xref: /linux/crypto/Kconfig (revision e590e1321c13ae736bd0e0da48a61a58ef084875)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1172b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1186a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1192b8c19dbSHerbert Xu	help
1202b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1212b8c19dbSHerbert Xu	  cbc(aes).
1222b8c19dbSHerbert Xu
1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1246a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1256a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1266a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1276a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
128946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1294e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1302ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1316a0fcbb4SHerbert Xu
132a38f7907SSteffen Klassertconfig CRYPTO_USER
133a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1345db017aaSHerbert Xu	depends on NET
135a38f7907SSteffen Klassert	select CRYPTO_MANAGER
136a38f7907SSteffen Klassert	help
137d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
138a38f7907SSteffen Klassert	  cbc(aes).
139a38f7907SSteffen Klassert
140929d34caSEric Biggersif CRYPTO_MANAGER2
141929d34caSEric Biggers
142326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
143326a6346SHerbert Xu	bool "Disable run-time self tests"
14400ca28a5SHerbert Xu	default y
1450b767f96SAlexander Shishkin	help
146326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
147326a6346SHerbert Xu	  algorithm registration.
1480b767f96SAlexander Shishkin
1495b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1505b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1515b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1525b2706a4SEric Biggers	help
1535b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1545b2706a4SEric Biggers	  including randomized fuzz tests.
1555b2706a4SEric Biggers
1565b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1575b2706a4SEric Biggers	  longer to run than the normal self tests.
1585b2706a4SEric Biggers
159929d34caSEric Biggersendif	# if CRYPTO_MANAGER2
160929d34caSEric Biggers
161584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
162*e590e132SEric Biggers	tristate
163584fffc8SSebastian Siewior
164584fffc8SSebastian Siewiorconfig CRYPTO_NULL
165584fffc8SSebastian Siewior	tristate "Null algorithms"
166149a3971SHerbert Xu	select CRYPTO_NULL2
167584fffc8SSebastian Siewior	help
168584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
169584fffc8SSebastian Siewior
170149a3971SHerbert Xuconfig CRYPTO_NULL2
171dd43c4e9SHerbert Xu	tristate
172149a3971SHerbert Xu	select CRYPTO_ALGAPI2
173149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
174149a3971SHerbert Xu	select CRYPTO_HASH2
175149a3971SHerbert Xu
1765068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1773b4afaf2SKees Cook	tristate "Parallel crypto engine"
1783b4afaf2SKees Cook	depends on SMP
1795068c7a8SSteffen Klassert	select PADATA
1805068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1815068c7a8SSteffen Klassert	select CRYPTO_AEAD
1825068c7a8SSteffen Klassert	help
1835068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1845068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1855068c7a8SSteffen Klassert
18625c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
18725c38d3fSHuang Ying       tristate
18825c38d3fSHuang Ying
189584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
190584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
191584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
192b8a28251SLoc Ho	select CRYPTO_HASH
193584fffc8SSebastian Siewior	select CRYPTO_MANAGER
194254eff77SHuang Ying	select CRYPTO_WORKQUEUE
195584fffc8SSebastian Siewior	help
196584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
197584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
198584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
199584fffc8SSebastian Siewior
200584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
201584fffc8SSebastian Siewior	tristate "Authenc support"
202584fffc8SSebastian Siewior	select CRYPTO_AEAD
203584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
204584fffc8SSebastian Siewior	select CRYPTO_MANAGER
205584fffc8SSebastian Siewior	select CRYPTO_HASH
206e94c6a7aSHerbert Xu	select CRYPTO_NULL
207584fffc8SSebastian Siewior	help
208584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
209584fffc8SSebastian Siewior	  This is required for IPSec.
210584fffc8SSebastian Siewior
211584fffc8SSebastian Siewiorconfig CRYPTO_TEST
212584fffc8SSebastian Siewior	tristate "Testing module"
213584fffc8SSebastian Siewior	depends on m
214da7f033dSHerbert Xu	select CRYPTO_MANAGER
215584fffc8SSebastian Siewior	help
216584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
217584fffc8SSebastian Siewior
218266d0516SHerbert Xuconfig CRYPTO_SIMD
219266d0516SHerbert Xu	tristate
220266d0516SHerbert Xu	select CRYPTO_CRYPTD
221266d0516SHerbert Xu
222596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
223596d8750SJussi Kivilinna	tristate
224596d8750SJussi Kivilinna	depends on X86
225065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
226596d8750SJussi Kivilinna
227735d37b5SBaolin Wangconfig CRYPTO_ENGINE
228735d37b5SBaolin Wang	tristate
229735d37b5SBaolin Wang
2303d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2313d6228a5SVitaly Chikunov
2323d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2333d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2343d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2353d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2363d6228a5SVitaly Chikunov	select MPILIB
2373d6228a5SVitaly Chikunov	select ASN1
2383d6228a5SVitaly Chikunov	help
2393d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2403d6228a5SVitaly Chikunov
2413d6228a5SVitaly Chikunovconfig CRYPTO_DH
2423d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2433d6228a5SVitaly Chikunov	select CRYPTO_KPP
2443d6228a5SVitaly Chikunov	select MPILIB
2453d6228a5SVitaly Chikunov	help
2463d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2473d6228a5SVitaly Chikunov
2484a2289daSVitaly Chikunovconfig CRYPTO_ECC
2494a2289daSVitaly Chikunov	tristate
2504a2289daSVitaly Chikunov
2513d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2523d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2534a2289daSVitaly Chikunov	select CRYPTO_ECC
2543d6228a5SVitaly Chikunov	select CRYPTO_KPP
2553d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2563d6228a5SVitaly Chikunov	help
2573d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2583d6228a5SVitaly Chikunov
2590d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2600d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2610d7a7864SVitaly Chikunov	select CRYPTO_ECC
2620d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2630d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2641036633eSVitaly Chikunov	select OID_REGISTRY
2651036633eSVitaly Chikunov	select ASN1
2660d7a7864SVitaly Chikunov	help
2670d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2680d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2690d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2700d7a7864SVitaly Chikunov	  is implemented.
2710d7a7864SVitaly Chikunov
272584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
273584fffc8SSebastian Siewior
274584fffc8SSebastian Siewiorconfig CRYPTO_CCM
275584fffc8SSebastian Siewior	tristate "CCM support"
276584fffc8SSebastian Siewior	select CRYPTO_CTR
277f15f05b0SArd Biesheuvel	select CRYPTO_HASH
278584fffc8SSebastian Siewior	select CRYPTO_AEAD
279c8a3315aSEric Biggers	select CRYPTO_MANAGER
280584fffc8SSebastian Siewior	help
281584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
282584fffc8SSebastian Siewior
283584fffc8SSebastian Siewiorconfig CRYPTO_GCM
284584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
285584fffc8SSebastian Siewior	select CRYPTO_CTR
286584fffc8SSebastian Siewior	select CRYPTO_AEAD
2879382d97aSHuang Ying	select CRYPTO_GHASH
2889489667dSJussi Kivilinna	select CRYPTO_NULL
289c8a3315aSEric Biggers	select CRYPTO_MANAGER
290584fffc8SSebastian Siewior	help
291584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
292584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
293584fffc8SSebastian Siewior
29471ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
29571ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
29671ebc4d1SMartin Willi	select CRYPTO_CHACHA20
29771ebc4d1SMartin Willi	select CRYPTO_POLY1305
29871ebc4d1SMartin Willi	select CRYPTO_AEAD
299c8a3315aSEric Biggers	select CRYPTO_MANAGER
30071ebc4d1SMartin Willi	help
30171ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
30271ebc4d1SMartin Willi
30371ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
30471ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
30571ebc4d1SMartin Willi	  IETF protocols.
