xref: /linux/crypto/Kconfig (revision d28fc3dbe1918333730d62aa5f0d84b6fb4e7254)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2171e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2181e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2191e65b81aSTim Chen	select CRYPTO_HASH
2201e65b81aSTim Chen	select CRYPTO_MANAGER
2211e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2221e65b81aSTim Chen	help
2231e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2241e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2251e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2261e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2271e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2280e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2291e65b81aSTim Chen
230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
231584fffc8SSebastian Siewior	tristate "Authenc support"
232584fffc8SSebastian Siewior	select CRYPTO_AEAD
233584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
234584fffc8SSebastian Siewior	select CRYPTO_MANAGER
235584fffc8SSebastian Siewior	select CRYPTO_HASH
236e94c6a7aSHerbert Xu	select CRYPTO_NULL
237584fffc8SSebastian Siewior	help
238584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
239584fffc8SSebastian Siewior	  This is required for IPSec.
240584fffc8SSebastian Siewior
241584fffc8SSebastian Siewiorconfig CRYPTO_TEST
242584fffc8SSebastian Siewior	tristate "Testing module"
243584fffc8SSebastian Siewior	depends on m
244da7f033dSHerbert Xu	select CRYPTO_MANAGER
245584fffc8SSebastian Siewior	help
246584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
247584fffc8SSebastian Siewior
248266d0516SHerbert Xuconfig CRYPTO_SIMD
249266d0516SHerbert Xu	tristate
250266d0516SHerbert Xu	select CRYPTO_CRYPTD
251266d0516SHerbert Xu
252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
253596d8750SJussi Kivilinna	tristate
254596d8750SJussi Kivilinna	depends on X86
255065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
256596d8750SJussi Kivilinna
257735d37b5SBaolin Wangconfig CRYPTO_ENGINE
258735d37b5SBaolin Wang	tristate
259735d37b5SBaolin Wang
260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
261584fffc8SSebastian Siewior
262584fffc8SSebastian Siewiorconfig CRYPTO_CCM
263584fffc8SSebastian Siewior	tristate "CCM support"
264584fffc8SSebastian Siewior	select CRYPTO_CTR
265f15f05b0SArd Biesheuvel	select CRYPTO_HASH
266584fffc8SSebastian Siewior	select CRYPTO_AEAD
267584fffc8SSebastian Siewior	help
268584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
269584fffc8SSebastian Siewior
270584fffc8SSebastian Siewiorconfig CRYPTO_GCM
271584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
272584fffc8SSebastian Siewior	select CRYPTO_CTR
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
2749382d97aSHuang Ying	select CRYPTO_GHASH
2759489667dSJussi Kivilinna	select CRYPTO_NULL
276584fffc8SSebastian Siewior	help
277584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
278584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
279584fffc8SSebastian Siewior
28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28171ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28271ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28371ebc4d1SMartin Willi	select CRYPTO_POLY1305
28471ebc4d1SMartin Willi	select CRYPTO_AEAD
28571ebc4d1SMartin Willi	help
28671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28771ebc4d1SMartin Willi
28871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29071ebc4d1SMartin Willi	  IETF protocols.
29171ebc4d1SMartin Willi
292584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
293584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
294584fffc8SSebastian Siewior	select CRYPTO_AEAD
295584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
296856e3f40SHerbert Xu	select CRYPTO_NULL
297401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
298584fffc8SSebastian Siewior	help
299584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
300584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
301584fffc8SSebastian Siewior
302a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
303a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
304a10f554fSHerbert Xu	select CRYPTO_AEAD
305a10f554fSHerbert Xu	select CRYPTO_NULL
306401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3073491244cSHerbert Xu	default m
308a10f554fSHerbert Xu	help
309a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
310a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
311a10f554fSHerbert Xu	  algorithm for CBC.
312a10f554fSHerbert Xu
313584fffc8SSebastian Siewiorcomment "Block modes"
314584fffc8SSebastian Siewior
315584fffc8SSebastian Siewiorconfig CRYPTO_CBC
316584fffc8SSebastian Siewior	tristate "CBC support"
317584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
318584fffc8SSebastian Siewior	select CRYPTO_MANAGER
319584fffc8SSebastian Siewior	help
320584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
321584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
322584fffc8SSebastian Siewior
323a7d85e06SJames Bottomleyconfig CRYPTO_CFB
324a7d85e06SJames Bottomley	tristate "CFB support"
325a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
326a7d85e06SJames Bottomley	select CRYPTO_MANAGER
327a7d85e06SJames Bottomley	help
328a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
329a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
330a7d85e06SJames Bottomley
331584fffc8SSebastian Siewiorconfig CRYPTO_CTR
332584fffc8SSebastian Siewior	tristate "CTR support"
333584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
334584fffc8SSebastian Siewior	select CRYPTO_SEQIV
335584fffc8SSebastian Siewior	select CRYPTO_MANAGER
336584fffc8SSebastian Siewior	help
337584fffc8SSebastian Siewior	  CTR: Counter mode
338584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
339584fffc8SSebastian Siewior
340584fffc8SSebastian Siewiorconfig CRYPTO_CTS
341584fffc8SSebastian Siewior	tristate "CTS support"
342584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
343584fffc8SSebastian Siewior	help
344584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
345584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
346584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
347584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
348584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
349584fffc8SSebastian Siewior	  for AES encryption.
350584fffc8SSebastian Siewior
351584fffc8SSebastian Siewiorconfig CRYPTO_ECB
352584fffc8SSebastian Siewior	tristate "ECB support"
353584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
354584fffc8SSebastian Siewior	select CRYPTO_MANAGER
355584fffc8SSebastian Siewior	help
356584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
357584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
358584fffc8SSebastian Siewior	  the input block by block.
359584fffc8SSebastian Siewior
360584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3612470a2b2SJussi Kivilinna	tristate "LRW support"
362584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
363584fffc8SSebastian Siewior	select CRYPTO_MANAGER
364584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
365584fffc8SSebastian Siewior	help
366584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
367584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
368584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
369584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
370584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
371584fffc8SSebastian Siewior
372584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
373584fffc8SSebastian Siewior	tristate "PCBC support"
374584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
375584fffc8SSebastian Siewior	select CRYPTO_MANAGER
376584fffc8SSebastian Siewior	help
377584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
378584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
379584fffc8SSebastian Siewior
380584fffc8SSebastian Siewiorconfig CRYPTO_XTS
3815bcf8e6dSJussi Kivilinna	tristate "XTS support"
382584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
383584fffc8SSebastian Siewior	select CRYPTO_MANAGER
38412cb3a1cSMilan Broz	select CRYPTO_ECB
385584fffc8SSebastian Siewior	help
386584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
387584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
388584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
389584fffc8SSebastian Siewior
3901c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
3911c49678eSStephan Mueller	tristate "Key wrapping support"
3921c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
3931c49678eSStephan Mueller	help
3941c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
3951c49678eSStephan Mueller	  padding.
