1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 18abfed87eSJason A. Donenfeld select LIB_MEMNEQ 191da177e4SLinus Torvalds help 201da177e4SLinus Torvalds This option provides the core Cryptographic API. 211da177e4SLinus Torvalds 22cce9e06dSHerbert Xuif CRYPTO 23cce9e06dSHerbert Xu 24584fffc8SSebastian Siewiorcomment "Crypto core or helper" 25584fffc8SSebastian Siewior 26ccb778e1SNeil Hormanconfig CRYPTO_FIPS 27ccb778e1SNeil Horman bool "FIPS 200 compliance" 28f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 291f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 30ccb778e1SNeil Horman help 31d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 32d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 33ccb778e1SNeil Horman certification. You should say no unless you know what 34e84c5480SChuck Ebbert this is. 35ccb778e1SNeil Horman 36cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 37cce9e06dSHerbert Xu tristate 386a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 39cce9e06dSHerbert Xu help 40cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 41cce9e06dSHerbert Xu 426a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 436a0fcbb4SHerbert Xu tristate 446a0fcbb4SHerbert Xu 451ae97820SHerbert Xuconfig CRYPTO_AEAD 461ae97820SHerbert Xu tristate 476a0fcbb4SHerbert Xu select CRYPTO_AEAD2 481ae97820SHerbert Xu select CRYPTO_ALGAPI 491ae97820SHerbert Xu 506a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 516a0fcbb4SHerbert Xu tristate 526a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 53149a3971SHerbert Xu select CRYPTO_NULL2 54149a3971SHerbert Xu select CRYPTO_RNG2 556a0fcbb4SHerbert Xu 56b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 575cde0af2SHerbert Xu tristate 58b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 595cde0af2SHerbert Xu select CRYPTO_ALGAPI 606a0fcbb4SHerbert Xu 61b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 626a0fcbb4SHerbert Xu tristate 636a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 646a0fcbb4SHerbert Xu select CRYPTO_RNG2 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1172b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1186a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1192b8c19dbSHerbert Xu help 1202b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1212b8c19dbSHerbert Xu cbc(aes). 1222b8c19dbSHerbert Xu 1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1246a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1256a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1266a0fcbb4SHerbert Xu select CRYPTO_HASH2 127b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 128946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1294e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1302ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1316a0fcbb4SHerbert Xu 132a38f7907SSteffen Klassertconfig CRYPTO_USER 133a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1345db017aaSHerbert Xu depends on NET 135a38f7907SSteffen Klassert select CRYPTO_MANAGER 136a38f7907SSteffen Klassert help 137d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 138a38f7907SSteffen Klassert cbc(aes). 139a38f7907SSteffen Klassert 140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 141326a6346SHerbert Xu bool "Disable run-time self tests" 14200ca28a5SHerbert Xu default y 1430b767f96SAlexander Shishkin help 144326a6346SHerbert Xu Disable run-time self tests that normally take place at 145326a6346SHerbert Xu algorithm registration. 1460b767f96SAlexander Shishkin 1475b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1485b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1496569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1505b2706a4SEric Biggers help 1515b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1525b2706a4SEric Biggers including randomized fuzz tests. 1535b2706a4SEric Biggers 1545b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1555b2706a4SEric Biggers longer to run than the normal self tests. 1565b2706a4SEric Biggers 157584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 158e590e132SEric Biggers tristate 159584fffc8SSebastian Siewior 160584fffc8SSebastian Siewiorconfig CRYPTO_NULL 161584fffc8SSebastian Siewior tristate "Null algorithms" 162149a3971SHerbert Xu select CRYPTO_NULL2 163584fffc8SSebastian Siewior help 164584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 165584fffc8SSebastian Siewior 166149a3971SHerbert Xuconfig CRYPTO_NULL2 167dd43c4e9SHerbert Xu tristate 168149a3971SHerbert Xu select CRYPTO_ALGAPI2 169b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 170149a3971SHerbert Xu select CRYPTO_HASH2 171149a3971SHerbert Xu 1725068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1733b4afaf2SKees Cook tristate "Parallel crypto engine" 1743b4afaf2SKees Cook depends on SMP 1755068c7a8SSteffen Klassert select PADATA 1765068c7a8SSteffen Klassert select CRYPTO_MANAGER 1775068c7a8SSteffen Klassert select CRYPTO_AEAD 1785068c7a8SSteffen Klassert help 1795068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1805068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1815068c7a8SSteffen Klassert 182584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 183584fffc8SSebastian Siewior tristate "Software async crypto daemon" 184b95bba5dSEric Biggers select CRYPTO_SKCIPHER 185b8a28251SLoc Ho select CRYPTO_HASH 186584fffc8SSebastian Siewior select CRYPTO_MANAGER 187584fffc8SSebastian Siewior help 188584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 189584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 190584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 191584fffc8SSebastian Siewior 192584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 193584fffc8SSebastian Siewior tristate "Authenc support" 194584fffc8SSebastian Siewior select CRYPTO_AEAD 195b95bba5dSEric Biggers select CRYPTO_SKCIPHER 196584fffc8SSebastian Siewior select CRYPTO_MANAGER 197584fffc8SSebastian Siewior select CRYPTO_HASH 198e94c6a7aSHerbert Xu select CRYPTO_NULL 199584fffc8SSebastian Siewior help 200584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 201584fffc8SSebastian Siewior This is required for IPSec. 202584fffc8SSebastian Siewior 203584fffc8SSebastian Siewiorconfig CRYPTO_TEST 204584fffc8SSebastian Siewior tristate "Testing module" 20500ea27f1SArd Biesheuvel depends on m || EXPERT 206da7f033dSHerbert Xu select CRYPTO_MANAGER 207584fffc8SSebastian Siewior help 208584fffc8SSebastian Siewior Quick & dirty crypto test module. 209584fffc8SSebastian Siewior 210266d0516SHerbert Xuconfig CRYPTO_SIMD 211266d0516SHerbert Xu tristate 212266d0516SHerbert Xu select CRYPTO_CRYPTD 213266d0516SHerbert Xu 214735d37b5SBaolin Wangconfig CRYPTO_ENGINE 215735d37b5SBaolin Wang tristate 216735d37b5SBaolin Wang 2173d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2183d6228a5SVitaly Chikunov 2193d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2203d6228a5SVitaly Chikunov tristate "RSA algorithm" 2213d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2223d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2233d6228a5SVitaly Chikunov select MPILIB 2243d6228a5SVitaly Chikunov select ASN1 2253d6228a5SVitaly Chikunov help 2263d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2273d6228a5SVitaly Chikunov 2283d6228a5SVitaly Chikunovconfig CRYPTO_DH 2293d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2303d6228a5SVitaly Chikunov select CRYPTO_KPP 2313d6228a5SVitaly Chikunov select MPILIB 2323d6228a5SVitaly Chikunov help 2333d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2343d6228a5SVitaly Chikunov 2357dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS 2367dce5981SNicolai Stange bool "Support for RFC 7919 FFDHE group parameters" 2377dce5981SNicolai Stange depends on CRYPTO_DH 2381e207964SNicolai Stange select CRYPTO_RNG_DEFAULT 2397dce5981SNicolai Stange help 2407dce5981SNicolai Stange Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 2417dce5981SNicolai Stange 2424a2289daSVitaly Chikunovconfig CRYPTO_ECC 2434a2289daSVitaly Chikunov tristate 24438aa192aSArnd Bergmann select CRYPTO_RNG_DEFAULT 2454a2289daSVitaly Chikunov 2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2473d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2484a2289daSVitaly Chikunov select CRYPTO_ECC 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov help 2513d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2523d6228a5SVitaly Chikunov 2534e660291SStefan Bergerconfig CRYPTO_ECDSA 2544e660291SStefan Berger tristate "ECDSA (NIST P192, P256 etc.) algorithm" 2554e660291SStefan Berger select CRYPTO_ECC 2564e660291SStefan Berger select CRYPTO_AKCIPHER 2574e660291SStefan Berger select ASN1 2584e660291SStefan Berger help 2594e660291SStefan Berger Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 2604e660291SStefan Berger is A NIST cryptographic standard algorithm. Only signature verification 2614e660291SStefan Berger is implemented. 2624e660291SStefan Berger 2630d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2640d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2650d7a7864SVitaly Chikunov select CRYPTO_ECC 2660d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2670d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2681036633eSVitaly Chikunov select OID_REGISTRY 2691036633eSVitaly Chikunov select ASN1 2700d7a7864SVitaly Chikunov help 2710d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2720d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2730d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2740d7a7864SVitaly Chikunov is implemented. 2750d7a7864SVitaly Chikunov 276ea7ecb66STianjia Zhangconfig CRYPTO_SM2 277ea7ecb66STianjia Zhang tristate "SM2 algorithm" 278d2825fa9SJason A. Donenfeld select CRYPTO_SM3 279ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 280ea7ecb66STianjia Zhang select CRYPTO_MANAGER 281ea7ecb66STianjia Zhang select MPILIB 282ea7ecb66STianjia Zhang select ASN1 283ea7ecb66STianjia Zhang help 284ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 285ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 286ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 287ea7ecb66STianjia Zhang 288ea7ecb66STianjia Zhang References: 289ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 290ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 291ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 292ea7ecb66STianjia Zhang 293ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 294ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 295ee772cb6SArd Biesheuvel select CRYPTO_KPP 296ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 297ee772cb6SArd Biesheuvel 298bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 299bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 300bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 301bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 302bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 303bb611bdfSJason A. Donenfeld 304584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 305584fffc8SSebastian Siewior 306584fffc8SSebastian Siewiorconfig CRYPTO_CCM 307584fffc8SSebastian Siewior tristate "CCM support" 308584fffc8SSebastian Siewior select CRYPTO_CTR 309f15f05b0SArd Biesheuvel select CRYPTO_HASH 310584fffc8SSebastian Siewior select CRYPTO_AEAD 311c8a3315aSEric Biggers select CRYPTO_MANAGER 312584fffc8SSebastian Siewior help 313584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 314584fffc8SSebastian Siewior 315584fffc8SSebastian Siewiorconfig CRYPTO_GCM 316584fffc8SSebastian Siewior tristate "GCM/GMAC support" 317584fffc8SSebastian Siewior select CRYPTO_CTR 318584fffc8SSebastian Siewior select CRYPTO_AEAD 3199382d97aSHuang Ying select CRYPTO_GHASH 3209489667dSJussi Kivilinna select CRYPTO_NULL 321c8a3315aSEric Biggers select CRYPTO_MANAGER 322584fffc8SSebastian Siewior help 323584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 324584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 325584fffc8SSebastian Siewior 32671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 32771ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 32871ebc4d1SMartin Willi select CRYPTO_CHACHA20 32971ebc4d1SMartin Willi select CRYPTO_POLY1305 33071ebc4d1SMartin Willi select CRYPTO_AEAD 331c8a3315aSEric Biggers select CRYPTO_MANAGER 33271ebc4d1SMartin Willi help 33371ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 33471ebc4d1SMartin Willi 33571ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 33671ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 33771ebc4d1SMartin Willi IETF protocols. 