30671ebc4d1SMartin Willi
307f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
308f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
309f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
310f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
311f606a88eSOndrej Mosnacek	help
312f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
313f606a88eSOndrej Mosnacek
314f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
315f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
316f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
317f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
318f606a88eSOndrej Mosnacek	help
319f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
320f606a88eSOndrej Mosnacek
321f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
322f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
323f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
324f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
325f606a88eSOndrej Mosnacek	help
326f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
327f606a88eSOndrej Mosnacek
3281d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3291d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3301d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3311d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
332de272ca7SEric Biggers	select CRYPTO_SIMD
3331d373d4eSOndrej Mosnacek	help
3344e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3351d373d4eSOndrej Mosnacek
3361d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3371d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3381d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3391d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
340d628132aSEric Biggers	select CRYPTO_SIMD
3411d373d4eSOndrej Mosnacek	help
3424e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
3431d373d4eSOndrej Mosnacek
3441d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3451d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3461d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3471d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
348b6708c2dSEric Biggers	select CRYPTO_SIMD
3491d373d4eSOndrej Mosnacek	help
3504e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
3511d373d4eSOndrej Mosnacek
352396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
353396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
354396be41fSOndrej Mosnacek	select CRYPTO_AEAD
355396be41fSOndrej Mosnacek	help
356396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
357396be41fSOndrej Mosnacek
35856e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3592808f173SOndrej Mosnacek	tristate
3602808f173SOndrej Mosnacek	depends on X86
36156e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
36247730958SEric Biggers	select CRYPTO_SIMD
36356e8e57fSOndrej Mosnacek	help
36456e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
36556e8e57fSOndrej Mosnacek	  algorithm.
36656e8e57fSOndrej Mosnacek
3676ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3686ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3696ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3706ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3716ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3726ecc9d9fSOndrej Mosnacek	help
3736ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3746ecc9d9fSOndrej Mosnacek
375396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
376396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
377396be41fSOndrej Mosnacek	select CRYPTO_AEAD
378396be41fSOndrej Mosnacek	help
379396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
380396be41fSOndrej Mosnacek
38156e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3822808f173SOndrej Mosnacek	tristate
3832808f173SOndrej Mosnacek	depends on X86
38456e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
385e151a8d2SEric Biggers	select CRYPTO_SIMD
38656e8e57fSOndrej Mosnacek	help
38756e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
38856e8e57fSOndrej Mosnacek	  algorithm.
38956e8e57fSOndrej Mosnacek
3906ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3916ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3926ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3936ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3946ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3956ecc9d9fSOndrej Mosnacek	help
3966ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3976ecc9d9fSOndrej Mosnacek	  algorithm.
3986ecc9d9fSOndrej Mosnacek
3996ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
4006ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
4016ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
4026ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
4036ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
4046ecc9d9fSOndrej Mosnacek	help
4056ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
4066ecc9d9fSOndrej Mosnacek	  algorithm.
4076ecc9d9fSOndrej Mosnacek
408584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
409584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
410584fffc8SSebastian Siewior	select CRYPTO_AEAD
411584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
412856e3f40SHerbert Xu	select CRYPTO_NULL
413401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
414c8a3315aSEric Biggers	select CRYPTO_MANAGER
415584fffc8SSebastian Siewior	help
416584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
417584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
418584fffc8SSebastian Siewior
419a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
420a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
421a10f554fSHerbert Xu	select CRYPTO_AEAD
422a10f554fSHerbert Xu	select CRYPTO_NULL
423401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
424c8a3315aSEric Biggers	select CRYPTO_MANAGER
425a10f554fSHerbert Xu	help
426a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
427a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
428a10f554fSHerbert Xu	  algorithm for CBC.
429a10f554fSHerbert Xu
430584fffc8SSebastian Siewiorcomment "Block modes"
431584fffc8SSebastian Siewior
432584fffc8SSebastian Siewiorconfig CRYPTO_CBC
433584fffc8SSebastian Siewior	tristate "CBC support"
434584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
435584fffc8SSebastian Siewior	select CRYPTO_MANAGER
436584fffc8SSebastian Siewior	help
437584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
438584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
439584fffc8SSebastian Siewior
440a7d85e06SJames Bottomleyconfig CRYPTO_CFB
441a7d85e06SJames Bottomley	tristate "CFB support"
442a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
443a7d85e06SJames Bottomley	select CRYPTO_MANAGER
444a7d85e06SJames Bottomley	help
445a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
446a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
447a7d85e06SJames Bottomley
448584fffc8SSebastian Siewiorconfig CRYPTO_CTR
449584fffc8SSebastian Siewior	tristate "CTR support"
450584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
451584fffc8SSebastian Siewior	select CRYPTO_SEQIV
452584fffc8SSebastian Siewior	select CRYPTO_MANAGER
453584fffc8SSebastian Siewior	help
454584fffc8SSebastian Siewior	  CTR: Counter mode
455584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
456584fffc8SSebastian Siewior
457584fffc8SSebastian Siewiorconfig CRYPTO_CTS
458584fffc8SSebastian Siewior	tristate "CTS support"
459584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
460c8a3315aSEric Biggers	select CRYPTO_MANAGER
461584fffc8SSebastian Siewior	help
462584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
463584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
464ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
465ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
466ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
467584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
468584fffc8SSebastian Siewior	  for AES encryption.
469584fffc8SSebastian Siewior
470ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
471ecd6d5c9SGilad Ben-Yossef
472584fffc8SSebastian Siewiorconfig CRYPTO_ECB
473584fffc8SSebastian Siewior	tristate "ECB support"
474584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
475584fffc8SSebastian Siewior	select CRYPTO_MANAGER
476584fffc8SSebastian Siewior	help
477584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
478584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
479584fffc8SSebastian Siewior	  the input block by block.
480584fffc8SSebastian Siewior
481584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4822470a2b2SJussi Kivilinna	tristate "LRW support"
483584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
484584fffc8SSebastian Siewior	select CRYPTO_MANAGER
485584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
486584fffc8SSebastian Siewior	help
487584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
488584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
489584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
490584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
491584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
492584fffc8SSebastian Siewior
493e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
494e497c518SGilad Ben-Yossef	tristate "OFB support"
495e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
496e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
497e497c518SGilad Ben-Yossef	help
498e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
499e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
500e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
501e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
502e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
503e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
504e497c518SGilad Ben-Yossef
505584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
506584fffc8SSebastian Siewior	tristate "PCBC support"
507584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
508584fffc8SSebastian Siewior	select CRYPTO_MANAGER
509584fffc8SSebastian Siewior	help
510584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
511584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
512584fffc8SSebastian Siewior
513584fffc8SSebastian Siewiorconfig CRYPTO_XTS
5145bcf8e6dSJussi Kivilinna	tristate "XTS support"
515584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
516584fffc8SSebastian Siewior	select CRYPTO_MANAGER
51712cb3a1cSMilan Broz	select CRYPTO_ECB
518584fffc8SSebastian Siewior	help
519584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
520584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
521584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
522584fffc8SSebastian Siewior
5231c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5241c49678eSStephan Mueller	tristate "Key wrapping support"
5251c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
526c8a3315aSEric Biggers	select CRYPTO_MANAGER
5271c49678eSStephan Mueller	help
5281c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5291c49678eSStephan Mueller	  padding.
