1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1172b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1186a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1192b8c19dbSHerbert Xu help 1202b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1212b8c19dbSHerbert Xu cbc(aes). 1222b8c19dbSHerbert Xu 1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1246a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1256a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1266a0fcbb4SHerbert Xu select CRYPTO_HASH2 1276a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 128946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1294e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1302ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1316a0fcbb4SHerbert Xu 132a38f7907SSteffen Klassertconfig CRYPTO_USER 133a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1345db017aaSHerbert Xu depends on NET 135a38f7907SSteffen Klassert select CRYPTO_MANAGER 136a38f7907SSteffen Klassert help 137d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 138a38f7907SSteffen Klassert cbc(aes). 139a38f7907SSteffen Klassert 140929d34caSEric Biggersif CRYPTO_MANAGER2 141929d34caSEric Biggers 142326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 143326a6346SHerbert Xu bool "Disable run-time self tests" 14400ca28a5SHerbert Xu default y 1450b767f96SAlexander Shishkin help 146326a6346SHerbert Xu Disable run-time self tests that normally take place at 147326a6346SHerbert Xu algorithm registration. 1480b767f96SAlexander Shishkin 1495b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1505b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1515b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1525b2706a4SEric Biggers help 1535b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1545b2706a4SEric Biggers including randomized fuzz tests. 1555b2706a4SEric Biggers 1565b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1575b2706a4SEric Biggers longer to run than the normal self tests. 1585b2706a4SEric Biggers 159929d34caSEric Biggersendif # if CRYPTO_MANAGER2 160929d34caSEric Biggers 161584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 162*e590e132SEric Biggers tristate 163584fffc8SSebastian Siewior 164584fffc8SSebastian Siewiorconfig CRYPTO_NULL 165584fffc8SSebastian Siewior tristate "Null algorithms" 166149a3971SHerbert Xu select CRYPTO_NULL2 167584fffc8SSebastian Siewior help 168584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 169584fffc8SSebastian Siewior 170149a3971SHerbert Xuconfig CRYPTO_NULL2 171dd43c4e9SHerbert Xu tristate 172149a3971SHerbert Xu select CRYPTO_ALGAPI2 173149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 174149a3971SHerbert Xu select CRYPTO_HASH2 175149a3971SHerbert Xu 1765068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1773b4afaf2SKees Cook tristate "Parallel crypto engine" 1783b4afaf2SKees Cook depends on SMP 1795068c7a8SSteffen Klassert select PADATA 1805068c7a8SSteffen Klassert select CRYPTO_MANAGER 1815068c7a8SSteffen Klassert select CRYPTO_AEAD 1825068c7a8SSteffen Klassert help 1835068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1845068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1855068c7a8SSteffen Klassert 18625c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 18725c38d3fSHuang Ying tristate 18825c38d3fSHuang Ying 189584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 190584fffc8SSebastian Siewior tristate "Software async crypto daemon" 191584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 192b8a28251SLoc Ho select CRYPTO_HASH 193584fffc8SSebastian Siewior select CRYPTO_MANAGER 194254eff77SHuang Ying select CRYPTO_WORKQUEUE 195584fffc8SSebastian Siewior help 196584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 197584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 198584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 199584fffc8SSebastian Siewior 200584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 201584fffc8SSebastian Siewior tristate "Authenc support" 202584fffc8SSebastian Siewior select CRYPTO_AEAD 203584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 204584fffc8SSebastian Siewior select CRYPTO_MANAGER 205584fffc8SSebastian Siewior select CRYPTO_HASH 206e94c6a7aSHerbert Xu select CRYPTO_NULL 207584fffc8SSebastian Siewior help 208584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 209584fffc8SSebastian Siewior This is required for IPSec. 210584fffc8SSebastian Siewior 211584fffc8SSebastian Siewiorconfig CRYPTO_TEST 212584fffc8SSebastian Siewior tristate "Testing module" 213584fffc8SSebastian Siewior depends on m 214da7f033dSHerbert Xu select CRYPTO_MANAGER 215584fffc8SSebastian Siewior help 216584fffc8SSebastian Siewior Quick & dirty crypto test module. 217584fffc8SSebastian Siewior 218266d0516SHerbert Xuconfig CRYPTO_SIMD 219266d0516SHerbert Xu tristate 220266d0516SHerbert Xu select CRYPTO_CRYPTD 221266d0516SHerbert Xu 222596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 223596d8750SJussi Kivilinna tristate 224596d8750SJussi Kivilinna depends on X86 225065ce327SHerbert Xu select CRYPTO_BLKCIPHER 226596d8750SJussi Kivilinna 227735d37b5SBaolin Wangconfig CRYPTO_ENGINE 228735d37b5SBaolin Wang tristate 229735d37b5SBaolin Wang 2303d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2313d6228a5SVitaly Chikunov 2323d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2333d6228a5SVitaly Chikunov tristate "RSA algorithm" 2343d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2353d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2363d6228a5SVitaly Chikunov select MPILIB 2373d6228a5SVitaly Chikunov select ASN1 2383d6228a5SVitaly Chikunov help 2393d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2403d6228a5SVitaly Chikunov 2413d6228a5SVitaly Chikunovconfig CRYPTO_DH 2423d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2433d6228a5SVitaly Chikunov select CRYPTO_KPP 2443d6228a5SVitaly Chikunov select MPILIB 2453d6228a5SVitaly Chikunov help 2463d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2473d6228a5SVitaly Chikunov 2484a2289daSVitaly Chikunovconfig CRYPTO_ECC 2494a2289daSVitaly Chikunov tristate 2504a2289daSVitaly Chikunov 2513d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2523d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2534a2289daSVitaly Chikunov select CRYPTO_ECC 2543d6228a5SVitaly Chikunov select CRYPTO_KPP 2553d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2563d6228a5SVitaly Chikunov help 2573d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2583d6228a5SVitaly Chikunov 2590d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2600d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2610d7a7864SVitaly Chikunov select CRYPTO_ECC 2620d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2630d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2641036633eSVitaly Chikunov select OID_REGISTRY 2651036633eSVitaly Chikunov select ASN1 2660d7a7864SVitaly Chikunov help 2670d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2680d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2690d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2700d7a7864SVitaly Chikunov is implemented. 2710d7a7864SVitaly Chikunov 272584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 273584fffc8SSebastian Siewior 274584fffc8SSebastian Siewiorconfig CRYPTO_CCM 275584fffc8SSebastian Siewior tristate "CCM support" 276584fffc8SSebastian Siewior select CRYPTO_CTR 277f15f05b0SArd Biesheuvel select CRYPTO_HASH 278584fffc8SSebastian Siewior select CRYPTO_AEAD 279c8a3315aSEric Biggers select CRYPTO_MANAGER 280584fffc8SSebastian Siewior help 281584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 282584fffc8SSebastian Siewior 283584fffc8SSebastian Siewiorconfig CRYPTO_GCM 284584fffc8SSebastian Siewior tristate "GCM/GMAC support" 285584fffc8SSebastian Siewior select CRYPTO_CTR 286584fffc8SSebastian Siewior select CRYPTO_AEAD 2879382d97aSHuang Ying select CRYPTO_GHASH 2889489667dSJussi Kivilinna select CRYPTO_NULL 289c8a3315aSEric Biggers select CRYPTO_MANAGER 290584fffc8SSebastian Siewior help 291584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 292584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 293584fffc8SSebastian Siewior 29471ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29571ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29671ebc4d1SMartin Willi select CRYPTO_CHACHA20 29771ebc4d1SMartin Willi select CRYPTO_POLY1305 29871ebc4d1SMartin Willi select CRYPTO_AEAD 299c8a3315aSEric Biggers select CRYPTO_MANAGER 30071ebc4d1SMartin Willi help 30171ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 30271ebc4d1SMartin Willi 30371ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 30471ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30571ebc4d1SMartin Willi IETF protocols. 30671ebc4d1SMartin Willi 307f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 308f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 309f606a88eSOndrej Mosnacek select CRYPTO_AEAD 310f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 311f606a88eSOndrej Mosnacek help 312f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 313f606a88eSOndrej Mosnacek 314f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 315f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 316f606a88eSOndrej Mosnacek select CRYPTO_AEAD 317f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 318f606a88eSOndrej Mosnacek help 319f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 320f606a88eSOndrej Mosnacek 321f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 322f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 323f606a88eSOndrej Mosnacek select CRYPTO_AEAD 324f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 325f606a88eSOndrej Mosnacek help 326f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 327f606a88eSOndrej Mosnacek 3281d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3291d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3301d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3311d373d4eSOndrej Mosnacek select CRYPTO_AEAD 332de272ca7SEric Biggers select CRYPTO_SIMD 3331d373d4eSOndrej Mosnacek help 3344e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3351d373d4eSOndrej Mosnacek 3361d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3371d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3381d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3391d373d4eSOndrej Mosnacek select CRYPTO_AEAD 340d628132aSEric Biggers select CRYPTO_SIMD 3411d373d4eSOndrej Mosnacek help 3424e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm. 3431d373d4eSOndrej Mosnacek 3441d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3451d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3461d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3471d373d4eSOndrej Mosnacek select CRYPTO_AEAD 348b6708c2dSEric Biggers select CRYPTO_SIMD 3491d373d4eSOndrej Mosnacek help 3504e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm. 3511d373d4eSOndrej Mosnacek 352396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 353396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 354396be41fSOndrej Mosnacek select CRYPTO_AEAD 355396be41fSOndrej Mosnacek help 356396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 357396be41fSOndrej Mosnacek 35856e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 3592808f173SOndrej Mosnacek tristate 3602808f173SOndrej Mosnacek depends on X86 36156e8e57fSOndrej Mosnacek select CRYPTO_AEAD 36247730958SEric Biggers select CRYPTO_SIMD 36356e8e57fSOndrej Mosnacek help 36456e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 36556e8e57fSOndrej Mosnacek algorithm. 