1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1172b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1186a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1192b8c19dbSHerbert Xu help 1202b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1212b8c19dbSHerbert Xu cbc(aes). 1222b8c19dbSHerbert Xu 1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1246a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1256a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1266a0fcbb4SHerbert Xu select CRYPTO_HASH2 1276a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 128946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1294e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1302ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1316a0fcbb4SHerbert Xu 132a38f7907SSteffen Klassertconfig CRYPTO_USER 133a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1345db017aaSHerbert Xu depends on NET 135a38f7907SSteffen Klassert select CRYPTO_MANAGER 136a38f7907SSteffen Klassert help 137d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 138a38f7907SSteffen Klassert cbc(aes). 139a38f7907SSteffen Klassert 140929d34caSEric Biggersif CRYPTO_MANAGER2 141929d34caSEric Biggers 142326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 143326a6346SHerbert Xu bool "Disable run-time self tests" 14400ca28a5SHerbert Xu default y 1450b767f96SAlexander Shishkin help 146326a6346SHerbert Xu Disable run-time self tests that normally take place at 147326a6346SHerbert Xu algorithm registration. 1480b767f96SAlexander Shishkin 1495b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1505b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1515b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1525b2706a4SEric Biggers help 1535b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1545b2706a4SEric Biggers including randomized fuzz tests. 1555b2706a4SEric Biggers 1565b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1575b2706a4SEric Biggers longer to run than the normal self tests. 1585b2706a4SEric Biggers 159929d34caSEric Biggersendif # if CRYPTO_MANAGER2 160929d34caSEric Biggers 161584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 16208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 163584fffc8SSebastian Siewior help 164584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 165584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 166584fffc8SSebastian Siewior option will be selected automatically if you select such a 167584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 168584fffc8SSebastian Siewior an external module that requires these functions. 169584fffc8SSebastian Siewior 170584fffc8SSebastian Siewiorconfig CRYPTO_NULL 171584fffc8SSebastian Siewior tristate "Null algorithms" 172149a3971SHerbert Xu select CRYPTO_NULL2 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 175584fffc8SSebastian Siewior 176149a3971SHerbert Xuconfig CRYPTO_NULL2 177dd43c4e9SHerbert Xu tristate 178149a3971SHerbert Xu select CRYPTO_ALGAPI2 179149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 180149a3971SHerbert Xu select CRYPTO_HASH2 181149a3971SHerbert Xu 1825068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1833b4afaf2SKees Cook tristate "Parallel crypto engine" 1843b4afaf2SKees Cook depends on SMP 1855068c7a8SSteffen Klassert select PADATA 1865068c7a8SSteffen Klassert select CRYPTO_MANAGER 1875068c7a8SSteffen Klassert select CRYPTO_AEAD 1885068c7a8SSteffen Klassert help 1895068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1905068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1915068c7a8SSteffen Klassert 19225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 19325c38d3fSHuang Ying tristate 19425c38d3fSHuang Ying 195584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 196584fffc8SSebastian Siewior tristate "Software async crypto daemon" 197584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 198b8a28251SLoc Ho select CRYPTO_HASH 199584fffc8SSebastian Siewior select CRYPTO_MANAGER 200254eff77SHuang Ying select CRYPTO_WORKQUEUE 201584fffc8SSebastian Siewior help 202584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 203584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 204584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 205584fffc8SSebastian Siewior 206584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 207584fffc8SSebastian Siewior tristate "Authenc support" 208584fffc8SSebastian Siewior select CRYPTO_AEAD 209584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 210584fffc8SSebastian Siewior select CRYPTO_MANAGER 211584fffc8SSebastian Siewior select CRYPTO_HASH 212e94c6a7aSHerbert Xu select CRYPTO_NULL 213584fffc8SSebastian Siewior help 214584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 215584fffc8SSebastian Siewior This is required for IPSec. 216584fffc8SSebastian Siewior 217584fffc8SSebastian Siewiorconfig CRYPTO_TEST 218584fffc8SSebastian Siewior tristate "Testing module" 219584fffc8SSebastian Siewior depends on m 220da7f033dSHerbert Xu select CRYPTO_MANAGER 221584fffc8SSebastian Siewior help 222584fffc8SSebastian Siewior Quick & dirty crypto test module. 223584fffc8SSebastian Siewior 224266d0516SHerbert Xuconfig CRYPTO_SIMD 225266d0516SHerbert Xu tristate 226266d0516SHerbert Xu select CRYPTO_CRYPTD 227266d0516SHerbert Xu 228596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 229596d8750SJussi Kivilinna tristate 230596d8750SJussi Kivilinna depends on X86 231065ce327SHerbert Xu select CRYPTO_BLKCIPHER 232596d8750SJussi Kivilinna 233735d37b5SBaolin Wangconfig CRYPTO_ENGINE 234735d37b5SBaolin Wang tristate 235735d37b5SBaolin Wang 2363d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2373d6228a5SVitaly Chikunov 2383d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2393d6228a5SVitaly Chikunov tristate "RSA algorithm" 2403d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2413d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2423d6228a5SVitaly Chikunov select MPILIB 2433d6228a5SVitaly Chikunov select ASN1 2443d6228a5SVitaly Chikunov help 2453d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2463d6228a5SVitaly Chikunov 2473d6228a5SVitaly Chikunovconfig CRYPTO_DH 2483d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov select MPILIB 2513d6228a5SVitaly Chikunov help 2523d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2533d6228a5SVitaly Chikunov 2544a2289daSVitaly Chikunovconfig CRYPTO_ECC 2554a2289daSVitaly Chikunov tristate 2564a2289daSVitaly Chikunov 2573d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2583d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2594a2289daSVitaly Chikunov select CRYPTO_ECC 2603d6228a5SVitaly Chikunov select CRYPTO_KPP 2613d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2623d6228a5SVitaly Chikunov help 2633d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2643d6228a5SVitaly Chikunov 2650d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2660d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2670d7a7864SVitaly Chikunov select CRYPTO_ECC 2680d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2690d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2701036633eSVitaly Chikunov select OID_REGISTRY 2711036633eSVitaly Chikunov select ASN1 2720d7a7864SVitaly Chikunov help 2730d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2740d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2750d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2760d7a7864SVitaly Chikunov is implemented. 2770d7a7864SVitaly Chikunov 278584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 279584fffc8SSebastian Siewior 280584fffc8SSebastian Siewiorconfig CRYPTO_CCM 281584fffc8SSebastian Siewior tristate "CCM support" 282584fffc8SSebastian Siewior select CRYPTO_CTR 283f15f05b0SArd Biesheuvel select CRYPTO_HASH 284584fffc8SSebastian Siewior select CRYPTO_AEAD 285*c8a3315aSEric Biggers select CRYPTO_MANAGER 286584fffc8SSebastian Siewior help 287584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 288584fffc8SSebastian Siewior 289584fffc8SSebastian Siewiorconfig CRYPTO_GCM 290584fffc8SSebastian Siewior tristate "GCM/GMAC support" 291584fffc8SSebastian Siewior select CRYPTO_CTR 292584fffc8SSebastian Siewior select CRYPTO_AEAD 2939382d97aSHuang Ying select CRYPTO_GHASH 2949489667dSJussi Kivilinna select CRYPTO_NULL 295*c8a3315aSEric Biggers select CRYPTO_MANAGER 296584fffc8SSebastian Siewior help 297584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 298584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 299584fffc8SSebastian Siewior 30071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 30171ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 30271ebc4d1SMartin Willi select CRYPTO_CHACHA20 30371ebc4d1SMartin Willi select CRYPTO_POLY1305 30471ebc4d1SMartin Willi select CRYPTO_AEAD 305*c8a3315aSEric Biggers select CRYPTO_MANAGER 30671ebc4d1SMartin Willi help 30771ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 30871ebc4d1SMartin Willi 30971ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 31071ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 31171ebc4d1SMartin Willi IETF protocols. 31271ebc4d1SMartin Willi 313f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 314f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 315f606a88eSOndrej Mosnacek select CRYPTO_AEAD 316f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 317f606a88eSOndrej Mosnacek help 318f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 319f606a88eSOndrej Mosnacek 320f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 321f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 322f606a88eSOndrej Mosnacek select CRYPTO_AEAD 323f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 324f606a88eSOndrej Mosnacek help 325f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 326f606a88eSOndrej Mosnacek 327f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 328f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 329f606a88eSOndrej Mosnacek select CRYPTO_AEAD 330f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 331f606a88eSOndrej Mosnacek help 332f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 333f606a88eSOndrej Mosnacek 3341d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3351d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3361d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3371d373d4eSOndrej Mosnacek select CRYPTO_AEAD 338de272ca7SEric Biggers select CRYPTO_SIMD 3391d373d4eSOndrej Mosnacek help 3404e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3411d373d4eSOndrej Mosnacek 3421d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3431d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3441d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3451d373d4eSOndrej Mosnacek select CRYPTO_AEAD 346d628132aSEric Biggers select CRYPTO_SIMD 3471d373d4eSOndrej Mosnacek help 3484e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm. 3491d373d4eSOndrej Mosnacek 3501d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3511d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3521d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3531d373d4eSOndrej Mosnacek select CRYPTO_AEAD 354b6708c2dSEric Biggers select CRYPTO_SIMD 3551d373d4eSOndrej Mosnacek help 3564e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm. 3571d373d4eSOndrej Mosnacek 358396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 359396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 360396be41fSOndrej Mosnacek select CRYPTO_AEAD 361396be41fSOndrej Mosnacek help 362396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 363396be41fSOndrej Mosnacek 36456e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 3652808f173SOndrej Mosnacek tristate 3662808f173SOndrej Mosnacek depends on X86 36756e8e57fSOndrej Mosnacek select CRYPTO_AEAD 36847730958SEric Biggers select CRYPTO_SIMD 36956e8e57fSOndrej Mosnacek help 37056e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 37156e8e57fSOndrej Mosnacek algorithm. 