5301c49678eSStephan Mueller
53126609a21SEric Biggersconfig CRYPTO_NHPOLY1305
53226609a21SEric Biggers	tristate
53326609a21SEric Biggers	select CRYPTO_HASH
53426609a21SEric Biggers	select CRYPTO_POLY1305
53526609a21SEric Biggers
536012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
537012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
538012c8238SEric Biggers	depends on X86 && 64BIT
539012c8238SEric Biggers	select CRYPTO_NHPOLY1305
540012c8238SEric Biggers	help
541012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
542012c8238SEric Biggers	  Adiantum encryption mode.
543012c8238SEric Biggers
5440f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5450f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5460f961f9fSEric Biggers	depends on X86 && 64BIT
5470f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5480f961f9fSEric Biggers	help
5490f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5500f961f9fSEric Biggers	  Adiantum encryption mode.
5510f961f9fSEric Biggers
552059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
553059c2a4dSEric Biggers	tristate "Adiantum support"
554059c2a4dSEric Biggers	select CRYPTO_CHACHA20
555059c2a4dSEric Biggers	select CRYPTO_POLY1305
556059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
557c8a3315aSEric Biggers	select CRYPTO_MANAGER
558059c2a4dSEric Biggers	help
559059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
560059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
561059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
562059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
563059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
564059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
565059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
566059c2a4dSEric Biggers	  AES-XTS.
567059c2a4dSEric Biggers
568059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
569059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
570059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
571059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
572059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
573059c2a4dSEric Biggers
574059c2a4dSEric Biggers	  If unsure, say N.
575059c2a4dSEric Biggers
576584fffc8SSebastian Siewiorcomment "Hash modes"
577584fffc8SSebastian Siewior
57893b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
57993b5e86aSJussi Kivilinna	tristate "CMAC support"
58093b5e86aSJussi Kivilinna	select CRYPTO_HASH
58193b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
58293b5e86aSJussi Kivilinna	help
58393b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
58493b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
58593b5e86aSJussi Kivilinna
58693b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
58793b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
58893b5e86aSJussi Kivilinna
5891da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5908425165dSHerbert Xu	tristate "HMAC support"
5910796ae06SHerbert Xu	select CRYPTO_HASH
59243518407SHerbert Xu	select CRYPTO_MANAGER
5931da177e4SLinus Torvalds	help
5941da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5951da177e4SLinus Torvalds	  This is required for IPSec.
5961da177e4SLinus Torvalds
597333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
598333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
599333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
600333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
601333b0d7eSKazunori MIYAZAWA	help
602333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
603333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
604333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
605333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
606333b0d7eSKazunori MIYAZAWA
607f1939f7cSShane Wangconfig CRYPTO_VMAC
608f1939f7cSShane Wang	tristate "VMAC support"
609f1939f7cSShane Wang	select CRYPTO_HASH
610f1939f7cSShane Wang	select CRYPTO_MANAGER
611f1939f7cSShane Wang	help
612f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
613f1939f7cSShane Wang	  very high speed on 64-bit architectures.
614f1939f7cSShane Wang
615f1939f7cSShane Wang	  See also:
616f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
617f1939f7cSShane Wang
618584fffc8SSebastian Siewiorcomment "Digest"
619584fffc8SSebastian Siewior
620584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
621584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6225773a3e6SHerbert Xu	select CRYPTO_HASH
6236a0962b2SDarrick J. Wong	select CRC32
6241da177e4SLinus Torvalds	help
625584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
626584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
62769c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6281da177e4SLinus Torvalds
6298cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6308cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6318cb51ba8SAustin Zhang	depends on X86
6328cb51ba8SAustin Zhang	select CRYPTO_HASH
6338cb51ba8SAustin Zhang	help
6348cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6358cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6368cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6378cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6388cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6398cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6408cb51ba8SAustin Zhang
6417cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6426dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
643c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6446dd7a82cSAnton Blanchard	select CRYPTO_HASH
6456dd7a82cSAnton Blanchard	select CRC32
6466dd7a82cSAnton Blanchard	help
6476dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6486dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6496dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6506dd7a82cSAnton Blanchard
6516dd7a82cSAnton Blanchard
652442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
653442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
654442a7c40SDavid S. Miller	depends on SPARC64
655442a7c40SDavid S. Miller	select CRYPTO_HASH
656442a7c40SDavid S. Miller	select CRC32
657442a7c40SDavid S. Miller	help
658442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
659442a7c40SDavid S. Miller	  when available.
660442a7c40SDavid S. Miller
66178c37d19SAlexander Boykoconfig CRYPTO_CRC32
66278c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
66378c37d19SAlexander Boyko	select CRYPTO_HASH
66478c37d19SAlexander Boyko	select CRC32
66578c37d19SAlexander Boyko	help
66678c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
66778c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
66878c37d19SAlexander Boyko
66978c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
67078c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
67178c37d19SAlexander Boyko	depends on X86
67278c37d19SAlexander Boyko	select CRYPTO_HASH
67378c37d19SAlexander Boyko	select CRC32
67478c37d19SAlexander Boyko	help
67578c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
67678c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
67778c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
678af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
67978c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
68078c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
68178c37d19SAlexander Boyko
6824a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6834a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6844a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6854a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6864a5dc51eSMarcin Nowakowski	help
6874a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6884a5dc51eSMarcin Nowakowski	  instructions, when available.
6894a5dc51eSMarcin Nowakowski
6904a5dc51eSMarcin Nowakowski
69168411521SHerbert Xuconfig CRYPTO_CRCT10DIF
69268411521SHerbert Xu	tristate "CRCT10DIF algorithm"
69368411521SHerbert Xu	select CRYPTO_HASH
69468411521SHerbert Xu	help
69568411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
69668411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
69768411521SHerbert Xu	  transforms to be used if they are available.