3961c49678eSStephan Mueller
397584fffc8SSebastian Siewiorcomment "Hash modes"
398584fffc8SSebastian Siewior
39993b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
40093b5e86aSJussi Kivilinna	tristate "CMAC support"
40193b5e86aSJussi Kivilinna	select CRYPTO_HASH
40293b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
40393b5e86aSJussi Kivilinna	help
40493b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
40593b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
40693b5e86aSJussi Kivilinna
40793b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
40893b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
40993b5e86aSJussi Kivilinna
4101da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4118425165dSHerbert Xu	tristate "HMAC support"
4120796ae06SHerbert Xu	select CRYPTO_HASH
41343518407SHerbert Xu	select CRYPTO_MANAGER
4141da177e4SLinus Torvalds	help
4151da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4161da177e4SLinus Torvalds	  This is required for IPSec.
4171da177e4SLinus Torvalds
418333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
419333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
420333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
421333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
422333b0d7eSKazunori MIYAZAWA	help
423333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
424333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
425333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
426333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
427333b0d7eSKazunori MIYAZAWA
428f1939f7cSShane Wangconfig CRYPTO_VMAC
429f1939f7cSShane Wang	tristate "VMAC support"
430f1939f7cSShane Wang	select CRYPTO_HASH
431f1939f7cSShane Wang	select CRYPTO_MANAGER
432f1939f7cSShane Wang	help
433f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
434f1939f7cSShane Wang	  very high speed on 64-bit architectures.
435f1939f7cSShane Wang
436f1939f7cSShane Wang	  See also:
437f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
438f1939f7cSShane Wang
439584fffc8SSebastian Siewiorcomment "Digest"
440584fffc8SSebastian Siewior
441584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
442584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
4435773a3e6SHerbert Xu	select CRYPTO_HASH
4446a0962b2SDarrick J. Wong	select CRC32
4451da177e4SLinus Torvalds	help
446584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
447584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
44869c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
4491da177e4SLinus Torvalds
4508cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
4518cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
4528cb51ba8SAustin Zhang	depends on X86
4538cb51ba8SAustin Zhang	select CRYPTO_HASH
4548cb51ba8SAustin Zhang	help
4558cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
4568cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
4578cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
4588cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
4598cb51ba8SAustin Zhang	  gain performance compared with software implementation.
4608cb51ba8SAustin Zhang	  Module will be crc32c-intel.
4618cb51ba8SAustin Zhang
4627cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
4636dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
464c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
4656dd7a82cSAnton Blanchard	select CRYPTO_HASH
4666dd7a82cSAnton Blanchard	select CRC32
4676dd7a82cSAnton Blanchard	help
4686dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
4696dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
4706dd7a82cSAnton Blanchard	  and newer processors for improved performance.
4716dd7a82cSAnton Blanchard
4726dd7a82cSAnton Blanchard
473442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
474442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
475442a7c40SDavid S. Miller	depends on SPARC64
476442a7c40SDavid S. Miller	select CRYPTO_HASH
477442a7c40SDavid S. Miller	select CRC32
478442a7c40SDavid S. Miller	help
479442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
480442a7c40SDavid S. Miller	  when available.
481442a7c40SDavid S. Miller
48278c37d19SAlexander Boykoconfig CRYPTO_CRC32
48378c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
48478c37d19SAlexander Boyko	select CRYPTO_HASH
48578c37d19SAlexander Boyko	select CRC32
48678c37d19SAlexander Boyko	help
48778c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
48878c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
48978c37d19SAlexander Boyko
49078c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
49178c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
49278c37d19SAlexander Boyko	depends on X86
49378c37d19SAlexander Boyko	select CRYPTO_HASH
49478c37d19SAlexander Boyko	select CRC32
49578c37d19SAlexander Boyko	help
49678c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
49778c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
49878c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
49978c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
50078c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
50178c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
50278c37d19SAlexander Boyko
5034a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
5044a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
5054a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
5064a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
5074a5dc51eSMarcin Nowakowski	help
5084a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
5094a5dc51eSMarcin Nowakowski	  instructions, when available.
5104a5dc51eSMarcin Nowakowski
5114a5dc51eSMarcin Nowakowski
51268411521SHerbert Xuconfig CRYPTO_CRCT10DIF
51368411521SHerbert Xu	tristate "CRCT10DIF algorithm"
51468411521SHerbert Xu	select CRYPTO_HASH
51568411521SHerbert Xu	help
51668411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
51768411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
51868411521SHerbert Xu	  transforms to be used if they are available.
51968411521SHerbert Xu
52068411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
52168411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
52268411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
52368411521SHerbert Xu	select CRYPTO_HASH
52468411521SHerbert Xu	help
52568411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
52668411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
52768411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
52868411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
52968411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
53068411521SHerbert Xu
531b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
532b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
533b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
534b01df1c1SDaniel Axtens	select CRYPTO_HASH
535b01df1c1SDaniel Axtens	help
536b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
537b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
538b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
539b01df1c1SDaniel Axtens
540146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
541146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
542146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
543146c8688SDaniel Axtens	help
544146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
545146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
546146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
547146c8688SDaniel Axtens
5482cdc6899SHuang Yingconfig CRYPTO_GHASH
5492cdc6899SHuang Ying	tristate "GHASH digest algorithm"
5502cdc6899SHuang Ying	select CRYPTO_GF128MUL
551578c60fbSArnd Bergmann	select CRYPTO_HASH
5522cdc6899SHuang Ying	help
5532cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
5542cdc6899SHuang Ying
555f979e014SMartin Williconfig CRYPTO_POLY1305
556f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
557578c60fbSArnd Bergmann	select CRYPTO_HASH
558f979e014SMartin Willi	help
559f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
560f979e014SMartin Willi
561f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
562f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
563f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
564f979e014SMartin Willi
565c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
566b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
567c70f4abeSMartin Willi	depends on X86 && 64BIT
568c70f4abeSMartin Willi	select CRYPTO_POLY1305
569c70f4abeSMartin Willi	help
570c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
571c70f4abeSMartin Willi
572c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
573c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
574c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
575c70f4abeSMartin Willi	  instructions.
