xref: /linux/crypto/Kconfig (revision d99324c22643f5ecbbf7849a1c660db569c268a7)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30*d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31*d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
1715b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1725b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1735b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1745b2706a4SEric Biggers	help
1755b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1765b2706a4SEric Biggers	  including randomized fuzz tests.
1775b2706a4SEric Biggers
1785b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1795b2706a4SEric Biggers	  longer to run than the normal self tests.
1805b2706a4SEric Biggers
181584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
18208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
185584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
186584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
187584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
188584fffc8SSebastian Siewior	  an external module that requires these functions.
189584fffc8SSebastian Siewior
190584fffc8SSebastian Siewiorconfig CRYPTO_NULL
191584fffc8SSebastian Siewior	tristate "Null algorithms"
192149a3971SHerbert Xu	select CRYPTO_NULL2
193584fffc8SSebastian Siewior	help
194584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
195584fffc8SSebastian Siewior
196149a3971SHerbert Xuconfig CRYPTO_NULL2
197dd43c4e9SHerbert Xu	tristate
198149a3971SHerbert Xu	select CRYPTO_ALGAPI2
199149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
200149a3971SHerbert Xu	select CRYPTO_HASH2
201149a3971SHerbert Xu
2025068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
2033b4afaf2SKees Cook	tristate "Parallel crypto engine"
2043b4afaf2SKees Cook	depends on SMP
2055068c7a8SSteffen Klassert	select PADATA
2065068c7a8SSteffen Klassert	select CRYPTO_MANAGER
2075068c7a8SSteffen Klassert	select CRYPTO_AEAD
2085068c7a8SSteffen Klassert	help
2095068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2105068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2115068c7a8SSteffen Klassert
21225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
21325c38d3fSHuang Ying       tristate
21425c38d3fSHuang Ying
215584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
216584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
217584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
218b8a28251SLoc Ho	select CRYPTO_HASH
219584fffc8SSebastian Siewior	select CRYPTO_MANAGER
220254eff77SHuang Ying	select CRYPTO_WORKQUEUE
221584fffc8SSebastian Siewior	help
222584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
223584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
224584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
225584fffc8SSebastian Siewior
226584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
227584fffc8SSebastian Siewior	tristate "Authenc support"
228584fffc8SSebastian Siewior	select CRYPTO_AEAD
229584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
230584fffc8SSebastian Siewior	select CRYPTO_MANAGER
231584fffc8SSebastian Siewior	select CRYPTO_HASH
232e94c6a7aSHerbert Xu	select CRYPTO_NULL
233584fffc8SSebastian Siewior	help
234584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
235584fffc8SSebastian Siewior	  This is required for IPSec.
236584fffc8SSebastian Siewior
237584fffc8SSebastian Siewiorconfig CRYPTO_TEST
238584fffc8SSebastian Siewior	tristate "Testing module"
239584fffc8SSebastian Siewior	depends on m
240da7f033dSHerbert Xu	select CRYPTO_MANAGER
241584fffc8SSebastian Siewior	help
242584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
243584fffc8SSebastian Siewior
244266d0516SHerbert Xuconfig CRYPTO_SIMD
245266d0516SHerbert Xu	tristate
246266d0516SHerbert Xu	select CRYPTO_CRYPTD
247266d0516SHerbert Xu
248596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
249596d8750SJussi Kivilinna	tristate
250596d8750SJussi Kivilinna	depends on X86
251065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
252596d8750SJussi Kivilinna
253735d37b5SBaolin Wangconfig CRYPTO_ENGINE
254735d37b5SBaolin Wang	tristate
255735d37b5SBaolin Wang
256584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
257584fffc8SSebastian Siewior
258584fffc8SSebastian Siewiorconfig CRYPTO_CCM
259584fffc8SSebastian Siewior	tristate "CCM support"
260584fffc8SSebastian Siewior	select CRYPTO_CTR
261f15f05b0SArd Biesheuvel	select CRYPTO_HASH
262584fffc8SSebastian Siewior	select CRYPTO_AEAD
263584fffc8SSebastian Siewior	help
264584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
265584fffc8SSebastian Siewior
266584fffc8SSebastian Siewiorconfig CRYPTO_GCM
267584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
268584fffc8SSebastian Siewior	select CRYPTO_CTR
269584fffc8SSebastian Siewior	select CRYPTO_AEAD
2709382d97aSHuang Ying	select CRYPTO_GHASH
2719489667dSJussi Kivilinna	select CRYPTO_NULL
272584fffc8SSebastian Siewior	help
273584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
274584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
275584fffc8SSebastian Siewior
27671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
27771ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
27871ebc4d1SMartin Willi	select CRYPTO_CHACHA20
27971ebc4d1SMartin Willi	select CRYPTO_POLY1305
28071ebc4d1SMartin Willi	select CRYPTO_AEAD
28171ebc4d1SMartin Willi	help
28271ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28371ebc4d1SMartin Willi
28471ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28571ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
28671ebc4d1SMartin Willi	  IETF protocols.
28771ebc4d1SMartin Willi
288f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
289f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
290f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
291f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
292f606a88eSOndrej Mosnacek	help
293f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
294f606a88eSOndrej Mosnacek
295f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
296f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
297f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
298f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
299f606a88eSOndrej Mosnacek	help
300f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
301f606a88eSOndrej Mosnacek
302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
303f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
304f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
305f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
306f606a88eSOndrej Mosnacek	help
307f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
308f606a88eSOndrej Mosnacek
3091d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3101d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3111d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3121d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
313de272ca7SEric Biggers	select CRYPTO_SIMD
3141d373d4eSOndrej Mosnacek	help
3154e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3161d373d4eSOndrej Mosnacek
3171d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3181d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3191d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3201d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
321d628132aSEric Biggers	select CRYPTO_SIMD
3221d373d4eSOndrej Mosnacek	help
3234e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
3241d373d4eSOndrej Mosnacek
3251d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3261d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3271d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3281d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
329b6708c2dSEric Biggers	select CRYPTO_SIMD
3301d373d4eSOndrej Mosnacek	help
3314e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
3321d373d4eSOndrej Mosnacek
333396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
334396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
335396be41fSOndrej Mosnacek	select CRYPTO_AEAD
336396be41fSOndrej Mosnacek	help
337396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
338396be41fSOndrej Mosnacek
33956e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3402808f173SOndrej Mosnacek	tristate
3412808f173SOndrej Mosnacek	depends on X86
34256e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
34347730958SEric Biggers	select CRYPTO_SIMD
34456e8e57fSOndrej Mosnacek	help
34556e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
34656e8e57fSOndrej Mosnacek	  algorithm.