36656e8e57fSOndrej Mosnacek 3676ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3686ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3696ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3706ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3716ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3726ecc9d9fSOndrej Mosnacek help 3736ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3746ecc9d9fSOndrej Mosnacek 375396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 376396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 377396be41fSOndrej Mosnacek select CRYPTO_AEAD 378396be41fSOndrej Mosnacek help 379396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 380396be41fSOndrej Mosnacek 38156e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 3822808f173SOndrej Mosnacek tristate 3832808f173SOndrej Mosnacek depends on X86 38456e8e57fSOndrej Mosnacek select CRYPTO_AEAD 385e151a8d2SEric Biggers select CRYPTO_SIMD 38656e8e57fSOndrej Mosnacek help 38756e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 38856e8e57fSOndrej Mosnacek algorithm. 38956e8e57fSOndrej Mosnacek 3906ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3916ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3926ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3936ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3946ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3956ecc9d9fSOndrej Mosnacek help 3966ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 3976ecc9d9fSOndrej Mosnacek algorithm. 3986ecc9d9fSOndrej Mosnacek 3996ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 4006ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 4016ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 4026ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 4036ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 4046ecc9d9fSOndrej Mosnacek help 4056ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 4066ecc9d9fSOndrej Mosnacek algorithm. 4076ecc9d9fSOndrej Mosnacek 408584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 409584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 410584fffc8SSebastian Siewior select CRYPTO_AEAD 411584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 412856e3f40SHerbert Xu select CRYPTO_NULL 413401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 414c8a3315aSEric Biggers select CRYPTO_MANAGER 415584fffc8SSebastian Siewior help 416584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 417584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 418584fffc8SSebastian Siewior 419a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 420a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 421a10f554fSHerbert Xu select CRYPTO_AEAD 422a10f554fSHerbert Xu select CRYPTO_NULL 423401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 424c8a3315aSEric Biggers select CRYPTO_MANAGER 425a10f554fSHerbert Xu help 426a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 427a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 428a10f554fSHerbert Xu algorithm for CBC. 429a10f554fSHerbert Xu 430584fffc8SSebastian Siewiorcomment "Block modes" 431584fffc8SSebastian Siewior 432584fffc8SSebastian Siewiorconfig CRYPTO_CBC 433584fffc8SSebastian Siewior tristate "CBC support" 434584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 435584fffc8SSebastian Siewior select CRYPTO_MANAGER 436584fffc8SSebastian Siewior help 437584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 438584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 439584fffc8SSebastian Siewior 440a7d85e06SJames Bottomleyconfig CRYPTO_CFB 441a7d85e06SJames Bottomley tristate "CFB support" 442a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 443a7d85e06SJames Bottomley select CRYPTO_MANAGER 444a7d85e06SJames Bottomley help 445a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 446a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 447a7d85e06SJames Bottomley 448584fffc8SSebastian Siewiorconfig CRYPTO_CTR 449584fffc8SSebastian Siewior tristate "CTR support" 450584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 451584fffc8SSebastian Siewior select CRYPTO_SEQIV 452584fffc8SSebastian Siewior select CRYPTO_MANAGER 453584fffc8SSebastian Siewior help 454584fffc8SSebastian Siewior CTR: Counter mode 455584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 456584fffc8SSebastian Siewior 457584fffc8SSebastian Siewiorconfig CRYPTO_CTS 458584fffc8SSebastian Siewior tristate "CTS support" 459584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 460c8a3315aSEric Biggers select CRYPTO_MANAGER 461584fffc8SSebastian Siewior help 462584fffc8SSebastian Siewior CTS: Cipher Text Stealing 463584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 464ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 465ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 466ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 467584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 468584fffc8SSebastian Siewior for AES encryption. 469584fffc8SSebastian Siewior 470ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 471ecd6d5c9SGilad Ben-Yossef 472584fffc8SSebastian Siewiorconfig CRYPTO_ECB 473584fffc8SSebastian Siewior tristate "ECB support" 474584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 475584fffc8SSebastian Siewior select CRYPTO_MANAGER 476584fffc8SSebastian Siewior help 477584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 478584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 479584fffc8SSebastian Siewior the input block by block. 480584fffc8SSebastian Siewior 481584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4822470a2b2SJussi Kivilinna tristate "LRW support" 483584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 484584fffc8SSebastian Siewior select CRYPTO_MANAGER 485584fffc8SSebastian Siewior select CRYPTO_GF128MUL 486584fffc8SSebastian Siewior help 487584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 488584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 489584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 490584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 491584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 492584fffc8SSebastian Siewior 493e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 494e497c518SGilad Ben-Yossef tristate "OFB support" 495e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 496e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 497e497c518SGilad Ben-Yossef help 498e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 499e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 500e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 501e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 502e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 503e497c518SGilad Ben-Yossef normally even when applied before encryption. 504e497c518SGilad Ben-Yossef 505584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 506584fffc8SSebastian Siewior tristate "PCBC support" 507584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 508584fffc8SSebastian Siewior select CRYPTO_MANAGER 509584fffc8SSebastian Siewior help 510584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 511584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 512584fffc8SSebastian Siewior 513584fffc8SSebastian Siewiorconfig CRYPTO_XTS 5145bcf8e6dSJussi Kivilinna tristate "XTS support" 515584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 516584fffc8SSebastian Siewior select CRYPTO_MANAGER 51712cb3a1cSMilan Broz select CRYPTO_ECB 518584fffc8SSebastian Siewior help 519584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 520584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 521584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 522584fffc8SSebastian Siewior 5231c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 5241c49678eSStephan Mueller tristate "Key wrapping support" 5251c49678eSStephan Mueller select CRYPTO_BLKCIPHER 526c8a3315aSEric Biggers select CRYPTO_MANAGER 5271c49678eSStephan Mueller help 5281c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 5291c49678eSStephan Mueller padding. 5301c49678eSStephan Mueller 53126609a21SEric Biggersconfig CRYPTO_NHPOLY1305 53226609a21SEric Biggers tristate 53326609a21SEric Biggers select CRYPTO_HASH 53426609a21SEric Biggers select CRYPTO_POLY1305 53526609a21SEric Biggers 536012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 537012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 538012c8238SEric Biggers depends on X86 && 64BIT 539012c8238SEric Biggers select CRYPTO_NHPOLY1305 540012c8238SEric Biggers help 541012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 542012c8238SEric Biggers Adiantum encryption mode. 543012c8238SEric Biggers 5440f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5450f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5460f961f9fSEric Biggers depends on X86 && 64BIT 5470f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5480f961f9fSEric Biggers help 5490f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5500f961f9fSEric Biggers Adiantum encryption mode. 5510f961f9fSEric Biggers 552059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 553059c2a4dSEric Biggers tristate "Adiantum support" 554059c2a4dSEric Biggers select CRYPTO_CHACHA20 555059c2a4dSEric Biggers select CRYPTO_POLY1305 556059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 557c8a3315aSEric Biggers select CRYPTO_MANAGER 558059c2a4dSEric Biggers help 559059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 560059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 561059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 562059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 563059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 564059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 565059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 566059c2a4dSEric Biggers AES-XTS. 567059c2a4dSEric Biggers 568059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 569059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 570059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 571059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 572059c2a4dSEric Biggers security than XTS, subject to the security bound. 