xref: /linux/crypto/Kconfig (revision cfc2bb32b31371d6bffc6bf2da3548f20ad48c83)
11da177e4SLinus Torvalds#
2685784aaSDan Williams# Generic algorithms support
3685784aaSDan Williams#
4685784aaSDan Williamsconfig XOR_BLOCKS
5685784aaSDan Williams	tristate
6685784aaSDan Williams
7685784aaSDan Williams#
89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
99bc89cd8SDan Williams#
109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
119bc89cd8SDan Williams
129bc89cd8SDan Williams#
131da177e4SLinus Torvalds# Cryptographic API Configuration
141da177e4SLinus Torvalds#
152e290f43SJan Engelhardtmenuconfig CRYPTO
16c3715cb9SSebastian Siewior	tristate "Cryptographic API"
171da177e4SLinus Torvalds	help
181da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
191da177e4SLinus Torvalds
20cce9e06dSHerbert Xuif CRYPTO
21cce9e06dSHerbert Xu
22584fffc8SSebastian Siewiorcomment "Crypto core or helper"
23584fffc8SSebastian Siewior
24ccb778e1SNeil Hormanconfig CRYPTO_FIPS
25ccb778e1SNeil Horman	bool "FIPS 200 compliance"
26f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27002c77a4SJarod Wilson	depends on MODULE_SIG
28ccb778e1SNeil Horman	help
29ccb778e1SNeil Horman	  This options enables the fips boot option which is
30ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
31ccb778e1SNeil Horman	  certification.  You should say no unless you know what
32e84c5480SChuck Ebbert	  this is.
33ccb778e1SNeil Horman
34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
35cce9e06dSHerbert Xu	tristate
366a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
37cce9e06dSHerbert Xu	help
38cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
39cce9e06dSHerbert Xu
406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
416a0fcbb4SHerbert Xu	tristate
426a0fcbb4SHerbert Xu
431ae97820SHerbert Xuconfig CRYPTO_AEAD
441ae97820SHerbert Xu	tristate
456a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
461ae97820SHerbert Xu	select CRYPTO_ALGAPI
471ae97820SHerbert Xu
486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
496a0fcbb4SHerbert Xu	tristate
506a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
516a0fcbb4SHerbert Xu
525cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
535cde0af2SHerbert Xu	tristate
546a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
555cde0af2SHerbert Xu	select CRYPTO_ALGAPI
566a0fcbb4SHerbert Xu
576a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
586a0fcbb4SHerbert Xu	tristate
596a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
606a0fcbb4SHerbert Xu	select CRYPTO_RNG2
610a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
625cde0af2SHerbert Xu
63055bcee3SHerbert Xuconfig CRYPTO_HASH
64055bcee3SHerbert Xu	tristate
656a0fcbb4SHerbert Xu	select CRYPTO_HASH2
66055bcee3SHerbert Xu	select CRYPTO_ALGAPI
67055bcee3SHerbert Xu
686a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
696a0fcbb4SHerbert Xu	tristate
706a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
716a0fcbb4SHerbert Xu
7217f0f4a4SNeil Hormanconfig CRYPTO_RNG
7317f0f4a4SNeil Horman	tristate
746a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7517f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7617f0f4a4SNeil Horman
776a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
786a0fcbb4SHerbert Xu	tristate
796a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
806a0fcbb4SHerbert Xu
81401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
82401e4238SHerbert Xu	tristate
83401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
84401e4238SHerbert Xu
85a1d2f095SGeert Uytterhoevenconfig CRYPTO_PCOMP
86a1d2f095SGeert Uytterhoeven	tristate
87bc94e596SHerbert Xu	select CRYPTO_PCOMP2
88bc94e596SHerbert Xu	select CRYPTO_ALGAPI
89bc94e596SHerbert Xu
90bc94e596SHerbert Xuconfig CRYPTO_PCOMP2
91bc94e596SHerbert Xu	tristate
92a1d2f095SGeert Uytterhoeven	select CRYPTO_ALGAPI2
93a1d2f095SGeert Uytterhoeven
943c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	tristate
963c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
973c339ab8STadeusz Struk
983c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
993c339ab8STadeusz Struk	tristate
1003c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
1013c339ab8STadeusz Struk	select CRYPTO_ALGAPI
1023c339ab8STadeusz Struk
103*cfc2bb32STadeusz Strukconfig CRYPTO_RSA
104*cfc2bb32STadeusz Struk	tristate "RSA algorithm"
105*cfc2bb32STadeusz Struk	select AKCIPHER
106*cfc2bb32STadeusz Struk	select MPILIB
107*cfc2bb32STadeusz Struk	select ASN1
108*cfc2bb32STadeusz Struk	help
109*cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
110*cfc2bb32STadeusz Struk
1112b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1122b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1136a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1142b8c19dbSHerbert Xu	help
1152b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1162b8c19dbSHerbert Xu	  cbc(aes).
1172b8c19dbSHerbert Xu
1186a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1196a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1206a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1216a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1226a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
123bc94e596SHerbert Xu	select CRYPTO_PCOMP2
1246a0fcbb4SHerbert Xu
125a38f7907SSteffen Klassertconfig CRYPTO_USER
126a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1275db017aaSHerbert Xu	depends on NET
128a38f7907SSteffen Klassert	select CRYPTO_MANAGER
129a38f7907SSteffen Klassert	help
130d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
131a38f7907SSteffen Klassert	  cbc(aes).
132a38f7907SSteffen Klassert
133326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
134326a6346SHerbert Xu	bool "Disable run-time self tests"
13500ca28a5SHerbert Xu	default y
13600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1370b767f96SAlexander Shishkin	help
138326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
139326a6346SHerbert Xu	  algorithm registration.
1400b767f96SAlexander Shishkin
141584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
14208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
143584fffc8SSebastian Siewior	help
144584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
145584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
146584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
147584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
148584fffc8SSebastian Siewior	  an external module that requires these functions.