37256e8e57fSOndrej Mosnacek 3736ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3746ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3756ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3766ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3776ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3786ecc9d9fSOndrej Mosnacek help 3796ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3806ecc9d9fSOndrej Mosnacek 381396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 382396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 383396be41fSOndrej Mosnacek select CRYPTO_AEAD 384396be41fSOndrej Mosnacek help 385396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 386396be41fSOndrej Mosnacek 38756e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 3882808f173SOndrej Mosnacek tristate 3892808f173SOndrej Mosnacek depends on X86 39056e8e57fSOndrej Mosnacek select CRYPTO_AEAD 391e151a8d2SEric Biggers select CRYPTO_SIMD 39256e8e57fSOndrej Mosnacek help 39356e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 39456e8e57fSOndrej Mosnacek algorithm. 39556e8e57fSOndrej Mosnacek 3966ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3976ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3986ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3996ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 4006ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 4016ecc9d9fSOndrej Mosnacek help 4026ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 4036ecc9d9fSOndrej Mosnacek algorithm. 4046ecc9d9fSOndrej Mosnacek 4056ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 4066ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 4076ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 4086ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 4096ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 4106ecc9d9fSOndrej Mosnacek help 4116ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 4126ecc9d9fSOndrej Mosnacek algorithm. 4136ecc9d9fSOndrej Mosnacek 414584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 415584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 416584fffc8SSebastian Siewior select CRYPTO_AEAD 417584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 418856e3f40SHerbert Xu select CRYPTO_NULL 419401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 420*c8a3315aSEric Biggers select CRYPTO_MANAGER 421584fffc8SSebastian Siewior help 422584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 423584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 424584fffc8SSebastian Siewior 425a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 426a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 427a10f554fSHerbert Xu select CRYPTO_AEAD 428a10f554fSHerbert Xu select CRYPTO_NULL 429401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 430*c8a3315aSEric Biggers select CRYPTO_MANAGER 4313491244cSHerbert Xu default m 432a10f554fSHerbert Xu help 433a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 434a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 435a10f554fSHerbert Xu algorithm for CBC. 436a10f554fSHerbert Xu 437584fffc8SSebastian Siewiorcomment "Block modes" 438584fffc8SSebastian Siewior 439584fffc8SSebastian Siewiorconfig CRYPTO_CBC 440584fffc8SSebastian Siewior tristate "CBC support" 441584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 442584fffc8SSebastian Siewior select CRYPTO_MANAGER 443584fffc8SSebastian Siewior help 444584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 445584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 446584fffc8SSebastian Siewior 447a7d85e06SJames Bottomleyconfig CRYPTO_CFB 448a7d85e06SJames Bottomley tristate "CFB support" 449a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 450a7d85e06SJames Bottomley select CRYPTO_MANAGER 451a7d85e06SJames Bottomley help 452a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 453a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 454a7d85e06SJames Bottomley 455584fffc8SSebastian Siewiorconfig CRYPTO_CTR 456584fffc8SSebastian Siewior tristate "CTR support" 457584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 458584fffc8SSebastian Siewior select CRYPTO_SEQIV 459584fffc8SSebastian Siewior select CRYPTO_MANAGER 460584fffc8SSebastian Siewior help 461584fffc8SSebastian Siewior CTR: Counter mode 462584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 463584fffc8SSebastian Siewior 464584fffc8SSebastian Siewiorconfig CRYPTO_CTS 465584fffc8SSebastian Siewior tristate "CTS support" 466584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 467*c8a3315aSEric Biggers select CRYPTO_MANAGER 468584fffc8SSebastian Siewior help 469584fffc8SSebastian Siewior CTS: Cipher Text Stealing 470584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 471ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 472ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 473ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 474584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 475584fffc8SSebastian Siewior for AES encryption. 476584fffc8SSebastian Siewior 477ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 478ecd6d5c9SGilad Ben-Yossef 479584fffc8SSebastian Siewiorconfig CRYPTO_ECB 480584fffc8SSebastian Siewior tristate "ECB support" 481584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 482584fffc8SSebastian Siewior select CRYPTO_MANAGER 483584fffc8SSebastian Siewior help 484584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 485584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 486584fffc8SSebastian Siewior the input block by block. 487584fffc8SSebastian Siewior 488584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4892470a2b2SJussi Kivilinna tristate "LRW support" 490584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 491584fffc8SSebastian Siewior select CRYPTO_MANAGER 492584fffc8SSebastian Siewior select CRYPTO_GF128MUL 493584fffc8SSebastian Siewior help 494584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 495584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 496584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 497584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 498584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 499584fffc8SSebastian Siewior 500e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 501e497c518SGilad Ben-Yossef tristate "OFB support" 502e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 503e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 504e497c518SGilad Ben-Yossef help 505e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 506e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 507e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 508e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 509e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 510e497c518SGilad Ben-Yossef normally even when applied before encryption. 511e497c518SGilad Ben-Yossef 512584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 513584fffc8SSebastian Siewior tristate "PCBC support" 514584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 515584fffc8SSebastian Siewior select CRYPTO_MANAGER 516584fffc8SSebastian Siewior help 517584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 518584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 519584fffc8SSebastian Siewior 520584fffc8SSebastian Siewiorconfig CRYPTO_XTS 5215bcf8e6dSJussi Kivilinna tristate "XTS support" 522584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 523584fffc8SSebastian Siewior select CRYPTO_MANAGER 52412cb3a1cSMilan Broz select CRYPTO_ECB 525584fffc8SSebastian Siewior help 526584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 527584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 528584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 529584fffc8SSebastian Siewior 5301c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 5311c49678eSStephan Mueller tristate "Key wrapping support" 5321c49678eSStephan Mueller select CRYPTO_BLKCIPHER 533*c8a3315aSEric Biggers select CRYPTO_MANAGER 5341c49678eSStephan Mueller help 5351c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 5361c49678eSStephan Mueller padding. 5371c49678eSStephan Mueller 53826609a21SEric Biggersconfig CRYPTO_NHPOLY1305 53926609a21SEric Biggers tristate 54026609a21SEric Biggers select CRYPTO_HASH 54126609a21SEric Biggers select CRYPTO_POLY1305 54226609a21SEric Biggers 543012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 544012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 545012c8238SEric Biggers depends on X86 && 64BIT 546012c8238SEric Biggers select CRYPTO_NHPOLY1305 547012c8238SEric Biggers help 548012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 549012c8238SEric Biggers Adiantum encryption mode. 550012c8238SEric Biggers 5510f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5520f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5530f961f9fSEric Biggers depends on X86 && 64BIT 5540f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5550f961f9fSEric Biggers help 5560f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5570f961f9fSEric Biggers Adiantum encryption mode. 5580f961f9fSEric Biggers 559059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 560059c2a4dSEric Biggers tristate "Adiantum support" 561059c2a4dSEric Biggers select CRYPTO_CHACHA20 562059c2a4dSEric Biggers select CRYPTO_POLY1305 563059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 564*c8a3315aSEric Biggers select CRYPTO_MANAGER 565059c2a4dSEric Biggers help 566059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 567059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 568059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 569059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 570059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 571059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 572059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 573059c2a4dSEric Biggers AES-XTS. 574059c2a4dSEric Biggers 575059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 576059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 577059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 578059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 579059c2a4dSEric Biggers security than XTS, subject to the security bound. 