1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 116cfc2bb32STadeusz Strukconfig CRYPTO_RSA 117cfc2bb32STadeusz Struk tristate "RSA algorithm" 118425e0172STadeusz Struk select CRYPTO_AKCIPHER 11958446fefSTadeusz Struk select CRYPTO_MANAGER 120cfc2bb32STadeusz Struk select MPILIB 121cfc2bb32STadeusz Struk select ASN1 122cfc2bb32STadeusz Struk help 123cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 124cfc2bb32STadeusz Struk 125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 126802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 127802c7f1cSSalvatore Benedetto select CRYPTO_KPP 128802c7f1cSSalvatore Benedetto select MPILIB 129802c7f1cSSalvatore Benedetto help 130802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 131802c7f1cSSalvatore Benedetto 1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1333c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 134b5b90077SHauke Mehrtens select CRYPTO_KPP 1356755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1363c4b2390SSalvatore Benedetto help 1373c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 138802c7f1cSSalvatore Benedetto 1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1402b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1416a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1422b8c19dbSHerbert Xu help 1432b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1442b8c19dbSHerbert Xu cbc(aes). 1452b8c19dbSHerbert Xu 1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1476a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1486a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1496a0fcbb4SHerbert Xu select CRYPTO_HASH2 1506a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 151946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1524e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1532ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1546a0fcbb4SHerbert Xu 155a38f7907SSteffen Klassertconfig CRYPTO_USER 156a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1575db017aaSHerbert Xu depends on NET 158a38f7907SSteffen Klassert select CRYPTO_MANAGER 159a38f7907SSteffen Klassert help 160d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 161a38f7907SSteffen Klassert cbc(aes). 162a38f7907SSteffen Klassert 163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 164326a6346SHerbert Xu bool "Disable run-time self tests" 16500ca28a5SHerbert Xu default y 16600ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1670b767f96SAlexander Shishkin help 168326a6346SHerbert Xu Disable run-time self tests that normally take place at 169326a6346SHerbert Xu algorithm registration. 1700b767f96SAlexander Shishkin 171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 175584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 176584fffc8SSebastian Siewior option will be selected automatically if you select such a 177584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 178584fffc8SSebastian Siewior an external module that requires these functions. 179584fffc8SSebastian Siewior 180584fffc8SSebastian Siewiorconfig CRYPTO_NULL 181584fffc8SSebastian Siewior tristate "Null algorithms" 182149a3971SHerbert Xu select CRYPTO_NULL2 183584fffc8SSebastian Siewior help 184584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 185584fffc8SSebastian Siewior 186149a3971SHerbert Xuconfig CRYPTO_NULL2 187dd43c4e9SHerbert Xu tristate 188149a3971SHerbert Xu select CRYPTO_ALGAPI2 189149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 190149a3971SHerbert Xu select CRYPTO_HASH2 191149a3971SHerbert Xu 1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1933b4afaf2SKees Cook tristate "Parallel crypto engine" 1943b4afaf2SKees Cook depends on SMP 1955068c7a8SSteffen Klassert select PADATA 1965068c7a8SSteffen Klassert select CRYPTO_MANAGER 1975068c7a8SSteffen Klassert select CRYPTO_AEAD 1985068c7a8SSteffen Klassert help 1995068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2005068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2015068c7a8SSteffen Klassert 20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20325c38d3fSHuang Ying tristate 20425c38d3fSHuang Ying 205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 206584fffc8SSebastian Siewior tristate "Software async crypto daemon" 207584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 208b8a28251SLoc Ho select CRYPTO_HASH 209584fffc8SSebastian Siewior select CRYPTO_MANAGER 210254eff77SHuang Ying select CRYPTO_WORKQUEUE 211584fffc8SSebastian Siewior help 212584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 213584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 214584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 215584fffc8SSebastian Siewior 2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2171e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2181e65b81aSTim Chen select CRYPTO_BLKCIPHER 2191e65b81aSTim Chen select CRYPTO_HASH 2201e65b81aSTim Chen select CRYPTO_MANAGER 2211e65b81aSTim Chen select CRYPTO_WORKQUEUE 2221e65b81aSTim Chen help 2231e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2241e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2251e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2261e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2271e65b81aSTim Chen in the context of this kernel thread and drivers can post 2280e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2291e65b81aSTim Chen 230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 231584fffc8SSebastian Siewior tristate "Authenc support" 232584fffc8SSebastian Siewior select CRYPTO_AEAD 233584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 234584fffc8SSebastian Siewior select CRYPTO_MANAGER 235584fffc8SSebastian Siewior select CRYPTO_HASH 236e94c6a7aSHerbert Xu select CRYPTO_NULL 237584fffc8SSebastian Siewior help 238584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 239584fffc8SSebastian Siewior This is required for IPSec. 240584fffc8SSebastian Siewior 241584fffc8SSebastian Siewiorconfig CRYPTO_TEST 242584fffc8SSebastian Siewior tristate "Testing module" 243584fffc8SSebastian Siewior depends on m 244da7f033dSHerbert Xu select CRYPTO_MANAGER 245584fffc8SSebastian Siewior help 246584fffc8SSebastian Siewior Quick & dirty crypto test module. 247584fffc8SSebastian Siewior 248266d0516SHerbert Xuconfig CRYPTO_SIMD 249266d0516SHerbert Xu tristate 250266d0516SHerbert Xu select CRYPTO_CRYPTD 251266d0516SHerbert Xu 252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 253596d8750SJussi Kivilinna tristate 254596d8750SJussi Kivilinna depends on X86 255065ce327SHerbert Xu select CRYPTO_BLKCIPHER 256596d8750SJussi Kivilinna 257735d37b5SBaolin Wangconfig CRYPTO_ENGINE 258735d37b5SBaolin Wang tristate 259735d37b5SBaolin Wang 260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 261584fffc8SSebastian Siewior 262584fffc8SSebastian Siewiorconfig CRYPTO_CCM 263584fffc8SSebastian Siewior tristate "CCM support" 264584fffc8SSebastian Siewior select CRYPTO_CTR 265f15f05b0SArd Biesheuvel select CRYPTO_HASH 266584fffc8SSebastian Siewior select CRYPTO_AEAD 267584fffc8SSebastian Siewior help 268584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 269584fffc8SSebastian Siewior 270584fffc8SSebastian Siewiorconfig CRYPTO_GCM 271584fffc8SSebastian Siewior tristate "GCM/GMAC support" 272584fffc8SSebastian Siewior select CRYPTO_CTR 273584fffc8SSebastian Siewior select CRYPTO_AEAD 2749382d97aSHuang Ying select CRYPTO_GHASH 2759489667dSJussi Kivilinna select CRYPTO_NULL 276584fffc8SSebastian Siewior help 277584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 278584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 279584fffc8SSebastian Siewior 28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28171ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28271ebc4d1SMartin Willi select CRYPTO_CHACHA20 28371ebc4d1SMartin Willi select CRYPTO_POLY1305 28471ebc4d1SMartin Willi select CRYPTO_AEAD 28571ebc4d1SMartin Willi help 28671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28771ebc4d1SMartin Willi 28871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 28971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29071ebc4d1SMartin Willi IETF protocols. 29171ebc4d1SMartin Willi 292584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 293584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 294584fffc8SSebastian Siewior select CRYPTO_AEAD 295584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 296856e3f40SHerbert Xu select CRYPTO_NULL 297401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 298584fffc8SSebastian Siewior help 299584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 300584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 301584fffc8SSebastian Siewior 302a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 303a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 304a10f554fSHerbert Xu select CRYPTO_AEAD 305a10f554fSHerbert Xu select CRYPTO_NULL 306401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3073491244cSHerbert Xu default m 308a10f554fSHerbert Xu help 309a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 310a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 311a10f554fSHerbert Xu algorithm for CBC. 312a10f554fSHerbert Xu 313584fffc8SSebastian Siewiorcomment "Block modes" 314584fffc8SSebastian Siewior 315584fffc8SSebastian Siewiorconfig CRYPTO_CBC 316584fffc8SSebastian Siewior tristate "CBC support" 317584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 318584fffc8SSebastian Siewior select CRYPTO_MANAGER 319584fffc8SSebastian Siewior help 320584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 321584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 322584fffc8SSebastian Siewior 323a7d85e06SJames Bottomleyconfig CRYPTO_CFB 324a7d85e06SJames Bottomley tristate "CFB support" 325a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 326a7d85e06SJames Bottomley select CRYPTO_MANAGER 327a7d85e06SJames Bottomley help 328a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 329a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 330a7d85e06SJames Bottomley 331584fffc8SSebastian Siewiorconfig CRYPTO_CTR 332584fffc8SSebastian Siewior tristate "CTR support" 333584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 334584fffc8SSebastian Siewior select CRYPTO_SEQIV 335584fffc8SSebastian Siewior select CRYPTO_MANAGER 336584fffc8SSebastian Siewior help 337584fffc8SSebastian Siewior CTR: Counter mode 338584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 339584fffc8SSebastian Siewior 340584fffc8SSebastian Siewiorconfig CRYPTO_CTS 341584fffc8SSebastian Siewior tristate "CTS support" 342584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 343584fffc8SSebastian Siewior help 344584fffc8SSebastian Siewior CTS: Cipher Text Stealing 345584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 346584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 347584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 348584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 349584fffc8SSebastian Siewior for AES encryption. 