34756e8e57fSOndrej Mosnacek
3486ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3496ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3506ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3516ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3526ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3536ecc9d9fSOndrej Mosnacek	help
3546ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3556ecc9d9fSOndrej Mosnacek
356396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
357396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
358396be41fSOndrej Mosnacek	select CRYPTO_AEAD
359396be41fSOndrej Mosnacek	help
360396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
361396be41fSOndrej Mosnacek
36256e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3632808f173SOndrej Mosnacek	tristate
3642808f173SOndrej Mosnacek	depends on X86
36556e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
366e151a8d2SEric Biggers	select CRYPTO_SIMD
36756e8e57fSOndrej Mosnacek	help
36856e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
36956e8e57fSOndrej Mosnacek	  algorithm.
37056e8e57fSOndrej Mosnacek
3716ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3726ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3736ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3746ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3756ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3766ecc9d9fSOndrej Mosnacek	help
3776ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3786ecc9d9fSOndrej Mosnacek	  algorithm.
3796ecc9d9fSOndrej Mosnacek
3806ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
3816ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
3826ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3836ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3846ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3856ecc9d9fSOndrej Mosnacek	help
3866ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
3876ecc9d9fSOndrej Mosnacek	  algorithm.
3886ecc9d9fSOndrej Mosnacek
389584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
390584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
391584fffc8SSebastian Siewior	select CRYPTO_AEAD
392584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
393856e3f40SHerbert Xu	select CRYPTO_NULL
394401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
395584fffc8SSebastian Siewior	help
396584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
397584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
398584fffc8SSebastian Siewior
399a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
400a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
401a10f554fSHerbert Xu	select CRYPTO_AEAD
402a10f554fSHerbert Xu	select CRYPTO_NULL
403401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
4043491244cSHerbert Xu	default m
405a10f554fSHerbert Xu	help
406a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
407a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
408a10f554fSHerbert Xu	  algorithm for CBC.
409a10f554fSHerbert Xu
410584fffc8SSebastian Siewiorcomment "Block modes"
411584fffc8SSebastian Siewior
412584fffc8SSebastian Siewiorconfig CRYPTO_CBC
413584fffc8SSebastian Siewior	tristate "CBC support"
414584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
415584fffc8SSebastian Siewior	select CRYPTO_MANAGER
416584fffc8SSebastian Siewior	help
417584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
418584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
419584fffc8SSebastian Siewior
420a7d85e06SJames Bottomleyconfig CRYPTO_CFB
421a7d85e06SJames Bottomley	tristate "CFB support"
422a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
423a7d85e06SJames Bottomley	select CRYPTO_MANAGER
424a7d85e06SJames Bottomley	help
425a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
426a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
427a7d85e06SJames Bottomley
428584fffc8SSebastian Siewiorconfig CRYPTO_CTR
429584fffc8SSebastian Siewior	tristate "CTR support"
430584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
431584fffc8SSebastian Siewior	select CRYPTO_SEQIV
432584fffc8SSebastian Siewior	select CRYPTO_MANAGER
433584fffc8SSebastian Siewior	help
434584fffc8SSebastian Siewior	  CTR: Counter mode
435584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
436584fffc8SSebastian Siewior
437584fffc8SSebastian Siewiorconfig CRYPTO_CTS
438584fffc8SSebastian Siewior	tristate "CTS support"
439584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
440584fffc8SSebastian Siewior	help
441584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
442584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
443ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
444ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
445ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
446584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
447584fffc8SSebastian Siewior	  for AES encryption.
448584fffc8SSebastian Siewior
449ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
450ecd6d5c9SGilad Ben-Yossef
451584fffc8SSebastian Siewiorconfig CRYPTO_ECB
452584fffc8SSebastian Siewior	tristate "ECB support"
453584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
454584fffc8SSebastian Siewior	select CRYPTO_MANAGER
455584fffc8SSebastian Siewior	help
456584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
457584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
458584fffc8SSebastian Siewior	  the input block by block.
459584fffc8SSebastian Siewior
460584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4612470a2b2SJussi Kivilinna	tristate "LRW support"
462584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
463584fffc8SSebastian Siewior	select CRYPTO_MANAGER
464584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
465584fffc8SSebastian Siewior	help
466584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
467584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
468584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
469584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
470584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
471584fffc8SSebastian Siewior
472e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
473e497c518SGilad Ben-Yossef	tristate "OFB support"
474e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
475e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
476e497c518SGilad Ben-Yossef	help
477e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
478e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
479e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
480e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
481e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
482e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
483e497c518SGilad Ben-Yossef
484584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
485584fffc8SSebastian Siewior	tristate "PCBC support"
486584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
487584fffc8SSebastian Siewior	select CRYPTO_MANAGER
488584fffc8SSebastian Siewior	help
489584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
490584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
491584fffc8SSebastian Siewior
492584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4935bcf8e6dSJussi Kivilinna	tristate "XTS support"
494584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
495584fffc8SSebastian Siewior	select CRYPTO_MANAGER
49612cb3a1cSMilan Broz	select CRYPTO_ECB
497584fffc8SSebastian Siewior	help
498584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
499584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
500584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
501584fffc8SSebastian Siewior
5021c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5031c49678eSStephan Mueller	tristate "Key wrapping support"
5041c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
5051c49678eSStephan Mueller	help
5061c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5071c49678eSStephan Mueller	  padding.
5081c49678eSStephan Mueller
50926609a21SEric Biggersconfig CRYPTO_NHPOLY1305
51026609a21SEric Biggers	tristate
51126609a21SEric Biggers	select CRYPTO_HASH
51226609a21SEric Biggers	select CRYPTO_POLY1305
51326609a21SEric Biggers
514012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
515012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
516012c8238SEric Biggers	depends on X86 && 64BIT
517012c8238SEric Biggers	select CRYPTO_NHPOLY1305
518012c8238SEric Biggers	help
519012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
520012c8238SEric Biggers	  Adiantum encryption mode.
521012c8238SEric Biggers
5220f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5230f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5240f961f9fSEric Biggers	depends on X86 && 64BIT
5250f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5260f961f9fSEric Biggers	help
5270f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5280f961f9fSEric Biggers	  Adiantum encryption mode.
5290f961f9fSEric Biggers
530059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
531059c2a4dSEric Biggers	tristate "Adiantum support"
532059c2a4dSEric Biggers	select CRYPTO_CHACHA20
533059c2a4dSEric Biggers	select CRYPTO_POLY1305
534059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
535059c2a4dSEric Biggers	help
536059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
537059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
538059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
539059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
540059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
541059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
542059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
543059c2a4dSEric Biggers	  AES-XTS.
544059c2a4dSEric Biggers
545059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
546059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
547059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
548059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
549059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
550059c2a4dSEric Biggers
551059c2a4dSEric Biggers	  If unsure, say N.