576c70f4abeSMartin Willi
5771da177e4SLinus Torvaldsconfig CRYPTO_MD4
5781da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
579808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5801da177e4SLinus Torvalds	help
5811da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
5821da177e4SLinus Torvalds
5831da177e4SLinus Torvaldsconfig CRYPTO_MD5
5841da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
58514b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5861da177e4SLinus Torvalds	help
5871da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
5881da177e4SLinus Torvalds
589d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
590d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
591d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
592d69e75deSAaro Koskinen	select CRYPTO_MD5
593d69e75deSAaro Koskinen	select CRYPTO_HASH
594d69e75deSAaro Koskinen	help
595d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
596d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
597d69e75deSAaro Koskinen
598e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
599e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
600e8e59953SMarkus Stockhausen	depends on PPC
601e8e59953SMarkus Stockhausen	select CRYPTO_HASH
602e8e59953SMarkus Stockhausen	help
603e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
604e8e59953SMarkus Stockhausen	  in PPC assembler.
605e8e59953SMarkus Stockhausen
606fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
607fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
608fa4dfedcSDavid S. Miller	depends on SPARC64
609fa4dfedcSDavid S. Miller	select CRYPTO_MD5
610fa4dfedcSDavid S. Miller	select CRYPTO_HASH
611fa4dfedcSDavid S. Miller	help
612fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
613fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
614fa4dfedcSDavid S. Miller
615584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
616584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
61719e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
618584fffc8SSebastian Siewior	help
619584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
620584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
621584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
622584fffc8SSebastian Siewior	  of the algorithm.
623584fffc8SSebastian Siewior
62482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
62582798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
6267c4468bcSHerbert Xu	select CRYPTO_HASH
62782798f90SAdrian-Ken Rueegsegger	help
62882798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
62982798f90SAdrian-Ken Rueegsegger
63082798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
63135ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
63282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
63382798f90SAdrian-Ken Rueegsegger
63482798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6356d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
63682798f90SAdrian-Ken Rueegsegger
63782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
63882798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
639e5835fbaSHerbert Xu	select CRYPTO_HASH
64082798f90SAdrian-Ken Rueegsegger	help
64182798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
64282798f90SAdrian-Ken Rueegsegger
64382798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
64482798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
645b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
646b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
64782798f90SAdrian-Ken Rueegsegger
648b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
649b6d44341SAdrian Bunk	  against RIPEMD-160.
650534fe2c1SAdrian-Ken Rueegsegger
651534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6526d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
653534fe2c1SAdrian-Ken Rueegsegger
654534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
655534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
656d8a5e2e9SHerbert Xu	select CRYPTO_HASH
657534fe2c1SAdrian-Ken Rueegsegger	help
658b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
659b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
660b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
661b6d44341SAdrian Bunk	  (than RIPEMD-128).
662534fe2c1SAdrian-Ken Rueegsegger
663534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6646d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
665534fe2c1SAdrian-Ken Rueegsegger
666534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
667534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
6683b8efb4cSHerbert Xu	select CRYPTO_HASH
669534fe2c1SAdrian-Ken Rueegsegger	help
670b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
671b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
672b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
673b6d44341SAdrian Bunk	  (than RIPEMD-160).
674534fe2c1SAdrian-Ken Rueegsegger
67582798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6766d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
67782798f90SAdrian-Ken Rueegsegger
6781da177e4SLinus Torvaldsconfig CRYPTO_SHA1
6791da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
68054ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6811da177e4SLinus Torvalds	help
6821da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
6831da177e4SLinus Torvalds
68466be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
685e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
68666be8951SMathias Krause	depends on X86 && 64BIT
68766be8951SMathias Krause	select CRYPTO_SHA1
68866be8951SMathias Krause	select CRYPTO_HASH
68966be8951SMathias Krause	help
69066be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
69166be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
692e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
693e38b6b7fStim	  when available.
69466be8951SMathias Krause
6958275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
696e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
6978275d1aaSTim Chen	depends on X86 && 64BIT
6988275d1aaSTim Chen	select CRYPTO_SHA256
6998275d1aaSTim Chen	select CRYPTO_HASH
7008275d1aaSTim Chen	help
7018275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
7028275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
7038275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
704e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
705e38b6b7fStim	  Instructions) when available.
7068275d1aaSTim Chen
70787de4579STim Chenconfig CRYPTO_SHA512_SSSE3
70887de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
70987de4579STim Chen	depends on X86 && 64BIT
71087de4579STim Chen	select CRYPTO_SHA512
71187de4579STim Chen	select CRYPTO_HASH
71287de4579STim Chen	help
71387de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
71487de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
71587de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
71687de4579STim Chen	  version 2 (AVX2) instructions, when available.
71787de4579STim Chen
718efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
719efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
720efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
721efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
722efdb6f6eSAaro Koskinen	select CRYPTO_HASH
723efdb6f6eSAaro Koskinen	help
724efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
725efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
726efdb6f6eSAaro Koskinen
7274ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
7284ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
7294ff28d4cSDavid S. Miller	depends on SPARC64
7304ff28d4cSDavid S. Miller	select CRYPTO_SHA1
7314ff28d4cSDavid S. Miller	select CRYPTO_HASH
7324ff28d4cSDavid S. Miller	help
7334ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7344ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7354ff28d4cSDavid S. Miller
736323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
737323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
738323a6bf1SMichael Ellerman	depends on PPC
739323a6bf1SMichael Ellerman	help
740323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
741323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
742323a6bf1SMichael Ellerman
743d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
744d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
745d9850fc5SMarkus Stockhausen	depends on PPC && SPE
746d9850fc5SMarkus Stockhausen	help
747d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
748d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
749d9850fc5SMarkus Stockhausen
7501e65b81aSTim Chenconfig CRYPTO_SHA1_MB
7511e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7521e65b81aSTim Chen	depends on X86 && 64BIT
7531e65b81aSTim Chen	select CRYPTO_SHA1
7541e65b81aSTim Chen	select CRYPTO_HASH
7551e65b81aSTim Chen	select CRYPTO_MCRYPTD
7561e65b81aSTim Chen	help
7571e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7581e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
7591e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
7601e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
7611e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
7621e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
7631e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
7641e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
7651e65b81aSTim Chen
7669be7e244SMegha Deyconfig CRYPTO_SHA256_MB
7679be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7689be7e244SMegha Dey	depends on X86 && 64BIT
7699be7e244SMegha Dey	select CRYPTO_SHA256
7709be7e244SMegha Dey	select CRYPTO_HASH
7719be7e244SMegha Dey	select CRYPTO_MCRYPTD
7729be7e244SMegha Dey	help
7739be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7749be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
7759be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
7769be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
7779be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
7789be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
7799be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
7809be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
7819be7e244SMegha Dey
782026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
783026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
784026bb8aaSMegha Dey        depends on X86 && 64BIT
785026bb8aaSMegha Dey        select CRYPTO_SHA512
786026bb8aaSMegha Dey        select CRYPTO_HASH
787026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
788026bb8aaSMegha Dey        help
789026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
790026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
791026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
792026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
793026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
794026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
795026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
796026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
797026bb8aaSMegha Dey
7981da177e4SLinus Torvaldsconfig CRYPTO_SHA256
799cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
80050e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8011da177e4SLinus Torvalds	help
8021da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
8031da177e4SLinus Torvalds
8041da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
8051da177e4SLinus Torvalds	  security against collision attacks.