149584fffc8SSebastian Siewior
150584fffc8SSebastian Siewiorconfig CRYPTO_NULL
151584fffc8SSebastian Siewior	tristate "Null algorithms"
152584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
153584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
154d35d2454SHerbert Xu	select CRYPTO_HASH
155584fffc8SSebastian Siewior	help
156584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
157584fffc8SSebastian Siewior
1585068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1593b4afaf2SKees Cook	tristate "Parallel crypto engine"
1603b4afaf2SKees Cook	depends on SMP
1615068c7a8SSteffen Klassert	select PADATA
1625068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1635068c7a8SSteffen Klassert	select CRYPTO_AEAD
1645068c7a8SSteffen Klassert	help
1655068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1665068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1675068c7a8SSteffen Klassert
16825c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
16925c38d3fSHuang Ying       tristate
17025c38d3fSHuang Ying
171584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
172584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
173584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
174b8a28251SLoc Ho	select CRYPTO_HASH
175584fffc8SSebastian Siewior	select CRYPTO_MANAGER
176254eff77SHuang Ying	select CRYPTO_WORKQUEUE
177584fffc8SSebastian Siewior	help
178584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
179584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
180584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
181584fffc8SSebastian Siewior
1821e65b81aSTim Chenconfig CRYPTO_MCRYPTD
1831e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
1841e65b81aSTim Chen	select CRYPTO_BLKCIPHER
1851e65b81aSTim Chen	select CRYPTO_HASH
1861e65b81aSTim Chen	select CRYPTO_MANAGER
1871e65b81aSTim Chen	select CRYPTO_WORKQUEUE
1881e65b81aSTim Chen	help
1891e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
1901e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
1911e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
1921e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
1931e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
1940e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
1951e65b81aSTim Chen
196584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
197584fffc8SSebastian Siewior	tristate "Authenc support"
198584fffc8SSebastian Siewior	select CRYPTO_AEAD
199584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
200584fffc8SSebastian Siewior	select CRYPTO_MANAGER
201584fffc8SSebastian Siewior	select CRYPTO_HASH
202584fffc8SSebastian Siewior	help
203584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
204584fffc8SSebastian Siewior	  This is required for IPSec.
205584fffc8SSebastian Siewior
206584fffc8SSebastian Siewiorconfig CRYPTO_TEST
207584fffc8SSebastian Siewior	tristate "Testing module"
208584fffc8SSebastian Siewior	depends on m
209da7f033dSHerbert Xu	select CRYPTO_MANAGER
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
212584fffc8SSebastian Siewior
213a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER
214ffaf9156SJussi Kivilinna	tristate
215ffaf9156SJussi Kivilinna	select CRYPTO_CRYPTD
216ffaf9156SJussi Kivilinna
217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
218596d8750SJussi Kivilinna	tristate
219596d8750SJussi Kivilinna	depends on X86
220596d8750SJussi Kivilinna	select CRYPTO_ALGAPI
221596d8750SJussi Kivilinna
222584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
223584fffc8SSebastian Siewior
224584fffc8SSebastian Siewiorconfig CRYPTO_CCM
225584fffc8SSebastian Siewior	tristate "CCM support"
226584fffc8SSebastian Siewior	select CRYPTO_CTR
227584fffc8SSebastian Siewior	select CRYPTO_AEAD
228584fffc8SSebastian Siewior	help
229584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
230584fffc8SSebastian Siewior
231584fffc8SSebastian Siewiorconfig CRYPTO_GCM
232584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
233584fffc8SSebastian Siewior	select CRYPTO_CTR
234584fffc8SSebastian Siewior	select CRYPTO_AEAD
2359382d97aSHuang Ying	select CRYPTO_GHASH
2369489667dSJussi Kivilinna	select CRYPTO_NULL
237584fffc8SSebastian Siewior	help
238584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
239584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
240584fffc8SSebastian Siewior
24171ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
24271ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
24371ebc4d1SMartin Willi	select CRYPTO_CHACHA20
24471ebc4d1SMartin Willi	select CRYPTO_POLY1305
24571ebc4d1SMartin Willi	select CRYPTO_AEAD
24671ebc4d1SMartin Willi	help
24771ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
24871ebc4d1SMartin Willi
24971ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
25071ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
25171ebc4d1SMartin Willi	  IETF protocols.
25271ebc4d1SMartin Willi
253584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
254584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
255584fffc8SSebastian Siewior	select CRYPTO_AEAD
256584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
257856e3f40SHerbert Xu	select CRYPTO_NULL
258401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
259584fffc8SSebastian Siewior	help
260584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
261584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
262584fffc8SSebastian Siewior
263a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
264a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
265a10f554fSHerbert Xu	select CRYPTO_AEAD
266a10f554fSHerbert Xu	select CRYPTO_NULL
267401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
2683491244cSHerbert Xu	default m
269a10f554fSHerbert Xu	help
270a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
271a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
272a10f554fSHerbert Xu	  algorithm for CBC.
273a10f554fSHerbert Xu
274584fffc8SSebastian Siewiorcomment "Block modes"
275584fffc8SSebastian Siewior
276584fffc8SSebastian Siewiorconfig CRYPTO_CBC
277584fffc8SSebastian Siewior	tristate "CBC support"
278584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
279584fffc8SSebastian Siewior	select CRYPTO_MANAGER
280584fffc8SSebastian Siewior	help
281584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
282584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
283584fffc8SSebastian Siewior
284584fffc8SSebastian Siewiorconfig CRYPTO_CTR
285584fffc8SSebastian Siewior	tristate "CTR support"
286584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
287584fffc8SSebastian Siewior	select CRYPTO_SEQIV
288584fffc8SSebastian Siewior	select CRYPTO_MANAGER
289584fffc8SSebastian Siewior	help
290584fffc8SSebastian Siewior	  CTR: Counter mode
291584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
292584fffc8SSebastian Siewior
293584fffc8SSebastian Siewiorconfig CRYPTO_CTS
294584fffc8SSebastian Siewior	tristate "CTS support"
295584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
296584fffc8SSebastian Siewior	help
297584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
298584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
299584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
300584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
301584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
302584fffc8SSebastian Siewior	  for AES encryption.
303584fffc8SSebastian Siewior
304584fffc8SSebastian Siewiorconfig CRYPTO_ECB
305584fffc8SSebastian Siewior	tristate "ECB support"
306584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
307584fffc8SSebastian Siewior	select CRYPTO_MANAGER
308584fffc8SSebastian Siewior	help
309584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
310584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
311584fffc8SSebastian Siewior	  the input block by block.
312584fffc8SSebastian Siewior
313584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3142470a2b2SJussi Kivilinna	tristate "LRW support"
315584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
316584fffc8SSebastian Siewior	select CRYPTO_MANAGER
317584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
318584fffc8SSebastian Siewior	help
319584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
320584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
321584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
322584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
323584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
324584fffc8SSebastian Siewior
325584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
326584fffc8SSebastian Siewior	tristate "PCBC support"
327584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
328584fffc8SSebastian Siewior	select CRYPTO_MANAGER
329584fffc8SSebastian Siewior	help
330584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
331584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
332584fffc8SSebastian Siewior
333584fffc8SSebastian Siewiorconfig CRYPTO_XTS
3345bcf8e6dSJussi Kivilinna	tristate "XTS support"
335584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
336584fffc8SSebastian Siewior	select CRYPTO_MANAGER
337584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
338584fffc8SSebastian Siewior	help
339584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
340584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
341584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
342584fffc8SSebastian Siewior
343584fffc8SSebastian Siewiorcomment "Hash modes"
344584fffc8SSebastian Siewior
34593b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
34693b5e86aSJussi Kivilinna	tristate "CMAC support"
34793b5e86aSJussi Kivilinna	select CRYPTO_HASH
34893b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
34993b5e86aSJussi Kivilinna	help
35093b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
35193b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
35293b5e86aSJussi Kivilinna
35393b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
35493b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
35593b5e86aSJussi Kivilinna
3561da177e4SLinus Torvaldsconfig CRYPTO_HMAC
3578425165dSHerbert Xu	tristate "HMAC support"
3580796ae06SHerbert Xu	select CRYPTO_HASH
35943518407SHerbert Xu	select CRYPTO_MANAGER
3601da177e4SLinus Torvalds	help
3611da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
3621da177e4SLinus Torvalds	  This is required for IPSec.