580059c2a4dSEric Biggers 581059c2a4dSEric Biggers If unsure, say N. 582059c2a4dSEric Biggers 583584fffc8SSebastian Siewiorcomment "Hash modes" 584584fffc8SSebastian Siewior 58593b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 58693b5e86aSJussi Kivilinna tristate "CMAC support" 58793b5e86aSJussi Kivilinna select CRYPTO_HASH 58893b5e86aSJussi Kivilinna select CRYPTO_MANAGER 58993b5e86aSJussi Kivilinna help 59093b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 59193b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 59293b5e86aSJussi Kivilinna 59393b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 59493b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 59593b5e86aSJussi Kivilinna 5961da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5978425165dSHerbert Xu tristate "HMAC support" 5980796ae06SHerbert Xu select CRYPTO_HASH 59943518407SHerbert Xu select CRYPTO_MANAGER 6001da177e4SLinus Torvalds help 6011da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 6021da177e4SLinus Torvalds This is required for IPSec. 6031da177e4SLinus Torvalds 604333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 605333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 606333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 607333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 608333b0d7eSKazunori MIYAZAWA help 609333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 610333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 611333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 612333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 613333b0d7eSKazunori MIYAZAWA 614f1939f7cSShane Wangconfig CRYPTO_VMAC 615f1939f7cSShane Wang tristate "VMAC support" 616f1939f7cSShane Wang select CRYPTO_HASH 617f1939f7cSShane Wang select CRYPTO_MANAGER 618f1939f7cSShane Wang help 619f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 620f1939f7cSShane Wang very high speed on 64-bit architectures. 621f1939f7cSShane Wang 622f1939f7cSShane Wang See also: 623f1939f7cSShane Wang <http://fastcrypto.org/vmac> 624f1939f7cSShane Wang 625584fffc8SSebastian Siewiorcomment "Digest" 626584fffc8SSebastian Siewior 627584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 628584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6295773a3e6SHerbert Xu select CRYPTO_HASH 6306a0962b2SDarrick J. Wong select CRC32 6311da177e4SLinus Torvalds help 632584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 633584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 63469c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6351da177e4SLinus Torvalds 6368cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6378cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6388cb51ba8SAustin Zhang depends on X86 6398cb51ba8SAustin Zhang select CRYPTO_HASH 6408cb51ba8SAustin Zhang help 6418cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6428cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6438cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6448cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6458cb51ba8SAustin Zhang gain performance compared with software implementation. 6468cb51ba8SAustin Zhang Module will be crc32c-intel. 6478cb51ba8SAustin Zhang 6487cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6496dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 650c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6516dd7a82cSAnton Blanchard select CRYPTO_HASH 6526dd7a82cSAnton Blanchard select CRC32 6536dd7a82cSAnton Blanchard help 6546dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6556dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6566dd7a82cSAnton Blanchard and newer processors for improved performance. 6576dd7a82cSAnton Blanchard 6586dd7a82cSAnton Blanchard 659442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 660442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 661442a7c40SDavid S. Miller depends on SPARC64 662442a7c40SDavid S. Miller select CRYPTO_HASH 663442a7c40SDavid S. Miller select CRC32 664442a7c40SDavid S. Miller help 665442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 666442a7c40SDavid S. Miller when available. 667442a7c40SDavid S. Miller 66878c37d19SAlexander Boykoconfig CRYPTO_CRC32 66978c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 67078c37d19SAlexander Boyko select CRYPTO_HASH 67178c37d19SAlexander Boyko select CRC32 67278c37d19SAlexander Boyko help 67378c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 67478c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 67578c37d19SAlexander Boyko 67678c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 67778c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 67878c37d19SAlexander Boyko depends on X86 67978c37d19SAlexander Boyko select CRYPTO_HASH 68078c37d19SAlexander Boyko select CRC32 68178c37d19SAlexander Boyko help 68278c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 68378c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 68478c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 685af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 68678c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 68778c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 68878c37d19SAlexander Boyko 6894a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6904a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6914a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6924a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6934a5dc51eSMarcin Nowakowski help 6944a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6954a5dc51eSMarcin Nowakowski instructions, when available. 6964a5dc51eSMarcin Nowakowski 6974a5dc51eSMarcin Nowakowski 69868411521SHerbert Xuconfig CRYPTO_CRCT10DIF 69968411521SHerbert Xu tristate "CRCT10DIF algorithm" 70068411521SHerbert Xu select CRYPTO_HASH 70168411521SHerbert Xu help 70268411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 70368411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 70468411521SHerbert Xu transforms to be used if they are available. 70568411521SHerbert Xu 70668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 70768411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 70868411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 70968411521SHerbert Xu select CRYPTO_HASH 71068411521SHerbert Xu help 71168411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 71268411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 71368411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 714af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 71568411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 71668411521SHerbert Xu 717b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 718b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 719b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 720b01df1c1SDaniel Axtens select CRYPTO_HASH 721b01df1c1SDaniel Axtens help 722b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 723b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 724b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 725b01df1c1SDaniel Axtens 726146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 727146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 728146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 729146c8688SDaniel Axtens help 730146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 731146c8688SDaniel Axtens POWER8 vpmsum instructions. 732146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 733146c8688SDaniel Axtens 7342cdc6899SHuang Yingconfig CRYPTO_GHASH 7352cdc6899SHuang Ying tristate "GHASH digest algorithm" 7362cdc6899SHuang Ying select CRYPTO_GF128MUL 737578c60fbSArnd Bergmann select CRYPTO_HASH 7382cdc6899SHuang Ying help 7392cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 7402cdc6899SHuang Ying 741f979e014SMartin Williconfig CRYPTO_POLY1305 742f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 743578c60fbSArnd Bergmann select CRYPTO_HASH 744f979e014SMartin Willi help 745f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 746f979e014SMartin Willi 747f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 748f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 749f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 750f979e014SMartin Willi 751c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 752b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 753c70f4abeSMartin Willi depends on X86 && 64BIT 754c70f4abeSMartin Willi select CRYPTO_POLY1305 755c70f4abeSMartin Willi help 756c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 757c70f4abeSMartin Willi 758c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 759c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 760c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 761c70f4abeSMartin Willi instructions. 762c70f4abeSMartin Willi 7631da177e4SLinus Torvaldsconfig CRYPTO_MD4 7641da177e4SLinus Torvalds tristate "MD4 digest algorithm" 765808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7661da177e4SLinus Torvalds help 7671da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7681da177e4SLinus Torvalds 7691da177e4SLinus Torvaldsconfig CRYPTO_MD5 7701da177e4SLinus Torvalds tristate "MD5 digest algorithm" 77114b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7721da177e4SLinus Torvalds help 7731da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7741da177e4SLinus Torvalds 775d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 776d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 777d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 778d69e75deSAaro Koskinen select CRYPTO_MD5 779d69e75deSAaro Koskinen select CRYPTO_HASH 780d69e75deSAaro Koskinen help 781d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 782d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 783d69e75deSAaro Koskinen 784e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 785e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 786e8e59953SMarkus Stockhausen depends on PPC 787e8e59953SMarkus Stockhausen select CRYPTO_HASH 788e8e59953SMarkus Stockhausen help 789e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 790e8e59953SMarkus Stockhausen in PPC assembler. 791e8e59953SMarkus Stockhausen 792fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 793fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 794fa4dfedcSDavid S. Miller depends on SPARC64 795fa4dfedcSDavid S. Miller select CRYPTO_MD5 796fa4dfedcSDavid S. Miller select CRYPTO_HASH 797fa4dfedcSDavid S. Miller help 798fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 799fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 800fa4dfedcSDavid S. Miller 801584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 802584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 80319e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 804584fffc8SSebastian Siewior help 805584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 806584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 807584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 808584fffc8SSebastian Siewior of the algorithm. 