552059c2a4dSEric Biggers
553584fffc8SSebastian Siewiorcomment "Hash modes"
554584fffc8SSebastian Siewior
55593b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
55693b5e86aSJussi Kivilinna	tristate "CMAC support"
55793b5e86aSJussi Kivilinna	select CRYPTO_HASH
55893b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
55993b5e86aSJussi Kivilinna	help
56093b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
56193b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
56293b5e86aSJussi Kivilinna
56393b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
56493b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
56593b5e86aSJussi Kivilinna
5661da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5678425165dSHerbert Xu	tristate "HMAC support"
5680796ae06SHerbert Xu	select CRYPTO_HASH
56943518407SHerbert Xu	select CRYPTO_MANAGER
5701da177e4SLinus Torvalds	help
5711da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5721da177e4SLinus Torvalds	  This is required for IPSec.
5731da177e4SLinus Torvalds
574333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
575333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
576333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
577333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
578333b0d7eSKazunori MIYAZAWA	help
579333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
580333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
581333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
582333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
583333b0d7eSKazunori MIYAZAWA
584f1939f7cSShane Wangconfig CRYPTO_VMAC
585f1939f7cSShane Wang	tristate "VMAC support"
586f1939f7cSShane Wang	select CRYPTO_HASH
587f1939f7cSShane Wang	select CRYPTO_MANAGER
588f1939f7cSShane Wang	help
589f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
590f1939f7cSShane Wang	  very high speed on 64-bit architectures.
591f1939f7cSShane Wang
592f1939f7cSShane Wang	  See also:
593f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
594f1939f7cSShane Wang
595584fffc8SSebastian Siewiorcomment "Digest"
596584fffc8SSebastian Siewior
597584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
598584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5995773a3e6SHerbert Xu	select CRYPTO_HASH
6006a0962b2SDarrick J. Wong	select CRC32
6011da177e4SLinus Torvalds	help
602584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
603584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
60469c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6051da177e4SLinus Torvalds
6068cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6078cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6088cb51ba8SAustin Zhang	depends on X86
6098cb51ba8SAustin Zhang	select CRYPTO_HASH
6108cb51ba8SAustin Zhang	help
6118cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6128cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6138cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6148cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6158cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6168cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6178cb51ba8SAustin Zhang
6187cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6196dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
620c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6216dd7a82cSAnton Blanchard	select CRYPTO_HASH
6226dd7a82cSAnton Blanchard	select CRC32
6236dd7a82cSAnton Blanchard	help
6246dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6256dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6266dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6276dd7a82cSAnton Blanchard
6286dd7a82cSAnton Blanchard
629442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
630442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
631442a7c40SDavid S. Miller	depends on SPARC64
632442a7c40SDavid S. Miller	select CRYPTO_HASH
633442a7c40SDavid S. Miller	select CRC32
634442a7c40SDavid S. Miller	help
635442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
636442a7c40SDavid S. Miller	  when available.
637442a7c40SDavid S. Miller
63878c37d19SAlexander Boykoconfig CRYPTO_CRC32
63978c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
64078c37d19SAlexander Boyko	select CRYPTO_HASH
64178c37d19SAlexander Boyko	select CRC32
64278c37d19SAlexander Boyko	help
64378c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
64478c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
64578c37d19SAlexander Boyko
64678c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
64778c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
64878c37d19SAlexander Boyko	depends on X86
64978c37d19SAlexander Boyko	select CRYPTO_HASH
65078c37d19SAlexander Boyko	select CRC32
65178c37d19SAlexander Boyko	help
65278c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
65378c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
65478c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
655af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
65678c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
65778c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
65878c37d19SAlexander Boyko
6594a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6604a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6614a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6624a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6634a5dc51eSMarcin Nowakowski	help
6644a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6654a5dc51eSMarcin Nowakowski	  instructions, when available.
6664a5dc51eSMarcin Nowakowski
6674a5dc51eSMarcin Nowakowski
66868411521SHerbert Xuconfig CRYPTO_CRCT10DIF
66968411521SHerbert Xu	tristate "CRCT10DIF algorithm"
67068411521SHerbert Xu	select CRYPTO_HASH
67168411521SHerbert Xu	help
67268411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
67368411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
67468411521SHerbert Xu	  transforms to be used if they are available.
67568411521SHerbert Xu
67668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
67768411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
67868411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
67968411521SHerbert Xu	select CRYPTO_HASH
68068411521SHerbert Xu	help
68168411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
68268411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
68368411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
684af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
68568411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
68668411521SHerbert Xu
687b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
688b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
689b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
690b01df1c1SDaniel Axtens	select CRYPTO_HASH
691b01df1c1SDaniel Axtens	help
692b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
693b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
694b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
695b01df1c1SDaniel Axtens
696146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
697146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
698146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
699146c8688SDaniel Axtens	help
700146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
701146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
702146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
703146c8688SDaniel Axtens
7042cdc6899SHuang Yingconfig CRYPTO_GHASH
7052cdc6899SHuang Ying	tristate "GHASH digest algorithm"
7062cdc6899SHuang Ying	select CRYPTO_GF128MUL
707578c60fbSArnd Bergmann	select CRYPTO_HASH
7082cdc6899SHuang Ying	help
7092cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
7102cdc6899SHuang Ying
711f979e014SMartin Williconfig CRYPTO_POLY1305
712f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
713578c60fbSArnd Bergmann	select CRYPTO_HASH
714f979e014SMartin Willi	help
715f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
716f979e014SMartin Willi
717f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
718f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
719f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
720f979e014SMartin Willi
721c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
722b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
723c70f4abeSMartin Willi	depends on X86 && 64BIT
724c70f4abeSMartin Willi	select CRYPTO_POLY1305
725c70f4abeSMartin Willi	help
726c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
727c70f4abeSMartin Willi
728c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
729c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
730c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
731c70f4abeSMartin Willi	  instructions.
732c70f4abeSMartin Willi
7331da177e4SLinus Torvaldsconfig CRYPTO_MD4
7341da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
735808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7361da177e4SLinus Torvalds	help
7371da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7381da177e4SLinus Torvalds
7391da177e4SLinus Torvaldsconfig CRYPTO_MD5
7401da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
74114b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7421da177e4SLinus Torvalds	help
7431da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7441da177e4SLinus Torvalds
745d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
746d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
747d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
748d69e75deSAaro Koskinen	select CRYPTO_MD5
749d69e75deSAaro Koskinen	select CRYPTO_HASH
750d69e75deSAaro Koskinen	help
751d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
752d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
753d69e75deSAaro Koskinen
754e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
755e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
756e8e59953SMarkus Stockhausen	depends on PPC
757e8e59953SMarkus Stockhausen	select CRYPTO_HASH
758e8e59953SMarkus Stockhausen	help
759e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
760e8e59953SMarkus Stockhausen	  in PPC assembler.