33871ebc4d1SMartin Willi 339f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 340f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 341f606a88eSOndrej Mosnacek select CRYPTO_AEAD 342f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 343f606a88eSOndrej Mosnacek help 344f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 345f606a88eSOndrej Mosnacek 346a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 347a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 348a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 349a4397635SArd Biesheuvel default y 350a4397635SArd Biesheuvel 3511d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3521d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3531d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3541d373d4eSOndrej Mosnacek select CRYPTO_AEAD 355de272ca7SEric Biggers select CRYPTO_SIMD 3561d373d4eSOndrej Mosnacek help 3574e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3581d373d4eSOndrej Mosnacek 359584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 360584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 361584fffc8SSebastian Siewior select CRYPTO_AEAD 362b95bba5dSEric Biggers select CRYPTO_SKCIPHER 363856e3f40SHerbert Xu select CRYPTO_NULL 364401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 365c8a3315aSEric Biggers select CRYPTO_MANAGER 366584fffc8SSebastian Siewior help 367584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 368584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 369584fffc8SSebastian Siewior 370a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 371a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 372a10f554fSHerbert Xu select CRYPTO_AEAD 373a10f554fSHerbert Xu select CRYPTO_NULL 374401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 375c8a3315aSEric Biggers select CRYPTO_MANAGER 376a10f554fSHerbert Xu help 377a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 378a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 379a10f554fSHerbert Xu algorithm for CBC. 380a10f554fSHerbert Xu 381584fffc8SSebastian Siewiorcomment "Block modes" 382584fffc8SSebastian Siewior 383584fffc8SSebastian Siewiorconfig CRYPTO_CBC 384584fffc8SSebastian Siewior tristate "CBC support" 385b95bba5dSEric Biggers select CRYPTO_SKCIPHER 386584fffc8SSebastian Siewior select CRYPTO_MANAGER 387584fffc8SSebastian Siewior help 388584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 389584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 390584fffc8SSebastian Siewior 391a7d85e06SJames Bottomleyconfig CRYPTO_CFB 392a7d85e06SJames Bottomley tristate "CFB support" 393b95bba5dSEric Biggers select CRYPTO_SKCIPHER 394a7d85e06SJames Bottomley select CRYPTO_MANAGER 395a7d85e06SJames Bottomley help 396a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 397a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 398a7d85e06SJames Bottomley 399584fffc8SSebastian Siewiorconfig CRYPTO_CTR 400584fffc8SSebastian Siewior tristate "CTR support" 401b95bba5dSEric Biggers select CRYPTO_SKCIPHER 402584fffc8SSebastian Siewior select CRYPTO_MANAGER 403584fffc8SSebastian Siewior help 404584fffc8SSebastian Siewior CTR: Counter mode 405584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 406584fffc8SSebastian Siewior 407584fffc8SSebastian Siewiorconfig CRYPTO_CTS 408584fffc8SSebastian Siewior tristate "CTS support" 409b95bba5dSEric Biggers select CRYPTO_SKCIPHER 410c8a3315aSEric Biggers select CRYPTO_MANAGER 411584fffc8SSebastian Siewior help 412584fffc8SSebastian Siewior CTS: Cipher Text Stealing 413584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 414ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 415ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 416ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 417584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 418584fffc8SSebastian Siewior for AES encryption. 419584fffc8SSebastian Siewior 420ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 421ecd6d5c9SGilad Ben-Yossef 422584fffc8SSebastian Siewiorconfig CRYPTO_ECB 423584fffc8SSebastian Siewior tristate "ECB support" 424b95bba5dSEric Biggers select CRYPTO_SKCIPHER 425584fffc8SSebastian Siewior select CRYPTO_MANAGER 426584fffc8SSebastian Siewior help 427584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 428584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 429584fffc8SSebastian Siewior the input block by block. 430584fffc8SSebastian Siewior 431584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4322470a2b2SJussi Kivilinna tristate "LRW support" 433b95bba5dSEric Biggers select CRYPTO_SKCIPHER 434584fffc8SSebastian Siewior select CRYPTO_MANAGER 435584fffc8SSebastian Siewior select CRYPTO_GF128MUL 436f60bbbbeSHerbert Xu select CRYPTO_ECB 437584fffc8SSebastian Siewior help 438584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 439584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 440584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 441584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 442584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 443584fffc8SSebastian Siewior 444e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 445e497c518SGilad Ben-Yossef tristate "OFB support" 446b95bba5dSEric Biggers select CRYPTO_SKCIPHER 447e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 448e497c518SGilad Ben-Yossef help 449e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 450e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 451e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 452e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 453e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 454e497c518SGilad Ben-Yossef normally even when applied before encryption. 455e497c518SGilad Ben-Yossef 456584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 457584fffc8SSebastian Siewior tristate "PCBC support" 458b95bba5dSEric Biggers select CRYPTO_SKCIPHER 459584fffc8SSebastian Siewior select CRYPTO_MANAGER 460584fffc8SSebastian Siewior help 461584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 462584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 463584fffc8SSebastian Siewior 464584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4655bcf8e6dSJussi Kivilinna tristate "XTS support" 466b95bba5dSEric Biggers select CRYPTO_SKCIPHER 467584fffc8SSebastian Siewior select CRYPTO_MANAGER 46812cb3a1cSMilan Broz select CRYPTO_ECB 469584fffc8SSebastian Siewior help 470584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 471584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 472584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 473584fffc8SSebastian Siewior 4741c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4751c49678eSStephan Mueller tristate "Key wrapping support" 476b95bba5dSEric Biggers select CRYPTO_SKCIPHER 477c8a3315aSEric Biggers select CRYPTO_MANAGER 4781c49678eSStephan Mueller help 4791c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4801c49678eSStephan Mueller padding. 4811c49678eSStephan Mueller 48226609a21SEric Biggersconfig CRYPTO_NHPOLY1305 48326609a21SEric Biggers tristate 48426609a21SEric Biggers select CRYPTO_HASH 48548ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 48626609a21SEric Biggers 487012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 488012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 489012c8238SEric Biggers depends on X86 && 64BIT 490012c8238SEric Biggers select CRYPTO_NHPOLY1305 491012c8238SEric Biggers help 492012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 493012c8238SEric Biggers Adiantum encryption mode. 494012c8238SEric Biggers 4950f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4960f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4970f961f9fSEric Biggers depends on X86 && 64BIT 4980f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4990f961f9fSEric Biggers help 5000f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5010f961f9fSEric Biggers Adiantum encryption mode. 5020f961f9fSEric Biggers 503059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 504059c2a4dSEric Biggers tristate "Adiantum support" 505059c2a4dSEric Biggers select CRYPTO_CHACHA20 50648ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 507059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 508c8a3315aSEric Biggers select CRYPTO_MANAGER 509059c2a4dSEric Biggers help 510059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 511059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 512059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 513059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 514059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 515059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 516059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 517059c2a4dSEric Biggers AES-XTS. 518059c2a4dSEric Biggers 519059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 520059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 521059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 522059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 523059c2a4dSEric Biggers security than XTS, subject to the security bound. 524059c2a4dSEric Biggers 525059c2a4dSEric Biggers If unsure, say N. 526059c2a4dSEric Biggers 527be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 528be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 529be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 530be1eb7f7SArd Biesheuvel help 531be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 532be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 533be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 534be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 535be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 536be1eb7f7SArd Biesheuvel encryption. 537be1eb7f7SArd Biesheuvel 538be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 539ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 540be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 541be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 542ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 543be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 544be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 545be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 546be1eb7f7SArd Biesheuvel 547be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 548be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 549be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 550be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 551be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 552be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 553be1eb7f7SArd Biesheuvel block encryption) 554be1eb7f7SArd Biesheuvel 555584fffc8SSebastian Siewiorcomment "Hash modes" 556584fffc8SSebastian Siewior 55793b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 55893b5e86aSJussi Kivilinna tristate "CMAC support" 55993b5e86aSJussi Kivilinna select CRYPTO_HASH 56093b5e86aSJussi Kivilinna select CRYPTO_MANAGER 56193b5e86aSJussi Kivilinna help 56293b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 56393b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 56493b5e86aSJussi Kivilinna 56593b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 56693b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 56793b5e86aSJussi Kivilinna 5681da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5698425165dSHerbert Xu tristate "HMAC support" 5700796ae06SHerbert Xu select CRYPTO_HASH 57143518407SHerbert Xu select CRYPTO_MANAGER 5721da177e4SLinus Torvalds help 5731da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5741da177e4SLinus Torvalds This is required for IPSec. 