3631da177e4SLinus Torvalds
364333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
365333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
366333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
367333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
368333b0d7eSKazunori MIYAZAWA	help
369333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
370333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
371333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
372333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
373333b0d7eSKazunori MIYAZAWA
374f1939f7cSShane Wangconfig CRYPTO_VMAC
375f1939f7cSShane Wang	tristate "VMAC support"
376f1939f7cSShane Wang	select CRYPTO_HASH
377f1939f7cSShane Wang	select CRYPTO_MANAGER
378f1939f7cSShane Wang	help
379f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
380f1939f7cSShane Wang	  very high speed on 64-bit architectures.
381f1939f7cSShane Wang
382f1939f7cSShane Wang	  See also:
383f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
384f1939f7cSShane Wang
385584fffc8SSebastian Siewiorcomment "Digest"
386584fffc8SSebastian Siewior
387584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
388584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
3895773a3e6SHerbert Xu	select CRYPTO_HASH
3906a0962b2SDarrick J. Wong	select CRC32
3911da177e4SLinus Torvalds	help
392584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
393584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
39469c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
3951da177e4SLinus Torvalds
3968cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
3978cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
3988cb51ba8SAustin Zhang	depends on X86
3998cb51ba8SAustin Zhang	select CRYPTO_HASH
4008cb51ba8SAustin Zhang	help
4018cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
4028cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
4038cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
4048cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
4058cb51ba8SAustin Zhang	  gain performance compared with software implementation.
4068cb51ba8SAustin Zhang	  Module will be crc32c-intel.
4078cb51ba8SAustin Zhang
408442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
409442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
410442a7c40SDavid S. Miller	depends on SPARC64
411442a7c40SDavid S. Miller	select CRYPTO_HASH
412442a7c40SDavid S. Miller	select CRC32
413442a7c40SDavid S. Miller	help
414442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
415442a7c40SDavid S. Miller	  when available.
416442a7c40SDavid S. Miller
41778c37d19SAlexander Boykoconfig CRYPTO_CRC32
41878c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
41978c37d19SAlexander Boyko	select CRYPTO_HASH
42078c37d19SAlexander Boyko	select CRC32
42178c37d19SAlexander Boyko	help
42278c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
42378c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
42478c37d19SAlexander Boyko
42578c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
42678c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
42778c37d19SAlexander Boyko	depends on X86
42878c37d19SAlexander Boyko	select CRYPTO_HASH
42978c37d19SAlexander Boyko	select CRC32
43078c37d19SAlexander Boyko	help
43178c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
43278c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
43378c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
43478c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
43578c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
43678c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
43778c37d19SAlexander Boyko
43868411521SHerbert Xuconfig CRYPTO_CRCT10DIF
43968411521SHerbert Xu	tristate "CRCT10DIF algorithm"
44068411521SHerbert Xu	select CRYPTO_HASH
44168411521SHerbert Xu	help
44268411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
44368411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
44468411521SHerbert Xu	  transforms to be used if they are available.
44568411521SHerbert Xu
44668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
44768411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
44868411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
44968411521SHerbert Xu	select CRYPTO_HASH
45068411521SHerbert Xu	help
45168411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
45268411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
45368411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
45468411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
45568411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
45668411521SHerbert Xu
4572cdc6899SHuang Yingconfig CRYPTO_GHASH
4582cdc6899SHuang Ying	tristate "GHASH digest algorithm"
4592cdc6899SHuang Ying	select CRYPTO_GF128MUL
4602cdc6899SHuang Ying	help
4612cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
4622cdc6899SHuang Ying
463f979e014SMartin Williconfig CRYPTO_POLY1305
464f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
465f979e014SMartin Willi	help
466f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
467f979e014SMartin Willi
468f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
469f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
470f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
471f979e014SMartin Willi
4721da177e4SLinus Torvaldsconfig CRYPTO_MD4
4731da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
474808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
4751da177e4SLinus Torvalds	help
4761da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
4771da177e4SLinus Torvalds
4781da177e4SLinus Torvaldsconfig CRYPTO_MD5
4791da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
48014b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
4811da177e4SLinus Torvalds	help
4821da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
4831da177e4SLinus Torvalds
484d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
485d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
486d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
487d69e75deSAaro Koskinen	select CRYPTO_MD5
488d69e75deSAaro Koskinen	select CRYPTO_HASH
489d69e75deSAaro Koskinen	help
490d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
491d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
492d69e75deSAaro Koskinen
493e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
494e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
495e8e59953SMarkus Stockhausen	depends on PPC
496e8e59953SMarkus Stockhausen	select CRYPTO_HASH
497e8e59953SMarkus Stockhausen	help
498e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
499e8e59953SMarkus Stockhausen	  in PPC assembler.
500e8e59953SMarkus Stockhausen
501fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
502fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
503fa4dfedcSDavid S. Miller	depends on SPARC64
504fa4dfedcSDavid S. Miller	select CRYPTO_MD5
505fa4dfedcSDavid S. Miller	select CRYPTO_HASH
506fa4dfedcSDavid S. Miller	help
507fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
508fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
509fa4dfedcSDavid S. Miller
510584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
511584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
51219e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
513584fffc8SSebastian Siewior	help
514584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
515584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
516584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
517584fffc8SSebastian Siewior	  of the algorithm.
518584fffc8SSebastian Siewior
51982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
52082798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
5217c4468bcSHerbert Xu	select CRYPTO_HASH
52282798f90SAdrian-Ken Rueegsegger	help
52382798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
52482798f90SAdrian-Ken Rueegsegger
52582798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
52635ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
52782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
52882798f90SAdrian-Ken Rueegsegger
52982798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
5306d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
53182798f90SAdrian-Ken Rueegsegger
53282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
53382798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
534e5835fbaSHerbert Xu	select CRYPTO_HASH
53582798f90SAdrian-Ken Rueegsegger	help
53682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
53782798f90SAdrian-Ken Rueegsegger
53882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
53982798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
540b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
541b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
54282798f90SAdrian-Ken Rueegsegger
543b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
544b6d44341SAdrian Bunk	  against RIPEMD-160.