350584fffc8SSebastian Siewior 351584fffc8SSebastian Siewiorconfig CRYPTO_ECB 352584fffc8SSebastian Siewior tristate "ECB support" 353584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 354584fffc8SSebastian Siewior select CRYPTO_MANAGER 355584fffc8SSebastian Siewior help 356584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 357584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 358584fffc8SSebastian Siewior the input block by block. 359584fffc8SSebastian Siewior 360584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3612470a2b2SJussi Kivilinna tristate "LRW support" 362584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 363584fffc8SSebastian Siewior select CRYPTO_MANAGER 364584fffc8SSebastian Siewior select CRYPTO_GF128MUL 365584fffc8SSebastian Siewior help 366584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 367584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 368584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 369584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 370584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 371584fffc8SSebastian Siewior 372584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 373584fffc8SSebastian Siewior tristate "PCBC support" 374584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 375584fffc8SSebastian Siewior select CRYPTO_MANAGER 376584fffc8SSebastian Siewior help 377584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 378584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 379584fffc8SSebastian Siewior 380584fffc8SSebastian Siewiorconfig CRYPTO_XTS 3815bcf8e6dSJussi Kivilinna tristate "XTS support" 382584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 383584fffc8SSebastian Siewior select CRYPTO_MANAGER 38412cb3a1cSMilan Broz select CRYPTO_ECB 385584fffc8SSebastian Siewior help 386584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 387584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 388584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 389584fffc8SSebastian Siewior 3901c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 3911c49678eSStephan Mueller tristate "Key wrapping support" 3921c49678eSStephan Mueller select CRYPTO_BLKCIPHER 3931c49678eSStephan Mueller help 3941c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 3951c49678eSStephan Mueller padding. 3961c49678eSStephan Mueller 397584fffc8SSebastian Siewiorcomment "Hash modes" 398584fffc8SSebastian Siewior 39993b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 40093b5e86aSJussi Kivilinna tristate "CMAC support" 40193b5e86aSJussi Kivilinna select CRYPTO_HASH 40293b5e86aSJussi Kivilinna select CRYPTO_MANAGER 40393b5e86aSJussi Kivilinna help 40493b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 40593b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 40693b5e86aSJussi Kivilinna 40793b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 40893b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 40993b5e86aSJussi Kivilinna 4101da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4118425165dSHerbert Xu tristate "HMAC support" 4120796ae06SHerbert Xu select CRYPTO_HASH 41343518407SHerbert Xu select CRYPTO_MANAGER 4141da177e4SLinus Torvalds help 4151da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4161da177e4SLinus Torvalds This is required for IPSec. 4171da177e4SLinus Torvalds 418333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 419333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 420333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 421333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 422333b0d7eSKazunori MIYAZAWA help 423333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 424333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 425333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 426333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 427333b0d7eSKazunori MIYAZAWA 428f1939f7cSShane Wangconfig CRYPTO_VMAC 429f1939f7cSShane Wang tristate "VMAC support" 430f1939f7cSShane Wang select CRYPTO_HASH 431f1939f7cSShane Wang select CRYPTO_MANAGER 432f1939f7cSShane Wang help 433f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 434f1939f7cSShane Wang very high speed on 64-bit architectures. 435f1939f7cSShane Wang 436f1939f7cSShane Wang See also: 437f1939f7cSShane Wang <http://fastcrypto.org/vmac> 438f1939f7cSShane Wang 439584fffc8SSebastian Siewiorcomment "Digest" 440584fffc8SSebastian Siewior 441584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 442584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4435773a3e6SHerbert Xu select CRYPTO_HASH 4446a0962b2SDarrick J. Wong select CRC32 4451da177e4SLinus Torvalds help 446584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 447584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 44869c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4491da177e4SLinus Torvalds 4508cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4518cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4528cb51ba8SAustin Zhang depends on X86 4538cb51ba8SAustin Zhang select CRYPTO_HASH 4548cb51ba8SAustin Zhang help 4558cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4568cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4578cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4588cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4598cb51ba8SAustin Zhang gain performance compared with software implementation. 4608cb51ba8SAustin Zhang Module will be crc32c-intel. 4618cb51ba8SAustin Zhang 4627cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4636dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 464c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4656dd7a82cSAnton Blanchard select CRYPTO_HASH 4666dd7a82cSAnton Blanchard select CRC32 4676dd7a82cSAnton Blanchard help 4686dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4696dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4706dd7a82cSAnton Blanchard and newer processors for improved performance. 4716dd7a82cSAnton Blanchard 4726dd7a82cSAnton Blanchard 473442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 474442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 475442a7c40SDavid S. Miller depends on SPARC64 476442a7c40SDavid S. Miller select CRYPTO_HASH 477442a7c40SDavid S. Miller select CRC32 478442a7c40SDavid S. Miller help 479442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 480442a7c40SDavid S. Miller when available. 481442a7c40SDavid S. Miller 48278c37d19SAlexander Boykoconfig CRYPTO_CRC32 48378c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 48478c37d19SAlexander Boyko select CRYPTO_HASH 48578c37d19SAlexander Boyko select CRC32 48678c37d19SAlexander Boyko help 48778c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 48878c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 48978c37d19SAlexander Boyko 49078c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 49178c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 49278c37d19SAlexander Boyko depends on X86 49378c37d19SAlexander Boyko select CRYPTO_HASH 49478c37d19SAlexander Boyko select CRC32 49578c37d19SAlexander Boyko help 49678c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 49778c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 49878c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 49978c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 50078c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 50178c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 50278c37d19SAlexander Boyko 5034a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 5044a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 5054a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 5064a5dc51eSMarcin Nowakowski select CRYPTO_HASH 5074a5dc51eSMarcin Nowakowski help 5084a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 5094a5dc51eSMarcin Nowakowski instructions, when available. 5104a5dc51eSMarcin Nowakowski 5114a5dc51eSMarcin Nowakowski 51268411521SHerbert Xuconfig CRYPTO_CRCT10DIF 51368411521SHerbert Xu tristate "CRCT10DIF algorithm" 51468411521SHerbert Xu select CRYPTO_HASH 51568411521SHerbert Xu help 51668411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 51768411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 51868411521SHerbert Xu transforms to be used if they are available. 51968411521SHerbert Xu 52068411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 52168411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 52268411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 52368411521SHerbert Xu select CRYPTO_HASH 52468411521SHerbert Xu help 52568411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 52668411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 52768411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 52868411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 52968411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 53068411521SHerbert Xu 531b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 532b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 533b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 534b01df1c1SDaniel Axtens select CRYPTO_HASH 535b01df1c1SDaniel Axtens help 536b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 537b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 538b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 539b01df1c1SDaniel Axtens 540146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 541146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 542146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 543146c8688SDaniel Axtens help 544146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 545146c8688SDaniel Axtens POWER8 vpmsum instructions. 