573059c2a4dSEric Biggers 574059c2a4dSEric Biggers If unsure, say N. 575059c2a4dSEric Biggers 576584fffc8SSebastian Siewiorcomment "Hash modes" 577584fffc8SSebastian Siewior 57893b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 57993b5e86aSJussi Kivilinna tristate "CMAC support" 58093b5e86aSJussi Kivilinna select CRYPTO_HASH 58193b5e86aSJussi Kivilinna select CRYPTO_MANAGER 58293b5e86aSJussi Kivilinna help 58393b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 58493b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 58593b5e86aSJussi Kivilinna 58693b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 58793b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 58893b5e86aSJussi Kivilinna 5891da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5908425165dSHerbert Xu tristate "HMAC support" 5910796ae06SHerbert Xu select CRYPTO_HASH 59243518407SHerbert Xu select CRYPTO_MANAGER 5931da177e4SLinus Torvalds help 5941da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5951da177e4SLinus Torvalds This is required for IPSec. 5961da177e4SLinus Torvalds 597333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 598333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 599333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 600333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 601333b0d7eSKazunori MIYAZAWA help 602333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 603333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 604333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 605333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 606333b0d7eSKazunori MIYAZAWA 607f1939f7cSShane Wangconfig CRYPTO_VMAC 608f1939f7cSShane Wang tristate "VMAC support" 609f1939f7cSShane Wang select CRYPTO_HASH 610f1939f7cSShane Wang select CRYPTO_MANAGER 611f1939f7cSShane Wang help 612f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 613f1939f7cSShane Wang very high speed on 64-bit architectures. 614f1939f7cSShane Wang 615f1939f7cSShane Wang See also: 616f1939f7cSShane Wang <http://fastcrypto.org/vmac> 617f1939f7cSShane Wang 618584fffc8SSebastian Siewiorcomment "Digest" 619584fffc8SSebastian Siewior 620584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 621584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6225773a3e6SHerbert Xu select CRYPTO_HASH 6236a0962b2SDarrick J. Wong select CRC32 6241da177e4SLinus Torvalds help 625584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 626584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 62769c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6281da177e4SLinus Torvalds 6298cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6308cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6318cb51ba8SAustin Zhang depends on X86 6328cb51ba8SAustin Zhang select CRYPTO_HASH 6338cb51ba8SAustin Zhang help 6348cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6358cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6368cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6378cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6388cb51ba8SAustin Zhang gain performance compared with software implementation. 6398cb51ba8SAustin Zhang Module will be crc32c-intel. 6408cb51ba8SAustin Zhang 6417cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6426dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 643c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6446dd7a82cSAnton Blanchard select CRYPTO_HASH 6456dd7a82cSAnton Blanchard select CRC32 6466dd7a82cSAnton Blanchard help 6476dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6486dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6496dd7a82cSAnton Blanchard and newer processors for improved performance. 6506dd7a82cSAnton Blanchard 6516dd7a82cSAnton Blanchard 652442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 653442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 654442a7c40SDavid S. Miller depends on SPARC64 655442a7c40SDavid S. Miller select CRYPTO_HASH 656442a7c40SDavid S. Miller select CRC32 657442a7c40SDavid S. Miller help 658442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 659442a7c40SDavid S. Miller when available. 660442a7c40SDavid S. Miller 66178c37d19SAlexander Boykoconfig CRYPTO_CRC32 66278c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 66378c37d19SAlexander Boyko select CRYPTO_HASH 66478c37d19SAlexander Boyko select CRC32 66578c37d19SAlexander Boyko help 66678c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 66778c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 66878c37d19SAlexander Boyko 66978c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 67078c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 67178c37d19SAlexander Boyko depends on X86 67278c37d19SAlexander Boyko select CRYPTO_HASH 67378c37d19SAlexander Boyko select CRC32 67478c37d19SAlexander Boyko help 67578c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 67678c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 67778c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 678af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 67978c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 68078c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 68178c37d19SAlexander Boyko 6824a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6834a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6844a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6854a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6864a5dc51eSMarcin Nowakowski help 6874a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6884a5dc51eSMarcin Nowakowski instructions, when available. 6894a5dc51eSMarcin Nowakowski 6904a5dc51eSMarcin Nowakowski 69168411521SHerbert Xuconfig CRYPTO_CRCT10DIF 69268411521SHerbert Xu tristate "CRCT10DIF algorithm" 69368411521SHerbert Xu select CRYPTO_HASH 69468411521SHerbert Xu help 69568411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 69668411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 69768411521SHerbert Xu transforms to be used if they are available. 69868411521SHerbert Xu 69968411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 70068411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 70168411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 70268411521SHerbert Xu select CRYPTO_HASH 70368411521SHerbert Xu help 70468411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 70568411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 70668411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 707af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 70868411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 70968411521SHerbert Xu 710b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 711b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 712b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 713b01df1c1SDaniel Axtens select CRYPTO_HASH 714b01df1c1SDaniel Axtens help 715b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 716b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 717b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 718b01df1c1SDaniel Axtens 719146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 720146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 721146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 722146c8688SDaniel Axtens help 723146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 724146c8688SDaniel Axtens POWER8 vpmsum instructions. 725146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 726146c8688SDaniel Axtens 7272cdc6899SHuang Yingconfig CRYPTO_GHASH 7282cdc6899SHuang Ying tristate "GHASH digest algorithm" 7292cdc6899SHuang Ying select CRYPTO_GF128MUL 730578c60fbSArnd Bergmann select CRYPTO_HASH 7312cdc6899SHuang Ying help 7322cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 7332cdc6899SHuang Ying 734f979e014SMartin Williconfig CRYPTO_POLY1305 735f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 736578c60fbSArnd Bergmann select CRYPTO_HASH 737f979e014SMartin Willi help 738f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 739f979e014SMartin Willi 740f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 741f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 742f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 743f979e014SMartin Willi 744c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 745b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 746c70f4abeSMartin Willi depends on X86 && 64BIT 747c70f4abeSMartin Willi select CRYPTO_POLY1305 748c70f4abeSMartin Willi help 749c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 750c70f4abeSMartin Willi 751c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 752c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 753c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 754c70f4abeSMartin Willi instructions. 755c70f4abeSMartin Willi 7561da177e4SLinus Torvaldsconfig CRYPTO_MD4 7571da177e4SLinus Torvalds tristate "MD4 digest algorithm" 758808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7591da177e4SLinus Torvalds help 7601da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7611da177e4SLinus Torvalds 7621da177e4SLinus Torvaldsconfig CRYPTO_MD5 7631da177e4SLinus Torvalds tristate "MD5 digest algorithm" 76414b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7651da177e4SLinus Torvalds help 7661da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7671da177e4SLinus Torvalds 768d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 769d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 770d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 771d69e75deSAaro Koskinen select CRYPTO_MD5 772d69e75deSAaro Koskinen select CRYPTO_HASH 773d69e75deSAaro Koskinen help 774d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 775d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 776d69e75deSAaro Koskinen 777e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 778e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 779e8e59953SMarkus Stockhausen depends on PPC 780e8e59953SMarkus Stockhausen select CRYPTO_HASH 781e8e59953SMarkus Stockhausen help 782e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 783e8e59953SMarkus Stockhausen in PPC assembler. 784e8e59953SMarkus Stockhausen 785fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 786fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 787fa4dfedcSDavid S. Miller depends on SPARC64 788fa4dfedcSDavid S. Miller select CRYPTO_MD5 789fa4dfedcSDavid S. Miller select CRYPTO_HASH 790fa4dfedcSDavid S. Miller help 791fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 792fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 793fa4dfedcSDavid S. Miller 794584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 795584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 79619e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 797584fffc8SSebastian Siewior help 798584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 799584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 800584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 801584fffc8SSebastian Siewior of the algorithm. 