545534fe2c1SAdrian-Ken Rueegsegger
546534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
5476d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
548534fe2c1SAdrian-Ken Rueegsegger
549534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
550534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
551d8a5e2e9SHerbert Xu	select CRYPTO_HASH
552534fe2c1SAdrian-Ken Rueegsegger	help
553b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
554b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
555b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
556b6d44341SAdrian Bunk	  (than RIPEMD-128).
557534fe2c1SAdrian-Ken Rueegsegger
558534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
5596d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
560534fe2c1SAdrian-Ken Rueegsegger
561534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
562534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
5633b8efb4cSHerbert Xu	select CRYPTO_HASH
564534fe2c1SAdrian-Ken Rueegsegger	help
565b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
566b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
567b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
568b6d44341SAdrian Bunk	  (than RIPEMD-160).
569534fe2c1SAdrian-Ken Rueegsegger
57082798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
5716d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
57282798f90SAdrian-Ken Rueegsegger
5731da177e4SLinus Torvaldsconfig CRYPTO_SHA1
5741da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
57554ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5761da177e4SLinus Torvalds	help
5771da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
5781da177e4SLinus Torvalds
57966be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
5807c1da8d0Schandramouli narayanan	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
58166be8951SMathias Krause	depends on X86 && 64BIT
58266be8951SMathias Krause	select CRYPTO_SHA1
58366be8951SMathias Krause	select CRYPTO_HASH
58466be8951SMathias Krause	help
58566be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
58666be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
5877c1da8d0Schandramouli narayanan	  Extensions (AVX/AVX2), when available.
58866be8951SMathias Krause
5898275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
5908275d1aaSTim Chen	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
5918275d1aaSTim Chen	depends on X86 && 64BIT
5928275d1aaSTim Chen	select CRYPTO_SHA256
5938275d1aaSTim Chen	select CRYPTO_HASH
5948275d1aaSTim Chen	help
5958275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
5968275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
5978275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
5988275d1aaSTim Chen	  version 2 (AVX2) instructions, when available.
5998275d1aaSTim Chen
60087de4579STim Chenconfig CRYPTO_SHA512_SSSE3
60187de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
60287de4579STim Chen	depends on X86 && 64BIT
60387de4579STim Chen	select CRYPTO_SHA512
60487de4579STim Chen	select CRYPTO_HASH
60587de4579STim Chen	help
60687de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
60787de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
60887de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
60987de4579STim Chen	  version 2 (AVX2) instructions, when available.
61087de4579STim Chen
611efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
612efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
613efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
614efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
615efdb6f6eSAaro Koskinen	select CRYPTO_HASH
616efdb6f6eSAaro Koskinen	help
617efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
618efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
619efdb6f6eSAaro Koskinen
6204ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
6214ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
6224ff28d4cSDavid S. Miller	depends on SPARC64
6234ff28d4cSDavid S. Miller	select CRYPTO_SHA1
6244ff28d4cSDavid S. Miller	select CRYPTO_HASH
6254ff28d4cSDavid S. Miller	help
6264ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
6274ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
6284ff28d4cSDavid S. Miller
629323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
630323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
631323a6bf1SMichael Ellerman	depends on PPC
632323a6bf1SMichael Ellerman	help
633323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
634323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
635323a6bf1SMichael Ellerman
636d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
637d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
638d9850fc5SMarkus Stockhausen	depends on PPC && SPE
639d9850fc5SMarkus Stockhausen	help
640d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
641d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
642d9850fc5SMarkus Stockhausen
6431e65b81aSTim Chenconfig CRYPTO_SHA1_MB
6441e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
6451e65b81aSTim Chen	depends on X86 && 64BIT
6461e65b81aSTim Chen	select CRYPTO_SHA1
6471e65b81aSTim Chen	select CRYPTO_HASH
6481e65b81aSTim Chen	select CRYPTO_MCRYPTD
6491e65b81aSTim Chen	help
6501e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
6511e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
6521e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
6531e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
6541e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
6551e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
6561e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
6571e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
6581e65b81aSTim Chen
6591da177e4SLinus Torvaldsconfig CRYPTO_SHA256
660cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
66150e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6621da177e4SLinus Torvalds	help
6631da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
6641da177e4SLinus Torvalds
6651da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
6661da177e4SLinus Torvalds	  security against collision attacks.
6671da177e4SLinus Torvalds
668cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
669cd12fb90SJonathan Lynch	  of security against collision attacks.
670cd12fb90SJonathan Lynch
6712ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
6722ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
6732ecc1e95SMarkus Stockhausen	depends on PPC && SPE
6742ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
6752ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
6762ecc1e95SMarkus Stockhausen	help
6772ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
6782ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
6792ecc1e95SMarkus Stockhausen
680efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
681efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
682efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
683efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
684efdb6f6eSAaro Koskinen	select CRYPTO_HASH
685efdb6f6eSAaro Koskinen	help
686efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
687efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
688efdb6f6eSAaro Koskinen
68986c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
69086c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
69186c93b24SDavid S. Miller	depends on SPARC64
69286c93b24SDavid S. Miller	select CRYPTO_SHA256
69386c93b24SDavid S. Miller	select CRYPTO_HASH
69486c93b24SDavid S. Miller	help
69586c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
69686c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
69786c93b24SDavid S. Miller
6981da177e4SLinus Torvaldsconfig CRYPTO_SHA512
6991da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
700bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
7011da177e4SLinus Torvalds	help
7021da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
7031da177e4SLinus Torvalds
7041da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
7051da177e4SLinus Torvalds	  security against collision attacks.
7061da177e4SLinus Torvalds
7071da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
7081da177e4SLinus Torvalds	  of security against collision attacks.
7091da177e4SLinus Torvalds
710efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
711efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
712efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
713efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
714efdb6f6eSAaro Koskinen	select CRYPTO_HASH
715efdb6f6eSAaro Koskinen	help
716efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
717efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
718efdb6f6eSAaro Koskinen
719775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
720775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
721775e0c69SDavid S. Miller	depends on SPARC64
722775e0c69SDavid S. Miller	select CRYPTO_SHA512
723775e0c69SDavid S. Miller	select CRYPTO_HASH
724775e0c69SDavid S. Miller	help
725775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
726775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
727775e0c69SDavid S. Miller
7281da177e4SLinus Torvaldsconfig CRYPTO_TGR192
7291da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
730f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
7311da177e4SLinus Torvalds	help
7321da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
7331da177e4SLinus Torvalds
7341da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
7351da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
7361da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
7371da177e4SLinus Torvalds
7381da177e4SLinus Torvalds	  See also:
7391da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
7401da177e4SLinus Torvalds
741584fffc8SSebastian Siewiorconfig CRYPTO_WP512
742584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
7434946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
7441da177e4SLinus Torvalds	help
745584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
7461da177e4SLinus Torvalds
747584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
748584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
7491da177e4SLinus Torvalds
7501da177e4SLinus Torvalds	  See also:
7516d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
7521da177e4SLinus Torvalds
7530e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
7540e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
7558af00860SRichard Weinberger	depends on X86 && 64BIT
7560e1227d3SHuang Ying	select CRYPTO_CRYPTD
7570e1227d3SHuang Ying	help
7580e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
7590e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
7600e1227d3SHuang Ying
761584fffc8SSebastian Siewiorcomment "Ciphers"
7621da177e4SLinus Torvalds
7631da177e4SLinus Torvaldsconfig CRYPTO_AES
7641da177e4SLinus Torvalds	tristate "AES cipher algorithms"
765cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
7661da177e4SLinus Torvalds	help
7671da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
7681da177e4SLinus Torvalds	  algorithm.