5751da177e4SLinus Torvalds 576333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 577333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 578333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 579333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 580333b0d7eSKazunori MIYAZAWA help 581333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 5829332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 583333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 584333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 585333b0d7eSKazunori MIYAZAWA 586f1939f7cSShane Wangconfig CRYPTO_VMAC 587f1939f7cSShane Wang tristate "VMAC support" 588f1939f7cSShane Wang select CRYPTO_HASH 589f1939f7cSShane Wang select CRYPTO_MANAGER 590f1939f7cSShane Wang help 591f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 592f1939f7cSShane Wang very high speed on 64-bit architectures. 593f1939f7cSShane Wang 594f1939f7cSShane Wang See also: 5959332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 596f1939f7cSShane Wang 597584fffc8SSebastian Siewiorcomment "Digest" 598584fffc8SSebastian Siewior 599584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 600584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6015773a3e6SHerbert Xu select CRYPTO_HASH 6026a0962b2SDarrick J. Wong select CRC32 6031da177e4SLinus Torvalds help 604584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 605584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 60669c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6071da177e4SLinus Torvalds 6088cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6098cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6108cb51ba8SAustin Zhang depends on X86 6118cb51ba8SAustin Zhang select CRYPTO_HASH 6128cb51ba8SAustin Zhang help 6138cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6148cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6158cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6168cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6178cb51ba8SAustin Zhang gain performance compared with software implementation. 6188cb51ba8SAustin Zhang Module will be crc32c-intel. 6198cb51ba8SAustin Zhang 6207cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6216dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 622c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6236dd7a82cSAnton Blanchard select CRYPTO_HASH 6246dd7a82cSAnton Blanchard select CRC32 6256dd7a82cSAnton Blanchard help 6266dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6276dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6286dd7a82cSAnton Blanchard and newer processors for improved performance. 6296dd7a82cSAnton Blanchard 6306dd7a82cSAnton Blanchard 631442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 632442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 633442a7c40SDavid S. Miller depends on SPARC64 634442a7c40SDavid S. Miller select CRYPTO_HASH 635442a7c40SDavid S. Miller select CRC32 636442a7c40SDavid S. Miller help 637442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 638442a7c40SDavid S. Miller when available. 639442a7c40SDavid S. Miller 64078c37d19SAlexander Boykoconfig CRYPTO_CRC32 64178c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 64278c37d19SAlexander Boyko select CRYPTO_HASH 64378c37d19SAlexander Boyko select CRC32 64478c37d19SAlexander Boyko help 64578c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 64678c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 64778c37d19SAlexander Boyko 64878c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 64978c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 65078c37d19SAlexander Boyko depends on X86 65178c37d19SAlexander Boyko select CRYPTO_HASH 65278c37d19SAlexander Boyko select CRC32 65378c37d19SAlexander Boyko help 65478c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 65578c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 65678c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 657af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 65878c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 65978c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 66078c37d19SAlexander Boyko 6614a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6624a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6634a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6644a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6654a5dc51eSMarcin Nowakowski help 6664a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6674a5dc51eSMarcin Nowakowski instructions, when available. 6684a5dc51eSMarcin Nowakowski 669*b7133757SJason A. Donenfeldconfig CRYPTO_CRC32_S390 670*b7133757SJason A. Donenfeld tristate "CRC-32 algorithms" 671*b7133757SJason A. Donenfeld depends on S390 672*b7133757SJason A. Donenfeld select CRYPTO_HASH 673*b7133757SJason A. Donenfeld select CRC32 674*b7133757SJason A. Donenfeld help 675*b7133757SJason A. Donenfeld Select this option if you want to use hardware accelerated 676*b7133757SJason A. Donenfeld implementations of CRC algorithms. With this option, you 677*b7133757SJason A. Donenfeld can optimize the computation of CRC-32 (IEEE 802.3 Ethernet) 678*b7133757SJason A. Donenfeld and CRC-32C (Castagnoli). 679*b7133757SJason A. Donenfeld 680*b7133757SJason A. Donenfeld It is available with IBM z13 or later. 6814a5dc51eSMarcin Nowakowski 68267882e76SNikolay Borisovconfig CRYPTO_XXHASH 68367882e76SNikolay Borisov tristate "xxHash hash algorithm" 68467882e76SNikolay Borisov select CRYPTO_HASH 68567882e76SNikolay Borisov select XXHASH 68667882e76SNikolay Borisov help 68767882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 68867882e76SNikolay Borisov speeds close to RAM limits. 68967882e76SNikolay Borisov 69091d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 69191d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 69291d68933SDavid Sterba select CRYPTO_HASH 69391d68933SDavid Sterba help 69491d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 69591d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 69691d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 69791d68933SDavid Sterba 69891d68933SDavid Sterba This module provides the following algorithms: 69991d68933SDavid Sterba 70091d68933SDavid Sterba - blake2b-160 70191d68933SDavid Sterba - blake2b-256 70291d68933SDavid Sterba - blake2b-384 70391d68933SDavid Sterba - blake2b-512 70491d68933SDavid Sterba 70591d68933SDavid Sterba See https://blake2.net for further information. 70691d68933SDavid Sterba 7077f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 7087f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 7097f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 7107f9b0880SArd Biesheuvel select CRYPTO_HASH 7117f9b0880SArd Biesheuvel help 7127f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 7137f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 7147f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 7157f9b0880SArd Biesheuvel 7167f9b0880SArd Biesheuvel This module provides the following algorithms: 7177f9b0880SArd Biesheuvel 7187f9b0880SArd Biesheuvel - blake2s-128 7197f9b0880SArd Biesheuvel - blake2s-160 7207f9b0880SArd Biesheuvel - blake2s-224 7217f9b0880SArd Biesheuvel - blake2s-256 7227f9b0880SArd Biesheuvel 7237f9b0880SArd Biesheuvel See https://blake2.net for further information. 7247f9b0880SArd Biesheuvel 725ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 726ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 727ed0356edSJason A. Donenfeld depends on X86 && 64BIT 728ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 729ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 730ed0356edSJason A. Donenfeld 73168411521SHerbert Xuconfig CRYPTO_CRCT10DIF 73268411521SHerbert Xu tristate "CRCT10DIF algorithm" 73368411521SHerbert Xu select CRYPTO_HASH 73468411521SHerbert Xu help 73568411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 73668411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 73768411521SHerbert Xu transforms to be used if they are available. 73868411521SHerbert Xu 73968411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 74068411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 74168411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 74268411521SHerbert Xu select CRYPTO_HASH 74368411521SHerbert Xu help 74468411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 74568411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 74668411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 747af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 74868411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 74968411521SHerbert Xu 750b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 751b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 752b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 753b01df1c1SDaniel Axtens select CRYPTO_HASH 754b01df1c1SDaniel Axtens help 755b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 756b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 757b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 758b01df1c1SDaniel Axtens 759f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT 760f3813f4bSKeith Busch tristate "Rocksoft Model CRC64 algorithm" 761f3813f4bSKeith Busch depends on CRC64 762f3813f4bSKeith Busch select CRYPTO_HASH 763f3813f4bSKeith Busch 764146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 765146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 766146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 767146c8688SDaniel Axtens help 768146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 769146c8688SDaniel Axtens POWER8 vpmsum instructions. 770146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 771146c8688SDaniel Axtens 7722cdc6899SHuang Yingconfig CRYPTO_GHASH 7738dfa20fcSEric Biggers tristate "GHASH hash function" 7742cdc6899SHuang Ying select CRYPTO_GF128MUL 775578c60fbSArnd Bergmann select CRYPTO_HASH 7762cdc6899SHuang Ying help 7778dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7788dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7792cdc6899SHuang Ying 780f979e014SMartin Williconfig CRYPTO_POLY1305 781f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 782578c60fbSArnd Bergmann select CRYPTO_HASH 78348ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 784f979e014SMartin Willi help 785f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 786f979e014SMartin Willi 787f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 788f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 789f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 790f979e014SMartin Willi 791c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 792b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 793c70f4abeSMartin Willi depends on X86 && 64BIT 7941b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 795f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 796c70f4abeSMartin Willi help 797c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 798c70f4abeSMartin Willi 799c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 800c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 801c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 802c70f4abeSMartin Willi instructions. 803c70f4abeSMartin Willi 804a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 805a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 8066c810cf2SMaciej W. Rozycki depends on MIPS 807a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 808a11d055eSArd Biesheuvel 8091da177e4SLinus Torvaldsconfig CRYPTO_MD4 8101da177e4SLinus Torvalds tristate "MD4 digest algorithm" 811808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 8121da177e4SLinus Torvalds help 8131da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 8141da177e4SLinus Torvalds 8151da177e4SLinus Torvaldsconfig CRYPTO_MD5 8161da177e4SLinus Torvalds tristate "MD5 digest algorithm" 81714b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 8181da177e4SLinus Torvalds help 8191da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 8201da177e4SLinus Torvalds 821d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 822d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 823d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 824d69e75deSAaro Koskinen select CRYPTO_MD5 825d69e75deSAaro Koskinen select CRYPTO_HASH 826d69e75deSAaro Koskinen help 827d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 828d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 829d69e75deSAaro Koskinen 830e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 831e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 832e8e59953SMarkus Stockhausen depends on PPC 833e8e59953SMarkus Stockhausen select CRYPTO_HASH 834e8e59953SMarkus Stockhausen help 835e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 836e8e59953SMarkus Stockhausen in PPC assembler. 