546146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 547146c8688SDaniel Axtens 5482cdc6899SHuang Yingconfig CRYPTO_GHASH 5492cdc6899SHuang Ying tristate "GHASH digest algorithm" 5502cdc6899SHuang Ying select CRYPTO_GF128MUL 551578c60fbSArnd Bergmann select CRYPTO_HASH 5522cdc6899SHuang Ying help 5532cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5542cdc6899SHuang Ying 555f979e014SMartin Williconfig CRYPTO_POLY1305 556f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 557578c60fbSArnd Bergmann select CRYPTO_HASH 558f979e014SMartin Willi help 559f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 560f979e014SMartin Willi 561f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 562f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 563f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 564f979e014SMartin Willi 565c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 566b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 567c70f4abeSMartin Willi depends on X86 && 64BIT 568c70f4abeSMartin Willi select CRYPTO_POLY1305 569c70f4abeSMartin Willi help 570c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 571c70f4abeSMartin Willi 572c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 573c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 574c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 575c70f4abeSMartin Willi instructions. 576c70f4abeSMartin Willi 5771da177e4SLinus Torvaldsconfig CRYPTO_MD4 5781da177e4SLinus Torvalds tristate "MD4 digest algorithm" 579808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 5801da177e4SLinus Torvalds help 5811da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 5821da177e4SLinus Torvalds 5831da177e4SLinus Torvaldsconfig CRYPTO_MD5 5841da177e4SLinus Torvalds tristate "MD5 digest algorithm" 58514b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 5861da177e4SLinus Torvalds help 5871da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 5881da177e4SLinus Torvalds 589d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 590d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 591d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 592d69e75deSAaro Koskinen select CRYPTO_MD5 593d69e75deSAaro Koskinen select CRYPTO_HASH 594d69e75deSAaro Koskinen help 595d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 596d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 597d69e75deSAaro Koskinen 598e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 599e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 600e8e59953SMarkus Stockhausen depends on PPC 601e8e59953SMarkus Stockhausen select CRYPTO_HASH 602e8e59953SMarkus Stockhausen help 603e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 604e8e59953SMarkus Stockhausen in PPC assembler. 605e8e59953SMarkus Stockhausen 606fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 607fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 608fa4dfedcSDavid S. Miller depends on SPARC64 609fa4dfedcSDavid S. Miller select CRYPTO_MD5 610fa4dfedcSDavid S. Miller select CRYPTO_HASH 611fa4dfedcSDavid S. Miller help 612fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 613fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 614fa4dfedcSDavid S. Miller 615584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 616584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 61719e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 618584fffc8SSebastian Siewior help 619584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 620584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 621584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 622584fffc8SSebastian Siewior of the algorithm. 623584fffc8SSebastian Siewior 62482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 62582798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 6267c4468bcSHerbert Xu select CRYPTO_HASH 62782798f90SAdrian-Ken Rueegsegger help 62882798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 62982798f90SAdrian-Ken Rueegsegger 63082798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 63135ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 63282798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 63382798f90SAdrian-Ken Rueegsegger 63482798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6356d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 63682798f90SAdrian-Ken Rueegsegger 63782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 63882798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 639e5835fbaSHerbert Xu select CRYPTO_HASH 64082798f90SAdrian-Ken Rueegsegger help 64182798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 64282798f90SAdrian-Ken Rueegsegger 64382798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 64482798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 645b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 646b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 64782798f90SAdrian-Ken Rueegsegger 648b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 649b6d44341SAdrian Bunk against RIPEMD-160. 650534fe2c1SAdrian-Ken Rueegsegger 651534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6526d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 653534fe2c1SAdrian-Ken Rueegsegger 654534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 655534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 656d8a5e2e9SHerbert Xu select CRYPTO_HASH 657534fe2c1SAdrian-Ken Rueegsegger help 658b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 659b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 660b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 661b6d44341SAdrian Bunk (than RIPEMD-128). 662534fe2c1SAdrian-Ken Rueegsegger 663534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6646d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 665534fe2c1SAdrian-Ken Rueegsegger 666534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 667534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6683b8efb4cSHerbert Xu select CRYPTO_HASH 669534fe2c1SAdrian-Ken Rueegsegger help 670b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 671b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 672b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 673b6d44341SAdrian Bunk (than RIPEMD-160). 674534fe2c1SAdrian-Ken Rueegsegger 67582798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6766d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 67782798f90SAdrian-Ken Rueegsegger 6781da177e4SLinus Torvaldsconfig CRYPTO_SHA1 6791da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 68054ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 6811da177e4SLinus Torvalds help 6821da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 6831da177e4SLinus Torvalds 68466be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 685e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 68666be8951SMathias Krause depends on X86 && 64BIT 68766be8951SMathias Krause select CRYPTO_SHA1 68866be8951SMathias Krause select CRYPTO_HASH 68966be8951SMathias Krause help 69066be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 69166be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 692e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 693e38b6b7fStim when available. 69466be8951SMathias Krause 6958275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 696e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 6978275d1aaSTim Chen depends on X86 && 64BIT 6988275d1aaSTim Chen select CRYPTO_SHA256 6998275d1aaSTim Chen select CRYPTO_HASH 7008275d1aaSTim Chen help 7018275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 7028275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 7038275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 704e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 705e38b6b7fStim Instructions) when available. 7068275d1aaSTim Chen 70787de4579STim Chenconfig CRYPTO_SHA512_SSSE3 70887de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 70987de4579STim Chen depends on X86 && 64BIT 71087de4579STim Chen select CRYPTO_SHA512 71187de4579STim Chen select CRYPTO_HASH 71287de4579STim Chen help 71387de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 71487de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 71587de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 71687de4579STim Chen version 2 (AVX2) instructions, when available. 71787de4579STim Chen 718efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 719efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 720efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 721efdb6f6eSAaro Koskinen select CRYPTO_SHA1 722efdb6f6eSAaro Koskinen select CRYPTO_HASH 723efdb6f6eSAaro Koskinen help 724efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 725efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 726efdb6f6eSAaro Koskinen 7274ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 7284ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 7294ff28d4cSDavid S. Miller depends on SPARC64 7304ff28d4cSDavid S. Miller select CRYPTO_SHA1 7314ff28d4cSDavid S. Miller select CRYPTO_HASH 7324ff28d4cSDavid S. Miller help 7334ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7344ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7354ff28d4cSDavid S. Miller 736323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 737323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 738323a6bf1SMichael Ellerman depends on PPC 739323a6bf1SMichael Ellerman help 740323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 741323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 742323a6bf1SMichael Ellerman 743d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 744d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 745d9850fc5SMarkus Stockhausen depends on PPC && SPE 746d9850fc5SMarkus Stockhausen help 747d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 748d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 749d9850fc5SMarkus Stockhausen 7501e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7511e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7521e65b81aSTim Chen depends on X86 && 64BIT 7531e65b81aSTim Chen select CRYPTO_SHA1 7541e65b81aSTim Chen select CRYPTO_HASH 7551e65b81aSTim Chen select CRYPTO_MCRYPTD 7561e65b81aSTim Chen help 7571e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7581e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7591e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7601e65b81aSTim Chen better throughput. It should not be enabled by default but 7611e65b81aSTim Chen used when there is significant amount of work to keep the keep 7621e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7631e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7641e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7651e65b81aSTim Chen 7669be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7679be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7689be7e244SMegha Dey depends on X86 && 64BIT 7699be7e244SMegha Dey select CRYPTO_SHA256 7709be7e244SMegha Dey select CRYPTO_HASH 7719be7e244SMegha Dey select CRYPTO_MCRYPTD 7729be7e244SMegha Dey help 7739be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7749be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7759be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7769be7e244SMegha Dey better throughput. It should not be enabled by default but 7779be7e244SMegha Dey used when there is significant amount of work to keep the keep 7789be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 7799be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 7809be7e244SMegha Dey process the crypto jobs, adding a slight latency. 