8061da177e4SLinus Torvalds
807cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
808cd12fb90SJonathan Lynch	  of security against collision attacks.
809cd12fb90SJonathan Lynch
8102ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
8112ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
8122ecc1e95SMarkus Stockhausen	depends on PPC && SPE
8132ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
8142ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8152ecc1e95SMarkus Stockhausen	help
8162ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8172ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
8182ecc1e95SMarkus Stockhausen
819efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
820efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
821efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
822efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
823efdb6f6eSAaro Koskinen	select CRYPTO_HASH
824efdb6f6eSAaro Koskinen	help
825efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
826efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
827efdb6f6eSAaro Koskinen
82886c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
82986c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
83086c93b24SDavid S. Miller	depends on SPARC64
83186c93b24SDavid S. Miller	select CRYPTO_SHA256
83286c93b24SDavid S. Miller	select CRYPTO_HASH
83386c93b24SDavid S. Miller	help
83486c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
83586c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
83686c93b24SDavid S. Miller
8371da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8381da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
839bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8401da177e4SLinus Torvalds	help
8411da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8421da177e4SLinus Torvalds
8431da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8441da177e4SLinus Torvalds	  security against collision attacks.
8451da177e4SLinus Torvalds
8461da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
8471da177e4SLinus Torvalds	  of security against collision attacks.
8481da177e4SLinus Torvalds
849efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
850efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
851efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
852efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
853efdb6f6eSAaro Koskinen	select CRYPTO_HASH
854efdb6f6eSAaro Koskinen	help
855efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
856efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
857efdb6f6eSAaro Koskinen
858775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
859775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
860775e0c69SDavid S. Miller	depends on SPARC64
861775e0c69SDavid S. Miller	select CRYPTO_SHA512
862775e0c69SDavid S. Miller	select CRYPTO_HASH
863775e0c69SDavid S. Miller	help
864775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
865775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
866775e0c69SDavid S. Miller
86753964b9eSJeff Garzikconfig CRYPTO_SHA3
86853964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
86953964b9eSJeff Garzik	select CRYPTO_HASH
87053964b9eSJeff Garzik	help
87153964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
87253964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
87353964b9eSJeff Garzik
87453964b9eSJeff Garzik	  References:
87553964b9eSJeff Garzik	  http://keccak.noekeon.org/
87653964b9eSJeff Garzik
8774f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
8784f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
8794f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
8804f0fc160SGilad Ben-Yossef	help
8814f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
8824f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
8834f0fc160SGilad Ben-Yossef
8844f0fc160SGilad Ben-Yossef	  References:
8854f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
8864f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
8874f0fc160SGilad Ben-Yossef
8881da177e4SLinus Torvaldsconfig CRYPTO_TGR192
8891da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
890f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8911da177e4SLinus Torvalds	help
8921da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
8931da177e4SLinus Torvalds
8941da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
8951da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
8961da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
8971da177e4SLinus Torvalds
8981da177e4SLinus Torvalds	  See also:
8991da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
9001da177e4SLinus Torvalds
901584fffc8SSebastian Siewiorconfig CRYPTO_WP512
902584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
9034946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9041da177e4SLinus Torvalds	help
905584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
9061da177e4SLinus Torvalds
907584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
908584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
9091da177e4SLinus Torvalds
9101da177e4SLinus Torvalds	  See also:
9116d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
9121da177e4SLinus Torvalds
9130e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
9140e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
9158af00860SRichard Weinberger	depends on X86 && 64BIT
9160e1227d3SHuang Ying	select CRYPTO_CRYPTD
9170e1227d3SHuang Ying	help
9180e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
9190e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
9200e1227d3SHuang Ying
921584fffc8SSebastian Siewiorcomment "Ciphers"
9221da177e4SLinus Torvalds
9231da177e4SLinus Torvaldsconfig CRYPTO_AES
9241da177e4SLinus Torvalds	tristate "AES cipher algorithms"
925cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9261da177e4SLinus Torvalds	help
9271da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9281da177e4SLinus Torvalds	  algorithm.
9291da177e4SLinus Torvalds
9301da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9311da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9321da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9331da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9341da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9351da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9361da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9371da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9381da177e4SLinus Torvalds
9391da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9401da177e4SLinus Torvalds
9411da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
9421da177e4SLinus Torvalds
943b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
944b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
945b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
946b5e0b032SArd Biesheuvel	help
947b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
948b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
949b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
950b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
951b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
952b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
953b5e0b032SArd Biesheuvel
954b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
955b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
956b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
957b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
958b5e0b032SArd Biesheuvel	  block.
959b5e0b032SArd Biesheuvel
9601da177e4SLinus Torvaldsconfig CRYPTO_AES_586
9611da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
962cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
963cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9645157dea8SSebastian Siewior	select CRYPTO_AES
9651da177e4SLinus Torvalds	help
9661da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9671da177e4SLinus Torvalds	  algorithm.