7691da177e4SLinus Torvalds
7701da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
7711da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
7721da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
7731da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
7741da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
7751da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
7761da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
7771da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
7781da177e4SLinus Torvalds
7791da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
7801da177e4SLinus Torvalds
7811da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
7821da177e4SLinus Torvalds
7831da177e4SLinus Torvaldsconfig CRYPTO_AES_586
7841da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
785cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
786cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
7875157dea8SSebastian Siewior	select CRYPTO_AES
7881da177e4SLinus Torvalds	help
7891da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
7901da177e4SLinus Torvalds	  algorithm.
7911da177e4SLinus Torvalds
7921da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
7931da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
7941da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
7951da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
7961da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
7971da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
7981da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
7991da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
8001da177e4SLinus Torvalds
8011da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
8021da177e4SLinus Torvalds
8031da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
8041da177e4SLinus Torvalds
805a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
806a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
807cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
808cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
80981190b32SSebastian Siewior	select CRYPTO_AES
810a2a892a2SAndreas Steinmetz	help
811a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
812a2a892a2SAndreas Steinmetz	  algorithm.
813a2a892a2SAndreas Steinmetz
814a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
815a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
816a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
817a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
818a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
819a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
820a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
821a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
822a2a892a2SAndreas Steinmetz
823a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
824a2a892a2SAndreas Steinmetz
825a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
826a2a892a2SAndreas Steinmetz
82754b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
82854b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
8298af00860SRichard Weinberger	depends on X86
8300d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
8310d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
83254b6a1bdSHuang Ying	select CRYPTO_CRYPTD
833801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
83454b6a1bdSHuang Ying	select CRYPTO_ALGAPI
8357643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
836023af608SJussi Kivilinna	select CRYPTO_LRW
837023af608SJussi Kivilinna	select CRYPTO_XTS
83854b6a1bdSHuang Ying	help
83954b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
84054b6a1bdSHuang Ying
84154b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
84254b6a1bdSHuang Ying	  algorithm.
84354b6a1bdSHuang Ying
84454b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
84554b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
84654b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
84754b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
84854b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
84954b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
85054b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
85154b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
85254b6a1bdSHuang Ying
85354b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
85454b6a1bdSHuang Ying
85554b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
85654b6a1bdSHuang Ying
8570d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
8580d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
8590d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
8600d258efbSMathias Krause	  acceleration for CTR.
8612cf4ac8bSHuang Ying
8629bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
8639bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
8649bf4852dSDavid S. Miller	depends on SPARC64
8659bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
8669bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
8679bf4852dSDavid S. Miller	help
8689bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
8699bf4852dSDavid S. Miller
8709bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
8719bf4852dSDavid S. Miller	  algorithm.
8729bf4852dSDavid S. Miller
8739bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
8749bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
8759bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
8769bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
8779bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
8789bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
8799bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
8809bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
8819bf4852dSDavid S. Miller
8829bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
8839bf4852dSDavid S. Miller
8849bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
8859bf4852dSDavid S. Miller
8869bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
8879bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
8889bf4852dSDavid S. Miller	  ECB and CBC.
8899bf4852dSDavid S. Miller
890504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
891504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
892504c6143SMarkus Stockhausen	depends on PPC && SPE
893504c6143SMarkus Stockhausen	help
894504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
895504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
896504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
897504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
898504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
899504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
900504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
901504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
902504c6143SMarkus Stockhausen
9031da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
9041da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
905cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9061da177e4SLinus Torvalds	help
9071da177e4SLinus Torvalds	  Anubis cipher algorithm.
9081da177e4SLinus Torvalds
9091da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
9101da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
9111da177e4SLinus Torvalds	  in the NESSIE competition.
9121da177e4SLinus Torvalds
9131da177e4SLinus Torvalds	  See also:
9146d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
9156d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
9161da177e4SLinus Torvalds
917584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
918584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
919b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
920e2ee95b8SHye-Shik Chang	help
921584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
922e2ee95b8SHye-Shik Chang
923584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
924584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
925584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
926584fffc8SSebastian Siewior	  weakness of the algorithm.
927584fffc8SSebastian Siewior
928584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
929584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
930584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
93152ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
932584fffc8SSebastian Siewior	help
933584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
934584fffc8SSebastian Siewior
935584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
936584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
937584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
938e2ee95b8SHye-Shik Chang
939e2ee95b8SHye-Shik Chang	  See also:
940584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
941584fffc8SSebastian Siewior
94252ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
94352ba867cSJussi Kivilinna	tristate
94452ba867cSJussi Kivilinna	help
94552ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
94652ba867cSJussi Kivilinna	  generic c and the assembler implementations.