761e8e59953SMarkus Stockhausen
762fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
763fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
764fa4dfedcSDavid S. Miller	depends on SPARC64
765fa4dfedcSDavid S. Miller	select CRYPTO_MD5
766fa4dfedcSDavid S. Miller	select CRYPTO_HASH
767fa4dfedcSDavid S. Miller	help
768fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
769fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
770fa4dfedcSDavid S. Miller
771584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
772584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
77319e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
774584fffc8SSebastian Siewior	help
775584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
776584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
777584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
778584fffc8SSebastian Siewior	  of the algorithm.
779584fffc8SSebastian Siewior
78082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
78182798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7827c4468bcSHerbert Xu	select CRYPTO_HASH
78382798f90SAdrian-Ken Rueegsegger	help
78482798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
78582798f90SAdrian-Ken Rueegsegger
78682798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
78735ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
78882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
78982798f90SAdrian-Ken Rueegsegger
79082798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7916d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
79282798f90SAdrian-Ken Rueegsegger
79382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
79482798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
795e5835fbaSHerbert Xu	select CRYPTO_HASH
79682798f90SAdrian-Ken Rueegsegger	help
79782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
79882798f90SAdrian-Ken Rueegsegger
79982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
80082798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
801b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
802b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
80382798f90SAdrian-Ken Rueegsegger
804b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
805b6d44341SAdrian Bunk	  against RIPEMD-160.
806534fe2c1SAdrian-Ken Rueegsegger
807534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8086d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
809534fe2c1SAdrian-Ken Rueegsegger
810534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
811534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
812d8a5e2e9SHerbert Xu	select CRYPTO_HASH
813534fe2c1SAdrian-Ken Rueegsegger	help
814b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
815b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
816b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
817b6d44341SAdrian Bunk	  (than RIPEMD-128).
818534fe2c1SAdrian-Ken Rueegsegger
819534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8206d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
821534fe2c1SAdrian-Ken Rueegsegger
822534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
823534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8243b8efb4cSHerbert Xu	select CRYPTO_HASH
825534fe2c1SAdrian-Ken Rueegsegger	help
826b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
827b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
828b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
829b6d44341SAdrian Bunk	  (than RIPEMD-160).
830534fe2c1SAdrian-Ken Rueegsegger
83182798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8326d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
83382798f90SAdrian-Ken Rueegsegger
8341da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8351da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
83654ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8371da177e4SLinus Torvalds	help
8381da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8391da177e4SLinus Torvalds
84066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
841e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
84266be8951SMathias Krause	depends on X86 && 64BIT
84366be8951SMathias Krause	select CRYPTO_SHA1
84466be8951SMathias Krause	select CRYPTO_HASH
84566be8951SMathias Krause	help
84666be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
84766be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
848e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
849e38b6b7fStim	  when available.
85066be8951SMathias Krause
8518275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
852e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8538275d1aaSTim Chen	depends on X86 && 64BIT
8548275d1aaSTim Chen	select CRYPTO_SHA256
8558275d1aaSTim Chen	select CRYPTO_HASH
8568275d1aaSTim Chen	help
8578275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8588275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8598275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
860e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
861e38b6b7fStim	  Instructions) when available.
8628275d1aaSTim Chen
86387de4579STim Chenconfig CRYPTO_SHA512_SSSE3
86487de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
86587de4579STim Chen	depends on X86 && 64BIT
86687de4579STim Chen	select CRYPTO_SHA512
86787de4579STim Chen	select CRYPTO_HASH
86887de4579STim Chen	help
86987de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
87087de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
87187de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
87287de4579STim Chen	  version 2 (AVX2) instructions, when available.
87387de4579STim Chen
874efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
875efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
876efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
877efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
878efdb6f6eSAaro Koskinen	select CRYPTO_HASH
879efdb6f6eSAaro Koskinen	help
880efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
881efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
882efdb6f6eSAaro Koskinen
8834ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8844ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8854ff28d4cSDavid S. Miller	depends on SPARC64
8864ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8874ff28d4cSDavid S. Miller	select CRYPTO_HASH
8884ff28d4cSDavid S. Miller	help
8894ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8904ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8914ff28d4cSDavid S. Miller
892323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
893323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
894323a6bf1SMichael Ellerman	depends on PPC
895323a6bf1SMichael Ellerman	help
896323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
897323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
898323a6bf1SMichael Ellerman
899d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
900d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
901d9850fc5SMarkus Stockhausen	depends on PPC && SPE
902d9850fc5SMarkus Stockhausen	help
903d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
904d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
905d9850fc5SMarkus Stockhausen
9061da177e4SLinus Torvaldsconfig CRYPTO_SHA256
907cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
90850e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9091da177e4SLinus Torvalds	help
9101da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9111da177e4SLinus Torvalds
9121da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9131da177e4SLinus Torvalds	  security against collision attacks.
9141da177e4SLinus Torvalds
915cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
916cd12fb90SJonathan Lynch	  of security against collision attacks.
917cd12fb90SJonathan Lynch
9182ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9192ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9202ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9212ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9222ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9232ecc1e95SMarkus Stockhausen	help
9242ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9252ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9262ecc1e95SMarkus Stockhausen
927efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
928efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
929efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
930efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
931efdb6f6eSAaro Koskinen	select CRYPTO_HASH
932efdb6f6eSAaro Koskinen	help
933efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
934efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
935efdb6f6eSAaro Koskinen
93686c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
93786c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
93886c93b24SDavid S. Miller	depends on SPARC64
93986c93b24SDavid S. Miller	select CRYPTO_SHA256
94086c93b24SDavid S. Miller	select CRYPTO_HASH
94186c93b24SDavid S. Miller	help
94286c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
94386c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
94486c93b24SDavid S. Miller
9451da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9461da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
947bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9481da177e4SLinus Torvalds	help
9491da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9501da177e4SLinus Torvalds
9511da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9521da177e4SLinus Torvalds	  security against collision attacks.
9531da177e4SLinus Torvalds
9541da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9551da177e4SLinus Torvalds	  of security against collision attacks.