9681da177e4SLinus Torvalds
9691da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9701da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9711da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9721da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9731da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9741da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9751da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9761da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9771da177e4SLinus Torvalds
9781da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9791da177e4SLinus Torvalds
9801da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
9811da177e4SLinus Torvalds
982a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
983a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
984cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
985cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
98681190b32SSebastian Siewior	select CRYPTO_AES
987a2a892a2SAndreas Steinmetz	help
988a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
989a2a892a2SAndreas Steinmetz	  algorithm.
990a2a892a2SAndreas Steinmetz
991a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
992a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
993a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
994a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
995a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
996a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
997a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
998a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
999a2a892a2SAndreas Steinmetz
1000a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1001a2a892a2SAndreas Steinmetz
1002a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1003a2a892a2SAndreas Steinmetz
100454b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
100554b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
10068af00860SRichard Weinberger	depends on X86
100785671860SHerbert Xu	select CRYPTO_AEAD
10080d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
10090d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
101054b6a1bdSHuang Ying	select CRYPTO_ALGAPI
101185671860SHerbert Xu	select CRYPTO_BLKCIPHER
10127643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
101385671860SHerbert Xu	select CRYPTO_SIMD
101454b6a1bdSHuang Ying	help
101554b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
101654b6a1bdSHuang Ying
101754b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
101854b6a1bdSHuang Ying	  algorithm.
101954b6a1bdSHuang Ying
102054b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
102154b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
102254b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
102354b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
102454b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
102554b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
102654b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
102754b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
102854b6a1bdSHuang Ying
102954b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
103054b6a1bdSHuang Ying
103154b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
103254b6a1bdSHuang Ying
10330d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
10340d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
10350d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
10360d258efbSMathias Krause	  acceleration for CTR.
10372cf4ac8bSHuang Ying
10389bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
10399bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
10409bf4852dSDavid S. Miller	depends on SPARC64
10419bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
10429bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
10439bf4852dSDavid S. Miller	help
10449bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
10459bf4852dSDavid S. Miller
10469bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10479bf4852dSDavid S. Miller	  algorithm.
10489bf4852dSDavid S. Miller
10499bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
10509bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
10519bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
10529bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
10539bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
10549bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
10559bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
10569bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
10579bf4852dSDavid S. Miller
10589bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
10599bf4852dSDavid S. Miller
10609bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10619bf4852dSDavid S. Miller
10629bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
10639bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
10649bf4852dSDavid S. Miller	  ECB and CBC.
10659bf4852dSDavid S. Miller
1066504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1067504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1068504c6143SMarkus Stockhausen	depends on PPC && SPE
1069504c6143SMarkus Stockhausen	help
1070504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1071504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1072504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1073504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1074504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1075504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1076504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1077504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1078504c6143SMarkus Stockhausen
10791da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
10801da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1081cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10821da177e4SLinus Torvalds	help
10831da177e4SLinus Torvalds	  Anubis cipher algorithm.
10841da177e4SLinus Torvalds
10851da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
10861da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
10871da177e4SLinus Torvalds	  in the NESSIE competition.
10881da177e4SLinus Torvalds
10891da177e4SLinus Torvalds	  See also:
10906d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
10916d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
10921da177e4SLinus Torvalds
1093584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1094584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1095b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1096e2ee95b8SHye-Shik Chang	help
1097584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1098e2ee95b8SHye-Shik Chang
1099584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1100584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1101584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1102584fffc8SSebastian Siewior	  weakness of the algorithm.
1103584fffc8SSebastian Siewior
1104584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1105584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1106584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
110752ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1108584fffc8SSebastian Siewior	help
1109584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1110584fffc8SSebastian Siewior
1111584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1112584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1113584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1114e2ee95b8SHye-Shik Chang
1115e2ee95b8SHye-Shik Chang	  See also:
1116584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1117584fffc8SSebastian Siewior
111852ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
111952ba867cSJussi Kivilinna	tristate
112052ba867cSJussi Kivilinna	help
112152ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
112252ba867cSJussi Kivilinna	  generic c and the assembler implementations.
112352ba867cSJussi Kivilinna
112452ba867cSJussi Kivilinna	  See also:
112552ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
112652ba867cSJussi Kivilinna
112764b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
112864b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1129f21a7c19SAl Viro	depends on X86 && 64BIT
1130c1679171SEric Biggers	select CRYPTO_BLKCIPHER
113164b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
113264b94ceaSJussi Kivilinna	help
113364b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
113464b94ceaSJussi Kivilinna
113564b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
113664b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
113764b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
113864b94ceaSJussi Kivilinna
113964b94ceaSJussi Kivilinna	  See also:
114064b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
114164b94ceaSJussi Kivilinna
1142584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1143584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1144584fffc8SSebastian Siewior	depends on CRYPTO
1145584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1146584fffc8SSebastian Siewior	help
1147584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1148584fffc8SSebastian Siewior
1149584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1150584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1151584fffc8SSebastian Siewior
1152584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1153584fffc8SSebastian Siewior
1154584fffc8SSebastian Siewior	  See also:
1155584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1156584fffc8SSebastian Siewior
11570b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
11580b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1159f21a7c19SAl Viro	depends on X86 && 64BIT
11600b95ec56SJussi Kivilinna	depends on CRYPTO
11611af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1162964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
11630b95ec56SJussi Kivilinna	help
11640b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
11650b95ec56SJussi Kivilinna
11660b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
11670b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
11680b95ec56SJussi Kivilinna
11690b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
11700b95ec56SJussi Kivilinna
11710b95ec56SJussi Kivilinna	  See also:
11720b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
11730b95ec56SJussi Kivilinna
1174d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1175d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1176d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1177d9b1d2e7SJussi Kivilinna	depends on CRYPTO
117844893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1179d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
118044893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
118144893bc2SEric Biggers	select CRYPTO_SIMD
1182d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1183d9b1d2e7SJussi Kivilinna	help
1184d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1185d9b1d2e7SJussi Kivilinna
1186d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1187d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1188d9b1d2e7SJussi Kivilinna
1189d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190d9b1d2e7SJussi Kivilinna
1191d9b1d2e7SJussi Kivilinna	  See also:
1192d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193d9b1d2e7SJussi Kivilinna
1194f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1195f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1196f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1197f3f935a7SJussi Kivilinna	depends on CRYPTO
1198f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1199f3f935a7SJussi Kivilinna	help
1200f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1201f3f935a7SJussi Kivilinna
1202f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1203f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1204f3f935a7SJussi Kivilinna
1205f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1206f3f935a7SJussi Kivilinna
1207f3f935a7SJussi Kivilinna	  See also:
1208f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1209f3f935a7SJussi Kivilinna
121081658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
121181658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
121281658ad0SDavid S. Miller	depends on SPARC64
121381658ad0SDavid S. Miller	depends on CRYPTO
121481658ad0SDavid S. Miller	select CRYPTO_ALGAPI
121581658ad0SDavid S. Miller	help
121681658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
121781658ad0SDavid S. Miller
121881658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
121981658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
122081658ad0SDavid S. Miller
122181658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
122281658ad0SDavid S. Miller
122381658ad0SDavid S. Miller	  See also:
122481658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
122581658ad0SDavid S. Miller
1226044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1227044ab525SJussi Kivilinna	tristate
1228044ab525SJussi Kivilinna	help
1229044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1230044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1231044ab525SJussi Kivilinna
1232584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1233584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1234584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1235044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1236584fffc8SSebastian Siewior	help
1237584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1238584fffc8SSebastian Siewior	  described in RFC2144.