69868411521SHerbert Xu
69968411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
70068411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
70168411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
70268411521SHerbert Xu	select CRYPTO_HASH
70368411521SHerbert Xu	help
70468411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
70568411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
70668411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
707af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
70868411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
70968411521SHerbert Xu
710b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
711b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
712b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
713b01df1c1SDaniel Axtens	select CRYPTO_HASH
714b01df1c1SDaniel Axtens	help
715b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
716b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
717b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
718b01df1c1SDaniel Axtens
719146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
720146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
721146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
722146c8688SDaniel Axtens	help
723146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
724146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
725146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
726146c8688SDaniel Axtens
7272cdc6899SHuang Yingconfig CRYPTO_GHASH
7282cdc6899SHuang Ying	tristate "GHASH digest algorithm"
7292cdc6899SHuang Ying	select CRYPTO_GF128MUL
730578c60fbSArnd Bergmann	select CRYPTO_HASH
7312cdc6899SHuang Ying	help
7322cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
7332cdc6899SHuang Ying
734f979e014SMartin Williconfig CRYPTO_POLY1305
735f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
736578c60fbSArnd Bergmann	select CRYPTO_HASH
737f979e014SMartin Willi	help
738f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
739f979e014SMartin Willi
740f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
741f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
742f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
743f979e014SMartin Willi
744c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
745b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
746c70f4abeSMartin Willi	depends on X86 && 64BIT
747c70f4abeSMartin Willi	select CRYPTO_POLY1305
748c70f4abeSMartin Willi	help
749c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
750c70f4abeSMartin Willi
751c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
752c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
753c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
754c70f4abeSMartin Willi	  instructions.
755c70f4abeSMartin Willi
7561da177e4SLinus Torvaldsconfig CRYPTO_MD4
7571da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
758808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7591da177e4SLinus Torvalds	help
7601da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7611da177e4SLinus Torvalds
7621da177e4SLinus Torvaldsconfig CRYPTO_MD5
7631da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
76414b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7651da177e4SLinus Torvalds	help
7661da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7671da177e4SLinus Torvalds
768d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
769d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
770d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
771d69e75deSAaro Koskinen	select CRYPTO_MD5
772d69e75deSAaro Koskinen	select CRYPTO_HASH
773d69e75deSAaro Koskinen	help
774d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
775d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
776d69e75deSAaro Koskinen
777e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
778e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
779e8e59953SMarkus Stockhausen	depends on PPC
780e8e59953SMarkus Stockhausen	select CRYPTO_HASH
781e8e59953SMarkus Stockhausen	help
782e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
783e8e59953SMarkus Stockhausen	  in PPC assembler.
784e8e59953SMarkus Stockhausen
785fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
786fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
787fa4dfedcSDavid S. Miller	depends on SPARC64
788fa4dfedcSDavid S. Miller	select CRYPTO_MD5
789fa4dfedcSDavid S. Miller	select CRYPTO_HASH
790fa4dfedcSDavid S. Miller	help
791fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
792fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
793fa4dfedcSDavid S. Miller
794584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
795584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
79619e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
797584fffc8SSebastian Siewior	help
798584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
799584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
800584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
801584fffc8SSebastian Siewior	  of the algorithm.
802584fffc8SSebastian Siewior
80382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
80482798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
8057c4468bcSHerbert Xu	select CRYPTO_HASH
80682798f90SAdrian-Ken Rueegsegger	help
80782798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
80882798f90SAdrian-Ken Rueegsegger
80982798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
81035ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
81182798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
81282798f90SAdrian-Ken Rueegsegger
81382798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8146d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
81582798f90SAdrian-Ken Rueegsegger
81682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
81782798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
818e5835fbaSHerbert Xu	select CRYPTO_HASH
81982798f90SAdrian-Ken Rueegsegger	help
82082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
82182798f90SAdrian-Ken Rueegsegger
82282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
82382798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
824b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
825b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
82682798f90SAdrian-Ken Rueegsegger
827b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
828b6d44341SAdrian Bunk	  against RIPEMD-160.
829534fe2c1SAdrian-Ken Rueegsegger
830534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8316d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
832534fe2c1SAdrian-Ken Rueegsegger
833534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
834534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
835d8a5e2e9SHerbert Xu	select CRYPTO_HASH
836534fe2c1SAdrian-Ken Rueegsegger	help
837b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
838b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
839b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
840b6d44341SAdrian Bunk	  (than RIPEMD-128).
841534fe2c1SAdrian-Ken Rueegsegger
842534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8436d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
844534fe2c1SAdrian-Ken Rueegsegger
845534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
846534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8473b8efb4cSHerbert Xu	select CRYPTO_HASH
848534fe2c1SAdrian-Ken Rueegsegger	help
849b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
850b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
851b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
852b6d44341SAdrian Bunk	  (than RIPEMD-160).
853534fe2c1SAdrian-Ken Rueegsegger
85482798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8556d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
85682798f90SAdrian-Ken Rueegsegger
8571da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8581da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
85954ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8601da177e4SLinus Torvalds	help
8611da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8621da177e4SLinus Torvalds
86366be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
864e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
86566be8951SMathias Krause	depends on X86 && 64BIT
86666be8951SMathias Krause	select CRYPTO_SHA1
86766be8951SMathias Krause	select CRYPTO_HASH
86866be8951SMathias Krause	help
86966be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
87066be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
871e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
872e38b6b7fStim	  when available.
87366be8951SMathias Krause
8748275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
875e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8768275d1aaSTim Chen	depends on X86 && 64BIT
8778275d1aaSTim Chen	select CRYPTO_SHA256
8788275d1aaSTim Chen	select CRYPTO_HASH
8798275d1aaSTim Chen	help
8808275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8818275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8828275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
883e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
884e38b6b7fStim	  Instructions) when available.
8858275d1aaSTim Chen
88687de4579STim Chenconfig CRYPTO_SHA512_SSSE3
88787de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
88887de4579STim Chen	depends on X86 && 64BIT
88987de4579STim Chen	select CRYPTO_SHA512
89087de4579STim Chen	select CRYPTO_HASH
89187de4579STim Chen	help
89287de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
89387de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
89487de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
89587de4579STim Chen	  version 2 (AVX2) instructions, when available.
89687de4579STim Chen
897efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
898efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
899efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
900efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
901efdb6f6eSAaro Koskinen	select CRYPTO_HASH
902efdb6f6eSAaro Koskinen	help
903efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
904efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
905efdb6f6eSAaro Koskinen
9064ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9074ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9084ff28d4cSDavid S. Miller	depends on SPARC64
9094ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9104ff28d4cSDavid S. Miller	select CRYPTO_HASH
9114ff28d4cSDavid S. Miller	help
9124ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9134ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9144ff28d4cSDavid S. Miller
915323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
916323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
917323a6bf1SMichael Ellerman	depends on PPC
918323a6bf1SMichael Ellerman	help
919323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
920323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
921323a6bf1SMichael Ellerman
922d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
923d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
924d9850fc5SMarkus Stockhausen	depends on PPC && SPE
925d9850fc5SMarkus Stockhausen	help
926d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
927d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
928d9850fc5SMarkus Stockhausen
9291da177e4SLinus Torvaldsconfig CRYPTO_SHA256
930cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
93150e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9321da177e4SLinus Torvalds	help
9331da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9341da177e4SLinus Torvalds
9351da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9361da177e4SLinus Torvalds	  security against collision attacks.
9371da177e4SLinus Torvalds
938cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
939cd12fb90SJonathan Lynch	  of security against collision attacks.