7819be7e244SMegha Dey 782026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 783026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 784026bb8aaSMegha Dey depends on X86 && 64BIT 785026bb8aaSMegha Dey select CRYPTO_SHA512 786026bb8aaSMegha Dey select CRYPTO_HASH 787026bb8aaSMegha Dey select CRYPTO_MCRYPTD 788026bb8aaSMegha Dey help 789026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 790026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 791026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 792026bb8aaSMegha Dey better throughput. It should not be enabled by default but 793026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 794026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 795026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 796026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 797026bb8aaSMegha Dey 7981da177e4SLinus Torvaldsconfig CRYPTO_SHA256 799cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 80050e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 8011da177e4SLinus Torvalds help 8021da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 8031da177e4SLinus Torvalds 8041da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 8051da177e4SLinus Torvalds security against collision attacks. 8061da177e4SLinus Torvalds 807cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 808cd12fb90SJonathan Lynch of security against collision attacks. 809cd12fb90SJonathan Lynch 8102ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 8112ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 8122ecc1e95SMarkus Stockhausen depends on PPC && SPE 8132ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 8142ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8152ecc1e95SMarkus Stockhausen help 8162ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8172ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 8182ecc1e95SMarkus Stockhausen 819efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 820efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 821efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 822efdb6f6eSAaro Koskinen select CRYPTO_SHA256 823efdb6f6eSAaro Koskinen select CRYPTO_HASH 824efdb6f6eSAaro Koskinen help 825efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 826efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 827efdb6f6eSAaro Koskinen 82886c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 82986c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 83086c93b24SDavid S. Miller depends on SPARC64 83186c93b24SDavid S. Miller select CRYPTO_SHA256 83286c93b24SDavid S. Miller select CRYPTO_HASH 83386c93b24SDavid S. Miller help 83486c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 83586c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 83686c93b24SDavid S. Miller 8371da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8381da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 839bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8401da177e4SLinus Torvalds help 8411da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8421da177e4SLinus Torvalds 8431da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8441da177e4SLinus Torvalds security against collision attacks. 8451da177e4SLinus Torvalds 8461da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8471da177e4SLinus Torvalds of security against collision attacks. 8481da177e4SLinus Torvalds 849efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 850efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 851efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 852efdb6f6eSAaro Koskinen select CRYPTO_SHA512 853efdb6f6eSAaro Koskinen select CRYPTO_HASH 854efdb6f6eSAaro Koskinen help 855efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 856efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 857efdb6f6eSAaro Koskinen 858775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 859775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 860775e0c69SDavid S. Miller depends on SPARC64 861775e0c69SDavid S. Miller select CRYPTO_SHA512 862775e0c69SDavid S. Miller select CRYPTO_HASH 863775e0c69SDavid S. Miller help 864775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 865775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 866775e0c69SDavid S. Miller 86753964b9eSJeff Garzikconfig CRYPTO_SHA3 86853964b9eSJeff Garzik tristate "SHA3 digest algorithm" 86953964b9eSJeff Garzik select CRYPTO_HASH 87053964b9eSJeff Garzik help 87153964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 87253964b9eSJeff Garzik cryptographic sponge function family called Keccak. 87353964b9eSJeff Garzik 87453964b9eSJeff Garzik References: 87553964b9eSJeff Garzik http://keccak.noekeon.org/ 87653964b9eSJeff Garzik 8774f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 8784f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 8794f0fc160SGilad Ben-Yossef select CRYPTO_HASH 8804f0fc160SGilad Ben-Yossef help 8814f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 8824f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 8834f0fc160SGilad Ben-Yossef 8844f0fc160SGilad Ben-Yossef References: 8854f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 8864f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 8874f0fc160SGilad Ben-Yossef 8881da177e4SLinus Torvaldsconfig CRYPTO_TGR192 8891da177e4SLinus Torvalds tristate "Tiger digest algorithms" 890f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 8911da177e4SLinus Torvalds help 8921da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 8931da177e4SLinus Torvalds 8941da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 8951da177e4SLinus Torvalds still having decent performance on 32-bit processors. 8961da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 8971da177e4SLinus Torvalds 8981da177e4SLinus Torvalds See also: 8991da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 9001da177e4SLinus Torvalds 901584fffc8SSebastian Siewiorconfig CRYPTO_WP512 902584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 9034946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 9041da177e4SLinus Torvalds help 905584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 9061da177e4SLinus Torvalds 907584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 908584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 9091da177e4SLinus Torvalds 9101da177e4SLinus Torvalds See also: 9116d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 9121da177e4SLinus Torvalds 9130e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 9140e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 9158af00860SRichard Weinberger depends on X86 && 64BIT 9160e1227d3SHuang Ying select CRYPTO_CRYPTD 9170e1227d3SHuang Ying help 9180e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 9190e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 9200e1227d3SHuang Ying 921584fffc8SSebastian Siewiorcomment "Ciphers" 9221da177e4SLinus Torvalds 9231da177e4SLinus Torvaldsconfig CRYPTO_AES 9241da177e4SLinus Torvalds tristate "AES cipher algorithms" 925cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9261da177e4SLinus Torvalds help 9271da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9281da177e4SLinus Torvalds algorithm. 9291da177e4SLinus Torvalds 9301da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9311da177e4SLinus Torvalds both hardware and software across a wide range of computing 9321da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9331da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9341da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9351da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9361da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9371da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9381da177e4SLinus Torvalds 9391da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9401da177e4SLinus Torvalds 9411da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 9421da177e4SLinus Torvalds 943b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 944b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 945b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 946b5e0b032SArd Biesheuvel help 947b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 948b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 949b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 950b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 951b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 952b5e0b032SArd Biesheuvel with a more dramatic performance hit) 953b5e0b032SArd Biesheuvel 954b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 955b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 956b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 957b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 958b5e0b032SArd Biesheuvel block. 959b5e0b032SArd Biesheuvel 9601da177e4SLinus Torvaldsconfig CRYPTO_AES_586 9611da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 962cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 963cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9645157dea8SSebastian Siewior select CRYPTO_AES 9651da177e4SLinus Torvalds help 9661da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9671da177e4SLinus Torvalds algorithm. 