837e8e59953SMarkus Stockhausen 838fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 839fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 840fa4dfedcSDavid S. Miller depends on SPARC64 841fa4dfedcSDavid S. Miller select CRYPTO_MD5 842fa4dfedcSDavid S. Miller select CRYPTO_HASH 843fa4dfedcSDavid S. Miller help 844fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 845fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 846fa4dfedcSDavid S. Miller 847584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 848584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 84919e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 850584fffc8SSebastian Siewior help 851584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 852584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 853584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 854584fffc8SSebastian Siewior of the algorithm. 855584fffc8SSebastian Siewior 85682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 85782798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 858e5835fbaSHerbert Xu select CRYPTO_HASH 85982798f90SAdrian-Ken Rueegsegger help 86082798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 86182798f90SAdrian-Ken Rueegsegger 86282798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 86382798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 864b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 865b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 86682798f90SAdrian-Ken Rueegsegger 867b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 868b6d44341SAdrian Bunk against RIPEMD-160. 869534fe2c1SAdrian-Ken Rueegsegger 870534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8719332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 872534fe2c1SAdrian-Ken Rueegsegger 8731da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8741da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 87554ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8761da177e4SLinus Torvalds help 8771da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8781da177e4SLinus Torvalds 87966be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 880e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 88166be8951SMathias Krause depends on X86 && 64BIT 88266be8951SMathias Krause select CRYPTO_SHA1 88366be8951SMathias Krause select CRYPTO_HASH 88466be8951SMathias Krause help 88566be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 88666be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 887e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 888e38b6b7fStim when available. 88966be8951SMathias Krause 8908275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 891e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8928275d1aaSTim Chen depends on X86 && 64BIT 8938275d1aaSTim Chen select CRYPTO_SHA256 8948275d1aaSTim Chen select CRYPTO_HASH 8958275d1aaSTim Chen help 8968275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8978275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8988275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 899e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 900e38b6b7fStim Instructions) when available. 9018275d1aaSTim Chen 90287de4579STim Chenconfig CRYPTO_SHA512_SSSE3 90387de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 90487de4579STim Chen depends on X86 && 64BIT 90587de4579STim Chen select CRYPTO_SHA512 90687de4579STim Chen select CRYPTO_HASH 90787de4579STim Chen help 90887de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 90987de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 91087de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 91187de4579STim Chen version 2 (AVX2) instructions, when available. 91287de4579STim Chen 913*b7133757SJason A. Donenfeldconfig CRYPTO_SHA512_S390 914*b7133757SJason A. Donenfeld tristate "SHA384 and SHA512 digest algorithm" 915*b7133757SJason A. Donenfeld depends on S390 916*b7133757SJason A. Donenfeld select CRYPTO_HASH 917*b7133757SJason A. Donenfeld help 918*b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 919*b7133757SJason A. Donenfeld SHA512 secure hash standard. 920*b7133757SJason A. Donenfeld 921*b7133757SJason A. Donenfeld It is available as of z10. 922*b7133757SJason A. Donenfeld 923efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 924efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 925efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 926efdb6f6eSAaro Koskinen select CRYPTO_SHA1 927efdb6f6eSAaro Koskinen select CRYPTO_HASH 928efdb6f6eSAaro Koskinen help 929efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 930efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 931efdb6f6eSAaro Koskinen 9324ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9334ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9344ff28d4cSDavid S. Miller depends on SPARC64 9354ff28d4cSDavid S. Miller select CRYPTO_SHA1 9364ff28d4cSDavid S. Miller select CRYPTO_HASH 9374ff28d4cSDavid S. Miller help 9384ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9394ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9404ff28d4cSDavid S. Miller 941323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 942323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 943323a6bf1SMichael Ellerman depends on PPC 944323a6bf1SMichael Ellerman help 945323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 946323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 947323a6bf1SMichael Ellerman 948d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 949d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 950d9850fc5SMarkus Stockhausen depends on PPC && SPE 951d9850fc5SMarkus Stockhausen help 952d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 953d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 954d9850fc5SMarkus Stockhausen 955*b7133757SJason A. Donenfeldconfig CRYPTO_SHA1_S390 956*b7133757SJason A. Donenfeld tristate "SHA1 digest algorithm" 957*b7133757SJason A. Donenfeld depends on S390 958*b7133757SJason A. Donenfeld select CRYPTO_HASH 959*b7133757SJason A. Donenfeld help 960*b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 961*b7133757SJason A. Donenfeld SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 962*b7133757SJason A. Donenfeld 963*b7133757SJason A. Donenfeld It is available as of z990. 964*b7133757SJason A. Donenfeld 9651da177e4SLinus Torvaldsconfig CRYPTO_SHA256 966cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 96750e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 96808c327f6SHans de Goede select CRYPTO_LIB_SHA256 9691da177e4SLinus Torvalds help 9701da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9711da177e4SLinus Torvalds 9721da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9731da177e4SLinus Torvalds security against collision attacks. 9741da177e4SLinus Torvalds 975cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 976cd12fb90SJonathan Lynch of security against collision attacks. 977cd12fb90SJonathan Lynch 9782ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9792ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9802ecc1e95SMarkus Stockhausen depends on PPC && SPE 9812ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9822ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9832ecc1e95SMarkus Stockhausen help 9842ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9852ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9862ecc1e95SMarkus Stockhausen 987efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 988efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 989efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 990efdb6f6eSAaro Koskinen select CRYPTO_SHA256 991efdb6f6eSAaro Koskinen select CRYPTO_HASH 992efdb6f6eSAaro Koskinen help 993efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 994efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 995efdb6f6eSAaro Koskinen 99686c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 99786c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 99886c93b24SDavid S. Miller depends on SPARC64 99986c93b24SDavid S. Miller select CRYPTO_SHA256 100086c93b24SDavid S. Miller select CRYPTO_HASH 100186c93b24SDavid S. Miller help 100286c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 100386c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 100486c93b24SDavid S. Miller 1005*b7133757SJason A. Donenfeldconfig CRYPTO_SHA256_S390 1006*b7133757SJason A. Donenfeld tristate "SHA256 digest algorithm" 1007*b7133757SJason A. Donenfeld depends on S390 1008*b7133757SJason A. Donenfeld select CRYPTO_HASH 1009*b7133757SJason A. Donenfeld help 1010*b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1011*b7133757SJason A. Donenfeld SHA256 secure hash standard (DFIPS 180-2). 1012*b7133757SJason A. Donenfeld 1013*b7133757SJason A. Donenfeld It is available as of z9. 1014*b7133757SJason A. Donenfeld 10151da177e4SLinus Torvaldsconfig CRYPTO_SHA512 10161da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 1017bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 10181da177e4SLinus Torvalds help 10191da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 10201da177e4SLinus Torvalds 10211da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 10221da177e4SLinus Torvalds security against collision attacks. 10231da177e4SLinus Torvalds 10241da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 10251da177e4SLinus Torvalds of security against collision attacks. 10261da177e4SLinus Torvalds 1027efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 1028efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 1029efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 1030efdb6f6eSAaro Koskinen select CRYPTO_SHA512 1031efdb6f6eSAaro Koskinen select CRYPTO_HASH 1032efdb6f6eSAaro Koskinen help 1033efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 1034efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 1035efdb6f6eSAaro Koskinen 1036775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 1037775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1038775e0c69SDavid S. Miller depends on SPARC64 1039775e0c69SDavid S. Miller select CRYPTO_SHA512 1040775e0c69SDavid S. Miller select CRYPTO_HASH 1041775e0c69SDavid S. Miller help 1042775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 1043775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1044775e0c69SDavid S. Miller 104553964b9eSJeff Garzikconfig CRYPTO_SHA3 104653964b9eSJeff Garzik tristate "SHA3 digest algorithm" 104753964b9eSJeff Garzik select CRYPTO_HASH 104853964b9eSJeff Garzik help 104953964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 105053964b9eSJeff Garzik cryptographic sponge function family called Keccak. 105153964b9eSJeff Garzik 105253964b9eSJeff Garzik References: 105353964b9eSJeff Garzik http://keccak.noekeon.org/ 105453964b9eSJeff Garzik 1055*b7133757SJason A. Donenfeldconfig CRYPTO_SHA3_256_S390 1056*b7133757SJason A. Donenfeld tristate "SHA3_224 and SHA3_256 digest algorithm" 1057*b7133757SJason A. Donenfeld depends on S390 1058*b7133757SJason A. Donenfeld select CRYPTO_HASH 1059*b7133757SJason A. Donenfeld help 1060*b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1061*b7133757SJason A. Donenfeld SHA3_256 secure hash standard. 1062*b7133757SJason A. Donenfeld 1063*b7133757SJason A. Donenfeld It is available as of z14. 1064*b7133757SJason A. Donenfeld 1065*b7133757SJason A. Donenfeldconfig CRYPTO_SHA3_512_S390 1066*b7133757SJason A. Donenfeld tristate "SHA3_384 and SHA3_512 digest algorithm" 1067*b7133757SJason A. Donenfeld depends on S390 1068*b7133757SJason A. Donenfeld select CRYPTO_HASH 1069*b7133757SJason A. Donenfeld help 1070*b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1071*b7133757SJason A. Donenfeld SHA3_512 secure hash standard. 