastian Siewior help 1684584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1685584fffc8SSebastian Siewior generic c and the assembler implementations. 1686584fffc8SSebastian Siewior 1687584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1688584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1689584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1690584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1691584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1692584fffc8SSebastian Siewior help 1693584fffc8SSebastian Siewior Twofish cipher algorithm. 1694584fffc8SSebastian Siewior 1695584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1696584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1697584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1698584fffc8SSebastian Siewior bits. 1699584fffc8SSebastian Siewior 1700584fffc8SSebastian Siewior See also: 1701584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1702584fffc8SSebastian Siewior 1703584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1704584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1705584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1706584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1707584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1708584fffc8SSebastian Siewior help 1709584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1710584fffc8SSebastian Siewior 1711584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1712584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1713584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1714584fffc8SSebastian Siewior bits. 1715584fffc8SSebastian Siewior 1716584fffc8SSebastian Siewior See also: 1717584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1718584fffc8SSebastian Siewior 17198280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17208280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1721f21a7c19SAl Viro depends on X86 && 64BIT 172237992fa4SEric Biggers select CRYPTO_BLKCIPHER 17238280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17248280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1725414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17268280daadSJussi Kivilinna help 17278280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17288280daadSJussi Kivilinna 17298280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17308280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17318280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17328280daadSJussi Kivilinna bits. 17338280daadSJussi Kivilinna 17348280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17358280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17368280daadSJussi Kivilinna 17378280daadSJussi Kivilinna See also: 17388280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 17398280daadSJussi Kivilinna 1740107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1741107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1742107778b5SJohannes Goetzfried depends on X86 && 64BIT 17430e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1744a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17450e6ab46dSEric Biggers select CRYPTO_SIMD 1746107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1747107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1748107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1749107778b5SJohannes Goetzfried help 1750107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1751107778b5SJohannes Goetzfried 1752107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1753107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1754107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1755107778b5SJohannes Goetzfried bits. 1756107778b5SJohannes Goetzfried 1757107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1758107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1759107778b5SJohannes Goetzfried 1760107778b5SJohannes Goetzfried See also: 1761107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1762107778b5SJohannes Goetzfried 1763584fffc8SSebastian Siewiorcomment "Compression" 1764584fffc8SSebastian Siewior 17651da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17661da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1767cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1768f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17691da177e4SLinus Torvalds select ZLIB_INFLATE 17701da177e4SLinus Torvalds select ZLIB_DEFLATE 17711da177e4SLinus Torvalds help 17721da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17731da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17741da177e4SLinus Torvalds 17751da177e4SLinus Torvalds You will most probably want this if using IPSec. 17761da177e4SLinus Torvalds 17770b77abb3SZoltan Sogorconfig CRYPTO_LZO 17780b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17790b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1780ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17810b77abb3SZoltan Sogor select LZO_COMPRESS 17820b77abb3SZoltan Sogor select LZO_DECOMPRESS 17830b77abb3SZoltan Sogor help 17840b77abb3SZoltan Sogor This is the LZO algorithm. 17850b77abb3SZoltan Sogor 178635a1fc18SSeth Jenningsconfig CRYPTO_842 178735a1fc18SSeth Jennings tristate "842 compression algorithm" 17882062c5b6SDan Streetman select CRYPTO_ALGAPI 17896a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17902062c5b6SDan Streetman select 842_COMPRESS 17912062c5b6SDan Streetman select 842_DECOMPRESS 179235a1fc18SSeth Jennings help 179335a1fc18SSeth Jennings This is the 842 algorithm. 179435a1fc18SSeth Jennings 17950ea8530dSChanho Minconfig CRYPTO_LZ4 17960ea8530dSChanho Min tristate "LZ4 compression algorithm" 17970ea8530dSChanho Min select CRYPTO_ALGAPI 17988cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17990ea8530dSChanho Min select LZ4_COMPRESS 18000ea8530dSChanho Min select LZ4_DECOMPRESS 18010ea8530dSChanho Min help 18020ea8530dSChanho Min This is the LZ4 algorithm. 