9681da177e4SLinus Torvalds 9691da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9701da177e4SLinus Torvalds both hardware and software across a wide range of computing 9711da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9721da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9731da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9741da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9751da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9761da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9771da177e4SLinus Torvalds 9781da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9791da177e4SLinus Torvalds 9801da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 9811da177e4SLinus Torvalds 982a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 983a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 984cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 985cce9e06dSHerbert Xu select CRYPTO_ALGAPI 98681190b32SSebastian Siewior select CRYPTO_AES 987a2a892a2SAndreas Steinmetz help 988a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 989a2a892a2SAndreas Steinmetz algorithm. 990a2a892a2SAndreas Steinmetz 991a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 992a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 993a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 994a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 995a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 996a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 997a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 998a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 999a2a892a2SAndreas Steinmetz 1000a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1001a2a892a2SAndreas Steinmetz 1002a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1003a2a892a2SAndreas Steinmetz 100454b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 100554b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 10068af00860SRichard Weinberger depends on X86 100785671860SHerbert Xu select CRYPTO_AEAD 10080d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 10090d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 101054b6a1bdSHuang Ying select CRYPTO_ALGAPI 101185671860SHerbert Xu select CRYPTO_BLKCIPHER 10127643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 101385671860SHerbert Xu select CRYPTO_SIMD 101454b6a1bdSHuang Ying help 101554b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 101654b6a1bdSHuang Ying 101754b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 101854b6a1bdSHuang Ying algorithm. 101954b6a1bdSHuang Ying 102054b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 102154b6a1bdSHuang Ying both hardware and software across a wide range of computing 102254b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 102354b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 102454b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 102554b6a1bdSHuang Ying suited for restricted-space environments, in which it also 102654b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 102754b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 102854b6a1bdSHuang Ying 102954b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 103054b6a1bdSHuang Ying 103154b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 103254b6a1bdSHuang Ying 10330d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10340d258efbSMathias Krause for some popular block cipher mode is supported too, including 10350d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 10360d258efbSMathias Krause acceleration for CTR. 10372cf4ac8bSHuang Ying 10389bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10399bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10409bf4852dSDavid S. Miller depends on SPARC64 10419bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10429bf4852dSDavid S. Miller select CRYPTO_ALGAPI 10439bf4852dSDavid S. Miller help 10449bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10459bf4852dSDavid S. Miller 10469bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10479bf4852dSDavid S. Miller algorithm. 10489bf4852dSDavid S. Miller 10499bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10509bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10519bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10529bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10539bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10549bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10559bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10569bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10579bf4852dSDavid S. Miller 10589bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10599bf4852dSDavid S. Miller 10609bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10619bf4852dSDavid S. Miller 10629bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10639bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10649bf4852dSDavid S. Miller ECB and CBC. 10659bf4852dSDavid S. Miller 1066504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1067504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1068504c6143SMarkus Stockhausen depends on PPC && SPE 1069504c6143SMarkus Stockhausen help 1070504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1071504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1072504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1073504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1074504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1075504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1076504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1077504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1078504c6143SMarkus Stockhausen 10791da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 10801da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1081cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10821da177e4SLinus Torvalds help 10831da177e4SLinus Torvalds Anubis cipher algorithm. 10841da177e4SLinus Torvalds 10851da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 10861da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 10871da177e4SLinus Torvalds in the NESSIE competition. 10881da177e4SLinus Torvalds 10891da177e4SLinus Torvalds See also: 10906d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 10916d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 10921da177e4SLinus Torvalds 1093584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1094584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1095b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1096e2ee95b8SHye-Shik Chang help 1097584fffc8SSebastian Siewior ARC4 cipher algorithm. 1098e2ee95b8SHye-Shik Chang 1099584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1100584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1101584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1102584fffc8SSebastian Siewior weakness of the algorithm. 1103584fffc8SSebastian Siewior 1104584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1105584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1106584fffc8SSebastian Siewior select CRYPTO_ALGAPI 110752ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1108584fffc8SSebastian Siewior help 1109584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1110584fffc8SSebastian Siewior 1111584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1112584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1113584fffc8SSebastian Siewior designed for use on "large microprocessors". 1114e2ee95b8SHye-Shik Chang 1115e2ee95b8SHye-Shik Chang See also: 1116584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1117584fffc8SSebastian Siewior 111852ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 111952ba867cSJussi Kivilinna tristate 112052ba867cSJussi Kivilinna help 112152ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 112252ba867cSJussi Kivilinna generic c and the assembler implementations. 112352ba867cSJussi Kivilinna 112452ba867cSJussi Kivilinna See also: 112552ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 112652ba867cSJussi Kivilinna 112764b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 112864b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1129f21a7c19SAl Viro depends on X86 && 64BIT 1130c1679171SEric Biggers select CRYPTO_BLKCIPHER 113164b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 113264b94ceaSJussi Kivilinna help 113364b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 113464b94ceaSJussi Kivilinna 113564b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 113664b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 113764b94ceaSJussi Kivilinna designed for use on "large microprocessors". 113864b94ceaSJussi Kivilinna 113964b94ceaSJussi Kivilinna See also: 114064b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 114164b94ceaSJussi Kivilinna 1142584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1143584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1144584fffc8SSebastian Siewior depends on CRYPTO 1145584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1146584fffc8SSebastian Siewior help 1147584fffc8SSebastian Siewior Camellia cipher algorithms module. 