940cd12fb90SJonathan Lynch
9412ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9422ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9432ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9442ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9452ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9462ecc1e95SMarkus Stockhausen	help
9472ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9482ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9492ecc1e95SMarkus Stockhausen
950efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
951efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
952efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
953efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
954efdb6f6eSAaro Koskinen	select CRYPTO_HASH
955efdb6f6eSAaro Koskinen	help
956efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
957efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
958efdb6f6eSAaro Koskinen
95986c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
96086c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
96186c93b24SDavid S. Miller	depends on SPARC64
96286c93b24SDavid S. Miller	select CRYPTO_SHA256
96386c93b24SDavid S. Miller	select CRYPTO_HASH
96486c93b24SDavid S. Miller	help
96586c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
96686c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
96786c93b24SDavid S. Miller
9681da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9691da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
970bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9711da177e4SLinus Torvalds	help
9721da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9731da177e4SLinus Torvalds
9741da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9751da177e4SLinus Torvalds	  security against collision attacks.
9761da177e4SLinus Torvalds
9771da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9781da177e4SLinus Torvalds	  of security against collision attacks.
9791da177e4SLinus Torvalds
980efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
981efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
982efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
983efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
984efdb6f6eSAaro Koskinen	select CRYPTO_HASH
985efdb6f6eSAaro Koskinen	help
986efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
987efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
988efdb6f6eSAaro Koskinen
989775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
990775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
991775e0c69SDavid S. Miller	depends on SPARC64
992775e0c69SDavid S. Miller	select CRYPTO_SHA512
993775e0c69SDavid S. Miller	select CRYPTO_HASH
994775e0c69SDavid S. Miller	help
995775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
996775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
997775e0c69SDavid S. Miller
99853964b9eSJeff Garzikconfig CRYPTO_SHA3
99953964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
100053964b9eSJeff Garzik	select CRYPTO_HASH
100153964b9eSJeff Garzik	help
100253964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
100353964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
100453964b9eSJeff Garzik
100553964b9eSJeff Garzik	  References:
100653964b9eSJeff Garzik	  http://keccak.noekeon.org/
100753964b9eSJeff Garzik
10084f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
10094f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10104f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
10114f0fc160SGilad Ben-Yossef	help
10124f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10134f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10144f0fc160SGilad Ben-Yossef
10154f0fc160SGilad Ben-Yossef	  References:
10164f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10174f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10184f0fc160SGilad Ben-Yossef
1019fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1020fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1021fe18957eSVitaly Chikunov	select CRYPTO_HASH
1022fe18957eSVitaly Chikunov	help
1023fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1024fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1025fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1026fe18957eSVitaly Chikunov
1027fe18957eSVitaly Chikunov	  References:
1028fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1029fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1030fe18957eSVitaly Chikunov
10311da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10321da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1033f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10341da177e4SLinus Torvalds	help
10351da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10361da177e4SLinus Torvalds
10371da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10381da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10391da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10401da177e4SLinus Torvalds
10411da177e4SLinus Torvalds	  See also:
10421da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10431da177e4SLinus Torvalds
1044584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1045584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10464946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10471da177e4SLinus Torvalds	help
1048584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10491da177e4SLinus Torvalds
1050584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1051584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10521da177e4SLinus Torvalds
10531da177e4SLinus Torvalds	  See also:
10546d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10551da177e4SLinus Torvalds
10560e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10570e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10588af00860SRichard Weinberger	depends on X86 && 64BIT
10590e1227d3SHuang Ying	select CRYPTO_CRYPTD
10600e1227d3SHuang Ying	help
10610e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10620e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10630e1227d3SHuang Ying
1064584fffc8SSebastian Siewiorcomment "Ciphers"
10651da177e4SLinus Torvalds
10661da177e4SLinus Torvaldsconfig CRYPTO_AES
10671da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1068cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10691da177e4SLinus Torvalds	help
10701da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10711da177e4SLinus Torvalds	  algorithm.
10721da177e4SLinus Torvalds
10731da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10741da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10751da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10761da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10771da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10781da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10791da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10801da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10811da177e4SLinus Torvalds
10821da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10831da177e4SLinus Torvalds
10841da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10851da177e4SLinus Torvalds
1086b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1087b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1088b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1089b5e0b032SArd Biesheuvel	help
1090b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1091b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1092b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1093b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1094b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1095b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1096b5e0b032SArd Biesheuvel
1097b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1098b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1099b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1100b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
11010a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
11020a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1103b5e0b032SArd Biesheuvel
11041da177e4SLinus Torvaldsconfig CRYPTO_AES_586
11051da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1106cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1107cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11085157dea8SSebastian Siewior	select CRYPTO_AES
11091da177e4SLinus Torvalds	help
11101da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11111da177e4SLinus Torvalds	  algorithm.
11121da177e4SLinus Torvalds
11131da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
11141da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
11151da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
11161da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
11171da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
11181da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
11191da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
11201da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11211da177e4SLinus Torvalds
11221da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11231da177e4SLinus Torvalds
11241da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11251da177e4SLinus Torvalds
1126a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1127a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1128cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1129cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
113081190b32SSebastian Siewior	select CRYPTO_AES
1131a2a892a2SAndreas Steinmetz	help
1132a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1133a2a892a2SAndreas Steinmetz	  algorithm.
1134a2a892a2SAndreas Steinmetz
1135a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1136a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1137a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1138a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1139a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1140a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1141a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1142a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1143a2a892a2SAndreas Steinmetz
1144a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1145a2a892a2SAndreas Steinmetz
1146a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1147a2a892a2SAndreas Steinmetz
114854b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
114954b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11508af00860SRichard Weinberger	depends on X86
115185671860SHerbert Xu	select CRYPTO_AEAD
11520d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11530d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
115454b6a1bdSHuang Ying	select CRYPTO_ALGAPI
115585671860SHerbert Xu	select CRYPTO_BLKCIPHER
11567643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
115785671860SHerbert Xu	select CRYPTO_SIMD
115854b6a1bdSHuang Ying	help
115954b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
116054b6a1bdSHuang Ying
116154b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
116254b6a1bdSHuang Ying	  algorithm.
116354b6a1bdSHuang Ying
116454b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
116554b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
116654b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
116754b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
116854b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
116954b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
117054b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
117154b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
117254b6a1bdSHuang Ying
117354b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
117454b6a1bdSHuang Ying
117554b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
117654b6a1bdSHuang Ying
11770d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11780d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1179944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11800d258efbSMathias Krause	  acceleration for CTR.
11812cf4ac8bSHuang Ying
11829bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11839bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11849bf4852dSDavid S. Miller	depends on SPARC64
11859bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11869bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11879bf4852dSDavid S. Miller	help
11889bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11899bf4852dSDavid S. Miller
11909bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11919bf4852dSDavid S. Miller	  algorithm.
11929bf4852dSDavid S. Miller
11939bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11949bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11959bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11969bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11979bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11989bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11999bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
12009bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
12019bf4852dSDavid S. Miller
12029bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
12039bf4852dSDavid S. Miller
12049bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
12059bf4852dSDavid S. Miller
12069bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
12079bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
12089bf4852dSDavid S. Miller	  ECB and CBC.
12099bf4852dSDavid S. Miller
1210504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1211504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1212504c6143SMarkus Stockhausen	depends on PPC && SPE
1213504c6143SMarkus Stockhausen	help
1214504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1215504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1216504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1217504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1218504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1219504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1220504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1221504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1222504c6143SMarkus Stockhausen
12231da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12241da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1225cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12261da177e4SLinus Torvalds	help
12271da177e4SLinus Torvalds	  Anubis cipher algorithm.