809584fffc8SSebastian Siewior 81082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 81182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 8127c4468bcSHerbert Xu select CRYPTO_HASH 81382798f90SAdrian-Ken Rueegsegger help 81482798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 81582798f90SAdrian-Ken Rueegsegger 81682798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 81735ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 81882798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 81982798f90SAdrian-Ken Rueegsegger 82082798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8216d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 82282798f90SAdrian-Ken Rueegsegger 82382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 82482798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 825e5835fbaSHerbert Xu select CRYPTO_HASH 82682798f90SAdrian-Ken Rueegsegger help 82782798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 82882798f90SAdrian-Ken Rueegsegger 82982798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 83082798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 831b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 832b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 83382798f90SAdrian-Ken Rueegsegger 834b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 835b6d44341SAdrian Bunk against RIPEMD-160. 836534fe2c1SAdrian-Ken Rueegsegger 837534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8386d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 839534fe2c1SAdrian-Ken Rueegsegger 840534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 841534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 842d8a5e2e9SHerbert Xu select CRYPTO_HASH 843534fe2c1SAdrian-Ken Rueegsegger help 844b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 845b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 846b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 847b6d44341SAdrian Bunk (than RIPEMD-128). 848534fe2c1SAdrian-Ken Rueegsegger 849534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8506d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 851534fe2c1SAdrian-Ken Rueegsegger 852534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 853534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8543b8efb4cSHerbert Xu select CRYPTO_HASH 855534fe2c1SAdrian-Ken Rueegsegger help 856b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 857b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 858b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 859b6d44341SAdrian Bunk (than RIPEMD-160). 860534fe2c1SAdrian-Ken Rueegsegger 86182798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8626d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 86382798f90SAdrian-Ken Rueegsegger 8641da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8651da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 86654ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8671da177e4SLinus Torvalds help 8681da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8691da177e4SLinus Torvalds 87066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 871e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 87266be8951SMathias Krause depends on X86 && 64BIT 87366be8951SMathias Krause select CRYPTO_SHA1 87466be8951SMathias Krause select CRYPTO_HASH 87566be8951SMathias Krause help 87666be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 87766be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 878e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 879e38b6b7fStim when available. 88066be8951SMathias Krause 8818275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 882e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8838275d1aaSTim Chen depends on X86 && 64BIT 8848275d1aaSTim Chen select CRYPTO_SHA256 8858275d1aaSTim Chen select CRYPTO_HASH 8868275d1aaSTim Chen help 8878275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8888275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8898275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 890e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 891e38b6b7fStim Instructions) when available. 8928275d1aaSTim Chen 89387de4579STim Chenconfig CRYPTO_SHA512_SSSE3 89487de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 89587de4579STim Chen depends on X86 && 64BIT 89687de4579STim Chen select CRYPTO_SHA512 89787de4579STim Chen select CRYPTO_HASH 89887de4579STim Chen help 89987de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 90087de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 90187de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 90287de4579STim Chen version 2 (AVX2) instructions, when available. 90387de4579STim Chen 904efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 905efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 906efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 907efdb6f6eSAaro Koskinen select CRYPTO_SHA1 908efdb6f6eSAaro Koskinen select CRYPTO_HASH 909efdb6f6eSAaro Koskinen help 910efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 911efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 912efdb6f6eSAaro Koskinen 9134ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9144ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9154ff28d4cSDavid S. Miller depends on SPARC64 9164ff28d4cSDavid S. Miller select CRYPTO_SHA1 9174ff28d4cSDavid S. Miller select CRYPTO_HASH 9184ff28d4cSDavid S. Miller help 9194ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9204ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9214ff28d4cSDavid S. Miller 922323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 923323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 924323a6bf1SMichael Ellerman depends on PPC 925323a6bf1SMichael Ellerman help 926323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 927323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 928323a6bf1SMichael Ellerman 929d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 930d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 931d9850fc5SMarkus Stockhausen depends on PPC && SPE 932d9850fc5SMarkus Stockhausen help 933d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 934d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 935d9850fc5SMarkus Stockhausen 9361da177e4SLinus Torvaldsconfig CRYPTO_SHA256 937cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 93850e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 9391da177e4SLinus Torvalds help 9401da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9411da177e4SLinus Torvalds 9421da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9431da177e4SLinus Torvalds security against collision attacks. 9441da177e4SLinus Torvalds 945cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 946cd12fb90SJonathan Lynch of security against collision attacks. 947cd12fb90SJonathan Lynch 9482ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9492ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9502ecc1e95SMarkus Stockhausen depends on PPC && SPE 9512ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9522ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9532ecc1e95SMarkus Stockhausen help 9542ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9552ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9562ecc1e95SMarkus Stockhausen 957efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 958efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 959efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 960efdb6f6eSAaro Koskinen select CRYPTO_SHA256 961efdb6f6eSAaro Koskinen select CRYPTO_HASH 962efdb6f6eSAaro Koskinen help 963efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 964efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 965efdb6f6eSAaro Koskinen 96686c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 96786c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 96886c93b24SDavid S. Miller depends on SPARC64 96986c93b24SDavid S. Miller select CRYPTO_SHA256 97086c93b24SDavid S. Miller select CRYPTO_HASH 97186c93b24SDavid S. Miller help 97286c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 97386c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 97486c93b24SDavid S. Miller 9751da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9761da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 977bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9781da177e4SLinus Torvalds help 9791da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9801da177e4SLinus Torvalds 9811da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9821da177e4SLinus Torvalds security against collision attacks. 9831da177e4SLinus Torvalds 9841da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9851da177e4SLinus Torvalds of security against collision attacks. 9861da177e4SLinus Torvalds 987efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 988efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 989efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 990efdb6f6eSAaro Koskinen select CRYPTO_SHA512 991efdb6f6eSAaro Koskinen select CRYPTO_HASH 992efdb6f6eSAaro Koskinen help 993efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 994efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 995efdb6f6eSAaro Koskinen 996775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 997775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 998775e0c69SDavid S. Miller depends on SPARC64 999775e0c69SDavid S. Miller select CRYPTO_SHA512 1000775e0c69SDavid S. Miller select CRYPTO_HASH 1001775e0c69SDavid S. Miller help 1002775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 1003775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1004775e0c69SDavid S. Miller 100553964b9eSJeff Garzikconfig CRYPTO_SHA3 100653964b9eSJeff Garzik tristate "SHA3 digest algorithm" 100753964b9eSJeff Garzik select CRYPTO_HASH 100853964b9eSJeff Garzik help 100953964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 101053964b9eSJeff Garzik cryptographic sponge function family called Keccak. 