1072*b7133757SJason A. Donenfeld 1073*b7133757SJason A. Donenfeld It is available as of z14. 1074*b7133757SJason A. Donenfeld 10754f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 1076d2825fa9SJason A. Donenfeld tristate 1077d2825fa9SJason A. Donenfeld 1078d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC 10794f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10804f0fc160SGilad Ben-Yossef select CRYPTO_HASH 1081d2825fa9SJason A. Donenfeld select CRYPTO_SM3 10824f0fc160SGilad Ben-Yossef help 10834f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10844f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10854f0fc160SGilad Ben-Yossef 10864f0fc160SGilad Ben-Yossef References: 10874f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10884f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10894f0fc160SGilad Ben-Yossef 1090930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64 1091930ab34dSTianjia Zhang tristate "SM3 digest algorithm (x86_64/AVX)" 1092930ab34dSTianjia Zhang depends on X86 && 64BIT 1093930ab34dSTianjia Zhang select CRYPTO_HASH 1094d2825fa9SJason A. Donenfeld select CRYPTO_SM3 1095930ab34dSTianjia Zhang help 1096930ab34dSTianjia Zhang SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1097930ab34dSTianjia Zhang It is part of the Chinese Commercial Cryptography suite. This is 1098930ab34dSTianjia Zhang SM3 optimized implementation using Advanced Vector Extensions (AVX) 1099930ab34dSTianjia Zhang when available. 1100930ab34dSTianjia Zhang 1101930ab34dSTianjia Zhang If unsure, say N. 1102930ab34dSTianjia Zhang 1103fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1104fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1105fe18957eSVitaly Chikunov select CRYPTO_HASH 1106fe18957eSVitaly Chikunov help 1107fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1108fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1109fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1110fe18957eSVitaly Chikunov 1111fe18957eSVitaly Chikunov References: 1112fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1113fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1114fe18957eSVitaly Chikunov 1115584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1116584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 11174946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 11181da177e4SLinus Torvalds help 1119584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 11201da177e4SLinus Torvalds 1121584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1122584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 11231da177e4SLinus Torvalds 11241da177e4SLinus Torvalds See also: 11256d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 11261da177e4SLinus Torvalds 11270e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 11288dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 11298af00860SRichard Weinberger depends on X86 && 64BIT 11300e1227d3SHuang Ying select CRYPTO_CRYPTD 11310e1227d3SHuang Ying help 11328dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 11338dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 11340e1227d3SHuang Ying 1135*b7133757SJason A. Donenfeldconfig CRYPTO_GHASH_S390 1136*b7133757SJason A. Donenfeld tristate "GHASH hash function" 1137*b7133757SJason A. Donenfeld depends on S390 1138*b7133757SJason A. Donenfeld select CRYPTO_HASH 1139*b7133757SJason A. Donenfeld help 1140*b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of GHASH, 1141*b7133757SJason A. Donenfeld the hash function used in GCM (Galois/Counter mode). 1142*b7133757SJason A. Donenfeld 1143*b7133757SJason A. Donenfeld It is available as of z196. 1144*b7133757SJason A. Donenfeld 1145584fffc8SSebastian Siewiorcomment "Ciphers" 11461da177e4SLinus Torvalds 11471da177e4SLinus Torvaldsconfig CRYPTO_AES 11481da177e4SLinus Torvalds tristate "AES cipher algorithms" 1149cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11505bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 11511da177e4SLinus Torvalds help 11521da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11531da177e4SLinus Torvalds algorithm. 11541da177e4SLinus Torvalds 11551da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11561da177e4SLinus Torvalds both hardware and software across a wide range of computing 11571da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11581da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 11591da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 11601da177e4SLinus Torvalds suited for restricted-space environments, in which it also 11611da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 11621da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11631da177e4SLinus Torvalds 11641da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11651da177e4SLinus Torvalds 11661da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 11671da177e4SLinus Torvalds 1168b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1169b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1170b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1171e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1172b5e0b032SArd Biesheuvel help 1173b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1174b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1175b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1176b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1177b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1178b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1179b5e0b032SArd Biesheuvel 1180b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1181b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1182b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1183b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11840a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11850a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1186b5e0b032SArd Biesheuvel 118754b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 118854b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11898af00860SRichard Weinberger depends on X86 119085671860SHerbert Xu select CRYPTO_AEAD 11912c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 119254b6a1bdSHuang Ying select CRYPTO_ALGAPI 1193b95bba5dSEric Biggers select CRYPTO_SKCIPHER 119485671860SHerbert Xu select CRYPTO_SIMD 119554b6a1bdSHuang Ying help 119654b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 119754b6a1bdSHuang Ying 119854b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 119954b6a1bdSHuang Ying algorithm. 120054b6a1bdSHuang Ying 120154b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 120254b6a1bdSHuang Ying both hardware and software across a wide range of computing 120354b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 120454b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 120554b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 120654b6a1bdSHuang Ying suited for restricted-space environments, in which it also 120754b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 120854b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 120954b6a1bdSHuang Ying 121054b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 121154b6a1bdSHuang Ying 121254b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 121354b6a1bdSHuang Ying 12140d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 12150d258efbSMathias Krause for some popular block cipher mode is supported too, including 1216944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 12170d258efbSMathias Krause acceleration for CTR. 12182cf4ac8bSHuang Ying 12199bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 12209bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 12219bf4852dSDavid S. Miller depends on SPARC64 1222b95bba5dSEric Biggers select CRYPTO_SKCIPHER 12239bf4852dSDavid S. Miller help 12249bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 12259bf4852dSDavid S. Miller 12269bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 12279bf4852dSDavid S. Miller algorithm. 12289bf4852dSDavid S. Miller 12299bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 12309bf4852dSDavid S. Miller both hardware and software across a wide range of computing 12319bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 12329bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 12339bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 12349bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 12359bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 12369bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 12379bf4852dSDavid S. Miller 12389bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 12399bf4852dSDavid S. Miller 12409bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 12419bf4852dSDavid S. Miller 12429bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 12439bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 12449bf4852dSDavid S. Miller ECB and CBC. 12459bf4852dSDavid S. Miller 1246504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1247504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1248504c6143SMarkus Stockhausen depends on PPC && SPE 1249b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1250504c6143SMarkus Stockhausen help 1251504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1252504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1253504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1254504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1255504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1256504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1257504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1258504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1259504c6143SMarkus Stockhausen 1260*b7133757SJason A. Donenfeldconfig CRYPTO_AES_S390 1261*b7133757SJason A. Donenfeld tristate "AES cipher algorithms" 1262*b7133757SJason A. Donenfeld depends on S390 1263*b7133757SJason A. Donenfeld select CRYPTO_ALGAPI 1264*b7133757SJason A. Donenfeld select CRYPTO_SKCIPHER 1265*b7133757SJason A. Donenfeld help 1266*b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1267*b7133757SJason A. Donenfeld AES cipher algorithms (FIPS-197). 1268*b7133757SJason A. Donenfeld 1269*b7133757SJason A. Donenfeld As of z9 the ECB and CBC modes are hardware accelerated 1270*b7133757SJason A. Donenfeld for 128 bit keys. 1271*b7133757SJason A. Donenfeld As of z10 the ECB and CBC modes are hardware accelerated 1272*b7133757SJason A. Donenfeld for all AES key sizes. 1273*b7133757SJason A. Donenfeld As of z196 the CTR mode is hardware accelerated for all AES 1274*b7133757SJason A. Donenfeld key sizes and XTS mode is hardware accelerated for 256 and 1275*b7133757SJason A. Donenfeld 512 bit keys. 1276*b7133757SJason A. Donenfeld 12771da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12781da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 12791674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1280cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12811da177e4SLinus Torvalds help 12821da177e4SLinus Torvalds Anubis cipher algorithm. 12831da177e4SLinus Torvalds 12841da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12851da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12861da177e4SLinus Torvalds in the NESSIE competition. 12871da177e4SLinus Torvalds 12881da177e4SLinus Torvalds See also: 12896d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12906d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12911da177e4SLinus Torvalds 1292584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1293584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 12949ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1295b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1296dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1297e2ee95b8SHye-Shik Chang help 1298584fffc8SSebastian Siewior ARC4 cipher algorithm. 1299e2ee95b8SHye-Shik Chang 1300584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1301584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1302584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1303584fffc8SSebastian Siewior weakness of the algorithm. 