9561da177e4SLinus Torvalds
957efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
958efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
959efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
960efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
961efdb6f6eSAaro Koskinen	select CRYPTO_HASH
962efdb6f6eSAaro Koskinen	help
963efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
964efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
965efdb6f6eSAaro Koskinen
966775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
967775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
968775e0c69SDavid S. Miller	depends on SPARC64
969775e0c69SDavid S. Miller	select CRYPTO_SHA512
970775e0c69SDavid S. Miller	select CRYPTO_HASH
971775e0c69SDavid S. Miller	help
972775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
973775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
974775e0c69SDavid S. Miller
97553964b9eSJeff Garzikconfig CRYPTO_SHA3
97653964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
97753964b9eSJeff Garzik	select CRYPTO_HASH
97853964b9eSJeff Garzik	help
97953964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
98053964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
98153964b9eSJeff Garzik
98253964b9eSJeff Garzik	  References:
98353964b9eSJeff Garzik	  http://keccak.noekeon.org/
98453964b9eSJeff Garzik
9854f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9864f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9874f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9884f0fc160SGilad Ben-Yossef	help
9894f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9904f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9914f0fc160SGilad Ben-Yossef
9924f0fc160SGilad Ben-Yossef	  References:
9934f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9944f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9954f0fc160SGilad Ben-Yossef
996fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
997fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
998fe18957eSVitaly Chikunov	select CRYPTO_HASH
999fe18957eSVitaly Chikunov	help
1000fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1001fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1002fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1003fe18957eSVitaly Chikunov
1004fe18957eSVitaly Chikunov	  References:
1005fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1006fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1007fe18957eSVitaly Chikunov
10081da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10091da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1010f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10111da177e4SLinus Torvalds	help
10121da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10131da177e4SLinus Torvalds
10141da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10151da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10161da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10171da177e4SLinus Torvalds
10181da177e4SLinus Torvalds	  See also:
10191da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10201da177e4SLinus Torvalds
1021584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1022584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10234946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10241da177e4SLinus Torvalds	help
1025584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10261da177e4SLinus Torvalds
1027584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1028584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10291da177e4SLinus Torvalds
10301da177e4SLinus Torvalds	  See also:
10316d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10321da177e4SLinus Torvalds
10330e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10340e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10358af00860SRichard Weinberger	depends on X86 && 64BIT
10360e1227d3SHuang Ying	select CRYPTO_CRYPTD
10370e1227d3SHuang Ying	help
10380e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10390e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10400e1227d3SHuang Ying
1041584fffc8SSebastian Siewiorcomment "Ciphers"
10421da177e4SLinus Torvalds
10431da177e4SLinus Torvaldsconfig CRYPTO_AES
10441da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1045cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10461da177e4SLinus Torvalds	help
10471da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10481da177e4SLinus Torvalds	  algorithm.
10491da177e4SLinus Torvalds
10501da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10511da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10521da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10531da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10541da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10551da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10561da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10571da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10581da177e4SLinus Torvalds
10591da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10601da177e4SLinus Torvalds
10611da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10621da177e4SLinus Torvalds
1063b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1064b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1065b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1066b5e0b032SArd Biesheuvel	help
1067b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1068b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1069b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1070b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1071b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1072b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1073b5e0b032SArd Biesheuvel
1074b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1075b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1076b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1077b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10780a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10790a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1080b5e0b032SArd Biesheuvel
10811da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10821da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1083cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1084cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10855157dea8SSebastian Siewior	select CRYPTO_AES
10861da177e4SLinus Torvalds	help
10871da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10881da177e4SLinus Torvalds	  algorithm.
10891da177e4SLinus Torvalds
10901da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10911da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10921da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10931da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10941da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10951da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10961da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10971da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10981da177e4SLinus Torvalds
10991da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11001da177e4SLinus Torvalds
11011da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11021da177e4SLinus Torvalds
1103a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1104a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1105cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1106cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
110781190b32SSebastian Siewior	select CRYPTO_AES
1108a2a892a2SAndreas Steinmetz	help
1109a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1110a2a892a2SAndreas Steinmetz	  algorithm.
1111a2a892a2SAndreas Steinmetz
1112a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1113a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1114a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1115a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1116a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1117a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1118a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1119a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1120a2a892a2SAndreas Steinmetz
1121a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1122a2a892a2SAndreas Steinmetz
1123a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1124a2a892a2SAndreas Steinmetz
112554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
112654b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11278af00860SRichard Weinberger	depends on X86
112885671860SHerbert Xu	select CRYPTO_AEAD
11290d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11300d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
113154b6a1bdSHuang Ying	select CRYPTO_ALGAPI
113285671860SHerbert Xu	select CRYPTO_BLKCIPHER
11337643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
113485671860SHerbert Xu	select CRYPTO_SIMD
113554b6a1bdSHuang Ying	help
113654b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
113754b6a1bdSHuang Ying
113854b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
113954b6a1bdSHuang Ying	  algorithm.
114054b6a1bdSHuang Ying
114154b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
114254b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
114354b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
114454b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
114554b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
114654b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
114754b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
114854b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
114954b6a1bdSHuang Ying
115054b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
115154b6a1bdSHuang Ying
115254b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
115354b6a1bdSHuang Ying
11540d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11550d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1156944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11570d258efbSMathias Krause	  acceleration for CTR.
11582cf4ac8bSHuang Ying
11599bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11609bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11619bf4852dSDavid S. Miller	depends on SPARC64
11629bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11639bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11649bf4852dSDavid S. Miller	help
11659bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11669bf4852dSDavid S. Miller
11679bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11689bf4852dSDavid S. Miller	  algorithm.
11699bf4852dSDavid S. Miller
11709bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11719bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11729bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11739bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11749bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11759bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11769bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11779bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11789bf4852dSDavid S. Miller
11799bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11809bf4852dSDavid S. Miller
11819bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11829bf4852dSDavid S. Miller
11839bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11849bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11859bf4852dSDavid S. Miller	  ECB and CBC.
11869bf4852dSDavid S. Miller
1187504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1188504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1189504c6143SMarkus Stockhausen	depends on PPC && SPE
1190504c6143SMarkus Stockhausen	help
1191504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1192504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1193504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1194504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1195504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1196504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1197504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1198504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1199504c6143SMarkus Stockhausen
12001da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12011da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1202cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12031da177e4SLinus Torvalds	help
12041da177e4SLinus Torvalds	  Anubis cipher algorithm.
12051da177e4SLinus Torvalds
12061da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12071da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12081da177e4SLinus Torvalds	  in the NESSIE competition.
12091da177e4SLinus Torvalds
12101da177e4SLinus Torvalds	  See also:
12116d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12126d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12131da177e4SLinus Torvalds
1214584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1215584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1216b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1217e2ee95b8SHye-Shik Chang	help
1218584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1219e2ee95b8SHye-Shik Chang
1220584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1221584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1222584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1223584fffc8SSebastian Siewior	  weakness of the algorithm.
1224584fffc8SSebastian Siewior
1225584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1226584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1227584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
122852ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1229584fffc8SSebastian Siewior	help
1230584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1231584fffc8SSebastian Siewior
1232584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1233584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1234584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1235e2ee95b8SHye-Shik Chang
1236e2ee95b8SHye-Shik Chang	  See also:
1237584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1238584fffc8SSebastian Siewior
123952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
124052ba867cSJussi Kivilinna	tristate
124152ba867cSJussi Kivilinna	help
124252ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
124352ba867cSJussi Kivilinna	  generic c and the assembler implementations.