101153964b9eSJeff Garzik 101253964b9eSJeff Garzik References: 101353964b9eSJeff Garzik http://keccak.noekeon.org/ 101453964b9eSJeff Garzik 10154f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10164f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10174f0fc160SGilad Ben-Yossef select CRYPTO_HASH 10184f0fc160SGilad Ben-Yossef help 10194f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10204f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10214f0fc160SGilad Ben-Yossef 10224f0fc160SGilad Ben-Yossef References: 10234f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10244f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10254f0fc160SGilad Ben-Yossef 1026fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1027fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1028fe18957eSVitaly Chikunov select CRYPTO_HASH 1029fe18957eSVitaly Chikunov help 1030fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1031fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1032fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1033fe18957eSVitaly Chikunov 1034fe18957eSVitaly Chikunov References: 1035fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1036fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1037fe18957eSVitaly Chikunov 10381da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10391da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1040f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10411da177e4SLinus Torvalds help 10421da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10431da177e4SLinus Torvalds 10441da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10451da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10461da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10471da177e4SLinus Torvalds 10481da177e4SLinus Torvalds See also: 10491da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10501da177e4SLinus Torvalds 1051584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1052584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10534946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10541da177e4SLinus Torvalds help 1055584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10561da177e4SLinus Torvalds 1057584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1058584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10591da177e4SLinus Torvalds 10601da177e4SLinus Torvalds See also: 10616d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10621da177e4SLinus Torvalds 10630e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10640e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10658af00860SRichard Weinberger depends on X86 && 64BIT 10660e1227d3SHuang Ying select CRYPTO_CRYPTD 10670e1227d3SHuang Ying help 10680e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10690e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10700e1227d3SHuang Ying 1071584fffc8SSebastian Siewiorcomment "Ciphers" 10721da177e4SLinus Torvalds 10731da177e4SLinus Torvaldsconfig CRYPTO_AES 10741da177e4SLinus Torvalds tristate "AES cipher algorithms" 1075cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10761da177e4SLinus Torvalds help 10771da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10781da177e4SLinus Torvalds algorithm. 10791da177e4SLinus Torvalds 10801da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10811da177e4SLinus Torvalds both hardware and software across a wide range of computing 10821da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10831da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10841da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10851da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10861da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10871da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10881da177e4SLinus Torvalds 10891da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10901da177e4SLinus Torvalds 10911da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10921da177e4SLinus Torvalds 1093b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1094b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1095b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1096b5e0b032SArd Biesheuvel help 1097b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1098b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1099b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1100b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1101b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1102b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1103b5e0b032SArd Biesheuvel 1104b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1105b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1106b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1107b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11080a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11090a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1110b5e0b032SArd Biesheuvel 11111da177e4SLinus Torvaldsconfig CRYPTO_AES_586 11121da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1113cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1114cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11155157dea8SSebastian Siewior select CRYPTO_AES 11161da177e4SLinus Torvalds help 11171da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11181da177e4SLinus Torvalds algorithm. 11191da177e4SLinus Torvalds 11201da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11211da177e4SLinus Torvalds both hardware and software across a wide range of computing 11221da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11231da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 11241da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 11251da177e4SLinus Torvalds suited for restricted-space environments, in which it also 11261da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 11271da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11281da177e4SLinus Torvalds 11291da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11301da177e4SLinus Torvalds 11311da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 11321da177e4SLinus Torvalds 1133a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1134a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1135cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1136cce9e06dSHerbert Xu select CRYPTO_ALGAPI 113781190b32SSebastian Siewior select CRYPTO_AES 1138a2a892a2SAndreas Steinmetz help 1139a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1140a2a892a2SAndreas Steinmetz algorithm. 1141a2a892a2SAndreas Steinmetz 1142a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1143a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1144a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1145a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1146a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1147a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1148a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1149a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1150a2a892a2SAndreas Steinmetz 1151a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1152a2a892a2SAndreas Steinmetz 1153a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1154a2a892a2SAndreas Steinmetz 115554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 115654b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11578af00860SRichard Weinberger depends on X86 115885671860SHerbert Xu select CRYPTO_AEAD 11590d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11600d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 116154b6a1bdSHuang Ying select CRYPTO_ALGAPI 116285671860SHerbert Xu select CRYPTO_BLKCIPHER 11637643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 116485671860SHerbert Xu select CRYPTO_SIMD 116554b6a1bdSHuang Ying help 116654b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 116754b6a1bdSHuang Ying 116854b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 116954b6a1bdSHuang Ying algorithm. 117054b6a1bdSHuang Ying 117154b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 117254b6a1bdSHuang Ying both hardware and software across a wide range of computing 117354b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 117454b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 117554b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 117654b6a1bdSHuang Ying suited for restricted-space environments, in which it also 117754b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 117854b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 117954b6a1bdSHuang Ying 118054b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 118154b6a1bdSHuang Ying 118254b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 118354b6a1bdSHuang Ying 11840d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11850d258efbSMathias Krause for some popular block cipher mode is supported too, including 1186944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11870d258efbSMathias Krause acceleration for CTR. 11882cf4ac8bSHuang Ying 11899bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11909bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11919bf4852dSDavid S. Miller depends on SPARC64 11929bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11939bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11949bf4852dSDavid S. Miller help 11959bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11969bf4852dSDavid S. Miller 11979bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11989bf4852dSDavid S. Miller algorithm. 11999bf4852dSDavid S. Miller 12009bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 12019bf4852dSDavid S. Miller both hardware and software across a wide range of computing 12029bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 12039bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 12049bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 12059bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 12069bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 12079bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 12089bf4852dSDavid S. Miller 12099bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 12109bf4852dSDavid S. Miller 12119bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 12129bf4852dSDavid S. Miller 12139bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 12149bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 12159bf4852dSDavid S. Miller ECB and CBC. 12169bf4852dSDavid S. Miller 1217504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1218504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1219504c6143SMarkus Stockhausen depends on PPC && SPE 1220504c6143SMarkus Stockhausen help 1221504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1222504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1223504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1224504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1225504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1226504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1227504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1228504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1229504c6143SMarkus Stockhausen 12301da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12311da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1232cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12331da177e4SLinus Torvalds help 12341da177e4SLinus Torvalds Anubis cipher algorithm. 12351da177e4SLinus Torvalds 12361da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12371da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12381da177e4SLinus Torvalds in the NESSIE competition. 12391da177e4SLinus Torvalds 12401da177e4SLinus Torvalds See also: 12416d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12426d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12431da177e4SLinus Torvalds 1244584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1245584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1246b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1247e2ee95b8SHye-Shik Chang help 1248584fffc8SSebastian Siewior ARC4 cipher algorithm. 1249e2ee95b8SHye-Shik Chang 1250584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1251584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1252584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1253584fffc8SSebastian Siewior weakness of the algorithm. 