12281da177e4SLinus Torvalds
12291da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12301da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12311da177e4SLinus Torvalds	  in the NESSIE competition.
12321da177e4SLinus Torvalds
12331da177e4SLinus Torvalds	  See also:
12346d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12356d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12361da177e4SLinus Torvalds
1237584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1238584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1239b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1240e2ee95b8SHye-Shik Chang	help
1241584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1242e2ee95b8SHye-Shik Chang
1243584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1244584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1245584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1246584fffc8SSebastian Siewior	  weakness of the algorithm.
1247584fffc8SSebastian Siewior
1248584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1249584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1250584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
125152ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1252584fffc8SSebastian Siewior	help
1253584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1254584fffc8SSebastian Siewior
1255584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1256584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1257584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1258e2ee95b8SHye-Shik Chang
1259e2ee95b8SHye-Shik Chang	  See also:
1260584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1261584fffc8SSebastian Siewior
126252ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
126352ba867cSJussi Kivilinna	tristate
126452ba867cSJussi Kivilinna	help
126552ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
126652ba867cSJussi Kivilinna	  generic c and the assembler implementations.
126752ba867cSJussi Kivilinna
126852ba867cSJussi Kivilinna	  See also:
126952ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
127052ba867cSJussi Kivilinna
127164b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
127264b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1273f21a7c19SAl Viro	depends on X86 && 64BIT
1274c1679171SEric Biggers	select CRYPTO_BLKCIPHER
127564b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
127664b94ceaSJussi Kivilinna	help
127764b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
127864b94ceaSJussi Kivilinna
127964b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
128064b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
128164b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
128264b94ceaSJussi Kivilinna
128364b94ceaSJussi Kivilinna	  See also:
128464b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
128564b94ceaSJussi Kivilinna
1286584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1287584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1288584fffc8SSebastian Siewior	depends on CRYPTO
1289584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1290584fffc8SSebastian Siewior	help
1291584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1292584fffc8SSebastian Siewior
1293584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1294584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1295584fffc8SSebastian Siewior
1296584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1297584fffc8SSebastian Siewior
1298584fffc8SSebastian Siewior	  See also:
1299584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1300584fffc8SSebastian Siewior
13010b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
13020b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1303f21a7c19SAl Viro	depends on X86 && 64BIT
13040b95ec56SJussi Kivilinna	depends on CRYPTO
13051af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1306964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
13070b95ec56SJussi Kivilinna	help
13080b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
13090b95ec56SJussi Kivilinna
13100b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
13110b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
13120b95ec56SJussi Kivilinna
13130b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
13140b95ec56SJussi Kivilinna
13150b95ec56SJussi Kivilinna	  See also:
13160b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
13170b95ec56SJussi Kivilinna
1318d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1319d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1320d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1321d9b1d2e7SJussi Kivilinna	depends on CRYPTO
132244893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1323d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
132444893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
132544893bc2SEric Biggers	select CRYPTO_SIMD
1326d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1327d9b1d2e7SJussi Kivilinna	help
1328d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1329d9b1d2e7SJussi Kivilinna
1330d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1331d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1332d9b1d2e7SJussi Kivilinna
1333d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1334d9b1d2e7SJussi Kivilinna
1335d9b1d2e7SJussi Kivilinna	  See also:
1336d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1337d9b1d2e7SJussi Kivilinna
1338f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1339f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1340f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1341f3f935a7SJussi Kivilinna	depends on CRYPTO
1342f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1343f3f935a7SJussi Kivilinna	help
1344f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1345f3f935a7SJussi Kivilinna
1346f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1347f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1348f3f935a7SJussi Kivilinna
1349f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1350f3f935a7SJussi Kivilinna
1351f3f935a7SJussi Kivilinna	  See also:
1352f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1353f3f935a7SJussi Kivilinna
135481658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
135581658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
135681658ad0SDavid S. Miller	depends on SPARC64
135781658ad0SDavid S. Miller	depends on CRYPTO
135881658ad0SDavid S. Miller	select CRYPTO_ALGAPI
135981658ad0SDavid S. Miller	help
136081658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
136181658ad0SDavid S. Miller
136281658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
136381658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
136481658ad0SDavid S. Miller
136581658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
136681658ad0SDavid S. Miller
136781658ad0SDavid S. Miller	  See also:
136881658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
136981658ad0SDavid S. Miller
1370044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1371044ab525SJussi Kivilinna	tristate
1372044ab525SJussi Kivilinna	help
1373044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1374044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1375044ab525SJussi Kivilinna
1376584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1377584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1378584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1379044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1380584fffc8SSebastian Siewior	help
1381584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1382584fffc8SSebastian Siewior	  described in RFC2144.
1383584fffc8SSebastian Siewior
13844d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13854d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13864d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13871e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13884d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13891e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13901e63183aSEric Biggers	select CRYPTO_SIMD
13914d6d6a2cSJohannes Goetzfried	help
13924d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13934d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13944d6d6a2cSJohannes Goetzfried
13954d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13964d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13974d6d6a2cSJohannes Goetzfried
1398584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1399584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1400584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1401044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1402584fffc8SSebastian Siewior	help
1403584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1404584fffc8SSebastian Siewior	  described in RFC2612.
1405584fffc8SSebastian Siewior
14064ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
14074ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
14084ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
14094bd96924SEric Biggers	select CRYPTO_BLKCIPHER
14104ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
14114bd96924SEric Biggers	select CRYPTO_CAST_COMMON
14124bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
14134bd96924SEric Biggers	select CRYPTO_SIMD
14144ea1277dSJohannes Goetzfried	select CRYPTO_XTS
14154ea1277dSJohannes Goetzfried	help
14164ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
14174ea1277dSJohannes Goetzfried	  described in RFC2612.
14184ea1277dSJohannes Goetzfried
14194ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
14204ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14214ea1277dSJohannes Goetzfried
1422584fffc8SSebastian Siewiorconfig CRYPTO_DES
1423584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1424584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1425584fffc8SSebastian Siewior	help
1426584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1427584fffc8SSebastian Siewior
1428c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1429c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
143097da37b3SDave Jones	depends on SPARC64
1431c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1432c5aac2dfSDavid S. Miller	select CRYPTO_DES
1433c5aac2dfSDavid S. Miller	help
1434c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1435c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1436c5aac2dfSDavid S. Miller
14376574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14386574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14396574e6c6SJussi Kivilinna	depends on X86 && 64BIT
144009c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
14416574e6c6SJussi Kivilinna	select CRYPTO_DES
14426574e6c6SJussi Kivilinna	help
14436574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14446574e6c6SJussi Kivilinna
14456574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14466574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14476574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14486574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14496574e6c6SJussi Kivilinna
1450584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1451584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1452584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1453584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1454584fffc8SSebastian Siewior	help
1455584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1456584fffc8SSebastian Siewior
1457584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1458584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1459584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1460584fffc8SSebastian Siewior	help
1461584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1462584fffc8SSebastian Siewior
1463584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1464584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1465584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1466584fffc8SSebastian Siewior
1467584fffc8SSebastian Siewior	  See also:
14686d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1469e2ee95b8SHye-Shik Chang
14702407d608STan Swee Hengconfig CRYPTO_SALSA20
14713b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14722407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14732407d608STan Swee Heng	help
14742407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14752407d608STan Swee Heng
14762407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14772407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14782407d608STan Swee Heng
14792407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14802407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14811da177e4SLinus Torvalds
1482c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1483aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1484c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1485c08d0e64SMartin Willi	help
1486aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1487c08d0e64SMartin Willi
1488c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1489c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1490de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1491c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1492c08d0e64SMartin Willi
1493de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1494de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1495de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1496de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1497de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1498de61d7aeSEric Biggers
1499aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1500aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1501aa762409SEric Biggers	  in some performance-sensitive scenarios.