802584fffc8SSebastian Siewior 80382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 80482798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 8057c4468bcSHerbert Xu select CRYPTO_HASH 80682798f90SAdrian-Ken Rueegsegger help 80782798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 80882798f90SAdrian-Ken Rueegsegger 80982798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 81035ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 81182798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 81282798f90SAdrian-Ken Rueegsegger 81382798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8146d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 81582798f90SAdrian-Ken Rueegsegger 81682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 81782798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 818e5835fbaSHerbert Xu select CRYPTO_HASH 81982798f90SAdrian-Ken Rueegsegger help 82082798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 82182798f90SAdrian-Ken Rueegsegger 82282798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 82382798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 824b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 825b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 82682798f90SAdrian-Ken Rueegsegger 827b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 828b6d44341SAdrian Bunk against RIPEMD-160. 829534fe2c1SAdrian-Ken Rueegsegger 830534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8316d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 832534fe2c1SAdrian-Ken Rueegsegger 833534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 834534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 835d8a5e2e9SHerbert Xu select CRYPTO_HASH 836534fe2c1SAdrian-Ken Rueegsegger help 837b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 838b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 839b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 840b6d44341SAdrian Bunk (than RIPEMD-128). 841534fe2c1SAdrian-Ken Rueegsegger 842534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8436d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 844534fe2c1SAdrian-Ken Rueegsegger 845534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 846534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8473b8efb4cSHerbert Xu select CRYPTO_HASH 848534fe2c1SAdrian-Ken Rueegsegger help 849b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 850b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 851b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 852b6d44341SAdrian Bunk (than RIPEMD-160). 853534fe2c1SAdrian-Ken Rueegsegger 85482798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8556d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 85682798f90SAdrian-Ken Rueegsegger 8571da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8581da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 85954ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8601da177e4SLinus Torvalds help 8611da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8621da177e4SLinus Torvalds 86366be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 864e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 86566be8951SMathias Krause depends on X86 && 64BIT 86666be8951SMathias Krause select CRYPTO_SHA1 86766be8951SMathias Krause select CRYPTO_HASH 86866be8951SMathias Krause help 86966be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 87066be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 871e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 872e38b6b7fStim when available. 87366be8951SMathias Krause 8748275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 875e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8768275d1aaSTim Chen depends on X86 && 64BIT 8778275d1aaSTim Chen select CRYPTO_SHA256 8788275d1aaSTim Chen select CRYPTO_HASH 8798275d1aaSTim Chen help 8808275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8818275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8828275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 883e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 884e38b6b7fStim Instructions) when available. 8858275d1aaSTim Chen 88687de4579STim Chenconfig CRYPTO_SHA512_SSSE3 88787de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 88887de4579STim Chen depends on X86 && 64BIT 88987de4579STim Chen select CRYPTO_SHA512 89087de4579STim Chen select CRYPTO_HASH 89187de4579STim Chen help 89287de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 89387de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 89487de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 89587de4579STim Chen version 2 (AVX2) instructions, when available. 89687de4579STim Chen 897efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 898efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 899efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 900efdb6f6eSAaro Koskinen select CRYPTO_SHA1 901efdb6f6eSAaro Koskinen select CRYPTO_HASH 902efdb6f6eSAaro Koskinen help 903efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 904efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 905efdb6f6eSAaro Koskinen 9064ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9074ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9084ff28d4cSDavid S. Miller depends on SPARC64 9094ff28d4cSDavid S. Miller select CRYPTO_SHA1 9104ff28d4cSDavid S. Miller select CRYPTO_HASH 9114ff28d4cSDavid S. Miller help 9124ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9134ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9144ff28d4cSDavid S. Miller 915323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 916323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 917323a6bf1SMichael Ellerman depends on PPC 918323a6bf1SMichael Ellerman help 919323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 920323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 921323a6bf1SMichael Ellerman 922d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 923d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 924d9850fc5SMarkus Stockhausen depends on PPC && SPE 925d9850fc5SMarkus Stockhausen help 926d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 927d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 928d9850fc5SMarkus Stockhausen 9291da177e4SLinus Torvaldsconfig CRYPTO_SHA256 930cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 93150e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 9321da177e4SLinus Torvalds help 9331da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9341da177e4SLinus Torvalds 9351da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9361da177e4SLinus Torvalds security against collision attacks. 9371da177e4SLinus Torvalds 938cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 939cd12fb90SJonathan Lynch of security against collision attacks. 940cd12fb90SJonathan Lynch 9412ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9422ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9432ecc1e95SMarkus Stockhausen depends on PPC && SPE 9442ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9452ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9462ecc1e95SMarkus Stockhausen help 9472ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9482ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9492ecc1e95SMarkus Stockhausen 950efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 951efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 952efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 953efdb6f6eSAaro Koskinen select CRYPTO_SHA256 954efdb6f6eSAaro Koskinen select CRYPTO_HASH 955efdb6f6eSAaro Koskinen help 956efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 957efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 958efdb6f6eSAaro Koskinen 95986c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 96086c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 96186c93b24SDavid S. Miller depends on SPARC64 96286c93b24SDavid S. Miller select CRYPTO_SHA256 96386c93b24SDavid S. Miller select CRYPTO_HASH 96486c93b24SDavid S. Miller help 96586c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 96686c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 96786c93b24SDavid S. Miller 9681da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9691da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 970bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9711da177e4SLinus Torvalds help 9721da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9731da177e4SLinus Torvalds 9741da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9751da177e4SLinus Torvalds security against collision attacks. 9761da177e4SLinus Torvalds 9771da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9781da177e4SLinus Torvalds of security against collision attacks. 9791da177e4SLinus Torvalds 980efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 981efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 982efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 983efdb6f6eSAaro Koskinen select CRYPTO_SHA512 984efdb6f6eSAaro Koskinen select CRYPTO_HASH 985efdb6f6eSAaro Koskinen help 986efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 987efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 988efdb6f6eSAaro Koskinen 989775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 990775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 991775e0c69SDavid S. Miller depends on SPARC64 992775e0c69SDavid S. Miller select CRYPTO_SHA512 993775e0c69SDavid S. Miller select CRYPTO_HASH 994775e0c69SDavid S. Miller help 995775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 996775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 997775e0c69SDavid S. Miller 99853964b9eSJeff Garzikconfig CRYPTO_SHA3 99953964b9eSJeff Garzik tristate "SHA3 digest algorithm" 100053964b9eSJeff Garzik select CRYPTO_HASH 100153964b9eSJeff Garzik help 100253964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 100353964b9eSJeff Garzik cryptographic sponge function family called Keccak. 