1254584fffc8SSebastian Siewior 1255584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1256584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1257584fffc8SSebastian Siewior select CRYPTO_ALGAPI 125852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1259584fffc8SSebastian Siewior help 1260584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1261584fffc8SSebastian Siewior 1262584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1263584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1264584fffc8SSebastian Siewior designed for use on "large microprocessors". 1265e2ee95b8SHye-Shik Chang 1266e2ee95b8SHye-Shik Chang See also: 1267584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1268584fffc8SSebastian Siewior 126952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 127052ba867cSJussi Kivilinna tristate 127152ba867cSJussi Kivilinna help 127252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 127352ba867cSJussi Kivilinna generic c and the assembler implementations. 127452ba867cSJussi Kivilinna 127552ba867cSJussi Kivilinna See also: 127652ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 127752ba867cSJussi Kivilinna 127864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 127964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1280f21a7c19SAl Viro depends on X86 && 64BIT 1281c1679171SEric Biggers select CRYPTO_BLKCIPHER 128264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 128364b94ceaSJussi Kivilinna help 128464b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 128564b94ceaSJussi Kivilinna 128664b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 128764b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 128864b94ceaSJussi Kivilinna designed for use on "large microprocessors". 128964b94ceaSJussi Kivilinna 129064b94ceaSJussi Kivilinna See also: 129164b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 129264b94ceaSJussi Kivilinna 1293584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1294584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1295584fffc8SSebastian Siewior depends on CRYPTO 1296584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1297584fffc8SSebastian Siewior help 1298584fffc8SSebastian Siewior Camellia cipher algorithms module. 1299584fffc8SSebastian Siewior 1300584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1301584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1302584fffc8SSebastian Siewior 1303584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1304584fffc8SSebastian Siewior 1305584fffc8SSebastian Siewior See also: 1306584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1307584fffc8SSebastian Siewior 13080b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 13090b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1310f21a7c19SAl Viro depends on X86 && 64BIT 13110b95ec56SJussi Kivilinna depends on CRYPTO 13121af6d037SEric Biggers select CRYPTO_BLKCIPHER 1313964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 13140b95ec56SJussi Kivilinna help 13150b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 13160b95ec56SJussi Kivilinna 13170b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 13180b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 13190b95ec56SJussi Kivilinna 13200b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 13210b95ec56SJussi Kivilinna 13220b95ec56SJussi Kivilinna See also: 13230b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 13240b95ec56SJussi Kivilinna 1325d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1326d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1327d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1328d9b1d2e7SJussi Kivilinna depends on CRYPTO 132944893bc2SEric Biggers select CRYPTO_BLKCIPHER 1330d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 133144893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 133244893bc2SEric Biggers select CRYPTO_SIMD 1333d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1334d9b1d2e7SJussi Kivilinna help 1335d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1336d9b1d2e7SJussi Kivilinna 1337d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1338d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1339d9b1d2e7SJussi Kivilinna 1340d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1341d9b1d2e7SJussi Kivilinna 1342d9b1d2e7SJussi Kivilinna See also: 1343d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1344d9b1d2e7SJussi Kivilinna 1345f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1346f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1347f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1348f3f935a7SJussi Kivilinna depends on CRYPTO 1349f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1350f3f935a7SJussi Kivilinna help 1351f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1352f3f935a7SJussi Kivilinna 1353f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1354f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1355f3f935a7SJussi Kivilinna 1356f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1357f3f935a7SJussi Kivilinna 1358f3f935a7SJussi Kivilinna See also: 1359f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1360f3f935a7SJussi Kivilinna 136181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 136281658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 136381658ad0SDavid S. Miller depends on SPARC64 136481658ad0SDavid S. Miller depends on CRYPTO 136581658ad0SDavid S. Miller select CRYPTO_ALGAPI 136681658ad0SDavid S. Miller help 136781658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 136881658ad0SDavid S. Miller 136981658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 137081658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 137181658ad0SDavid S. Miller 137281658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 137381658ad0SDavid S. Miller 137481658ad0SDavid S. Miller See also: 137581658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 137681658ad0SDavid S. Miller 1377044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1378044ab525SJussi Kivilinna tristate 1379044ab525SJussi Kivilinna help 1380044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1381044ab525SJussi Kivilinna generic c and the assembler implementations. 1382044ab525SJussi Kivilinna 1383584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1384584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1385584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1386044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1387584fffc8SSebastian Siewior help 1388584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1389584fffc8SSebastian Siewior described in RFC2144. 1390584fffc8SSebastian Siewior 13914d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13924d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13934d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13941e63183aSEric Biggers select CRYPTO_BLKCIPHER 13954d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13961e63183aSEric Biggers select CRYPTO_CAST_COMMON 13971e63183aSEric Biggers select CRYPTO_SIMD 13984d6d6a2cSJohannes Goetzfried help 13994d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 14004d6d6a2cSJohannes Goetzfried described in RFC2144. 14014d6d6a2cSJohannes Goetzfried 14024d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 14034d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 14044d6d6a2cSJohannes Goetzfried 1405584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1406584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1407584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1408044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1409584fffc8SSebastian Siewior help 1410584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1411584fffc8SSebastian Siewior described in RFC2612. 1412584fffc8SSebastian Siewior 14134ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 14144ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 14154ea1277dSJohannes Goetzfried depends on X86 && 64BIT 14164bd96924SEric Biggers select CRYPTO_BLKCIPHER 14174ea1277dSJohannes Goetzfried select CRYPTO_CAST6 14184bd96924SEric Biggers select CRYPTO_CAST_COMMON 14194bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 14204bd96924SEric Biggers select CRYPTO_SIMD 14214ea1277dSJohannes Goetzfried select CRYPTO_XTS 14224ea1277dSJohannes Goetzfried help 14234ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 14244ea1277dSJohannes Goetzfried described in RFC2612. 14254ea1277dSJohannes Goetzfried 14264ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 14274ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14284ea1277dSJohannes Goetzfried 1429584fffc8SSebastian Siewiorconfig CRYPTO_DES 1430584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1431584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1432584fffc8SSebastian Siewior help 1433584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1434584fffc8SSebastian Siewior 1435c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1436c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 143797da37b3SDave Jones depends on SPARC64 1438c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1439c5aac2dfSDavid S. Miller select CRYPTO_DES 1440c5aac2dfSDavid S. Miller help 1441c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1442c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1443c5aac2dfSDavid S. Miller 14446574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14456574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14466574e6c6SJussi Kivilinna depends on X86 && 64BIT 144709c0f03bSEric Biggers select CRYPTO_BLKCIPHER 14486574e6c6SJussi Kivilinna select CRYPTO_DES 14496574e6c6SJussi Kivilinna help 14506574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14516574e6c6SJussi Kivilinna 14526574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14536574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14546574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14556574e6c6SJussi Kivilinna one that processes three blocks parallel. 14566574e6c6SJussi Kivilinna 1457584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1458584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1459584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1460584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1461584fffc8SSebastian Siewior help 1462584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1463584fffc8SSebastian Siewior 1464584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1465584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1466584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1467584fffc8SSebastian Siewior help 1468584fffc8SSebastian Siewior Khazad cipher algorithm. 1469584fffc8SSebastian Siewior 1470584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1471584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1472584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1473584fffc8SSebastian Siewior 1474584fffc8SSebastian Siewior See also: 14756d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1476e2ee95b8SHye-Shik Chang 14772407d608STan Swee Hengconfig CRYPTO_SALSA20 14783b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14792407d608STan Swee Heng select CRYPTO_BLKCIPHER 14802407d608STan Swee Heng help 14812407d608STan Swee Heng Salsa20 stream cipher algorithm. 