124452ba867cSJussi Kivilinna
124552ba867cSJussi Kivilinna	  See also:
124652ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
124752ba867cSJussi Kivilinna
124864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
124964b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1250f21a7c19SAl Viro	depends on X86 && 64BIT
1251c1679171SEric Biggers	select CRYPTO_BLKCIPHER
125264b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
125364b94ceaSJussi Kivilinna	help
125464b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
125564b94ceaSJussi Kivilinna
125664b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
125764b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
125864b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
125964b94ceaSJussi Kivilinna
126064b94ceaSJussi Kivilinna	  See also:
126164b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
126264b94ceaSJussi Kivilinna
1263584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1264584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1265584fffc8SSebastian Siewior	depends on CRYPTO
1266584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1267584fffc8SSebastian Siewior	help
1268584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1269584fffc8SSebastian Siewior
1270584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1271584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1272584fffc8SSebastian Siewior
1273584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1274584fffc8SSebastian Siewior
1275584fffc8SSebastian Siewior	  See also:
1276584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1277584fffc8SSebastian Siewior
12780b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12790b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1280f21a7c19SAl Viro	depends on X86 && 64BIT
12810b95ec56SJussi Kivilinna	depends on CRYPTO
12821af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1283964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12840b95ec56SJussi Kivilinna	help
12850b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12860b95ec56SJussi Kivilinna
12870b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12880b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12890b95ec56SJussi Kivilinna
12900b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12910b95ec56SJussi Kivilinna
12920b95ec56SJussi Kivilinna	  See also:
12930b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12940b95ec56SJussi Kivilinna
1295d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1296d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1297d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1298d9b1d2e7SJussi Kivilinna	depends on CRYPTO
129944893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1300d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
130144893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
130244893bc2SEric Biggers	select CRYPTO_SIMD
1303d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1304d9b1d2e7SJussi Kivilinna	help
1305d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1306d9b1d2e7SJussi Kivilinna
1307d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1308d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1309d9b1d2e7SJussi Kivilinna
1310d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1311d9b1d2e7SJussi Kivilinna
1312d9b1d2e7SJussi Kivilinna	  See also:
1313d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1314d9b1d2e7SJussi Kivilinna
1315f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1316f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1317f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1318f3f935a7SJussi Kivilinna	depends on CRYPTO
1319f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1320f3f935a7SJussi Kivilinna	help
1321f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1322f3f935a7SJussi Kivilinna
1323f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1324f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1325f3f935a7SJussi Kivilinna
1326f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1327f3f935a7SJussi Kivilinna
1328f3f935a7SJussi Kivilinna	  See also:
1329f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1330f3f935a7SJussi Kivilinna
133181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
133281658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
133381658ad0SDavid S. Miller	depends on SPARC64
133481658ad0SDavid S. Miller	depends on CRYPTO
133581658ad0SDavid S. Miller	select CRYPTO_ALGAPI
133681658ad0SDavid S. Miller	help
133781658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
133881658ad0SDavid S. Miller
133981658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
134081658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
134181658ad0SDavid S. Miller
134281658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
134381658ad0SDavid S. Miller
134481658ad0SDavid S. Miller	  See also:
134581658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
134681658ad0SDavid S. Miller
1347044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1348044ab525SJussi Kivilinna	tristate
1349044ab525SJussi Kivilinna	help
1350044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1351044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1352044ab525SJussi Kivilinna
1353584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1354584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1355584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1356044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1357584fffc8SSebastian Siewior	help
1358584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1359584fffc8SSebastian Siewior	  described in RFC2144.
1360584fffc8SSebastian Siewior
13614d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13624d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13634d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13641e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13654d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13661e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13671e63183aSEric Biggers	select CRYPTO_SIMD
13684d6d6a2cSJohannes Goetzfried	help
13694d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13704d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13714d6d6a2cSJohannes Goetzfried
13724d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13734d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13744d6d6a2cSJohannes Goetzfried
1375584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1376584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1377584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1378044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1379584fffc8SSebastian Siewior	help
1380584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1381584fffc8SSebastian Siewior	  described in RFC2612.
1382584fffc8SSebastian Siewior
13834ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13844ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13854ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13864bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13874ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13884bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13894bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13904bd96924SEric Biggers	select CRYPTO_SIMD
13914ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13924ea1277dSJohannes Goetzfried	help
13934ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13944ea1277dSJohannes Goetzfried	  described in RFC2612.
13954ea1277dSJohannes Goetzfried
13964ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13974ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13984ea1277dSJohannes Goetzfried
1399584fffc8SSebastian Siewiorconfig CRYPTO_DES
1400584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1401584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1402584fffc8SSebastian Siewior	help
1403584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1404584fffc8SSebastian Siewior
1405c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1406c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
140797da37b3SDave Jones	depends on SPARC64
1408c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1409c5aac2dfSDavid S. Miller	select CRYPTO_DES
1410c5aac2dfSDavid S. Miller	help
1411c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1412c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1413c5aac2dfSDavid S. Miller
14146574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14156574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14166574e6c6SJussi Kivilinna	depends on X86 && 64BIT
141709c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
14186574e6c6SJussi Kivilinna	select CRYPTO_DES
14196574e6c6SJussi Kivilinna	help
14206574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14216574e6c6SJussi Kivilinna
14226574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14236574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14246574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14256574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14266574e6c6SJussi Kivilinna
1427584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1428584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1429584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1430584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1431584fffc8SSebastian Siewior	help
1432584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1433584fffc8SSebastian Siewior
1434584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1435584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1436584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1437584fffc8SSebastian Siewior	help
1438584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1439584fffc8SSebastian Siewior
1440584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1441584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1442584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1443584fffc8SSebastian Siewior
1444584fffc8SSebastian Siewior	  See also:
14456d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1446e2ee95b8SHye-Shik Chang
14472407d608STan Swee Hengconfig CRYPTO_SALSA20
14483b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14492407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14502407d608STan Swee Heng	help
14512407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14522407d608STan Swee Heng
14532407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14542407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14552407d608STan Swee Heng
14562407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14572407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14581da177e4SLinus Torvalds
1459c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1460aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1461c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1462c08d0e64SMartin Willi	help
1463aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1464c08d0e64SMartin Willi
1465c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1466c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1467de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1468c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1469c08d0e64SMartin Willi
1470de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1471de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1472de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1473de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1474de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1475de61d7aeSEric Biggers
1476aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1477aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1478aa762409SEric Biggers	  in some performance-sensitive scenarios.