100453964b9eSJeff Garzik 100553964b9eSJeff Garzik References: 100653964b9eSJeff Garzik http://keccak.noekeon.org/ 100753964b9eSJeff Garzik 10084f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10094f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10104f0fc160SGilad Ben-Yossef select CRYPTO_HASH 10114f0fc160SGilad Ben-Yossef help 10124f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10134f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10144f0fc160SGilad Ben-Yossef 10154f0fc160SGilad Ben-Yossef References: 10164f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10174f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10184f0fc160SGilad Ben-Yossef 1019fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1020fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1021fe18957eSVitaly Chikunov select CRYPTO_HASH 1022fe18957eSVitaly Chikunov help 1023fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1024fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1025fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1026fe18957eSVitaly Chikunov 1027fe18957eSVitaly Chikunov References: 1028fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1029fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1030fe18957eSVitaly Chikunov 10311da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10321da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1033f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10341da177e4SLinus Torvalds help 10351da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10361da177e4SLinus Torvalds 10371da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10381da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10391da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10401da177e4SLinus Torvalds 10411da177e4SLinus Torvalds See also: 10421da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10431da177e4SLinus Torvalds 1044584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1045584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10464946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10471da177e4SLinus Torvalds help 1048584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10491da177e4SLinus Torvalds 1050584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1051584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10521da177e4SLinus Torvalds 10531da177e4SLinus Torvalds See also: 10546d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10551da177e4SLinus Torvalds 10560e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10570e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10588af00860SRichard Weinberger depends on X86 && 64BIT 10590e1227d3SHuang Ying select CRYPTO_CRYPTD 10600e1227d3SHuang Ying help 10610e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10620e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10630e1227d3SHuang Ying 1064584fffc8SSebastian Siewiorcomment "Ciphers" 10651da177e4SLinus Torvalds 10661da177e4SLinus Torvaldsconfig CRYPTO_AES 10671da177e4SLinus Torvalds tristate "AES cipher algorithms" 1068cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10691da177e4SLinus Torvalds help 10701da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10711da177e4SLinus Torvalds algorithm. 10721da177e4SLinus Torvalds 10731da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10741da177e4SLinus Torvalds both hardware and software across a wide range of computing 10751da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10761da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10771da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10781da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10791da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10801da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10811da177e4SLinus Torvalds 10821da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10831da177e4SLinus Torvalds 10841da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10851da177e4SLinus Torvalds 1086b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1087b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1088b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1089b5e0b032SArd Biesheuvel help 1090b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1091b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1092b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1093b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1094b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1095b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1096b5e0b032SArd Biesheuvel 1097b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1098b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1099b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1100b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11010a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11020a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1103b5e0b032SArd Biesheuvel 11041da177e4SLinus Torvaldsconfig CRYPTO_AES_586 11051da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1106cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1107cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11085157dea8SSebastian Siewior select CRYPTO_AES 11091da177e4SLinus Torvalds help 11101da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11111da177e4SLinus Torvalds algorithm. 11121da177e4SLinus Torvalds 11131da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11141da177e4SLinus Torvalds both hardware and software across a wide range of computing 11151da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11161da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 11171da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 11181da177e4SLinus Torvalds suited for restricted-space environments, in which it also 11191da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 11201da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11211da177e4SLinus Torvalds 11221da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11231da177e4SLinus Torvalds 11241da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 11251da177e4SLinus Torvalds 1126a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1127a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1128cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1129cce9e06dSHerbert Xu select CRYPTO_ALGAPI 113081190b32SSebastian Siewior select CRYPTO_AES 1131a2a892a2SAndreas Steinmetz help 1132a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1133a2a892a2SAndreas Steinmetz algorithm. 1134a2a892a2SAndreas Steinmetz 1135a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1136a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1137a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1138a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1139a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1140a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1141a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1142a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1143a2a892a2SAndreas Steinmetz 1144a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1145a2a892a2SAndreas Steinmetz 1146a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1147a2a892a2SAndreas Steinmetz 114854b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 114954b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11508af00860SRichard Weinberger depends on X86 115185671860SHerbert Xu select CRYPTO_AEAD 11520d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11530d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 115454b6a1bdSHuang Ying select CRYPTO_ALGAPI 115585671860SHerbert Xu select CRYPTO_BLKCIPHER 11567643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 115785671860SHerbert Xu select CRYPTO_SIMD 115854b6a1bdSHuang Ying help 115954b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 116054b6a1bdSHuang Ying 116154b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 116254b6a1bdSHuang Ying algorithm. 116354b6a1bdSHuang Ying 116454b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 116554b6a1bdSHuang Ying both hardware and software across a wide range of computing 116654b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 116754b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 116854b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 116954b6a1bdSHuang Ying suited for restricted-space environments, in which it also 117054b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 117154b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 117254b6a1bdSHuang Ying 117354b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 117454b6a1bdSHuang Ying 117554b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 117654b6a1bdSHuang Ying 11770d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11780d258efbSMathias Krause for some popular block cipher mode is supported too, including 1179944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11800d258efbSMathias Krause acceleration for CTR. 11812cf4ac8bSHuang Ying 11829bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11839bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11849bf4852dSDavid S. Miller depends on SPARC64 11859bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11869bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11879bf4852dSDavid S. Miller help 11889bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11899bf4852dSDavid S. Miller 11909bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11919bf4852dSDavid S. Miller algorithm. 11929bf4852dSDavid S. Miller 11939bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11949bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11959bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11969bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11979bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11989bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11999bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 12009bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 12019bf4852dSDavid S. Miller 12029bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 12039bf4852dSDavid S. Miller 12049bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 12059bf4852dSDavid S. Miller 12069bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 12079bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 12089bf4852dSDavid S. Miller ECB and CBC. 12099bf4852dSDavid S. Miller 1210504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1211504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1212504c6143SMarkus Stockhausen depends on PPC && SPE 1213504c6143SMarkus Stockhausen help 1214504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1215504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1216504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1217504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1218504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1219504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1220504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1221504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1222504c6143SMarkus Stockhausen 12231da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12241da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1225cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12261da177e4SLinus Torvalds help 12271da177e4SLinus Torvalds Anubis cipher algorithm. 12281da177e4SLinus Torvalds 12291da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12301da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12311da177e4SLinus Torvalds in the NESSIE competition. 12321da177e4SLinus Torvalds 12331da177e4SLinus Torvalds See also: 12346d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12356d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12361da177e4SLinus Torvalds 1237584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1238584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1239b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1240e2ee95b8SHye-Shik Chang help 1241584fffc8SSebastian Siewior ARC4 cipher algorithm. 1242e2ee95b8SHye-Shik Chang 1243584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1244584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1245584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1246584fffc8SSebastian Siewior weakness of the algorithm. 