94752ba867cSJussi Kivilinna
94852ba867cSJussi Kivilinna	  See also:
94952ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
95052ba867cSJussi Kivilinna
95164b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
95264b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
953f21a7c19SAl Viro	depends on X86 && 64BIT
95464b94ceaSJussi Kivilinna	select CRYPTO_ALGAPI
95564b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
95664b94ceaSJussi Kivilinna	help
95764b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
95864b94ceaSJussi Kivilinna
95964b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
96064b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
96164b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
96264b94ceaSJussi Kivilinna
96364b94ceaSJussi Kivilinna	  See also:
96464b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
96564b94ceaSJussi Kivilinna
966584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
967584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
968584fffc8SSebastian Siewior	depends on CRYPTO
969584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
970584fffc8SSebastian Siewior	help
971584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
972584fffc8SSebastian Siewior
973584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
974584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
975584fffc8SSebastian Siewior
976584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
977584fffc8SSebastian Siewior
978584fffc8SSebastian Siewior	  See also:
979584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
980584fffc8SSebastian Siewior
9810b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
9820b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
983f21a7c19SAl Viro	depends on X86 && 64BIT
9840b95ec56SJussi Kivilinna	depends on CRYPTO
9850b95ec56SJussi Kivilinna	select CRYPTO_ALGAPI
986964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
9870b95ec56SJussi Kivilinna	select CRYPTO_LRW
9880b95ec56SJussi Kivilinna	select CRYPTO_XTS
9890b95ec56SJussi Kivilinna	help
9900b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
9910b95ec56SJussi Kivilinna
9920b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
9930b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
9940b95ec56SJussi Kivilinna
9950b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
9960b95ec56SJussi Kivilinna
9970b95ec56SJussi Kivilinna	  See also:
9980b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
9990b95ec56SJussi Kivilinna
1000d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1001d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1002d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1003d9b1d2e7SJussi Kivilinna	depends on CRYPTO
1004d9b1d2e7SJussi Kivilinna	select CRYPTO_ALGAPI
1005d9b1d2e7SJussi Kivilinna	select CRYPTO_CRYPTD
1006801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1007d9b1d2e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1008d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1009d9b1d2e7SJussi Kivilinna	select CRYPTO_LRW
1010d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1011d9b1d2e7SJussi Kivilinna	help
1012d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1013d9b1d2e7SJussi Kivilinna
1014d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1015d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1016d9b1d2e7SJussi Kivilinna
1017d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1018d9b1d2e7SJussi Kivilinna
1019d9b1d2e7SJussi Kivilinna	  See also:
1020d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1021d9b1d2e7SJussi Kivilinna
1022f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1023f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1024f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1025f3f935a7SJussi Kivilinna	depends on CRYPTO
1026f3f935a7SJussi Kivilinna	select CRYPTO_ALGAPI
1027f3f935a7SJussi Kivilinna	select CRYPTO_CRYPTD
1028801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1029f3f935a7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1030f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1031f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1032f3f935a7SJussi Kivilinna	select CRYPTO_LRW
1033f3f935a7SJussi Kivilinna	select CRYPTO_XTS
1034f3f935a7SJussi Kivilinna	help
1035f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1036f3f935a7SJussi Kivilinna
1037f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1038f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1039f3f935a7SJussi Kivilinna
1040f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1041f3f935a7SJussi Kivilinna
1042f3f935a7SJussi Kivilinna	  See also:
1043f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1044f3f935a7SJussi Kivilinna
104581658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
104681658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
104781658ad0SDavid S. Miller	depends on SPARC64
104881658ad0SDavid S. Miller	depends on CRYPTO
104981658ad0SDavid S. Miller	select CRYPTO_ALGAPI
105081658ad0SDavid S. Miller	help
105181658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
105281658ad0SDavid S. Miller
105381658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
105481658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
105581658ad0SDavid S. Miller
105681658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
105781658ad0SDavid S. Miller
105881658ad0SDavid S. Miller	  See also:
105981658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
106081658ad0SDavid S. Miller
1061044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1062044ab525SJussi Kivilinna	tristate
1063044ab525SJussi Kivilinna	help
1064044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1065044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1066044ab525SJussi Kivilinna
1067584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1068584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1069584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1070044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1071584fffc8SSebastian Siewior	help
1072584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1073584fffc8SSebastian Siewior	  described in RFC2144.
1074584fffc8SSebastian Siewior
10754d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
10764d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
10774d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
10784d6d6a2cSJohannes Goetzfried	select CRYPTO_ALGAPI
10794d6d6a2cSJohannes Goetzfried	select CRYPTO_CRYPTD
1080801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1081044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
10824d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
10834d6d6a2cSJohannes Goetzfried	help
10844d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
10854d6d6a2cSJohannes Goetzfried	  described in RFC2144.
10864d6d6a2cSJohannes Goetzfried
10874d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
10884d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
10894d6d6a2cSJohannes Goetzfried
1090584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1091584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1092584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1093044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1094584fffc8SSebastian Siewior	help
1095584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1096584fffc8SSebastian Siewior	  described in RFC2612.
1097584fffc8SSebastian Siewior
10984ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
10994ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
11004ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
11014ea1277dSJohannes Goetzfried	select CRYPTO_ALGAPI
11024ea1277dSJohannes Goetzfried	select CRYPTO_CRYPTD
1103801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
11044ea1277dSJohannes Goetzfried	select CRYPTO_GLUE_HELPER_X86
1105044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
11064ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
11074ea1277dSJohannes Goetzfried	select CRYPTO_LRW
11084ea1277dSJohannes Goetzfried	select CRYPTO_XTS
11094ea1277dSJohannes Goetzfried	help
11104ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
11114ea1277dSJohannes Goetzfried	  described in RFC2612.
11124ea1277dSJohannes Goetzfried
11134ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
11144ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
11154ea1277dSJohannes Goetzfried
1116584fffc8SSebastian Siewiorconfig CRYPTO_DES
1117584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1118584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1119584fffc8SSebastian Siewior	help
1120584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1121584fffc8SSebastian Siewior
1122c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1123c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
112497da37b3SDave Jones	depends on SPARC64
1125c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1126c5aac2dfSDavid S. Miller	select CRYPTO_DES
1127c5aac2dfSDavid S. Miller	help
1128c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1129c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1130c5aac2dfSDavid S. Miller
11316574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
11326574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
11336574e6c6SJussi Kivilinna	depends on X86 && 64BIT
11346574e6c6SJussi Kivilinna	select CRYPTO_ALGAPI
11356574e6c6SJussi Kivilinna	select CRYPTO_DES
11366574e6c6SJussi Kivilinna	help
11376574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
11386574e6c6SJussi Kivilinna
11396574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
11406574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
11416574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
11426574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
11436574e6c6SJussi Kivilinna
1144584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1145584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1146584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1147584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1148584fffc8SSebastian Siewior	help
1149584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1150584fffc8SSebastian Siewior
1151584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1152584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1153584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1154584fffc8SSebastian Siewior	help
1155584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1156584fffc8SSebastian Siewior
1157584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1158584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1159584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1160584fffc8SSebastian Siewior
1161584fffc8SSebastian Siewior	  See also:
11626d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1163e2ee95b8SHye-Shik Chang
11642407d608STan Swee Hengconfig CRYPTO_SALSA20
11653b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
11662407d608STan Swee Heng	select CRYPTO_BLKCIPHER
11672407d608STan Swee Heng	help
11682407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
11692407d608STan Swee Heng
11702407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
11712407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
11722407d608STan Swee Heng
11732407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
11742407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
11751da177e4SLinus Torvalds
1176974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
11773b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1178974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1179974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1180974e4b75STan Swee Heng	help
1181974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1182974e4b75STan Swee Heng
1183974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1184974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1185974e4b75STan Swee Heng
1186974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1187974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1188974e4b75STan Swee Heng
11899a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
11903b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
11919a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
11929a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
11939a7dafbbSTan Swee Heng	help
11949a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
11959a7dafbbSTan Swee Heng
11969a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
11979a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
11989a7dafbbSTan Swee Heng
11999a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
12009a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
12019a7dafbbSTan Swee Heng
1202c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1203c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1204c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1205c08d0e64SMartin Willi	help
1206c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1207c08d0e64SMartin Willi
1208c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1209c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1210c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1211c08d0e64SMartin Willi
1212c08d0e64SMartin Willi	  See also:
1213c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1214c08d0e64SMartin Willi
1215584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1216584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1217584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1218584fffc8SSebastian Siewior	help
1219584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1220584fffc8SSebastian Siewior
1221584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1222584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1223584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1224584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1225584fffc8SSebastian Siewior
1226584fffc8SSebastian Siewior	  See also:
1227584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1228584fffc8SSebastian Siewior
1229584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1230584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1231584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1232584fffc8SSebastian Siewior	help
1233584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1234584fffc8SSebastian Siewior
1235584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1236584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1237584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1238584fffc8SSebastian Siewior
1239584fffc8SSebastian Siewior	  See also:
1240584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1241584fffc8SSebastian Siewior
1242937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1243937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1244937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1245937c30d7SJussi Kivilinna	select CRYPTO_ALGAPI
1246341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1247801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1248596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1249937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1250feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1251feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1252937c30d7SJussi Kivilinna	help
1253937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1254937c30d7SJussi Kivilinna
1255937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1256937c30d7SJussi Kivilinna	  of 8 bits.