1148584fffc8SSebastian Siewior 1149584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1150584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1151584fffc8SSebastian Siewior 1152584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1153584fffc8SSebastian Siewior 1154584fffc8SSebastian Siewior See also: 1155584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1156584fffc8SSebastian Siewior 11570b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11580b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1159f21a7c19SAl Viro depends on X86 && 64BIT 11600b95ec56SJussi Kivilinna depends on CRYPTO 11611af6d037SEric Biggers select CRYPTO_BLKCIPHER 1162964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11630b95ec56SJussi Kivilinna help 11640b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11650b95ec56SJussi Kivilinna 11660b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11670b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11680b95ec56SJussi Kivilinna 11690b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11700b95ec56SJussi Kivilinna 11710b95ec56SJussi Kivilinna See also: 11720b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11730b95ec56SJussi Kivilinna 1174d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1175d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1176d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1177d9b1d2e7SJussi Kivilinna depends on CRYPTO 117844893bc2SEric Biggers select CRYPTO_BLKCIPHER 1179d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 118044893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 118144893bc2SEric Biggers select CRYPTO_SIMD 1182d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1183d9b1d2e7SJussi Kivilinna help 1184d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1185d9b1d2e7SJussi Kivilinna 1186d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1187d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1188d9b1d2e7SJussi Kivilinna 1189d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1190d9b1d2e7SJussi Kivilinna 1191d9b1d2e7SJussi Kivilinna See also: 1192d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1193d9b1d2e7SJussi Kivilinna 1194f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1195f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1196f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1197f3f935a7SJussi Kivilinna depends on CRYPTO 1198f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1199f3f935a7SJussi Kivilinna help 1200f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1201f3f935a7SJussi Kivilinna 1202f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1203f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1204f3f935a7SJussi Kivilinna 1205f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1206f3f935a7SJussi Kivilinna 1207f3f935a7SJussi Kivilinna See also: 1208f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1209f3f935a7SJussi Kivilinna 121081658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 121181658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 121281658ad0SDavid S. Miller depends on SPARC64 121381658ad0SDavid S. Miller depends on CRYPTO 121481658ad0SDavid S. Miller select CRYPTO_ALGAPI 121581658ad0SDavid S. Miller help 121681658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 121781658ad0SDavid S. Miller 121881658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 121981658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 122081658ad0SDavid S. Miller 122181658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 122281658ad0SDavid S. Miller 122381658ad0SDavid S. Miller See also: 122481658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 122581658ad0SDavid S. Miller 1226044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1227044ab525SJussi Kivilinna tristate 1228044ab525SJussi Kivilinna help 1229044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1230044ab525SJussi Kivilinna generic c and the assembler implementations. 1231044ab525SJussi Kivilinna 1232584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1233584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1234584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1235044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1236584fffc8SSebastian Siewior help 1237584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1238584fffc8SSebastian Siewior described in RFC2144. 1239584fffc8SSebastian Siewior 12404d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12414d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12424d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12431e63183aSEric Biggers select CRYPTO_BLKCIPHER 12444d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12451e63183aSEric Biggers select CRYPTO_CAST_COMMON 12461e63183aSEric Biggers select CRYPTO_SIMD 12474d6d6a2cSJohannes Goetzfried help 12484d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12494d6d6a2cSJohannes Goetzfried described in RFC2144. 12504d6d6a2cSJohannes Goetzfried 12514d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12524d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12534d6d6a2cSJohannes Goetzfried 1254584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1255584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1256584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1257044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1258584fffc8SSebastian Siewior help 1259584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1260584fffc8SSebastian Siewior described in RFC2612. 1261584fffc8SSebastian Siewior 12624ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12634ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12644ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12654bd96924SEric Biggers select CRYPTO_BLKCIPHER 12664ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12674bd96924SEric Biggers select CRYPTO_CAST_COMMON 12684bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 12694bd96924SEric Biggers select CRYPTO_SIMD 12704ea1277dSJohannes Goetzfried select CRYPTO_XTS 12714ea1277dSJohannes Goetzfried help 12724ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12734ea1277dSJohannes Goetzfried described in RFC2612. 12744ea1277dSJohannes Goetzfried 12754ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12764ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12774ea1277dSJohannes Goetzfried 1278584fffc8SSebastian Siewiorconfig CRYPTO_DES 1279584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1280584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1281584fffc8SSebastian Siewior help 1282584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1283584fffc8SSebastian Siewior 1284c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1285c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 128697da37b3SDave Jones depends on SPARC64 1287c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1288c5aac2dfSDavid S. Miller select CRYPTO_DES 1289c5aac2dfSDavid S. Miller help 1290c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1291c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1292c5aac2dfSDavid S. Miller 12936574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 12946574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 12956574e6c6SJussi Kivilinna depends on X86 && 64BIT 129609c0f03bSEric Biggers select CRYPTO_BLKCIPHER 12976574e6c6SJussi Kivilinna select CRYPTO_DES 12986574e6c6SJussi Kivilinna help 12996574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13006574e6c6SJussi Kivilinna 13016574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13026574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13036574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13046574e6c6SJussi Kivilinna one that processes three blocks parallel. 13056574e6c6SJussi Kivilinna 1306584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1307584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1308584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1309584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1310584fffc8SSebastian Siewior help 1311584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1312584fffc8SSebastian Siewior 1313584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1314584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1315584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1316584fffc8SSebastian Siewior help 1317584fffc8SSebastian Siewior Khazad cipher algorithm. 1318584fffc8SSebastian Siewior 1319584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1320584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1321584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1322584fffc8SSebastian Siewior 1323584fffc8SSebastian Siewior See also: 13246d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1325e2ee95b8SHye-Shik Chang 13262407d608STan Swee Hengconfig CRYPTO_SALSA20 13273b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13282407d608STan Swee Heng select CRYPTO_BLKCIPHER 13292407d608STan Swee Heng help 13302407d608STan Swee Heng Salsa20 stream cipher algorithm. 13312407d608STan Swee Heng 13322407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13332407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13342407d608STan Swee Heng 13352407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13362407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13371da177e4SLinus Torvalds 1338974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13393b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1340974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1341974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1342c9a3ff8fSEric Biggers select CRYPTO_SALSA20 1343974e4b75STan Swee Heng help 1344974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1345974e4b75STan Swee Heng 1346974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1347974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1348974e4b75STan Swee Heng 1349974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1350974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1351974e4b75STan Swee Heng 13529a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13533b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13549a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13559a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 1356c9a3ff8fSEric Biggers select CRYPTO_SALSA20 13579a7dafbbSTan Swee Heng help 13589a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13599a7dafbbSTan Swee Heng 13609a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13619a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13629a7dafbbSTan Swee Heng 13639a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13649a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13659a7dafbbSTan Swee Heng 1366c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1367c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1368c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1369c08d0e64SMartin Willi help 1370c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1371c08d0e64SMartin Willi 1372c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1373c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1374c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1375c08d0e64SMartin Willi 1376c08d0e64SMartin Willi See also: 1377c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1378c08d0e64SMartin Willi 1379c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13803d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1381c9320b6dSMartin Willi depends on X86 && 64BIT 1382c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1383c9320b6dSMartin Willi select CRYPTO_CHACHA20 1384c9320b6dSMartin Willi help 1385c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1386c9320b6dSMartin