1247584fffc8SSebastian Siewior 1248584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1249584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1250584fffc8SSebastian Siewior select CRYPTO_ALGAPI 125152ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1252584fffc8SSebastian Siewior help 1253584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1254584fffc8SSebastian Siewior 1255584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1256584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1257584fffc8SSebastian Siewior designed for use on "large microprocessors". 1258e2ee95b8SHye-Shik Chang 1259e2ee95b8SHye-Shik Chang See also: 1260584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1261584fffc8SSebastian Siewior 126252ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 126352ba867cSJussi Kivilinna tristate 126452ba867cSJussi Kivilinna help 126552ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 126652ba867cSJussi Kivilinna generic c and the assembler implementations. 126752ba867cSJussi Kivilinna 126852ba867cSJussi Kivilinna See also: 126952ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 127052ba867cSJussi Kivilinna 127164b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 127264b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1273f21a7c19SAl Viro depends on X86 && 64BIT 1274c1679171SEric Biggers select CRYPTO_BLKCIPHER 127564b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 127664b94ceaSJussi Kivilinna help 127764b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 127864b94ceaSJussi Kivilinna 127964b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 128064b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 128164b94ceaSJussi Kivilinna designed for use on "large microprocessors". 128264b94ceaSJussi Kivilinna 128364b94ceaSJussi Kivilinna See also: 128464b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 128564b94ceaSJussi Kivilinna 1286584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1287584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1288584fffc8SSebastian Siewior depends on CRYPTO 1289584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1290584fffc8SSebastian Siewior help 1291584fffc8SSebastian Siewior Camellia cipher algorithms module. 1292584fffc8SSebastian Siewior 1293584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1294584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1295584fffc8SSebastian Siewior 1296584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1297584fffc8SSebastian Siewior 1298584fffc8SSebastian Siewior See also: 1299584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1300584fffc8SSebastian Siewior 13010b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 13020b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1303f21a7c19SAl Viro depends on X86 && 64BIT 13040b95ec56SJussi Kivilinna depends on CRYPTO 13051af6d037SEric Biggers select CRYPTO_BLKCIPHER 1306964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 13070b95ec56SJussi Kivilinna help 13080b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 13090b95ec56SJussi Kivilinna 13100b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 13110b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 13120b95ec56SJussi Kivilinna 13130b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 13140b95ec56SJussi Kivilinna 13150b95ec56SJussi Kivilinna See also: 13160b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 13170b95ec56SJussi Kivilinna 1318d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1319d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1320d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1321d9b1d2e7SJussi Kivilinna depends on CRYPTO 132244893bc2SEric Biggers select CRYPTO_BLKCIPHER 1323d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 132444893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 132544893bc2SEric Biggers select CRYPTO_SIMD 1326d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1327d9b1d2e7SJussi Kivilinna help 1328d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1329d9b1d2e7SJussi Kivilinna 1330d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1331d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1332d9b1d2e7SJussi Kivilinna 1333d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1334d9b1d2e7SJussi Kivilinna 1335d9b1d2e7SJussi Kivilinna See also: 1336d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1337d9b1d2e7SJussi Kivilinna 1338f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1339f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1340f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1341f3f935a7SJussi Kivilinna depends on CRYPTO 1342f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1343f3f935a7SJussi Kivilinna help 1344f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1345f3f935a7SJussi Kivilinna 1346f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1347f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1348f3f935a7SJussi Kivilinna 1349f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1350f3f935a7SJussi Kivilinna 1351f3f935a7SJussi Kivilinna See also: 1352f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1353f3f935a7SJussi Kivilinna 135481658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 135581658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 135681658ad0SDavid S. Miller depends on SPARC64 135781658ad0SDavid S. Miller depends on CRYPTO 135881658ad0SDavid S. Miller select CRYPTO_ALGAPI 135981658ad0SDavid S. Miller help 136081658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 136181658ad0SDavid S. Miller 136281658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 136381658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 136481658ad0SDavid S. Miller 136581658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 136681658ad0SDavid S. Miller 136781658ad0SDavid S. Miller See also: 136881658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 136981658ad0SDavid S. Miller 1370044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1371044ab525SJussi Kivilinna tristate 1372044ab525SJussi Kivilinna help 1373044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1374044ab525SJussi Kivilinna generic c and the assembler implementations. 1375044ab525SJussi Kivilinna 1376584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1377584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1378584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1379044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1380584fffc8SSebastian Siewior help 1381584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1382584fffc8SSebastian Siewior described in RFC2144. 1383584fffc8SSebastian Siewior 13844d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13854d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13864d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13871e63183aSEric Biggers select CRYPTO_BLKCIPHER 13884d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13891e63183aSEric Biggers select CRYPTO_CAST_COMMON 13901e63183aSEric Biggers select CRYPTO_SIMD 13914d6d6a2cSJohannes Goetzfried help 13924d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13934d6d6a2cSJohannes Goetzfried described in RFC2144. 13944d6d6a2cSJohannes Goetzfried 13954d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13964d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13974d6d6a2cSJohannes Goetzfried 1398584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1399584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1400584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1401044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1402584fffc8SSebastian Siewior help 1403584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1404584fffc8SSebastian Siewior described in RFC2612. 1405584fffc8SSebastian Siewior 14064ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 14074ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 14084ea1277dSJohannes Goetzfried depends on X86 && 64BIT 14094bd96924SEric Biggers select CRYPTO_BLKCIPHER 14104ea1277dSJohannes Goetzfried select CRYPTO_CAST6 14114bd96924SEric Biggers select CRYPTO_CAST_COMMON 14124bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 14134bd96924SEric Biggers select CRYPTO_SIMD 14144ea1277dSJohannes Goetzfried select CRYPTO_XTS 14154ea1277dSJohannes Goetzfried help 14164ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 14174ea1277dSJohannes Goetzfried described in RFC2612. 14184ea1277dSJohannes Goetzfried 14194ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 14204ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14214ea1277dSJohannes Goetzfried 1422584fffc8SSebastian Siewiorconfig CRYPTO_DES 1423584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1424584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1425584fffc8SSebastian Siewior help 1426584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1427584fffc8SSebastian Siewior 1428c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1429c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 143097da37b3SDave Jones depends on SPARC64 1431c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1432c5aac2dfSDavid S. Miller select CRYPTO_DES 1433c5aac2dfSDavid S. Miller help 1434c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1435c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1436c5aac2dfSDavid S. Miller 14376574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14386574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14396574e6c6SJussi Kivilinna depends on X86 && 64BIT 144009c0f03bSEric Biggers select CRYPTO_BLKCIPHER 14416574e6c6SJussi Kivilinna select CRYPTO_DES 14426574e6c6SJussi Kivilinna help 14436574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14446574e6c6SJussi Kivilinna 14456574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14466574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14476574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14486574e6c6SJussi Kivilinna one that processes three blocks parallel. 14496574e6c6SJussi Kivilinna 1450584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1451584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1452584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1453584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1454584fffc8SSebastian Siewior help 1455584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1456584fffc8SSebastian Siewior 1457584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1458584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1459584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1460584fffc8SSebastian Siewior help 1461584fffc8SSebastian Siewior Khazad cipher algorithm. 1462584fffc8SSebastian Siewior 1463584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1464584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1465584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1466584fffc8SSebastian Siewior 1467584fffc8SSebastian Siewior See also: 14686d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1469e2ee95b8SHye-Shik Chang 14702407d608STan Swee Hengconfig CRYPTO_SALSA20 14713b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14722407d608STan Swee Heng select CRYPTO_BLKCIPHER 14732407d608STan Swee Heng help 14742407d608STan Swee Heng Salsa20 stream cipher algorithm. 