18030ea8530dSChanho Min 18040ea8530dSChanho Minconfig CRYPTO_LZ4HC 18050ea8530dSChanho Min tristate "LZ4HC compression algorithm" 18060ea8530dSChanho Min select CRYPTO_ALGAPI 180791d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 18080ea8530dSChanho Min select LZ4HC_COMPRESS 18090ea8530dSChanho Min select LZ4_DECOMPRESS 18100ea8530dSChanho Min help 18110ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 18120ea8530dSChanho Min 1813d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1814d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1815d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1816d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1817d28fc3dbSNick Terrell select ZSTD_COMPRESS 1818d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1819d28fc3dbSNick Terrell help 1820d28fc3dbSNick Terrell This is the zstd algorithm. 1821d28fc3dbSNick Terrell 182217f0f4a4SNeil Hormancomment "Random Number Generation" 182317f0f4a4SNeil Horman 182417f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 182517f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 182617f0f4a4SNeil Horman select CRYPTO_AES 182717f0f4a4SNeil Horman select CRYPTO_RNG 182817f0f4a4SNeil Horman help 182917f0f4a4SNeil Horman This option enables the generic pseudo random number generator 183017f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18317dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18327dd607e8SJiri Kosina CRYPTO_FIPS is selected 183317f0f4a4SNeil Horman 1834f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1835419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1836419090c6SStephan Mueller help 1837419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1838419090c6SStephan Mueller more of the DRBG types must be selected. 1839419090c6SStephan Mueller 1840f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1841419090c6SStephan Mueller 1842419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1843401e4238SHerbert Xu bool 1844419090c6SStephan Mueller default y 1845419090c6SStephan Mueller select CRYPTO_HMAC 1846826775bbSHerbert Xu select CRYPTO_SHA256 1847419090c6SStephan Mueller 1848419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1849419090c6SStephan Mueller bool "Enable Hash DRBG" 1850826775bbSHerbert Xu select CRYPTO_SHA256 1851419090c6SStephan Mueller help 1852419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1853419090c6SStephan Mueller 1854419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1855419090c6SStephan Mueller bool "Enable CTR DRBG" 1856419090c6SStephan Mueller select CRYPTO_AES 185735591285SStephan Mueller depends on CRYPTO_CTR 1858419090c6SStephan Mueller help 1859419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1860419090c6SStephan Mueller 1861f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1862f2c89a10SHerbert Xu tristate 1863401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1864f2c89a10SHerbert Xu select CRYPTO_RNG 1865bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1866f2c89a10SHerbert Xu 1867f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1868419090c6SStephan Mueller 1869bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1870bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18712f313e02SArnd Bergmann select CRYPTO_RNG 1872bb5530e4SStephan Mueller help 1873bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1874bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1875bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1876bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1877bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1878bb5530e4SStephan Mueller 187903c8efc1SHerbert Xuconfig CRYPTO_USER_API 188003c8efc1SHerbert Xu tristate 188103c8efc1SHerbert Xu 1882fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1883fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18847451708fSHerbert Xu depends on NET 1885fe869cdbSHerbert Xu select CRYPTO_HASH 1886fe869cdbSHerbert Xu select CRYPTO_USER_API 1887fe869cdbSHerbert Xu help 1888fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1889fe869cdbSHerbert Xu algorithms. 1890fe869cdbSHerbert Xu 18918ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18928ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18937451708fSHerbert Xu depends on NET 18948ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18958ff59090SHerbert Xu select CRYPTO_USER_API 18968ff59090SHerbert Xu help 18978ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18988ff59090SHerbert Xu key cipher algorithms. 18998ff59090SHerbert Xu 19002f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 19012f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 19022f375538SStephan Mueller depends on NET 19032f375538SStephan Mueller select CRYPTO_RNG 19042f375538SStephan Mueller select CRYPTO_USER_API 19052f375538SStephan Mueller help 19062f375538SStephan Mueller This option enables the user-spaces interface for random 19072f375538SStephan Mueller number generator algorithms. 19082f375538SStephan Mueller 1909b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1910b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1911b64a2d95SHerbert Xu depends on NET 1912b64a2d95SHerbert Xu select CRYPTO_AEAD 191372548b09SStephan Mueller select CRYPTO_BLKCIPHER 191472548b09SStephan Mueller select CRYPTO_NULL 1915b64a2d95SHerbert Xu select CRYPTO_USER_API 1916b64a2d95SHerbert Xu help 1917b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1918b64a2d95SHerbert Xu cipher algorithms. 1919b64a2d95SHerbert Xu 1920cac5818cSCorentin Labbeconfig CRYPTO_STATS 1921cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1922a6a31385SCorentin Labbe depends on CRYPTO_USER 1923cac5818cSCorentin Labbe help 1924cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1925cac5818cSCorentin Labbe This will collect: 1926cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1927cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1928cac5818cSCorentin Labbe - size and numbers of hash operations 1929cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1930cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1931cac5818cSCorentin Labbe 1932ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1933ee08997fSDmitry Kasatkin bool 1934ee08997fSDmitry Kasatkin 19351da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19368636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19378636a1f9SMasahiro Yamadasource "certs/Kconfig" 19381da177e4SLinus Torvalds 1939cce9e06dSHerbert Xuendif # if CRYPTO 1940