1239584fffc8SSebastian Siewior
12404d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12414d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12424d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12431e63183aSEric Biggers	select CRYPTO_BLKCIPHER
12444d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
12451e63183aSEric Biggers	select CRYPTO_CAST_COMMON
12461e63183aSEric Biggers	select CRYPTO_SIMD
12474d6d6a2cSJohannes Goetzfried	help
12484d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
12494d6d6a2cSJohannes Goetzfried	  described in RFC2144.
12504d6d6a2cSJohannes Goetzfried
12514d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
12524d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
12534d6d6a2cSJohannes Goetzfried
1254584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1255584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1256584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1257044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1258584fffc8SSebastian Siewior	help
1259584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1260584fffc8SSebastian Siewior	  described in RFC2612.
1261584fffc8SSebastian Siewior
12624ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
12634ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
12644ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
12654bd96924SEric Biggers	select CRYPTO_BLKCIPHER
12664ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
12674bd96924SEric Biggers	select CRYPTO_CAST_COMMON
12684bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
12694bd96924SEric Biggers	select CRYPTO_SIMD
12704ea1277dSJohannes Goetzfried	select CRYPTO_XTS
12714ea1277dSJohannes Goetzfried	help
12724ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
12734ea1277dSJohannes Goetzfried	  described in RFC2612.
12744ea1277dSJohannes Goetzfried
12754ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
12764ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
12774ea1277dSJohannes Goetzfried
1278584fffc8SSebastian Siewiorconfig CRYPTO_DES
1279584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1280584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1281584fffc8SSebastian Siewior	help
1282584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1283584fffc8SSebastian Siewior
1284c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1285c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
128697da37b3SDave Jones	depends on SPARC64
1287c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1288c5aac2dfSDavid S. Miller	select CRYPTO_DES
1289c5aac2dfSDavid S. Miller	help
1290c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1291c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1292c5aac2dfSDavid S. Miller
12936574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
12946574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
12956574e6c6SJussi Kivilinna	depends on X86 && 64BIT
129609c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
12976574e6c6SJussi Kivilinna	select CRYPTO_DES
12986574e6c6SJussi Kivilinna	help
12996574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13006574e6c6SJussi Kivilinna
13016574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13026574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13036574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13046574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13056574e6c6SJussi Kivilinna
1306584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1307584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1308584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1309584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1310584fffc8SSebastian Siewior	help
1311584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1312584fffc8SSebastian Siewior
1313584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1314584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1315584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1316584fffc8SSebastian Siewior	help
1317584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1318584fffc8SSebastian Siewior
1319584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1320584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1321584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1322584fffc8SSebastian Siewior
1323584fffc8SSebastian Siewior	  See also:
13246d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1325e2ee95b8SHye-Shik Chang
13262407d608STan Swee Hengconfig CRYPTO_SALSA20
13273b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
13282407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13292407d608STan Swee Heng	help
13302407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13312407d608STan Swee Heng
13322407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13332407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13342407d608STan Swee Heng
13352407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13362407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13371da177e4SLinus Torvalds
1338974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13393b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1340974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1341974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1342c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
1343974e4b75STan Swee Heng	help
1344974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1345974e4b75STan Swee Heng
1346974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1347974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1348974e4b75STan Swee Heng
1349974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1350974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1351974e4b75STan Swee Heng
13529a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
13533b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
13549a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
13559a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
1356c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
13579a7dafbbSTan Swee Heng	help
13589a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
13599a7dafbbSTan Swee Heng
13609a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13619a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13629a7dafbbSTan Swee Heng
13639a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13649a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13659a7dafbbSTan Swee Heng
1366c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1367c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1368c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1369c08d0e64SMartin Willi	help
1370c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1371c08d0e64SMartin Willi
1372c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1373c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1374c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1375c08d0e64SMartin Willi
1376c08d0e64SMartin Willi	  See also:
1377c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1378c08d0e64SMartin Willi
1379c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
13803d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1381c9320b6dSMartin Willi	depends on X86 && 64BIT
1382c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1383c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1384c9320b6dSMartin Willi	help
1385c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1386c9320b6dSMartin Willi
1387c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1388c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1389c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1390c9320b6dSMartin Willi
1391c9320b6dSMartin Willi	  See also:
1392c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1393c9320b6dSMartin Willi
1394584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1395584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1396584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1397584fffc8SSebastian Siewior	help
1398584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1399584fffc8SSebastian Siewior
1400584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1401584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1402584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1403584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1404584fffc8SSebastian Siewior
1405584fffc8SSebastian Siewior	  See also:
1406584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1407584fffc8SSebastian Siewior
1408584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1409584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1410584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1411584fffc8SSebastian Siewior	help
1412584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1413584fffc8SSebastian Siewior
1414584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1415584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1416584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1417584fffc8SSebastian Siewior
1418584fffc8SSebastian Siewior	  See also:
1419584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1420584fffc8SSebastian Siewior
1421937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1422937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1423937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1424e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1425596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1426937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1427e0f409dcSEric Biggers	select CRYPTO_SIMD
1428937c30d7SJussi Kivilinna	help
1429937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430937c30d7SJussi Kivilinna
1431937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1432937c30d7SJussi Kivilinna	  of 8 bits.