14752407d608STan Swee Heng 14762407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14772407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14782407d608STan Swee Heng 14792407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14802407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14811da177e4SLinus Torvalds 1482c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1483aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1484c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1485c08d0e64SMartin Willi help 1486aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1487c08d0e64SMartin Willi 1488c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1489c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1490de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1491c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1492c08d0e64SMartin Willi 1493de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1494de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1495de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1496de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1497de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1498de61d7aeSEric Biggers 1499aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1500aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1501aa762409SEric Biggers in some performance-sensitive scenarios. 1502aa762409SEric Biggers 1503c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 15044af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1505c9320b6dSMartin Willi depends on X86 && 64BIT 1506c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1507c9320b6dSMartin Willi select CRYPTO_CHACHA20 1508c9320b6dSMartin Willi help 15097a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 15107a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1511c9320b6dSMartin Willi 1512584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1513584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1514584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1515584fffc8SSebastian Siewior help 1516584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1517584fffc8SSebastian Siewior 1518584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1519584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1520584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1521584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1522584fffc8SSebastian Siewior 1523584fffc8SSebastian Siewior See also: 1524584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1525584fffc8SSebastian Siewior 1526584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1527584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1528584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1529584fffc8SSebastian Siewior help 1530584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1531584fffc8SSebastian Siewior 1532584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1533584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1534584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1535584fffc8SSebastian Siewior 1536584fffc8SSebastian Siewior See also: 1537584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1538584fffc8SSebastian Siewior 1539937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1540937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1541937c30d7SJussi Kivilinna depends on X86 && 64BIT 1542e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1543596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1544937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1545e0f409dcSEric Biggers select CRYPTO_SIMD 1546937c30d7SJussi Kivilinna help 1547937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1548937c30d7SJussi Kivilinna 1549937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1550937c30d7SJussi Kivilinna of 8 bits. 1551937c30d7SJussi Kivilinna 15521e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1553937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1554937c30d7SJussi Kivilinna 1555937c30d7SJussi Kivilinna See also: 1556937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1557937c30d7SJussi Kivilinna 1558251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1559251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1560251496dbSJussi Kivilinna depends on X86 && !64BIT 1561e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1562596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1563251496dbSJussi Kivilinna select CRYPTO_SERPENT 1564e0f409dcSEric Biggers select CRYPTO_SIMD 1565251496dbSJussi Kivilinna help 1566251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1567251496dbSJussi Kivilinna 1568251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1569251496dbSJussi Kivilinna of 8 bits. 1570251496dbSJussi Kivilinna 1571251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1572251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1573251496dbSJussi Kivilinna 1574251496dbSJussi Kivilinna See also: 1575251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1576251496dbSJussi Kivilinna 15777efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15787efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15797efe4076SJohannes Goetzfried depends on X86 && 64BIT 1580e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15811d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15827efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1583e16bf974SEric Biggers select CRYPTO_SIMD 15847efe4076SJohannes Goetzfried select CRYPTO_XTS 15857efe4076SJohannes Goetzfried help 15867efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15877efe4076SJohannes Goetzfried 15887efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15897efe4076SJohannes Goetzfried of 8 bits. 15907efe4076SJohannes Goetzfried 15917efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15927efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15937efe4076SJohannes Goetzfried 15947efe4076SJohannes Goetzfried See also: 15957efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15967efe4076SJohannes Goetzfried 159756d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 159856d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 159956d76c96SJussi Kivilinna depends on X86 && 64BIT 160056d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 160156d76c96SJussi Kivilinna help 160256d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 160356d76c96SJussi Kivilinna 160456d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 160556d76c96SJussi Kivilinna of 8 bits. 160656d76c96SJussi Kivilinna 160756d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 160856d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 160956d76c96SJussi Kivilinna 161056d76c96SJussi Kivilinna See also: 161156d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 161256d76c96SJussi Kivilinna 1613747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1614747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1615747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1616747c8ce4SGilad Ben-Yossef help 1617747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1618747c8ce4SGilad Ben-Yossef 1619747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1620747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1621747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1622747c8ce4SGilad Ben-Yossef 1623747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1624747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1625747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1626747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1627747c8ce4SGilad Ben-Yossef 1628747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1629747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1630747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1631747c8ce4SGilad Ben-Yossef 1632747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1633747c8ce4SGilad Ben-Yossef 1634747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1635747c8ce4SGilad Ben-Yossef 1636747c8ce4SGilad Ben-Yossef If unsure, say N. 1637747c8ce4SGilad Ben-Yossef 1638584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1639584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1640584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1641584fffc8SSebastian Siewior help 1642584fffc8SSebastian Siewior TEA cipher algorithm. 1643584fffc8SSebastian Siewior 1644584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1645584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1646584fffc8SSebastian Siewior little memory. 1647584fffc8SSebastian Siewior 1648584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1649584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1650584fffc8SSebastian Siewior in the TEA algorithm. 1651584fffc8SSebastian Siewior 1652584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1653584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1654584fffc8SSebastian Siewior 1655584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1656584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1657584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1658584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1659584fffc8SSebastian Siewior help 1660584fffc8SSebastian Siewior Twofish cipher algorithm. 1661584fffc8SSebastian Siewior 1662584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1663584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1664584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1665584fffc8SSebastian Siewior bits. 1666584fffc8SSebastian Siewior 1667584fffc8SSebastian Siewior See also: 1668584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1669584fffc8SSebastian Siewior 1670584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1671584fffc8SSebastian Siewior tristate 1672584fffc8SSebastian Siewior help 1673584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1674584fffc8SSebastian Siewior generic c and the assembler implementations. 1675584fffc8SSebastian Siewior 1676584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1677584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1678584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1679584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1680584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1681584fffc8SSebastian Siewior help 1682584fffc8SSebastian Siewior Twofish cipher algorithm. 