1502aa762409SEric Biggers
1503c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
15044af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1505c9320b6dSMartin Willi	depends on X86 && 64BIT
1506c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1507c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1508c9320b6dSMartin Willi	help
15097a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
15107a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1511c9320b6dSMartin Willi
1512584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1513584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1514584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1515584fffc8SSebastian Siewior	help
1516584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1517584fffc8SSebastian Siewior
1518584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1519584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1520584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1521584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1522584fffc8SSebastian Siewior
1523584fffc8SSebastian Siewior	  See also:
1524584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1525584fffc8SSebastian Siewior
1526584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1527584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1528584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1529584fffc8SSebastian Siewior	help
1530584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1531584fffc8SSebastian Siewior
1532584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1533584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1534584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1535584fffc8SSebastian Siewior
1536584fffc8SSebastian Siewior	  See also:
1537584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1538584fffc8SSebastian Siewior
1539937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1540937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1541937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1542e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1543596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1544937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1545e0f409dcSEric Biggers	select CRYPTO_SIMD
1546937c30d7SJussi Kivilinna	help
1547937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1548937c30d7SJussi Kivilinna
1549937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1550937c30d7SJussi Kivilinna	  of 8 bits.
1551937c30d7SJussi Kivilinna
15521e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1553937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1554937c30d7SJussi Kivilinna
1555937c30d7SJussi Kivilinna	  See also:
1556937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1557937c30d7SJussi Kivilinna
1558251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1559251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1560251496dbSJussi Kivilinna	depends on X86 && !64BIT
1561e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1562596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1563251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1564e0f409dcSEric Biggers	select CRYPTO_SIMD
1565251496dbSJussi Kivilinna	help
1566251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1567251496dbSJussi Kivilinna
1568251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1569251496dbSJussi Kivilinna	  of 8 bits.
1570251496dbSJussi Kivilinna
1571251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1572251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1573251496dbSJussi Kivilinna
1574251496dbSJussi Kivilinna	  See also:
1575251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1576251496dbSJussi Kivilinna
15777efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15787efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15797efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1580e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15811d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15827efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1583e16bf974SEric Biggers	select CRYPTO_SIMD
15847efe4076SJohannes Goetzfried	select CRYPTO_XTS
15857efe4076SJohannes Goetzfried	help
15867efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15877efe4076SJohannes Goetzfried
15887efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15897efe4076SJohannes Goetzfried	  of 8 bits.
15907efe4076SJohannes Goetzfried
15917efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15927efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15937efe4076SJohannes Goetzfried
15947efe4076SJohannes Goetzfried	  See also:
15957efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15967efe4076SJohannes Goetzfried
159756d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
159856d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
159956d76c96SJussi Kivilinna	depends on X86 && 64BIT
160056d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
160156d76c96SJussi Kivilinna	help
160256d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
160356d76c96SJussi Kivilinna
160456d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
160556d76c96SJussi Kivilinna	  of 8 bits.
160656d76c96SJussi Kivilinna
160756d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
160856d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
160956d76c96SJussi Kivilinna
161056d76c96SJussi Kivilinna	  See also:
161156d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
161256d76c96SJussi Kivilinna
1613747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1614747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1615747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1616747c8ce4SGilad Ben-Yossef	help
1617747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1618747c8ce4SGilad Ben-Yossef
1619747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1620747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1621747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1622747c8ce4SGilad Ben-Yossef
1623747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1624747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1625747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1626747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1627747c8ce4SGilad Ben-Yossef
1628747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1629747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1630747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1631747c8ce4SGilad Ben-Yossef
1632747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1633747c8ce4SGilad Ben-Yossef
1634747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1635747c8ce4SGilad Ben-Yossef
1636747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1637747c8ce4SGilad Ben-Yossef
1638584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1639584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1640584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1641584fffc8SSebastian Siewior	help
1642584fffc8SSebastian Siewior	  TEA cipher algorithm.
1643584fffc8SSebastian Siewior
1644584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1645584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1646584fffc8SSebastian Siewior	  little memory.
1647584fffc8SSebastian Siewior
1648584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1649584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1650584fffc8SSebastian Siewior	  in the TEA algorithm.
1651584fffc8SSebastian Siewior
1652584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1653584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1654584fffc8SSebastian Siewior
1655584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1656584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1657584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1658584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1659584fffc8SSebastian Siewior	help
1660584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1661584fffc8SSebastian Siewior
1662584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1663584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1664584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1665584fffc8SSebastian Siewior	  bits.
1666584fffc8SSebastian Siewior
1667584fffc8SSebastian Siewior	  See also:
1668584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1669584fffc8SSebastian Siewior
1670584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1671584fffc8SSebastian Siewior	tristate
1672584fffc8SSebastian Siewior	help
1673584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1674584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1675584fffc8SSebastian Siewior
1676584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1677584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1678584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1679584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1680584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1681584fffc8SSebastian Siewior	help
1682584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1683584fffc8SSebastian Siewior
1684584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1685584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1686584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1687584fffc8SSebastian Siewior	  bits.
1688584fffc8SSebastian Siewior
1689584fffc8SSebastian Siewior	  See also:
1690584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1691584fffc8SSebastian Siewior
1692584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1693584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1694584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1695584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1696584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1697584fffc8SSebastian Siewior	help
1698584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1699584fffc8SSebastian Siewior
1700584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1701584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1702584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1703584fffc8SSebastian Siewior	  bits.
1704584fffc8SSebastian Siewior
1705584fffc8SSebastian Siewior	  See also:
1706584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1707584fffc8SSebastian Siewior
17088280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17098280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1710f21a7c19SAl Viro	depends on X86 && 64BIT
171137992fa4SEric Biggers	select CRYPTO_BLKCIPHER
17128280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17138280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1714414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17158280daadSJussi Kivilinna	help
17168280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17178280daadSJussi Kivilinna
17188280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17198280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17208280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17218280daadSJussi Kivilinna	  bits.
17228280daadSJussi Kivilinna
17238280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17248280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17258280daadSJussi Kivilinna
17268280daadSJussi Kivilinna	  See also:
17278280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17288280daadSJussi Kivilinna
1729107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1730107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1731107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17320e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1733a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17340e6ab46dSEric Biggers	select CRYPTO_SIMD
1735107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1736107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1737107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1738107778b5SJohannes Goetzfried	help
1739107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1740107778b5SJohannes Goetzfried
1741107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1742107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1743107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1744107778b5SJohannes Goetzfried	  bits.