14822407d608STan Swee Heng 14832407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14842407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14852407d608STan Swee Heng 14862407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14872407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14881da177e4SLinus Torvalds 1489c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1490aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1491c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1492c08d0e64SMartin Willi help 1493aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1494c08d0e64SMartin Willi 1495c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1496c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1497de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1498c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1499c08d0e64SMartin Willi 1500de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1501de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1502de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1503de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1504de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1505de61d7aeSEric Biggers 1506aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1507aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1508aa762409SEric Biggers in some performance-sensitive scenarios. 1509aa762409SEric Biggers 1510c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 15114af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1512c9320b6dSMartin Willi depends on X86 && 64BIT 1513c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1514c9320b6dSMartin Willi select CRYPTO_CHACHA20 1515c9320b6dSMartin Willi help 15167a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 15177a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1518c9320b6dSMartin Willi 1519584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1520584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1521584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1522584fffc8SSebastian Siewior help 1523584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1524584fffc8SSebastian Siewior 1525584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1526584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1527584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1528584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1529584fffc8SSebastian Siewior 1530584fffc8SSebastian Siewior See also: 1531584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1532584fffc8SSebastian Siewior 1533584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1534584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1535584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1536584fffc8SSebastian Siewior help 1537584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1538584fffc8SSebastian Siewior 1539584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1540584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1541584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1542584fffc8SSebastian Siewior 1543584fffc8SSebastian Siewior See also: 1544584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1545584fffc8SSebastian Siewior 1546937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1547937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1548937c30d7SJussi Kivilinna depends on X86 && 64BIT 1549e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1550596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1551937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1552e0f409dcSEric Biggers select CRYPTO_SIMD 1553937c30d7SJussi Kivilinna help 1554937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1555937c30d7SJussi Kivilinna 1556937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1557937c30d7SJussi Kivilinna of 8 bits. 1558937c30d7SJussi Kivilinna 15591e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1560937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1561937c30d7SJussi Kivilinna 1562937c30d7SJussi Kivilinna See also: 1563937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1564937c30d7SJussi Kivilinna 1565251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1566251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1567251496dbSJussi Kivilinna depends on X86 && !64BIT 1568e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1569596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1570251496dbSJussi Kivilinna select CRYPTO_SERPENT 1571e0f409dcSEric Biggers select CRYPTO_SIMD 1572251496dbSJussi Kivilinna help 1573251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1574251496dbSJussi Kivilinna 1575251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1576251496dbSJussi Kivilinna of 8 bits. 1577251496dbSJussi Kivilinna 1578251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1579251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1580251496dbSJussi Kivilinna 1581251496dbSJussi Kivilinna See also: 1582251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1583251496dbSJussi Kivilinna 15847efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15857efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15867efe4076SJohannes Goetzfried depends on X86 && 64BIT 1587e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15881d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15897efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1590e16bf974SEric Biggers select CRYPTO_SIMD 15917efe4076SJohannes Goetzfried select CRYPTO_XTS 15927efe4076SJohannes Goetzfried help 15937efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15947efe4076SJohannes Goetzfried 15957efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15967efe4076SJohannes Goetzfried of 8 bits. 15977efe4076SJohannes Goetzfried 15987efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15997efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 16007efe4076SJohannes Goetzfried 16017efe4076SJohannes Goetzfried See also: 16027efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 16037efe4076SJohannes Goetzfried 160456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 160556d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 160656d76c96SJussi Kivilinna depends on X86 && 64BIT 160756d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 160856d76c96SJussi Kivilinna help 160956d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 161056d76c96SJussi Kivilinna 161156d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 161256d76c96SJussi Kivilinna of 8 bits. 161356d76c96SJussi Kivilinna 161456d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 161556d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 161656d76c96SJussi Kivilinna 161756d76c96SJussi Kivilinna See also: 161856d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 161956d76c96SJussi Kivilinna 1620747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1621747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1622747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1623747c8ce4SGilad Ben-Yossef help 1624747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1625747c8ce4SGilad Ben-Yossef 1626747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1627747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1628747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1629747c8ce4SGilad Ben-Yossef 1630747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1631747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1632747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1633747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1634747c8ce4SGilad Ben-Yossef 1635747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1636747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1637747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1638747c8ce4SGilad Ben-Yossef 1639747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1640747c8ce4SGilad Ben-Yossef 1641747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1642747c8ce4SGilad Ben-Yossef 1643747c8ce4SGilad Ben-Yossef If unsure, say N. 1644747c8ce4SGilad Ben-Yossef 1645584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1646584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1647584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1648584fffc8SSebastian Siewior help 1649584fffc8SSebastian Siewior TEA cipher algorithm. 1650584fffc8SSebastian Siewior 1651584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1652584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1653584fffc8SSebastian Siewior little memory. 1654584fffc8SSebastian Siewior 1655584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1656584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1657584fffc8SSebastian Siewior in the TEA algorithm. 1658584fffc8SSebastian Siewior 1659584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1660584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1661584fffc8SSebastian Siewior 1662584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1663584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1664584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1665584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1666584fffc8SSebastian Siewior help 1667584fffc8SSebastian Siewior Twofish cipher algorithm. 1668584fffc8SSebastian Siewior 1669584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1670584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1671584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1672584fffc8SSebastian Siewior bits. 1673584fffc8SSebastian Siewior 1674584fffc8SSebastian Siewior See also: 1675584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1676584fffc8SSebastian Siewior 1677584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1678584fffc8SSebastian Siewior tristate 1679584fffc8SSebastian Siewior help 1680584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1681584fffc8SSebastian Siewior generic c and the assembler implementations. 1682584fffc8SSebastian Siewior 1683584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1684584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1685584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1686584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1687584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1688584fffc8SSebastian Siewior help 1689584fffc8SSebastian Siewior Twofish cipher algorithm. 