1257937c30d7SJussi Kivilinna
12581e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1259937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1260937c30d7SJussi Kivilinna
1261937c30d7SJussi Kivilinna	  See also:
1262937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1263937c30d7SJussi Kivilinna
1264251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1265251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1266251496dbSJussi Kivilinna	depends on X86 && !64BIT
1267251496dbSJussi Kivilinna	select CRYPTO_ALGAPI
1268341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1269801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1270596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1271251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1272feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1273feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1274251496dbSJussi Kivilinna	help
1275251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1276251496dbSJussi Kivilinna
1277251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1278251496dbSJussi Kivilinna	  of 8 bits.
1279251496dbSJussi Kivilinna
1280251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1281251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1282251496dbSJussi Kivilinna
1283251496dbSJussi Kivilinna	  See also:
1284251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1285251496dbSJussi Kivilinna
12867efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
12877efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
12887efe4076SJohannes Goetzfried	depends on X86 && 64BIT
12897efe4076SJohannes Goetzfried	select CRYPTO_ALGAPI
12907efe4076SJohannes Goetzfried	select CRYPTO_CRYPTD
1291801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
12921d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12937efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
12947efe4076SJohannes Goetzfried	select CRYPTO_LRW
12957efe4076SJohannes Goetzfried	select CRYPTO_XTS
12967efe4076SJohannes Goetzfried	help
12977efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
12987efe4076SJohannes Goetzfried
12997efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
13007efe4076SJohannes Goetzfried	  of 8 bits.
13017efe4076SJohannes Goetzfried
13027efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
13037efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13047efe4076SJohannes Goetzfried
13057efe4076SJohannes Goetzfried	  See also:
13067efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
13077efe4076SJohannes Goetzfried
130856d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
130956d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
131056d76c96SJussi Kivilinna	depends on X86 && 64BIT
131156d76c96SJussi Kivilinna	select CRYPTO_ALGAPI
131256d76c96SJussi Kivilinna	select CRYPTO_CRYPTD
1313801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
131456d76c96SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
131556d76c96SJussi Kivilinna	select CRYPTO_SERPENT
131656d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
131756d76c96SJussi Kivilinna	select CRYPTO_LRW
131856d76c96SJussi Kivilinna	select CRYPTO_XTS
131956d76c96SJussi Kivilinna	help
132056d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
132156d76c96SJussi Kivilinna
132256d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
132356d76c96SJussi Kivilinna	  of 8 bits.
132456d76c96SJussi Kivilinna
132556d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
132656d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
132756d76c96SJussi Kivilinna
132856d76c96SJussi Kivilinna	  See also:
132956d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
133056d76c96SJussi Kivilinna
1331584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1332584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1333584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1334584fffc8SSebastian Siewior	help
1335584fffc8SSebastian Siewior	  TEA cipher algorithm.
1336584fffc8SSebastian Siewior
1337584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1338584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1339584fffc8SSebastian Siewior	  little memory.
1340584fffc8SSebastian Siewior
1341584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1342584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1343584fffc8SSebastian Siewior	  in the TEA algorithm.
1344584fffc8SSebastian Siewior
1345584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1346584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1347584fffc8SSebastian Siewior
1348584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1349584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1350584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1351584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1352584fffc8SSebastian Siewior	help
1353584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1354584fffc8SSebastian Siewior
1355584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1356584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1357584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1358584fffc8SSebastian Siewior	  bits.
1359584fffc8SSebastian Siewior
1360584fffc8SSebastian Siewior	  See also:
1361584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1362584fffc8SSebastian Siewior
1363584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1364584fffc8SSebastian Siewior	tristate
1365584fffc8SSebastian Siewior	help
1366584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1367584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1368584fffc8SSebastian Siewior
1369584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1370584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1371584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1372584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1373584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1374584fffc8SSebastian Siewior	help
1375584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1376584fffc8SSebastian Siewior
1377584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1378584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1379584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1380584fffc8SSebastian Siewior	  bits.
1381584fffc8SSebastian Siewior
1382584fffc8SSebastian Siewior	  See also:
1383584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1384584fffc8SSebastian Siewior
1385584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1386584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1387584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1388584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1389584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1390584fffc8SSebastian Siewior	help
1391584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1392584fffc8SSebastian Siewior
1393584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1394584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1395584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1396584fffc8SSebastian Siewior	  bits.
1397584fffc8SSebastian Siewior
1398584fffc8SSebastian Siewior	  See also:
1399584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1400584fffc8SSebastian Siewior
14018280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
14028280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1403f21a7c19SAl Viro	depends on X86 && 64BIT
14048280daadSJussi Kivilinna	select CRYPTO_ALGAPI
14058280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
14068280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1407414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1408e7cda5d2SJussi Kivilinna	select CRYPTO_LRW
1409e7cda5d2SJussi Kivilinna	select CRYPTO_XTS
14108280daadSJussi Kivilinna	help
14118280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
14128280daadSJussi Kivilinna
14138280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
14148280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
14158280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
14168280daadSJussi Kivilinna	  bits.
14178280daadSJussi Kivilinna
14188280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
14198280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
14208280daadSJussi Kivilinna
14218280daadSJussi Kivilinna	  See also:
14228280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
14238280daadSJussi Kivilinna
1424107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1425107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1426107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1427107778b5SJohannes Goetzfried	select CRYPTO_ALGAPI
1428107778b5SJohannes Goetzfried	select CRYPTO_CRYPTD
1429801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1430a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1431107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1432107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1433107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1434107778b5SJohannes Goetzfried	select CRYPTO_LRW
1435107778b5SJohannes Goetzfried	select CRYPTO_XTS
1436107778b5SJohannes Goetzfried	help
1437107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1438107778b5SJohannes Goetzfried
1439107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1440107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1441107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1442107778b5SJohannes Goetzfried	  bits.