1433937c30d7SJussi Kivilinna
14341e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1435937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1436937c30d7SJussi Kivilinna
1437937c30d7SJussi Kivilinna	  See also:
1438937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439937c30d7SJussi Kivilinna
1440251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1441251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1442251496dbSJussi Kivilinna	depends on X86 && !64BIT
1443e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1444596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1445251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1446e0f409dcSEric Biggers	select CRYPTO_SIMD
1447251496dbSJussi Kivilinna	help
1448251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1449251496dbSJussi Kivilinna
1450251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1451251496dbSJussi Kivilinna	  of 8 bits.
1452251496dbSJussi Kivilinna
1453251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1454251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1455251496dbSJussi Kivilinna
1456251496dbSJussi Kivilinna	  See also:
1457251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1458251496dbSJussi Kivilinna
14597efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
14607efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
14617efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1462e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
14631d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
14647efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1465e16bf974SEric Biggers	select CRYPTO_SIMD
14667efe4076SJohannes Goetzfried	select CRYPTO_XTS
14677efe4076SJohannes Goetzfried	help
14687efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
14697efe4076SJohannes Goetzfried
14707efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
14717efe4076SJohannes Goetzfried	  of 8 bits.
14727efe4076SJohannes Goetzfried
14737efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
14747efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14757efe4076SJohannes Goetzfried
14767efe4076SJohannes Goetzfried	  See also:
14777efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
14787efe4076SJohannes Goetzfried
147956d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
148056d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
148156d76c96SJussi Kivilinna	depends on X86 && 64BIT
148256d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
148356d76c96SJussi Kivilinna	help
148456d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
148556d76c96SJussi Kivilinna
148656d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
148756d76c96SJussi Kivilinna	  of 8 bits.
148856d76c96SJussi Kivilinna
148956d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
149056d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
149156d76c96SJussi Kivilinna
149256d76c96SJussi Kivilinna	  See also:
149356d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
149456d76c96SJussi Kivilinna
1495747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1496747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1497747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1498747c8ce4SGilad Ben-Yossef	help
1499747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1500747c8ce4SGilad Ben-Yossef
1501747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1502747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1503747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1504747c8ce4SGilad Ben-Yossef
1505747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1506747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1507747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1508747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1509747c8ce4SGilad Ben-Yossef
1510747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1511747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1512747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1513747c8ce4SGilad Ben-Yossef
1514747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1515747c8ce4SGilad Ben-Yossef
1516747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1517747c8ce4SGilad Ben-Yossef
1518747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1519747c8ce4SGilad Ben-Yossef
1520da7a0ab5SEric Biggersconfig CRYPTO_SPECK
1521da7a0ab5SEric Biggers	tristate "Speck cipher algorithm"
1522da7a0ab5SEric Biggers	select CRYPTO_ALGAPI
1523da7a0ab5SEric Biggers	help
1524da7a0ab5SEric Biggers	  Speck is a lightweight block cipher that is tuned for optimal
1525da7a0ab5SEric Biggers	  performance in software (rather than hardware).
1526da7a0ab5SEric Biggers
1527da7a0ab5SEric Biggers	  Speck may not be as secure as AES, and should only be used on systems
1528da7a0ab5SEric Biggers	  where AES is not fast enough.
1529da7a0ab5SEric Biggers
1530da7a0ab5SEric Biggers	  See also: <https://eprint.iacr.org/2013/404.pdf>
1531da7a0ab5SEric Biggers
1532da7a0ab5SEric Biggers	  If unsure, say N.
1533da7a0ab5SEric Biggers
1534584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1535584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1536584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1537584fffc8SSebastian Siewior	help
1538584fffc8SSebastian Siewior	  TEA cipher algorithm.
1539584fffc8SSebastian Siewior
1540584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1541584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1542584fffc8SSebastian Siewior	  little memory.
1543584fffc8SSebastian Siewior
1544584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1545584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1546584fffc8SSebastian Siewior	  in the TEA algorithm.
1547584fffc8SSebastian Siewior
1548584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1549584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1550584fffc8SSebastian Siewior
1551584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1552584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1553584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1554584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1555584fffc8SSebastian Siewior	help
1556584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1557584fffc8SSebastian Siewior
1558584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1559584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1560584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1561584fffc8SSebastian Siewior	  bits.
1562584fffc8SSebastian Siewior
1563584fffc8SSebastian Siewior	  See also:
1564584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1565584fffc8SSebastian Siewior
1566584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1567584fffc8SSebastian Siewior	tristate
1568584fffc8SSebastian Siewior	help
1569584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1570584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1571584fffc8SSebastian Siewior
1572584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1573584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1574584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1575584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1576584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1577584fffc8SSebastian Siewior	help
1578584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1579584fffc8SSebastian Siewior
1580584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1581584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1582584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1583584fffc8SSebastian Siewior	  bits.
1584584fffc8SSebastian Siewior
1585584fffc8SSebastian Siewior	  See also:
1586584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1587584fffc8SSebastian Siewior
1588584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1589584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1590584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1591584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1592584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1593584fffc8SSebastian Siewior	help
1594584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1595584fffc8SSebastian Siewior
1596584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1597584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1598584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1599584fffc8SSebastian Siewior	  bits.
1600584fffc8SSebastian Siewior
1601584fffc8SSebastian Siewior	  See also:
1602584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1603584fffc8SSebastian Siewior
16048280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16058280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1606f21a7c19SAl Viro	depends on X86 && 64BIT
160737992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16088280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16098280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1610414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16118280daadSJussi Kivilinna	help
16128280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16138280daadSJussi Kivilinna
16148280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16158280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16168280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16178280daadSJussi Kivilinna	  bits.
16188280daadSJussi Kivilinna
16198280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16208280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16218280daadSJussi Kivilinna
16228280daadSJussi Kivilinna	  See also:
16238280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16248280daadSJussi Kivilinna
1625107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1626107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1627107778b5SJohannes Goetzfried	depends on X86 && 64BIT
16280e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1629a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16300e6ab46dSEric Biggers	select CRYPTO_SIMD
1631107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1632107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1633107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1634107778b5SJohannes Goetzfried	help
1635107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1636107778b5SJohannes Goetzfried
1637107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1639107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1640107778b5SJohannes Goetzfried	  bits.