1304584fffc8SSebastian Siewior 1305584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1306584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1307584fffc8SSebastian Siewior select CRYPTO_ALGAPI 130852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1309584fffc8SSebastian Siewior help 1310584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1311584fffc8SSebastian Siewior 1312584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1313584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1314584fffc8SSebastian Siewior designed for use on "large microprocessors". 1315e2ee95b8SHye-Shik Chang 1316e2ee95b8SHye-Shik Chang See also: 13179332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1318584fffc8SSebastian Siewior 131952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 132052ba867cSJussi Kivilinna tristate 132152ba867cSJussi Kivilinna help 132252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 132352ba867cSJussi Kivilinna generic c and the assembler implementations. 132452ba867cSJussi Kivilinna 132552ba867cSJussi Kivilinna See also: 13269332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 132752ba867cSJussi Kivilinna 132864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 132964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1330f21a7c19SAl Viro depends on X86 && 64BIT 1331b95bba5dSEric Biggers select CRYPTO_SKCIPHER 133264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1333c0a64926SArd Biesheuvel imply CRYPTO_CTR 133464b94ceaSJussi Kivilinna help 133564b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 133664b94ceaSJussi Kivilinna 133764b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 133864b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 133964b94ceaSJussi Kivilinna designed for use on "large microprocessors". 134064b94ceaSJussi Kivilinna 134164b94ceaSJussi Kivilinna See also: 13429332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 134364b94ceaSJussi Kivilinna 1344584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1345584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1346584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1347584fffc8SSebastian Siewior help 1348584fffc8SSebastian Siewior Camellia cipher algorithms module. 1349584fffc8SSebastian Siewior 1350584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1351584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1352584fffc8SSebastian Siewior 1353584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1354584fffc8SSebastian Siewior 1355584fffc8SSebastian Siewior See also: 1356584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1357584fffc8SSebastian Siewior 13580b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 13590b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1360f21a7c19SAl Viro depends on X86 && 64BIT 1361b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1362a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 13630b95ec56SJussi Kivilinna help 13640b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 13650b95ec56SJussi Kivilinna 13660b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 13670b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 13680b95ec56SJussi Kivilinna 13690b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 13700b95ec56SJussi Kivilinna 13710b95ec56SJussi Kivilinna See also: 13720b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 13730b95ec56SJussi Kivilinna 1374d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1375d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1376d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1377b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1378d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 137944893bc2SEric Biggers select CRYPTO_SIMD 138055a7e88fSArd Biesheuvel imply CRYPTO_XTS 1381d9b1d2e7SJussi Kivilinna help 1382d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1383d9b1d2e7SJussi Kivilinna 1384d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1385d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1386d9b1d2e7SJussi Kivilinna 1387d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1388d9b1d2e7SJussi Kivilinna 1389d9b1d2e7SJussi Kivilinna See also: 1390d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1391d9b1d2e7SJussi Kivilinna 1392f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1393f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1394f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1395f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1396f3f935a7SJussi Kivilinna help 1397f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1398f3f935a7SJussi Kivilinna 1399f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1400f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1401f3f935a7SJussi Kivilinna 1402f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1403f3f935a7SJussi Kivilinna 1404f3f935a7SJussi Kivilinna See also: 1405f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1406f3f935a7SJussi Kivilinna 140781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 140881658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 140981658ad0SDavid S. Miller depends on SPARC64 141081658ad0SDavid S. Miller select CRYPTO_ALGAPI 1411b95bba5dSEric Biggers select CRYPTO_SKCIPHER 141281658ad0SDavid S. Miller help 141381658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 141481658ad0SDavid S. Miller 141581658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 141681658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 141781658ad0SDavid S. Miller 141881658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 141981658ad0SDavid S. Miller 142081658ad0SDavid S. Miller See also: 142181658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 142281658ad0SDavid S. Miller 1423044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1424044ab525SJussi Kivilinna tristate 1425044ab525SJussi Kivilinna help 1426044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1427044ab525SJussi Kivilinna generic c and the assembler implementations. 1428044ab525SJussi Kivilinna 1429584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1430584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1431584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1432044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1433584fffc8SSebastian Siewior help 1434584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1435584fffc8SSebastian Siewior described in RFC2144. 1436584fffc8SSebastian Siewior 14374d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 14384d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 14394d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1440b95bba5dSEric Biggers select CRYPTO_SKCIPHER 14414d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 14421e63183aSEric Biggers select CRYPTO_CAST_COMMON 14431e63183aSEric Biggers select CRYPTO_SIMD 1444e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 14454d6d6a2cSJohannes Goetzfried help 14464d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 14474d6d6a2cSJohannes Goetzfried described in RFC2144. 14484d6d6a2cSJohannes Goetzfried 14494d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 14504d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 14514d6d6a2cSJohannes Goetzfried 1452584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1453584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1454584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1455044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1456584fffc8SSebastian Siewior help 1457584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1458584fffc8SSebastian Siewior described in RFC2612. 1459584fffc8SSebastian Siewior 14604ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 14614ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 14624ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1463b95bba5dSEric Biggers select CRYPTO_SKCIPHER 14644ea1277dSJohannes Goetzfried select CRYPTO_CAST6 14654bd96924SEric Biggers select CRYPTO_CAST_COMMON 14664bd96924SEric Biggers select CRYPTO_SIMD 14672cc0fedbSArd Biesheuvel imply CRYPTO_XTS 14687a6623ccSArd Biesheuvel imply CRYPTO_CTR 14694ea1277dSJohannes Goetzfried help 14704ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 14714ea1277dSJohannes Goetzfried described in RFC2612. 14724ea1277dSJohannes Goetzfried 14734ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 14744ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14754ea1277dSJohannes Goetzfried 1476584fffc8SSebastian Siewiorconfig CRYPTO_DES 1477584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1478584fffc8SSebastian Siewior select CRYPTO_ALGAPI 147904007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1480584fffc8SSebastian Siewior help 1481584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1482584fffc8SSebastian Siewior 1483c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1484c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 148597da37b3SDave Jones depends on SPARC64 1486c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 148704007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1488b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1489c5aac2dfSDavid S. Miller help 1490c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1491c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1492c5aac2dfSDavid S. Miller 14936574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14946574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14956574e6c6SJussi Kivilinna depends on X86 && 64BIT 1496b95bba5dSEric Biggers select CRYPTO_SKCIPHER 149704007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1498768db5feSArd Biesheuvel imply CRYPTO_CTR 14996574e6c6SJussi Kivilinna help 15006574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 15016574e6c6SJussi Kivilinna 15026574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 15036574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 15046574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 15056574e6c6SJussi Kivilinna one that processes three blocks parallel. 15066574e6c6SJussi Kivilinna 1507*b7133757SJason A. Donenfeldconfig CRYPTO_DES_S390 1508*b7133757SJason A. Donenfeld tristate "DES and Triple DES cipher algorithms" 1509*b7133757SJason A. Donenfeld depends on S390 1510*b7133757SJason A. Donenfeld select CRYPTO_ALGAPI 1511*b7133757SJason A. Donenfeld select CRYPTO_SKCIPHER 1512*b7133757SJason A. Donenfeld select CRYPTO_LIB_DES 1513*b7133757SJason A. Donenfeld help 1514*b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1515*b7133757SJason A. Donenfeld DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1516*b7133757SJason A. Donenfeld 1517*b7133757SJason A. Donenfeld As of z990 the ECB and CBC mode are hardware accelerated. 1518*b7133757SJason A. Donenfeld As of z196 the CTR mode is hardware accelerated. 1519*b7133757SJason A. Donenfeld 1520584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1521584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1522584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1523b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1524584fffc8SSebastian Siewior help 1525584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1526584fffc8SSebastian Siewior 1527584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1528584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 15291674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1530584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1531584fffc8SSebastian Siewior help 1532584fffc8SSebastian Siewior Khazad cipher algorithm. 1533584fffc8SSebastian Siewior 1534584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1535584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1536584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1537584fffc8SSebastian Siewior 1538584fffc8SSebastian Siewior See also: 15396d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1540e2ee95b8SHye-Shik Chang 1541c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1542aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 15435fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1544b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1545c08d0e64SMartin Willi help 1546aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1547c08d0e64SMartin Willi 1548c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1549c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1550de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 15519332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1552c08d0e64SMartin Willi 1553de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1554de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1555de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1556de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1557de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1558de61d7aeSEric Biggers 1559aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1560aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1561aa762409SEric Biggers in some performance-sensitive scenarios. 