1690584fffc8SSebastian Siewior 1691584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1692584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1693584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1694584fffc8SSebastian Siewior bits. 1695584fffc8SSebastian Siewior 1696584fffc8SSebastian Siewior See also: 1697584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1698584fffc8SSebastian Siewior 1699584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1700584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1701584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1702584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1703584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1704584fffc8SSebastian Siewior help 1705584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1706584fffc8SSebastian Siewior 1707584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1708584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1709584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1710584fffc8SSebastian Siewior bits. 1711584fffc8SSebastian Siewior 1712584fffc8SSebastian Siewior See also: 1713584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1714584fffc8SSebastian Siewior 17158280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17168280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1717f21a7c19SAl Viro depends on X86 && 64BIT 171837992fa4SEric Biggers select CRYPTO_BLKCIPHER 17198280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17208280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1721414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17228280daadSJussi Kivilinna help 17238280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17248280daadSJussi Kivilinna 17258280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17268280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17278280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17288280daadSJussi Kivilinna bits. 17298280daadSJussi Kivilinna 17308280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17318280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17328280daadSJussi Kivilinna 17338280daadSJussi Kivilinna See also: 17348280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 17358280daadSJussi Kivilinna 1736107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1737107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1738107778b5SJohannes Goetzfried depends on X86 && 64BIT 17390e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1740a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17410e6ab46dSEric Biggers select CRYPTO_SIMD 1742107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1743107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1744107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1745107778b5SJohannes Goetzfried help 1746107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1747107778b5SJohannes Goetzfried 1748107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1749107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1750107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1751107778b5SJohannes Goetzfried bits. 1752107778b5SJohannes Goetzfried 1753107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1754107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1755107778b5SJohannes Goetzfried 1756107778b5SJohannes Goetzfried See also: 1757107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1758107778b5SJohannes Goetzfried 1759584fffc8SSebastian Siewiorcomment "Compression" 1760584fffc8SSebastian Siewior 17611da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17621da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1763cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1764f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17651da177e4SLinus Torvalds select ZLIB_INFLATE 17661da177e4SLinus Torvalds select ZLIB_DEFLATE 17671da177e4SLinus Torvalds help 17681da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17691da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17701da177e4SLinus Torvalds 17711da177e4SLinus Torvalds You will most probably want this if using IPSec. 17721da177e4SLinus Torvalds 17730b77abb3SZoltan Sogorconfig CRYPTO_LZO 17740b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17750b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1776ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17770b77abb3SZoltan Sogor select LZO_COMPRESS 17780b77abb3SZoltan Sogor select LZO_DECOMPRESS 17790b77abb3SZoltan Sogor help 17800b77abb3SZoltan Sogor This is the LZO algorithm. 17810b77abb3SZoltan Sogor 178235a1fc18SSeth Jenningsconfig CRYPTO_842 178335a1fc18SSeth Jennings tristate "842 compression algorithm" 17842062c5b6SDan Streetman select CRYPTO_ALGAPI 17856a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17862062c5b6SDan Streetman select 842_COMPRESS 17872062c5b6SDan Streetman select 842_DECOMPRESS 178835a1fc18SSeth Jennings help 178935a1fc18SSeth Jennings This is the 842 algorithm. 179035a1fc18SSeth Jennings 17910ea8530dSChanho Minconfig CRYPTO_LZ4 17920ea8530dSChanho Min tristate "LZ4 compression algorithm" 17930ea8530dSChanho Min select CRYPTO_ALGAPI 17948cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17950ea8530dSChanho Min select LZ4_COMPRESS 17960ea8530dSChanho Min select LZ4_DECOMPRESS 17970ea8530dSChanho Min help 17980ea8530dSChanho Min This is the LZ4 algorithm. 17990ea8530dSChanho Min 18000ea8530dSChanho Minconfig CRYPTO_LZ4HC 18010ea8530dSChanho Min tristate "LZ4HC compression algorithm" 18020ea8530dSChanho Min select CRYPTO_ALGAPI 180391d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 18040ea8530dSChanho Min select LZ4HC_COMPRESS 18050ea8530dSChanho Min select LZ4_DECOMPRESS 18060ea8530dSChanho Min help 18070ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 18080ea8530dSChanho Min 1809d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1810d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1811d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1812d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1813d28fc3dbSNick Terrell select ZSTD_COMPRESS 1814d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1815d28fc3dbSNick Terrell help 1816d28fc3dbSNick Terrell This is the zstd algorithm. 1817d28fc3dbSNick Terrell 181817f0f4a4SNeil Hormancomment "Random Number Generation" 181917f0f4a4SNeil Horman 182017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 182117f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 182217f0f4a4SNeil Horman select CRYPTO_AES 182317f0f4a4SNeil Horman select CRYPTO_RNG 182417f0f4a4SNeil Horman help 182517f0f4a4SNeil Horman This option enables the generic pseudo random number generator 182617f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18277dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18287dd607e8SJiri Kosina CRYPTO_FIPS is selected 182917f0f4a4SNeil Horman 1830f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1831419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1832419090c6SStephan Mueller help 1833419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1834419090c6SStephan Mueller more of the DRBG types must be selected. 1835419090c6SStephan Mueller 1836f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1837419090c6SStephan Mueller 1838419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1839401e4238SHerbert Xu bool 1840419090c6SStephan Mueller default y 1841419090c6SStephan Mueller select CRYPTO_HMAC 1842826775bbSHerbert Xu select CRYPTO_SHA256 1843419090c6SStephan Mueller 1844419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1845419090c6SStephan Mueller bool "Enable Hash DRBG" 1846826775bbSHerbert Xu select CRYPTO_SHA256 1847419090c6SStephan Mueller help 1848419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1849419090c6SStephan Mueller 1850419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1851419090c6SStephan Mueller bool "Enable CTR DRBG" 1852419090c6SStephan Mueller select CRYPTO_AES 185335591285SStephan Mueller depends on CRYPTO_CTR 1854419090c6SStephan Mueller help 1855419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1856419090c6SStephan Mueller 1857f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1858f2c89a10SHerbert Xu tristate 1859401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1860f2c89a10SHerbert Xu select CRYPTO_RNG 1861bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1862f2c89a10SHerbert Xu 1863f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1864419090c6SStephan Mueller 1865bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1866bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18672f313e02SArnd Bergmann select CRYPTO_RNG 1868bb5530e4SStephan Mueller help 1869bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1870bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1871bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1872bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1873bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1874bb5530e4SStephan Mueller 187503c8efc1SHerbert Xuconfig CRYPTO_USER_API 187603c8efc1SHerbert Xu tristate 187703c8efc1SHerbert Xu 1878fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1879fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18807451708fSHerbert Xu depends on NET 1881fe869cdbSHerbert Xu select CRYPTO_HASH 1882fe869cdbSHerbert Xu select CRYPTO_USER_API 1883fe869cdbSHerbert Xu help 1884fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1885fe869cdbSHerbert Xu algorithms. 1886fe869cdbSHerbert Xu 18878ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18888ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18897451708fSHerbert Xu depends on NET 18908ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18918ff59090SHerbert Xu select CRYPTO_USER_API 18928ff59090SHerbert Xu help 18938ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18948ff59090SHerbert Xu key cipher algorithms. 18958ff59090SHerbert Xu 18962f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18972f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18982f375538SStephan Mueller depends on NET 18992f375538SStephan Mueller select CRYPTO_RNG 19002f375538SStephan Mueller select CRYPTO_USER_API 19012f375538SStephan Mueller help 19022f375538SStephan Mueller This option enables the user-spaces interface for random 19032f375538SStephan Mueller number generator algorithms. 19042f375538SStephan Mueller 1905b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1906b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1907b64a2d95SHerbert Xu depends on NET 1908b64a2d95SHerbert Xu select CRYPTO_AEAD 190972548b09SStephan Mueller select CRYPTO_BLKCIPHER 191072548b09SStephan Mueller select CRYPTO_NULL 1911b64a2d95SHerbert Xu select CRYPTO_USER_API 1912b64a2d95SHerbert Xu help 1913b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1914b64a2d95SHerbert Xu cipher algorithms. 1915b64a2d95SHerbert Xu 1916cac5818cSCorentin Labbeconfig CRYPTO_STATS 1917cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1918a6a31385SCorentin Labbe depends on CRYPTO_USER 1919cac5818cSCorentin Labbe help 1920cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1921cac5818cSCorentin Labbe This will collect: 1922cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1923cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1924cac5818cSCorentin Labbe - size and numbers of hash operations 1925cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1926cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1927cac5818cSCorentin Labbe 1928ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1929ee08997fSDmitry Kasatkin bool 1930ee08997fSDmitry Kasatkin 19311da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19328636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19338636a1f9SMasahiro Yamadasource "certs/Kconfig" 19341da177e4SLinus Torvalds 1935cce9e06dSHerbert Xuendif # if CRYPTO 1936