1479aa762409SEric Biggers
1480c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14814af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1482c9320b6dSMartin Willi	depends on X86 && 64BIT
1483c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1484c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1485c9320b6dSMartin Willi	help
14867a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14877a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1488c9320b6dSMartin Willi
1489584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1490584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1491584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1492584fffc8SSebastian Siewior	help
1493584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1494584fffc8SSebastian Siewior
1495584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1496584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1497584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1498584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1499584fffc8SSebastian Siewior
1500584fffc8SSebastian Siewior	  See also:
1501584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1502584fffc8SSebastian Siewior
1503584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1504584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1505584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1506584fffc8SSebastian Siewior	help
1507584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1508584fffc8SSebastian Siewior
1509584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1510584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1511584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1512584fffc8SSebastian Siewior
1513584fffc8SSebastian Siewior	  See also:
1514584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1515584fffc8SSebastian Siewior
1516937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1517937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1518937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1519e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1520596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1521937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1522e0f409dcSEric Biggers	select CRYPTO_SIMD
1523937c30d7SJussi Kivilinna	help
1524937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1525937c30d7SJussi Kivilinna
1526937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1527937c30d7SJussi Kivilinna	  of 8 bits.
1528937c30d7SJussi Kivilinna
15291e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1530937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1531937c30d7SJussi Kivilinna
1532937c30d7SJussi Kivilinna	  See also:
1533937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1534937c30d7SJussi Kivilinna
1535251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1536251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1537251496dbSJussi Kivilinna	depends on X86 && !64BIT
1538e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1539596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1540251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1541e0f409dcSEric Biggers	select CRYPTO_SIMD
1542251496dbSJussi Kivilinna	help
1543251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1544251496dbSJussi Kivilinna
1545251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1546251496dbSJussi Kivilinna	  of 8 bits.
1547251496dbSJussi Kivilinna
1548251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1549251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1550251496dbSJussi Kivilinna
1551251496dbSJussi Kivilinna	  See also:
1552251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1553251496dbSJussi Kivilinna
15547efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15557efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15567efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1557e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15581d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15597efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1560e16bf974SEric Biggers	select CRYPTO_SIMD
15617efe4076SJohannes Goetzfried	select CRYPTO_XTS
15627efe4076SJohannes Goetzfried	help
15637efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15647efe4076SJohannes Goetzfried
15657efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15667efe4076SJohannes Goetzfried	  of 8 bits.
15677efe4076SJohannes Goetzfried
15687efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15697efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15707efe4076SJohannes Goetzfried
15717efe4076SJohannes Goetzfried	  See also:
15727efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15737efe4076SJohannes Goetzfried
157456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
157556d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
157656d76c96SJussi Kivilinna	depends on X86 && 64BIT
157756d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
157856d76c96SJussi Kivilinna	help
157956d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
158056d76c96SJussi Kivilinna
158156d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
158256d76c96SJussi Kivilinna	  of 8 bits.
158356d76c96SJussi Kivilinna
158456d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
158556d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
158656d76c96SJussi Kivilinna
158756d76c96SJussi Kivilinna	  See also:
158856d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
158956d76c96SJussi Kivilinna
1590747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1591747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1592747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1593747c8ce4SGilad Ben-Yossef	help
1594747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1595747c8ce4SGilad Ben-Yossef
1596747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1597747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1598747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1599747c8ce4SGilad Ben-Yossef
1600747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1601747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1602747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1603747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1604747c8ce4SGilad Ben-Yossef
1605747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1606747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1607747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1608747c8ce4SGilad Ben-Yossef
1609747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1610747c8ce4SGilad Ben-Yossef
1611747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1612747c8ce4SGilad Ben-Yossef
1613747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1614747c8ce4SGilad Ben-Yossef
1615584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1616584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1617584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1618584fffc8SSebastian Siewior	help
1619584fffc8SSebastian Siewior	  TEA cipher algorithm.
1620584fffc8SSebastian Siewior
1621584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1622584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1623584fffc8SSebastian Siewior	  little memory.
1624584fffc8SSebastian Siewior
1625584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1626584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1627584fffc8SSebastian Siewior	  in the TEA algorithm.
1628584fffc8SSebastian Siewior
1629584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1630584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1631584fffc8SSebastian Siewior
1632584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1633584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1634584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1635584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1636584fffc8SSebastian Siewior	help
1637584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1638584fffc8SSebastian Siewior
1639584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1640584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1641584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1642584fffc8SSebastian Siewior	  bits.
1643584fffc8SSebastian Siewior
1644584fffc8SSebastian Siewior	  See also:
1645584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1646584fffc8SSebastian Siewior
1647584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1648584fffc8SSebastian Siewior	tristate
1649584fffc8SSebastian Siewior	help
1650584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1651584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1652584fffc8SSebastian Siewior
1653584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1654584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1655584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1656584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1657584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1658584fffc8SSebastian Siewior	help
1659584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1660584fffc8SSebastian Siewior
1661584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1662584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1663584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1664584fffc8SSebastian Siewior	  bits.
1665584fffc8SSebastian Siewior
1666584fffc8SSebastian Siewior	  See also:
1667584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1668584fffc8SSebastian Siewior
1669584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1670584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1671584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1672584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1673584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1674584fffc8SSebastian Siewior	help
1675584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1676584fffc8SSebastian Siewior
1677584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1678584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1679584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1680584fffc8SSebastian Siewior	  bits.
1681584fffc8SSebastian Siewior
1682584fffc8SSebastian Siewior	  See also:
1683584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1684584fffc8SSebastian Siewior
16858280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16868280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1687f21a7c19SAl Viro	depends on X86 && 64BIT
168837992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16898280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16908280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1691414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16928280daadSJussi Kivilinna	help
16938280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16948280daadSJussi Kivilinna
16958280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16968280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16978280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16988280daadSJussi Kivilinna	  bits.
16998280daadSJussi Kivilinna
17008280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17018280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17028280daadSJussi Kivilinna
17038280daadSJussi Kivilinna	  See also:
17048280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17058280daadSJussi Kivilinna
1706107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1707107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1708107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17090e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1710a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17110e6ab46dSEric Biggers	select CRYPTO_SIMD
1712107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1713107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1714107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1715107778b5SJohannes Goetzfried	help
1716107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1717107778b5SJohannes Goetzfried
1718107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1719107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1720107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1721107778b5SJohannes Goetzfried	  bits.