Willi 1387c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1388c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1389c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1390c9320b6dSMartin Willi 1391c9320b6dSMartin Willi See also: 1392c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1393c9320b6dSMartin Willi 1394584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1395584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1396584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1397584fffc8SSebastian Siewior help 1398584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1399584fffc8SSebastian Siewior 1400584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1401584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1402584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1403584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1404584fffc8SSebastian Siewior 1405584fffc8SSebastian Siewior See also: 1406584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1407584fffc8SSebastian Siewior 1408584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1409584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1410584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1411584fffc8SSebastian Siewior help 1412584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1413584fffc8SSebastian Siewior 1414584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1415584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1416584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1417584fffc8SSebastian Siewior 1418584fffc8SSebastian Siewior See also: 1419584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1420584fffc8SSebastian Siewior 1421937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1422937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1423937c30d7SJussi Kivilinna depends on X86 && 64BIT 1424e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1425596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1426937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1427e0f409dcSEric Biggers select CRYPTO_SIMD 1428937c30d7SJussi Kivilinna help 1429937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1430937c30d7SJussi Kivilinna 1431937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1432937c30d7SJussi Kivilinna of 8 bits. 1433937c30d7SJussi Kivilinna 14341e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1435937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1436937c30d7SJussi Kivilinna 1437937c30d7SJussi Kivilinna See also: 1438937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1439937c30d7SJussi Kivilinna 1440251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1441251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1442251496dbSJussi Kivilinna depends on X86 && !64BIT 1443e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1444596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1445251496dbSJussi Kivilinna select CRYPTO_SERPENT 1446e0f409dcSEric Biggers select CRYPTO_SIMD 1447251496dbSJussi Kivilinna help 1448251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1449251496dbSJussi Kivilinna 1450251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1451251496dbSJussi Kivilinna of 8 bits. 1452251496dbSJussi Kivilinna 1453251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1454251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1455251496dbSJussi Kivilinna 1456251496dbSJussi Kivilinna See also: 1457251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1458251496dbSJussi Kivilinna 14597efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14607efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14617efe4076SJohannes Goetzfried depends on X86 && 64BIT 1462e16bf974SEric Biggers select CRYPTO_BLKCIPHER 14631d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14647efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1465e16bf974SEric Biggers select CRYPTO_SIMD 14667efe4076SJohannes Goetzfried select CRYPTO_XTS 14677efe4076SJohannes Goetzfried help 14687efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14697efe4076SJohannes Goetzfried 14707efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14717efe4076SJohannes Goetzfried of 8 bits. 14727efe4076SJohannes Goetzfried 14737efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14747efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14757efe4076SJohannes Goetzfried 14767efe4076SJohannes Goetzfried See also: 14777efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14787efe4076SJohannes Goetzfried 147956d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 148056d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 148156d76c96SJussi Kivilinna depends on X86 && 64BIT 148256d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 148356d76c96SJussi Kivilinna help 148456d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 148556d76c96SJussi Kivilinna 148656d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 148756d76c96SJussi Kivilinna of 8 bits. 148856d76c96SJussi Kivilinna 148956d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 149056d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 149156d76c96SJussi Kivilinna 149256d76c96SJussi Kivilinna See also: 149356d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 149456d76c96SJussi Kivilinna 1495747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1496747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1497747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1498747c8ce4SGilad Ben-Yossef help 1499747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1500747c8ce4SGilad Ben-Yossef 1501747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1502747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1503747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1504747c8ce4SGilad Ben-Yossef 1505747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1506747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1507747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1508747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1509747c8ce4SGilad Ben-Yossef 1510747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1511747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1512747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1513747c8ce4SGilad Ben-Yossef 1514747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1515747c8ce4SGilad Ben-Yossef 1516747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1517747c8ce4SGilad Ben-Yossef 1518747c8ce4SGilad Ben-Yossef If unsure, say N. 1519747c8ce4SGilad Ben-Yossef 1520da7a0ab5SEric Biggersconfig CRYPTO_SPECK 1521da7a0ab5SEric Biggers tristate "Speck cipher algorithm" 1522da7a0ab5SEric Biggers select CRYPTO_ALGAPI 1523da7a0ab5SEric Biggers help 1524da7a0ab5SEric Biggers Speck is a lightweight block cipher that is tuned for optimal 1525da7a0ab5SEric Biggers performance in software (rather than hardware). 1526da7a0ab5SEric Biggers 1527da7a0ab5SEric Biggers Speck may not be as secure as AES, and should only be used on systems 1528da7a0ab5SEric Biggers where AES is not fast enough. 1529da7a0ab5SEric Biggers 1530da7a0ab5SEric Biggers See also: <https://eprint.iacr.org/2013/404.pdf> 1531da7a0ab5SEric Biggers 1532da7a0ab5SEric Biggers If unsure, say N. 1533da7a0ab5SEric Biggers 1534584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1535584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1536584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1537584fffc8SSebastian Siewior help 1538584fffc8SSebastian Siewior TEA cipher algorithm. 1539584fffc8SSebastian Siewior 1540584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1541584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1542584fffc8SSebastian Siewior little memory. 1543584fffc8SSebastian Siewior 1544584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1545584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1546584fffc8SSebastian Siewior in the TEA algorithm. 1547584fffc8SSebastian Siewior 1548584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1549584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1550584fffc8SSebastian Siewior 1551584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1552584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1553584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1554584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1555584fffc8SSebastian Siewior help 1556584fffc8SSebastian Siewior Twofish cipher algorithm. 1557584fffc8SSebastian Siewior 1558584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1559584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1560584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1561584fffc8SSebastian Siewior bits. 1562584fffc8SSebastian Siewior 1563584fffc8SSebastian Siewior See also: 1564584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1565584fffc8SSebastian Siewior 1566584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1567584fffc8SSebastian Siewior tristate 1568584fffc8SSebastian Siewior help 1569584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1570584fffc8SSebastian Siewior generic c and the assembler implementations. 1571584fffc8SSebastian Siewior 1572584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1573584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1574584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1575584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1576584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1577584fffc8SSebastian Siewior help 1578584fffc8SSebastian Siewior Twofish cipher algorithm. 