1443107778b5SJohannes Goetzfried
1444107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1445107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1446107778b5SJohannes Goetzfried
1447107778b5SJohannes Goetzfried	  See also:
1448107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1449107778b5SJohannes Goetzfried
1450584fffc8SSebastian Siewiorcomment "Compression"
1451584fffc8SSebastian Siewior
14521da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
14531da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1454cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
14551da177e4SLinus Torvalds	select ZLIB_INFLATE
14561da177e4SLinus Torvalds	select ZLIB_DEFLATE
14571da177e4SLinus Torvalds	help
14581da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
14591da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
14601da177e4SLinus Torvalds
14611da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
14621da177e4SLinus Torvalds
1463bf68e65eSGeert Uytterhoevenconfig CRYPTO_ZLIB
1464bf68e65eSGeert Uytterhoeven	tristate "Zlib compression algorithm"
1465bf68e65eSGeert Uytterhoeven	select CRYPTO_PCOMP
1466bf68e65eSGeert Uytterhoeven	select ZLIB_INFLATE
1467bf68e65eSGeert Uytterhoeven	select ZLIB_DEFLATE
1468bf68e65eSGeert Uytterhoeven	select NLATTR
1469bf68e65eSGeert Uytterhoeven	help
1470bf68e65eSGeert Uytterhoeven	  This is the zlib algorithm.
1471bf68e65eSGeert Uytterhoeven
14720b77abb3SZoltan Sogorconfig CRYPTO_LZO
14730b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
14740b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
14750b77abb3SZoltan Sogor	select LZO_COMPRESS
14760b77abb3SZoltan Sogor	select LZO_DECOMPRESS
14770b77abb3SZoltan Sogor	help
14780b77abb3SZoltan Sogor	  This is the LZO algorithm.
14790b77abb3SZoltan Sogor
148035a1fc18SSeth Jenningsconfig CRYPTO_842
148135a1fc18SSeth Jennings	tristate "842 compression algorithm"
14822062c5b6SDan Streetman	select CRYPTO_ALGAPI
14832062c5b6SDan Streetman	select 842_COMPRESS
14842062c5b6SDan Streetman	select 842_DECOMPRESS
148535a1fc18SSeth Jennings	help
148635a1fc18SSeth Jennings	  This is the 842 algorithm.
148735a1fc18SSeth Jennings
14880ea8530dSChanho Minconfig CRYPTO_LZ4
14890ea8530dSChanho Min	tristate "LZ4 compression algorithm"
14900ea8530dSChanho Min	select CRYPTO_ALGAPI
14910ea8530dSChanho Min	select LZ4_COMPRESS
14920ea8530dSChanho Min	select LZ4_DECOMPRESS
14930ea8530dSChanho Min	help
14940ea8530dSChanho Min	  This is the LZ4 algorithm.
14950ea8530dSChanho Min
14960ea8530dSChanho Minconfig CRYPTO_LZ4HC
14970ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
14980ea8530dSChanho Min	select CRYPTO_ALGAPI
14990ea8530dSChanho Min	select LZ4HC_COMPRESS
15000ea8530dSChanho Min	select LZ4_DECOMPRESS
15010ea8530dSChanho Min	help
15020ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
15030ea8530dSChanho Min
150417f0f4a4SNeil Hormancomment "Random Number Generation"
150517f0f4a4SNeil Horman
150617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
150717f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
150817f0f4a4SNeil Horman	select CRYPTO_AES
150917f0f4a4SNeil Horman	select CRYPTO_RNG
151017f0f4a4SNeil Horman	help
151117f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
151217f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
15137dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
15147dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
151517f0f4a4SNeil Horman
1516f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1517419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1518419090c6SStephan Mueller	help
1519419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1520419090c6SStephan Mueller	  more of the DRBG types must be selected.
1521419090c6SStephan Mueller
1522f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1523419090c6SStephan Mueller
1524419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1525401e4238SHerbert Xu	bool
1526419090c6SStephan Mueller	default y
1527419090c6SStephan Mueller	select CRYPTO_HMAC
1528826775bbSHerbert Xu	select CRYPTO_SHA256
1529419090c6SStephan Mueller
1530419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1531419090c6SStephan Mueller	bool "Enable Hash DRBG"
1532826775bbSHerbert Xu	select CRYPTO_SHA256
1533419090c6SStephan Mueller	help
1534419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1535419090c6SStephan Mueller
1536419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1537419090c6SStephan Mueller	bool "Enable CTR DRBG"
1538419090c6SStephan Mueller	select CRYPTO_AES
1539419090c6SStephan Mueller	help
1540419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1541419090c6SStephan Mueller
1542f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1543f2c89a10SHerbert Xu	tristate
1544401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1545f2c89a10SHerbert Xu	select CRYPTO_RNG
1546bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1547f2c89a10SHerbert Xu
1548f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1549419090c6SStephan Mueller
1550bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1551bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1552bb5530e4SStephan Mueller	help
1553bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1554bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1555bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1556bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1557bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1558bb5530e4SStephan Mueller
155903c8efc1SHerbert Xuconfig CRYPTO_USER_API
156003c8efc1SHerbert Xu	tristate
156103c8efc1SHerbert Xu
1562fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1563fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
15647451708fSHerbert Xu	depends on NET
1565fe869cdbSHerbert Xu	select CRYPTO_HASH
1566fe869cdbSHerbert Xu	select CRYPTO_USER_API
1567fe869cdbSHerbert Xu	help
1568fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1569fe869cdbSHerbert Xu	  algorithms.
1570fe869cdbSHerbert Xu
15718ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
15728ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
15737451708fSHerbert Xu	depends on NET
15748ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
15758ff59090SHerbert Xu	select CRYPTO_USER_API
15768ff59090SHerbert Xu	help
15778ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
15788ff59090SHerbert Xu	  key cipher algorithms.
15798ff59090SHerbert Xu
15802f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
15812f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
15822f375538SStephan Mueller	depends on NET
15832f375538SStephan Mueller	select CRYPTO_RNG
15842f375538SStephan Mueller	select CRYPTO_USER_API
15852f375538SStephan Mueller	help
15862f375538SStephan Mueller	  This option enables the user-spaces interface for random
15872f375538SStephan Mueller	  number generator algorithms.
15882f375538SStephan Mueller
1589b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1590b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1591b64a2d95SHerbert Xu	depends on NET
1592b64a2d95SHerbert Xu	select CRYPTO_AEAD
1593b64a2d95SHerbert Xu	select CRYPTO_USER_API
1594b64a2d95SHerbert Xu	help
1595b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1596b64a2d95SHerbert Xu	  cipher algorithms.
1597b64a2d95SHerbert Xu
1598ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1599ee08997fSDmitry Kasatkin	bool
1600ee08997fSDmitry Kasatkin
16011da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1602964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
16031da177e4SLinus Torvalds
1604cce9e06dSHerbert Xuendif	# if CRYPTO
1605