1722107778b5SJohannes Goetzfried
1723107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1724107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1725107778b5SJohannes Goetzfried
1726107778b5SJohannes Goetzfried	  See also:
1727107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1728107778b5SJohannes Goetzfried
1729584fffc8SSebastian Siewiorcomment "Compression"
1730584fffc8SSebastian Siewior
17311da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17321da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1733cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1734f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17351da177e4SLinus Torvalds	select ZLIB_INFLATE
17361da177e4SLinus Torvalds	select ZLIB_DEFLATE
17371da177e4SLinus Torvalds	help
17381da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17391da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17401da177e4SLinus Torvalds
17411da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17421da177e4SLinus Torvalds
17430b77abb3SZoltan Sogorconfig CRYPTO_LZO
17440b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17450b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1746ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17470b77abb3SZoltan Sogor	select LZO_COMPRESS
17480b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17490b77abb3SZoltan Sogor	help
17500b77abb3SZoltan Sogor	  This is the LZO algorithm.
17510b77abb3SZoltan Sogor
175235a1fc18SSeth Jenningsconfig CRYPTO_842
175335a1fc18SSeth Jennings	tristate "842 compression algorithm"
17542062c5b6SDan Streetman	select CRYPTO_ALGAPI
17556a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17562062c5b6SDan Streetman	select 842_COMPRESS
17572062c5b6SDan Streetman	select 842_DECOMPRESS
175835a1fc18SSeth Jennings	help
175935a1fc18SSeth Jennings	  This is the 842 algorithm.
176035a1fc18SSeth Jennings
17610ea8530dSChanho Minconfig CRYPTO_LZ4
17620ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17630ea8530dSChanho Min	select CRYPTO_ALGAPI
17648cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17650ea8530dSChanho Min	select LZ4_COMPRESS
17660ea8530dSChanho Min	select LZ4_DECOMPRESS
17670ea8530dSChanho Min	help
17680ea8530dSChanho Min	  This is the LZ4 algorithm.
17690ea8530dSChanho Min
17700ea8530dSChanho Minconfig CRYPTO_LZ4HC
17710ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17720ea8530dSChanho Min	select CRYPTO_ALGAPI
177391d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17740ea8530dSChanho Min	select LZ4HC_COMPRESS
17750ea8530dSChanho Min	select LZ4_DECOMPRESS
17760ea8530dSChanho Min	help
17770ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17780ea8530dSChanho Min
1779d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1780d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1781d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1782d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1783d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1784d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1785d28fc3dbSNick Terrell	help
1786d28fc3dbSNick Terrell	  This is the zstd algorithm.
1787d28fc3dbSNick Terrell
178817f0f4a4SNeil Hormancomment "Random Number Generation"
178917f0f4a4SNeil Horman
179017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
179117f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
179217f0f4a4SNeil Horman	select CRYPTO_AES
179317f0f4a4SNeil Horman	select CRYPTO_RNG
179417f0f4a4SNeil Horman	help
179517f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
179617f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17977dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17987dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
179917f0f4a4SNeil Horman
1800f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1801419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1802419090c6SStephan Mueller	help
1803419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1804419090c6SStephan Mueller	  more of the DRBG types must be selected.
1805419090c6SStephan Mueller
1806f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1807419090c6SStephan Mueller
1808419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1809401e4238SHerbert Xu	bool
1810419090c6SStephan Mueller	default y
1811419090c6SStephan Mueller	select CRYPTO_HMAC
1812826775bbSHerbert Xu	select CRYPTO_SHA256
1813419090c6SStephan Mueller
1814419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1815419090c6SStephan Mueller	bool "Enable Hash DRBG"
1816826775bbSHerbert Xu	select CRYPTO_SHA256
1817419090c6SStephan Mueller	help
1818419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1819419090c6SStephan Mueller
1820419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1821419090c6SStephan Mueller	bool "Enable CTR DRBG"
1822419090c6SStephan Mueller	select CRYPTO_AES
182335591285SStephan Mueller	depends on CRYPTO_CTR
1824419090c6SStephan Mueller	help
1825419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1826419090c6SStephan Mueller
1827f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1828f2c89a10SHerbert Xu	tristate
1829401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1830f2c89a10SHerbert Xu	select CRYPTO_RNG
1831bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1832f2c89a10SHerbert Xu
1833f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1834419090c6SStephan Mueller
1835bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1836bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18372f313e02SArnd Bergmann	select CRYPTO_RNG
1838bb5530e4SStephan Mueller	help
1839bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1840bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1841bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1842bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1843bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1844bb5530e4SStephan Mueller
184503c8efc1SHerbert Xuconfig CRYPTO_USER_API
184603c8efc1SHerbert Xu	tristate
184703c8efc1SHerbert Xu
1848fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1849fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18507451708fSHerbert Xu	depends on NET
1851fe869cdbSHerbert Xu	select CRYPTO_HASH
1852fe869cdbSHerbert Xu	select CRYPTO_USER_API
1853fe869cdbSHerbert Xu	help
1854fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1855fe869cdbSHerbert Xu	  algorithms.
1856fe869cdbSHerbert Xu
18578ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18588ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18597451708fSHerbert Xu	depends on NET
18608ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18618ff59090SHerbert Xu	select CRYPTO_USER_API
18628ff59090SHerbert Xu	help
18638ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18648ff59090SHerbert Xu	  key cipher algorithms.
18658ff59090SHerbert Xu
18662f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18672f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18682f375538SStephan Mueller	depends on NET
18692f375538SStephan Mueller	select CRYPTO_RNG
18702f375538SStephan Mueller	select CRYPTO_USER_API
18712f375538SStephan Mueller	help
18722f375538SStephan Mueller	  This option enables the user-spaces interface for random
18732f375538SStephan Mueller	  number generator algorithms.
18742f375538SStephan Mueller
1875b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1876b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1877b64a2d95SHerbert Xu	depends on NET
1878b64a2d95SHerbert Xu	select CRYPTO_AEAD
187972548b09SStephan Mueller	select CRYPTO_BLKCIPHER
188072548b09SStephan Mueller	select CRYPTO_NULL
1881b64a2d95SHerbert Xu	select CRYPTO_USER_API
1882b64a2d95SHerbert Xu	help
1883b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1884b64a2d95SHerbert Xu	  cipher algorithms.
1885b64a2d95SHerbert Xu
1886cac5818cSCorentin Labbeconfig CRYPTO_STATS
1887cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1888a6a31385SCorentin Labbe	depends on CRYPTO_USER
1889cac5818cSCorentin Labbe	help
1890cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1891cac5818cSCorentin Labbe	  This will collect:
1892cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1893cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1894cac5818cSCorentin Labbe	  - size and numbers of hash operations
1895cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1896cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1897cac5818cSCorentin Labbe
1898ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1899ee08997fSDmitry Kasatkin	bool
1900ee08997fSDmitry Kasatkin
19011da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19028636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19038636a1f9SMasahiro Yamadasource "certs/Kconfig"
19041da177e4SLinus Torvalds
1905cce9e06dSHerbert Xuendif	# if CRYPTO
1906