1579584fffc8SSebastian Siewior 1580584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1581584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1582584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1583584fffc8SSebastian Siewior bits. 1584584fffc8SSebastian Siewior 1585584fffc8SSebastian Siewior See also: 1586584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1587584fffc8SSebastian Siewior 1588584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1589584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1590584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1591584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1592584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1593584fffc8SSebastian Siewior help 1594584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1595584fffc8SSebastian Siewior 1596584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1597584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1598584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1599584fffc8SSebastian Siewior bits. 1600584fffc8SSebastian Siewior 1601584fffc8SSebastian Siewior See also: 1602584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1603584fffc8SSebastian Siewior 16048280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16058280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1606f21a7c19SAl Viro depends on X86 && 64BIT 160737992fa4SEric Biggers select CRYPTO_BLKCIPHER 16088280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16098280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1610414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16118280daadSJussi Kivilinna help 16128280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16138280daadSJussi Kivilinna 16148280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16158280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16168280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16178280daadSJussi Kivilinna bits. 16188280daadSJussi Kivilinna 16198280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16208280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16218280daadSJussi Kivilinna 16228280daadSJussi Kivilinna See also: 16238280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16248280daadSJussi Kivilinna 1625107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1626107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1627107778b5SJohannes Goetzfried depends on X86 && 64BIT 16280e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1629a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16300e6ab46dSEric Biggers select CRYPTO_SIMD 1631107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1632107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1633107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1634107778b5SJohannes Goetzfried help 1635107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1636107778b5SJohannes Goetzfried 1637107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1638107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1639107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1640107778b5SJohannes Goetzfried bits. 1641107778b5SJohannes Goetzfried 1642107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1643107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1644107778b5SJohannes Goetzfried 1645107778b5SJohannes Goetzfried See also: 1646107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1647107778b5SJohannes Goetzfried 1648584fffc8SSebastian Siewiorcomment "Compression" 1649584fffc8SSebastian Siewior 16501da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16511da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1652cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1653f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16541da177e4SLinus Torvalds select ZLIB_INFLATE 16551da177e4SLinus Torvalds select ZLIB_DEFLATE 16561da177e4SLinus Torvalds help 16571da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16581da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16591da177e4SLinus Torvalds 16601da177e4SLinus Torvalds You will most probably want this if using IPSec. 16611da177e4SLinus Torvalds 16620b77abb3SZoltan Sogorconfig CRYPTO_LZO 16630b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16640b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1665ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16660b77abb3SZoltan Sogor select LZO_COMPRESS 16670b77abb3SZoltan Sogor select LZO_DECOMPRESS 16680b77abb3SZoltan Sogor help 16690b77abb3SZoltan Sogor This is the LZO algorithm. 16700b77abb3SZoltan Sogor 167135a1fc18SSeth Jenningsconfig CRYPTO_842 167235a1fc18SSeth Jennings tristate "842 compression algorithm" 16732062c5b6SDan Streetman select CRYPTO_ALGAPI 16746a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16752062c5b6SDan Streetman select 842_COMPRESS 16762062c5b6SDan Streetman select 842_DECOMPRESS 167735a1fc18SSeth Jennings help 167835a1fc18SSeth Jennings This is the 842 algorithm. 167935a1fc18SSeth Jennings 16800ea8530dSChanho Minconfig CRYPTO_LZ4 16810ea8530dSChanho Min tristate "LZ4 compression algorithm" 16820ea8530dSChanho Min select CRYPTO_ALGAPI 16838cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16840ea8530dSChanho Min select LZ4_COMPRESS 16850ea8530dSChanho Min select LZ4_DECOMPRESS 16860ea8530dSChanho Min help 16870ea8530dSChanho Min This is the LZ4 algorithm. 16880ea8530dSChanho Min 16890ea8530dSChanho Minconfig CRYPTO_LZ4HC 16900ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16910ea8530dSChanho Min select CRYPTO_ALGAPI 169291d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16930ea8530dSChanho Min select LZ4HC_COMPRESS 16940ea8530dSChanho Min select LZ4_DECOMPRESS 16950ea8530dSChanho Min help 16960ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16970ea8530dSChanho Min 1698*d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1699*d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1700*d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1701*d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1702*d28fc3dbSNick Terrell select ZSTD_COMPRESS 1703*d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1704*d28fc3dbSNick Terrell help 1705*d28fc3dbSNick Terrell This is the zstd algorithm. 1706*d28fc3dbSNick Terrell 170717f0f4a4SNeil Hormancomment "Random Number Generation" 170817f0f4a4SNeil Horman 170917f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 171017f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 171117f0f4a4SNeil Horman select CRYPTO_AES 171217f0f4a4SNeil Horman select CRYPTO_RNG 171317f0f4a4SNeil Horman help 171417f0f4a4SNeil Horman This option enables the generic pseudo random number generator 171517f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17167dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17177dd607e8SJiri Kosina CRYPTO_FIPS is selected 171817f0f4a4SNeil Horman 1719f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1720419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1721419090c6SStephan Mueller help 1722419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1723419090c6SStephan Mueller more of the DRBG types must be selected. 1724419090c6SStephan Mueller 1725f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1726419090c6SStephan Mueller 1727419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1728401e4238SHerbert Xu bool 1729419090c6SStephan Mueller default y 1730419090c6SStephan Mueller select CRYPTO_HMAC 1731826775bbSHerbert Xu select CRYPTO_SHA256 1732419090c6SStephan Mueller 1733419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1734419090c6SStephan Mueller bool "Enable Hash DRBG" 1735826775bbSHerbert Xu select CRYPTO_SHA256 1736419090c6SStephan Mueller help 1737419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1738419090c6SStephan Mueller 1739419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1740419090c6SStephan Mueller bool "Enable CTR DRBG" 1741419090c6SStephan Mueller select CRYPTO_AES 174235591285SStephan Mueller depends on CRYPTO_CTR 1743419090c6SStephan Mueller help 1744419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1745419090c6SStephan Mueller 1746f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1747f2c89a10SHerbert Xu tristate 1748401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1749f2c89a10SHerbert Xu select CRYPTO_RNG 1750bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1751f2c89a10SHerbert Xu 1752f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1753419090c6SStephan Mueller 1754bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1755bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17562f313e02SArnd Bergmann select CRYPTO_RNG 1757bb5530e4SStephan Mueller help 1758bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1759bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1760bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1761bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1762bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1763bb5530e4SStephan Mueller 176403c8efc1SHerbert Xuconfig CRYPTO_USER_API 176503c8efc1SHerbert Xu tristate 176603c8efc1SHerbert Xu 1767fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1768fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17697451708fSHerbert Xu depends on NET 1770fe869cdbSHerbert Xu select CRYPTO_HASH 1771fe869cdbSHerbert Xu select CRYPTO_USER_API 1772fe869cdbSHerbert Xu help 1773fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1774fe869cdbSHerbert Xu algorithms. 1775fe869cdbSHerbert Xu 17768ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17778ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17787451708fSHerbert Xu depends on NET 17798ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17808ff59090SHerbert Xu select CRYPTO_USER_API 17818ff59090SHerbert Xu help 17828ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17838ff59090SHerbert Xu key cipher algorithms. 17848ff59090SHerbert Xu 17852f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17862f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17872f375538SStephan Mueller depends on NET 17882f375538SStephan Mueller select CRYPTO_RNG 17892f375538SStephan Mueller select CRYPTO_USER_API 17902f375538SStephan Mueller help 17912f375538SStephan Mueller This option enables the user-spaces interface for random 17922f375538SStephan Mueller number generator algorithms. 17932f375538SStephan Mueller 1794b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1795b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1796b64a2d95SHerbert Xu depends on NET 1797b64a2d95SHerbert Xu select CRYPTO_AEAD 179872548b09SStephan Mueller select CRYPTO_BLKCIPHER 179972548b09SStephan Mueller select CRYPTO_NULL 1800b64a2d95SHerbert Xu select CRYPTO_USER_API 1801b64a2d95SHerbert Xu help 1802b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1803b64a2d95SHerbert Xu cipher algorithms. 1804b64a2d95SHerbert Xu 1805ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1806ee08997fSDmitry Kasatkin bool 1807ee08997fSDmitry Kasatkin 18081da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1809964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1810cfc411e7SDavid Howellssource certs/Kconfig 18111da177e4SLinus Torvalds 1812cce9e06dSHerbert Xuendif # if CRYPTO 1813