1641107778b5SJohannes Goetzfried
1642107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1643107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1644107778b5SJohannes Goetzfried
1645107778b5SJohannes Goetzfried	  See also:
1646107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1647107778b5SJohannes Goetzfried
1648584fffc8SSebastian Siewiorcomment "Compression"
1649584fffc8SSebastian Siewior
16501da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16511da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1652cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1653f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16541da177e4SLinus Torvalds	select ZLIB_INFLATE
16551da177e4SLinus Torvalds	select ZLIB_DEFLATE
16561da177e4SLinus Torvalds	help
16571da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16581da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16591da177e4SLinus Torvalds
16601da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16611da177e4SLinus Torvalds
16620b77abb3SZoltan Sogorconfig CRYPTO_LZO
16630b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16640b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1665ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16660b77abb3SZoltan Sogor	select LZO_COMPRESS
16670b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16680b77abb3SZoltan Sogor	help
16690b77abb3SZoltan Sogor	  This is the LZO algorithm.
16700b77abb3SZoltan Sogor
167135a1fc18SSeth Jenningsconfig CRYPTO_842
167235a1fc18SSeth Jennings	tristate "842 compression algorithm"
16732062c5b6SDan Streetman	select CRYPTO_ALGAPI
16746a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
16752062c5b6SDan Streetman	select 842_COMPRESS
16762062c5b6SDan Streetman	select 842_DECOMPRESS
167735a1fc18SSeth Jennings	help
167835a1fc18SSeth Jennings	  This is the 842 algorithm.
167935a1fc18SSeth Jennings
16800ea8530dSChanho Minconfig CRYPTO_LZ4
16810ea8530dSChanho Min	tristate "LZ4 compression algorithm"
16820ea8530dSChanho Min	select CRYPTO_ALGAPI
16838cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
16840ea8530dSChanho Min	select LZ4_COMPRESS
16850ea8530dSChanho Min	select LZ4_DECOMPRESS
16860ea8530dSChanho Min	help
16870ea8530dSChanho Min	  This is the LZ4 algorithm.
16880ea8530dSChanho Min
16890ea8530dSChanho Minconfig CRYPTO_LZ4HC
16900ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
16910ea8530dSChanho Min	select CRYPTO_ALGAPI
169291d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
16930ea8530dSChanho Min	select LZ4HC_COMPRESS
16940ea8530dSChanho Min	select LZ4_DECOMPRESS
16950ea8530dSChanho Min	help
16960ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
16970ea8530dSChanho Min
1698*d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1699*d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1700*d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1701*d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1702*d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1703*d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1704*d28fc3dbSNick Terrell	help
1705*d28fc3dbSNick Terrell	  This is the zstd algorithm.
1706*d28fc3dbSNick Terrell
170717f0f4a4SNeil Hormancomment "Random Number Generation"
170817f0f4a4SNeil Horman
170917f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
171017f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
171117f0f4a4SNeil Horman	select CRYPTO_AES
171217f0f4a4SNeil Horman	select CRYPTO_RNG
171317f0f4a4SNeil Horman	help
171417f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
171517f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17167dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17177dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
171817f0f4a4SNeil Horman
1719f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1720419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1721419090c6SStephan Mueller	help
1722419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1723419090c6SStephan Mueller	  more of the DRBG types must be selected.
1724419090c6SStephan Mueller
1725f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1726419090c6SStephan Mueller
1727419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1728401e4238SHerbert Xu	bool
1729419090c6SStephan Mueller	default y
1730419090c6SStephan Mueller	select CRYPTO_HMAC
1731826775bbSHerbert Xu	select CRYPTO_SHA256
1732419090c6SStephan Mueller
1733419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1734419090c6SStephan Mueller	bool "Enable Hash DRBG"
1735826775bbSHerbert Xu	select CRYPTO_SHA256
1736419090c6SStephan Mueller	help
1737419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1738419090c6SStephan Mueller
1739419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1740419090c6SStephan Mueller	bool "Enable CTR DRBG"
1741419090c6SStephan Mueller	select CRYPTO_AES
174235591285SStephan Mueller	depends on CRYPTO_CTR
1743419090c6SStephan Mueller	help
1744419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1745419090c6SStephan Mueller
1746f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1747f2c89a10SHerbert Xu	tristate
1748401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1749f2c89a10SHerbert Xu	select CRYPTO_RNG
1750bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1751f2c89a10SHerbert Xu
1752f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1753419090c6SStephan Mueller
1754bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1755bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
17562f313e02SArnd Bergmann	select CRYPTO_RNG
1757bb5530e4SStephan Mueller	help
1758bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1759bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1760bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1761bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1762bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1763bb5530e4SStephan Mueller
176403c8efc1SHerbert Xuconfig CRYPTO_USER_API
176503c8efc1SHerbert Xu	tristate
176603c8efc1SHerbert Xu
1767fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1768fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17697451708fSHerbert Xu	depends on NET
1770fe869cdbSHerbert Xu	select CRYPTO_HASH
1771fe869cdbSHerbert Xu	select CRYPTO_USER_API
1772fe869cdbSHerbert Xu	help
1773fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1774fe869cdbSHerbert Xu	  algorithms.
1775fe869cdbSHerbert Xu
17768ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
17778ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
17787451708fSHerbert Xu	depends on NET
17798ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
17808ff59090SHerbert Xu	select CRYPTO_USER_API
17818ff59090SHerbert Xu	help
17828ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
17838ff59090SHerbert Xu	  key cipher algorithms.
17848ff59090SHerbert Xu
17852f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
17862f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
17872f375538SStephan Mueller	depends on NET
17882f375538SStephan Mueller	select CRYPTO_RNG
17892f375538SStephan Mueller	select CRYPTO_USER_API
17902f375538SStephan Mueller	help
17912f375538SStephan Mueller	  This option enables the user-spaces interface for random
17922f375538SStephan Mueller	  number generator algorithms.
17932f375538SStephan Mueller
1794b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1795b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1796b64a2d95SHerbert Xu	depends on NET
1797b64a2d95SHerbert Xu	select CRYPTO_AEAD
179872548b09SStephan Mueller	select CRYPTO_BLKCIPHER
179972548b09SStephan Mueller	select CRYPTO_NULL
1800b64a2d95SHerbert Xu	select CRYPTO_USER_API
1801b64a2d95SHerbert Xu	help
1802b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1803b64a2d95SHerbert Xu	  cipher algorithms.
1804b64a2d95SHerbert Xu
1805ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1806ee08997fSDmitry Kasatkin	bool
1807ee08997fSDmitry Kasatkin
18081da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1809964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1810cfc411e7SDavid Howellssource certs/Kconfig
18111da177e4SLinus Torvalds
1812cce9e06dSHerbert Xuendif	# if CRYPTO
1813