1562aa762409SEric Biggers 1563c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 15644af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1565c9320b6dSMartin Willi depends on X86 && 64BIT 1566b95bba5dSEric Biggers select CRYPTO_SKCIPHER 156728e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 156884e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1569c9320b6dSMartin Willi help 15707a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 15717a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1572c9320b6dSMartin Willi 15733a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 15743a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 15753a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1576660eda8dSEric Biggers select CRYPTO_SKCIPHER 15773a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 15783a2f58f3SArd Biesheuvel 1579*b7133757SJason A. Donenfeldconfig CRYPTO_CHACHA_S390 1580*b7133757SJason A. Donenfeld tristate "ChaCha20 stream cipher" 1581*b7133757SJason A. Donenfeld depends on S390 1582*b7133757SJason A. Donenfeld select CRYPTO_SKCIPHER 1583*b7133757SJason A. Donenfeld select CRYPTO_LIB_CHACHA_GENERIC 1584*b7133757SJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CHACHA 1585*b7133757SJason A. Donenfeld help 1586*b7133757SJason A. Donenfeld This is the s390 SIMD implementation of the ChaCha20 stream 1587*b7133757SJason A. Donenfeld cipher (RFC 7539). 1588*b7133757SJason A. Donenfeld 1589*b7133757SJason A. Donenfeld It is available as of z13. 1590*b7133757SJason A. Donenfeld 1591584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1592584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 15931674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1594584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1595584fffc8SSebastian Siewior help 1596584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1597584fffc8SSebastian Siewior 1598584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1599584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1600584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1601584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1602584fffc8SSebastian Siewior 1603584fffc8SSebastian Siewior See also: 1604584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1605584fffc8SSebastian Siewior 1606584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1607584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1608584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1609584fffc8SSebastian Siewior help 1610584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1611584fffc8SSebastian Siewior 1612584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1613784506a1SArd Biesheuvel of 8 bits. 1614584fffc8SSebastian Siewior 1615584fffc8SSebastian Siewior See also: 16169332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1617584fffc8SSebastian Siewior 1618937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1619937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1620937c30d7SJussi Kivilinna depends on X86 && 64BIT 1621b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1622937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1623e0f409dcSEric Biggers select CRYPTO_SIMD 16242e9440aeSArd Biesheuvel imply CRYPTO_CTR 1625937c30d7SJussi Kivilinna help 1626937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1627937c30d7SJussi Kivilinna 1628937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1629937c30d7SJussi Kivilinna of 8 bits. 1630937c30d7SJussi Kivilinna 16311e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1632937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1633937c30d7SJussi Kivilinna 1634937c30d7SJussi Kivilinna See also: 16359332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1636937c30d7SJussi Kivilinna 1637251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1638251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1639251496dbSJussi Kivilinna depends on X86 && !64BIT 1640b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1641251496dbSJussi Kivilinna select CRYPTO_SERPENT 1642e0f409dcSEric Biggers select CRYPTO_SIMD 16432e9440aeSArd Biesheuvel imply CRYPTO_CTR 1644251496dbSJussi Kivilinna help 1645251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1646251496dbSJussi Kivilinna 1647251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1648251496dbSJussi Kivilinna of 8 bits. 1649251496dbSJussi Kivilinna 1650251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1651251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1652251496dbSJussi Kivilinna 1653251496dbSJussi Kivilinna See also: 16549332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1655251496dbSJussi Kivilinna 16567efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 16577efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 16587efe4076SJohannes Goetzfried depends on X86 && 64BIT 1659b95bba5dSEric Biggers select CRYPTO_SKCIPHER 16607efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1661e16bf974SEric Biggers select CRYPTO_SIMD 16629ec0af8aSArd Biesheuvel imply CRYPTO_XTS 16632e9440aeSArd Biesheuvel imply CRYPTO_CTR 16647efe4076SJohannes Goetzfried help 16657efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 16667efe4076SJohannes Goetzfried 16677efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 16687efe4076SJohannes Goetzfried of 8 bits. 16697efe4076SJohannes Goetzfried 16707efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 16717efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 16727efe4076SJohannes Goetzfried 16737efe4076SJohannes Goetzfried See also: 16749332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 16757efe4076SJohannes Goetzfried 167656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 167756d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 167856d76c96SJussi Kivilinna depends on X86 && 64BIT 167956d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 168056d76c96SJussi Kivilinna help 168156d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 168256d76c96SJussi Kivilinna 168356d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 168456d76c96SJussi Kivilinna of 8 bits. 168556d76c96SJussi Kivilinna 168656d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 168756d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 168856d76c96SJussi Kivilinna 168956d76c96SJussi Kivilinna See also: 16909332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 169156d76c96SJussi Kivilinna 1692747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1693d2825fa9SJason A. Donenfeld tristate 1694d2825fa9SJason A. Donenfeld 1695d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC 1696747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1697747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1698d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1699747c8ce4SGilad Ben-Yossef help 1700747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1701747c8ce4SGilad Ben-Yossef 1702747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1703747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1704747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1705747c8ce4SGilad Ben-Yossef 1706747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1707747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1708747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1709747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1710747c8ce4SGilad Ben-Yossef 1711747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1712747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1713747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1714747c8ce4SGilad Ben-Yossef 1715747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1716747c8ce4SGilad Ben-Yossef 1717747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1718747c8ce4SGilad Ben-Yossef 1719747c8ce4SGilad Ben-Yossef If unsure, say N. 1720747c8ce4SGilad Ben-Yossef 1721a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64 1722a7ee22eeSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1723a7ee22eeSTianjia Zhang depends on X86 && 64BIT 1724a7ee22eeSTianjia Zhang select CRYPTO_SKCIPHER 1725a7ee22eeSTianjia Zhang select CRYPTO_SIMD 1726a7ee22eeSTianjia Zhang select CRYPTO_ALGAPI 1727d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1728a7ee22eeSTianjia Zhang help 1729a7ee22eeSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1730a7ee22eeSTianjia Zhang 1731a7ee22eeSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1732a7ee22eeSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 1733a7ee22eeSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 1734a7ee22eeSTianjia Zhang 1735a7ee22eeSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX/x86_64 1736a7ee22eeSTianjia Zhang instruction set for block cipher. Through two affine transforms, 1737a7ee22eeSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1738a7ee22eeSTianjia Zhang effect of instruction acceleration. 1739a7ee22eeSTianjia Zhang 1740a7ee22eeSTianjia Zhang If unsure, say N. 1741a7ee22eeSTianjia Zhang 17425b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64 17435b2efa2bSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 17445b2efa2bSTianjia Zhang depends on X86 && 64BIT 17455b2efa2bSTianjia Zhang select CRYPTO_SKCIPHER 17465b2efa2bSTianjia Zhang select CRYPTO_SIMD 17475b2efa2bSTianjia Zhang select CRYPTO_ALGAPI 1748d2825fa9SJason A. Donenfeld select CRYPTO_SM4 17495b2efa2bSTianjia Zhang select CRYPTO_SM4_AESNI_AVX_X86_64 17505b2efa2bSTianjia Zhang help 17515b2efa2bSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 17525b2efa2bSTianjia Zhang 17535b2efa2bSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 17545b2efa2bSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 17555b2efa2bSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 17565b2efa2bSTianjia Zhang 17575b2efa2bSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX2/x86_64 17585b2efa2bSTianjia Zhang instruction set for block cipher. Through two affine transforms, 17595b2efa2bSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 17605b2efa2bSTianjia Zhang effect of instruction acceleration. 17615b2efa2bSTianjia Zhang 17625b2efa2bSTianjia Zhang If unsure, say N. 17635b2efa2bSTianjia Zhang 1764584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1765584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 17661674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1767584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1768584fffc8SSebastian Siewior help 1769584fffc8SSebastian Siewior TEA cipher algorithm. 1770584fffc8SSebastian Siewior 1771584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1772584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1773584fffc8SSebastian Siewior little memory. 1774584fffc8SSebastian Siewior 1775584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1776584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1777584fffc8SSebastian Siewior in the TEA algorithm. 1778584fffc8SSebastian Siewior 1779584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1780584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1781584fffc8SSebastian Siewior 1782584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1783584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1784584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1785584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1786584fffc8SSebastian Siewior help 1787584fffc8SSebastian Siewior Twofish cipher algorithm. 