1745107778b5SJohannes Goetzfried
1746107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1747107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1748107778b5SJohannes Goetzfried
1749107778b5SJohannes Goetzfried	  See also:
1750107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1751107778b5SJohannes Goetzfried
1752584fffc8SSebastian Siewiorcomment "Compression"
1753584fffc8SSebastian Siewior
17541da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17551da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1756cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1757f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17581da177e4SLinus Torvalds	select ZLIB_INFLATE
17591da177e4SLinus Torvalds	select ZLIB_DEFLATE
17601da177e4SLinus Torvalds	help
17611da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17621da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17631da177e4SLinus Torvalds
17641da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17651da177e4SLinus Torvalds
17660b77abb3SZoltan Sogorconfig CRYPTO_LZO
17670b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17680b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1769ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17700b77abb3SZoltan Sogor	select LZO_COMPRESS
17710b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17720b77abb3SZoltan Sogor	help
17730b77abb3SZoltan Sogor	  This is the LZO algorithm.
17740b77abb3SZoltan Sogor
177535a1fc18SSeth Jenningsconfig CRYPTO_842
177635a1fc18SSeth Jennings	tristate "842 compression algorithm"
17772062c5b6SDan Streetman	select CRYPTO_ALGAPI
17786a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17792062c5b6SDan Streetman	select 842_COMPRESS
17802062c5b6SDan Streetman	select 842_DECOMPRESS
178135a1fc18SSeth Jennings	help
178235a1fc18SSeth Jennings	  This is the 842 algorithm.
178335a1fc18SSeth Jennings
17840ea8530dSChanho Minconfig CRYPTO_LZ4
17850ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17860ea8530dSChanho Min	select CRYPTO_ALGAPI
17878cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17880ea8530dSChanho Min	select LZ4_COMPRESS
17890ea8530dSChanho Min	select LZ4_DECOMPRESS
17900ea8530dSChanho Min	help
17910ea8530dSChanho Min	  This is the LZ4 algorithm.
17920ea8530dSChanho Min
17930ea8530dSChanho Minconfig CRYPTO_LZ4HC
17940ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17950ea8530dSChanho Min	select CRYPTO_ALGAPI
179691d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17970ea8530dSChanho Min	select LZ4HC_COMPRESS
17980ea8530dSChanho Min	select LZ4_DECOMPRESS
17990ea8530dSChanho Min	help
18000ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
18010ea8530dSChanho Min
1802d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1803d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1804d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1805d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1806d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1807d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1808d28fc3dbSNick Terrell	help
1809d28fc3dbSNick Terrell	  This is the zstd algorithm.
1810d28fc3dbSNick Terrell
181117f0f4a4SNeil Hormancomment "Random Number Generation"
181217f0f4a4SNeil Horman
181317f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
181417f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
181517f0f4a4SNeil Horman	select CRYPTO_AES
181617f0f4a4SNeil Horman	select CRYPTO_RNG
181717f0f4a4SNeil Horman	help
181817f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
181917f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18207dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18217dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
182217f0f4a4SNeil Horman
1823f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1824419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1825419090c6SStephan Mueller	help
1826419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1827419090c6SStephan Mueller	  more of the DRBG types must be selected.
1828419090c6SStephan Mueller
1829f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1830419090c6SStephan Mueller
1831419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1832401e4238SHerbert Xu	bool
1833419090c6SStephan Mueller	default y
1834419090c6SStephan Mueller	select CRYPTO_HMAC
1835826775bbSHerbert Xu	select CRYPTO_SHA256
1836419090c6SStephan Mueller
1837419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1838419090c6SStephan Mueller	bool "Enable Hash DRBG"
1839826775bbSHerbert Xu	select CRYPTO_SHA256
1840419090c6SStephan Mueller	help
1841419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1842419090c6SStephan Mueller
1843419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1844419090c6SStephan Mueller	bool "Enable CTR DRBG"
1845419090c6SStephan Mueller	select CRYPTO_AES
184635591285SStephan Mueller	depends on CRYPTO_CTR
1847419090c6SStephan Mueller	help
1848419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1849419090c6SStephan Mueller
1850f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1851f2c89a10SHerbert Xu	tristate
1852401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1853f2c89a10SHerbert Xu	select CRYPTO_RNG
1854bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1855f2c89a10SHerbert Xu
1856f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1857419090c6SStephan Mueller
1858bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1859bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18602f313e02SArnd Bergmann	select CRYPTO_RNG
1861bb5530e4SStephan Mueller	help
1862bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1863bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1864bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1865bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1866bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1867bb5530e4SStephan Mueller
186803c8efc1SHerbert Xuconfig CRYPTO_USER_API
186903c8efc1SHerbert Xu	tristate
187003c8efc1SHerbert Xu
1871fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1872fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18737451708fSHerbert Xu	depends on NET
1874fe869cdbSHerbert Xu	select CRYPTO_HASH
1875fe869cdbSHerbert Xu	select CRYPTO_USER_API
1876fe869cdbSHerbert Xu	help
1877fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1878fe869cdbSHerbert Xu	  algorithms.
1879fe869cdbSHerbert Xu
18808ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18818ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18827451708fSHerbert Xu	depends on NET
18838ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18848ff59090SHerbert Xu	select CRYPTO_USER_API
18858ff59090SHerbert Xu	help
18868ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18878ff59090SHerbert Xu	  key cipher algorithms.
18888ff59090SHerbert Xu
18892f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18902f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18912f375538SStephan Mueller	depends on NET
18922f375538SStephan Mueller	select CRYPTO_RNG
18932f375538SStephan Mueller	select CRYPTO_USER_API
18942f375538SStephan Mueller	help
18952f375538SStephan Mueller	  This option enables the user-spaces interface for random
18962f375538SStephan Mueller	  number generator algorithms.
18972f375538SStephan Mueller
1898b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1899b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1900b64a2d95SHerbert Xu	depends on NET
1901b64a2d95SHerbert Xu	select CRYPTO_AEAD
190272548b09SStephan Mueller	select CRYPTO_BLKCIPHER
190372548b09SStephan Mueller	select CRYPTO_NULL
1904b64a2d95SHerbert Xu	select CRYPTO_USER_API
1905b64a2d95SHerbert Xu	help
1906b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1907b64a2d95SHerbert Xu	  cipher algorithms.
1908b64a2d95SHerbert Xu
1909cac5818cSCorentin Labbeconfig CRYPTO_STATS
1910cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1911a6a31385SCorentin Labbe	depends on CRYPTO_USER
1912cac5818cSCorentin Labbe	help
1913cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1914cac5818cSCorentin Labbe	  This will collect:
1915cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1916cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1917cac5818cSCorentin Labbe	  - size and numbers of hash operations
1918cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1919cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1920cac5818cSCorentin Labbe
1921ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1922ee08997fSDmitry Kasatkin	bool
1923ee08997fSDmitry Kasatkin
19241da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19258636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19268636a1f9SMasahiro Yamadasource "certs/Kconfig"
19271da177e4SLinus Torvalds
1928cce9e06dSHerbert Xuendif	# if CRYPTO
1929