1683584fffc8SSebastian Siewior 1684584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1685584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1686584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1687584fffc8SSebastian Siewior bits. 1688584fffc8SSebastian Siewior 1689584fffc8SSebastian Siewior See also: 1690584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1691584fffc8SSebastian Siewior 1692584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1693584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1694584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1695584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1696584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1697584fffc8SSebastian Siewior help 1698584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1699584fffc8SSebastian Siewior 1700584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1701584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1702584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1703584fffc8SSebastian Siewior bits. 1704584fffc8SSebastian Siewior 1705584fffc8SSebastian Siewior See also: 1706584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1707584fffc8SSebastian Siewior 17088280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17098280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1710f21a7c19SAl Viro depends on X86 && 64BIT 171137992fa4SEric Biggers select CRYPTO_BLKCIPHER 17128280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17138280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1714414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17158280daadSJussi Kivilinna help 17168280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17178280daadSJussi Kivilinna 17188280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17198280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17208280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17218280daadSJussi Kivilinna bits. 17228280daadSJussi Kivilinna 17238280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17248280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17258280daadSJussi Kivilinna 17268280daadSJussi Kivilinna See also: 17278280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 17288280daadSJussi Kivilinna 1729107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1730107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1731107778b5SJohannes Goetzfried depends on X86 && 64BIT 17320e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1733a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17340e6ab46dSEric Biggers select CRYPTO_SIMD 1735107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1736107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1737107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1738107778b5SJohannes Goetzfried help 1739107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1740107778b5SJohannes Goetzfried 1741107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1742107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1743107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1744107778b5SJohannes Goetzfried bits. 1745107778b5SJohannes Goetzfried 1746107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1747107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1748107778b5SJohannes Goetzfried 1749107778b5SJohannes Goetzfried See also: 1750107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1751107778b5SJohannes Goetzfried 1752584fffc8SSebastian Siewiorcomment "Compression" 1753584fffc8SSebastian Siewior 17541da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17551da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1756cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1757f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17581da177e4SLinus Torvalds select ZLIB_INFLATE 17591da177e4SLinus Torvalds select ZLIB_DEFLATE 17601da177e4SLinus Torvalds help 17611da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17621da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17631da177e4SLinus Torvalds 17641da177e4SLinus Torvalds You will most probably want this if using IPSec. 17651da177e4SLinus Torvalds 17660b77abb3SZoltan Sogorconfig CRYPTO_LZO 17670b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17680b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1769ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17700b77abb3SZoltan Sogor select LZO_COMPRESS 17710b77abb3SZoltan Sogor select LZO_DECOMPRESS 17720b77abb3SZoltan Sogor help 17730b77abb3SZoltan Sogor This is the LZO algorithm. 17740b77abb3SZoltan Sogor 177535a1fc18SSeth Jenningsconfig CRYPTO_842 177635a1fc18SSeth Jennings tristate "842 compression algorithm" 17772062c5b6SDan Streetman select CRYPTO_ALGAPI 17786a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17792062c5b6SDan Streetman select 842_COMPRESS 17802062c5b6SDan Streetman select 842_DECOMPRESS 178135a1fc18SSeth Jennings help 178235a1fc18SSeth Jennings This is the 842 algorithm. 178335a1fc18SSeth Jennings 17840ea8530dSChanho Minconfig CRYPTO_LZ4 17850ea8530dSChanho Min tristate "LZ4 compression algorithm" 17860ea8530dSChanho Min select CRYPTO_ALGAPI 17878cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17880ea8530dSChanho Min select LZ4_COMPRESS 17890ea8530dSChanho Min select LZ4_DECOMPRESS 17900ea8530dSChanho Min help 17910ea8530dSChanho Min This is the LZ4 algorithm. 17920ea8530dSChanho Min 17930ea8530dSChanho Minconfig CRYPTO_LZ4HC 17940ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17950ea8530dSChanho Min select CRYPTO_ALGAPI 179691d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17970ea8530dSChanho Min select LZ4HC_COMPRESS 17980ea8530dSChanho Min select LZ4_DECOMPRESS 17990ea8530dSChanho Min help 18000ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 18010ea8530dSChanho Min 1802d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1803d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1804d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1805d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1806d28fc3dbSNick Terrell select ZSTD_COMPRESS 1807d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1808d28fc3dbSNick Terrell help 1809d28fc3dbSNick Terrell This is the zstd algorithm. 1810d28fc3dbSNick Terrell 181117f0f4a4SNeil Hormancomment "Random Number Generation" 181217f0f4a4SNeil Horman 181317f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 181417f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 181517f0f4a4SNeil Horman select CRYPTO_AES 181617f0f4a4SNeil Horman select CRYPTO_RNG 181717f0f4a4SNeil Horman help 181817f0f4a4SNeil Horman This option enables the generic pseudo random number generator 181917f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18207dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18217dd607e8SJiri Kosina CRYPTO_FIPS is selected 182217f0f4a4SNeil Horman 1823f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1824419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1825419090c6SStephan Mueller help 1826419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1827419090c6SStephan Mueller more of the DRBG types must be selected. 1828419090c6SStephan Mueller 1829f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1830419090c6SStephan Mueller 1831419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1832401e4238SHerbert Xu bool 1833419090c6SStephan Mueller default y 1834419090c6SStephan Mueller select CRYPTO_HMAC 1835826775bbSHerbert Xu select CRYPTO_SHA256 1836419090c6SStephan Mueller 1837419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1838419090c6SStephan Mueller bool "Enable Hash DRBG" 1839826775bbSHerbert Xu select CRYPTO_SHA256 1840419090c6SStephan Mueller help 1841419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1842419090c6SStephan Mueller 1843419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1844419090c6SStephan Mueller bool "Enable CTR DRBG" 1845419090c6SStephan Mueller select CRYPTO_AES 184635591285SStephan Mueller depends on CRYPTO_CTR 1847419090c6SStephan Mueller help 1848419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1849419090c6SStephan Mueller 1850f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1851f2c89a10SHerbert Xu tristate 1852401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1853f2c89a10SHerbert Xu select CRYPTO_RNG 1854bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1855f2c89a10SHerbert Xu 1856f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1857419090c6SStephan Mueller 1858bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1859bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18602f313e02SArnd Bergmann select CRYPTO_RNG 1861bb5530e4SStephan Mueller help 1862bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1863bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1864bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1865bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1866bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1867bb5530e4SStephan Mueller 186803c8efc1SHerbert Xuconfig CRYPTO_USER_API 186903c8efc1SHerbert Xu tristate 187003c8efc1SHerbert Xu 1871fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1872fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18737451708fSHerbert Xu depends on NET 1874fe869cdbSHerbert Xu select CRYPTO_HASH 1875fe869cdbSHerbert Xu select CRYPTO_USER_API 1876fe869cdbSHerbert Xu help 1877fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1878fe869cdbSHerbert Xu algorithms. 1879fe869cdbSHerbert Xu 18808ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18818ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18827451708fSHerbert Xu depends on NET 18838ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18848ff59090SHerbert Xu select CRYPTO_USER_API 18858ff59090SHerbert Xu help 18868ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18878ff59090SHerbert Xu key cipher algorithms. 18888ff59090SHerbert Xu 18892f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18902f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18912f375538SStephan Mueller depends on NET 18922f375538SStephan Mueller select CRYPTO_RNG 18932f375538SStephan Mueller select CRYPTO_USER_API 18942f375538SStephan Mueller help 18952f375538SStephan Mueller This option enables the user-spaces interface for random 18962f375538SStephan Mueller number generator algorithms. 18972f375538SStephan Mueller 1898b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1899b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1900b64a2d95SHerbert Xu depends on NET 1901b64a2d95SHerbert Xu select CRYPTO_AEAD 190272548b09SStephan Mueller select CRYPTO_BLKCIPHER 190372548b09SStephan Mueller select CRYPTO_NULL 1904b64a2d95SHerbert Xu select CRYPTO_USER_API 1905b64a2d95SHerbert Xu help 1906b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1907b64a2d95SHerbert Xu cipher algorithms. 1908b64a2d95SHerbert Xu 1909cac5818cSCorentin Labbeconfig CRYPTO_STATS 1910cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1911a6a31385SCorentin Labbe depends on CRYPTO_USER 1912cac5818cSCorentin Labbe help 1913cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1914cac5818cSCorentin Labbe This will collect: 1915cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1916cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1917cac5818cSCorentin Labbe - size and numbers of hash operations 1918cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1919cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1920cac5818cSCorentin Labbe 1921ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1922ee08997fSDmitry Kasatkin bool 1923ee08997fSDmitry Kasatkin 19241da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19258636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19268636a1f9SMasahiro Yamadasource "certs/Kconfig" 19271da177e4SLinus Torvalds 1928cce9e06dSHerbert Xuendif # if CRYPTO 1929