1788584fffc8SSebastian Siewior 1789584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1790584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1791584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1792584fffc8SSebastian Siewior bits. 1793584fffc8SSebastian Siewior 1794584fffc8SSebastian Siewior See also: 17959332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1796584fffc8SSebastian Siewior 1797584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1798584fffc8SSebastian Siewior tristate 1799584fffc8SSebastian Siewior help 1800584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1801584fffc8SSebastian Siewior generic c and the assembler implementations. 1802584fffc8SSebastian Siewior 1803584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1804584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1805584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1806584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1807584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1808f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1809584fffc8SSebastian Siewior help 1810584fffc8SSebastian Siewior Twofish cipher algorithm. 1811584fffc8SSebastian Siewior 1812584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1813584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1814584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1815584fffc8SSebastian Siewior bits. 1816584fffc8SSebastian Siewior 1817584fffc8SSebastian Siewior See also: 18189332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1819584fffc8SSebastian Siewior 1820584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1821584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1822584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1823584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1824584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1825f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1826584fffc8SSebastian Siewior help 1827584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1828584fffc8SSebastian Siewior 1829584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1830584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1831584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1832584fffc8SSebastian Siewior bits. 1833584fffc8SSebastian Siewior 1834584fffc8SSebastian Siewior See also: 18359332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1836584fffc8SSebastian Siewior 18378280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 18388280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1839f21a7c19SAl Viro depends on X86 && 64BIT 1840b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18418280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 18428280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 18438280daadSJussi Kivilinna help 18448280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 18458280daadSJussi Kivilinna 18468280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 18478280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 18488280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 18498280daadSJussi Kivilinna bits. 18508280daadSJussi Kivilinna 18518280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 18528280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 18538280daadSJussi Kivilinna 18548280daadSJussi Kivilinna See also: 18559332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 18568280daadSJussi Kivilinna 1857107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1858107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1859107778b5SJohannes Goetzfried depends on X86 && 64BIT 1860b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18610e6ab46dSEric Biggers select CRYPTO_SIMD 1862107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1863107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1864107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1865da4df93aSArd Biesheuvel imply CRYPTO_XTS 1866107778b5SJohannes Goetzfried help 1867107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1868107778b5SJohannes Goetzfried 1869107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1870107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1871107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1872107778b5SJohannes Goetzfried bits. 1873107778b5SJohannes Goetzfried 1874107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1875107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1876107778b5SJohannes Goetzfried 1877107778b5SJohannes Goetzfried See also: 18789332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1879107778b5SJohannes Goetzfried 1880584fffc8SSebastian Siewiorcomment "Compression" 1881584fffc8SSebastian Siewior 18821da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 18831da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1884cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1885f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 18861da177e4SLinus Torvalds select ZLIB_INFLATE 18871da177e4SLinus Torvalds select ZLIB_DEFLATE 18881da177e4SLinus Torvalds help 18891da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 18901da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 18911da177e4SLinus Torvalds 18921da177e4SLinus Torvalds You will most probably want this if using IPSec. 18931da177e4SLinus Torvalds 18940b77abb3SZoltan Sogorconfig CRYPTO_LZO 18950b77abb3SZoltan Sogor tristate "LZO compression algorithm" 18960b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1897ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 18980b77abb3SZoltan Sogor select LZO_COMPRESS 18990b77abb3SZoltan Sogor select LZO_DECOMPRESS 19000b77abb3SZoltan Sogor help 19010b77abb3SZoltan Sogor This is the LZO algorithm. 19020b77abb3SZoltan Sogor 190335a1fc18SSeth Jenningsconfig CRYPTO_842 190435a1fc18SSeth Jennings tristate "842 compression algorithm" 19052062c5b6SDan Streetman select CRYPTO_ALGAPI 19066a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 19072062c5b6SDan Streetman select 842_COMPRESS 19082062c5b6SDan Streetman select 842_DECOMPRESS 190935a1fc18SSeth Jennings help 191035a1fc18SSeth Jennings This is the 842 algorithm. 191135a1fc18SSeth Jennings 19120ea8530dSChanho Minconfig CRYPTO_LZ4 19130ea8530dSChanho Min tristate "LZ4 compression algorithm" 19140ea8530dSChanho Min select CRYPTO_ALGAPI 19158cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 19160ea8530dSChanho Min select LZ4_COMPRESS 19170ea8530dSChanho Min select LZ4_DECOMPRESS 19180ea8530dSChanho Min help 19190ea8530dSChanho Min This is the LZ4 algorithm. 19200ea8530dSChanho Min 19210ea8530dSChanho Minconfig CRYPTO_LZ4HC 19220ea8530dSChanho Min tristate "LZ4HC compression algorithm" 19230ea8530dSChanho Min select CRYPTO_ALGAPI 192491d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 19250ea8530dSChanho Min select LZ4HC_COMPRESS 19260ea8530dSChanho Min select LZ4_DECOMPRESS 19270ea8530dSChanho Min help 19280ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 19290ea8530dSChanho Min 1930d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1931d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1932d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1933d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1934d28fc3dbSNick Terrell select ZSTD_COMPRESS 1935d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1936d28fc3dbSNick Terrell help 1937d28fc3dbSNick Terrell This is the zstd algorithm. 1938d28fc3dbSNick Terrell 193917f0f4a4SNeil Hormancomment "Random Number Generation" 194017f0f4a4SNeil Horman 194117f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 194217f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 194317f0f4a4SNeil Horman select CRYPTO_AES 194417f0f4a4SNeil Horman select CRYPTO_RNG 194517f0f4a4SNeil Horman help 194617f0f4a4SNeil Horman This option enables the generic pseudo random number generator 194717f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 19487dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 19497dd607e8SJiri Kosina CRYPTO_FIPS is selected 195017f0f4a4SNeil Horman 1951f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1952419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1953419090c6SStephan Mueller help 1954419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1955419090c6SStephan Mueller more of the DRBG types must be selected. 1956419090c6SStephan Mueller 1957f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1958419090c6SStephan Mueller 1959419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1960401e4238SHerbert Xu bool 1961419090c6SStephan Mueller default y 1962419090c6SStephan Mueller select CRYPTO_HMAC 19635261cdf4SStephan Mueller select CRYPTO_SHA512 1964419090c6SStephan Mueller 1965419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1966419090c6SStephan Mueller bool "Enable Hash DRBG" 1967826775bbSHerbert Xu select CRYPTO_SHA256 1968419090c6SStephan Mueller help 1969419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1970419090c6SStephan Mueller 1971419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1972419090c6SStephan Mueller bool "Enable CTR DRBG" 1973419090c6SStephan Mueller select CRYPTO_AES 1974d6fc1a45SCorentin Labbe select CRYPTO_CTR 1975419090c6SStephan Mueller help 1976419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1977419090c6SStephan Mueller 1978f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1979f2c89a10SHerbert Xu tristate 1980401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1981f2c89a10SHerbert Xu select CRYPTO_RNG 1982bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1983f2c89a10SHerbert Xu 1984f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1985419090c6SStephan Mueller 1986bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1987bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 19882f313e02SArnd Bergmann select CRYPTO_RNG 1989bb5530e4SStephan Mueller help 1990bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1991bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1992bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1993bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1994bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1995bb5530e4SStephan Mueller 1996026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR 1997026a733eSStephan Müller tristate 1998a88592ccSHerbert Xu select CRYPTO_HMAC 1999304b4aceSStephan Müller select CRYPTO_SHA256 2000026a733eSStephan Müller 200103c8efc1SHerbert Xuconfig CRYPTO_USER_API 200203c8efc1SHerbert Xu tristate 200303c8efc1SHerbert Xu 2004fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 2005fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 20067451708fSHerbert Xu depends on NET 2007fe869cdbSHerbert Xu select CRYPTO_HASH 2008fe869cdbSHerbert Xu select CRYPTO_USER_API 2009fe869cdbSHerbert Xu help 2010fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 2011fe869cdbSHerbert Xu algorithms. 2012fe869cdbSHerbert Xu 20138ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 20148ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 20157451708fSHerbert Xu depends on NET 2016b95bba5dSEric Biggers select CRYPTO_SKCIPHER 20178ff59090SHerbert Xu select CRYPTO_USER_API 20188ff59090SHerbert Xu help 20198ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 20208ff59090SHerbert Xu key cipher algorithms. 20218ff59090SHerbert Xu 20222f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 20232f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 20242f375538SStephan Mueller depends on NET 20252f375538SStephan Mueller select CRYPTO_RNG 20262f375538SStephan Mueller select CRYPTO_USER_API 20272f375538SStephan Mueller help 20282f375538SStephan Mueller This option enables the user-spaces interface for random 20292f375538SStephan Mueller number generator algorithms. 20302f375538SStephan Mueller 203177ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 203277ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 203377ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 203477ebdabeSElena Petrova help 203577ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 203677ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 203777ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 203877ebdabeSElena Petrova no unless you know what this is. 203977ebdabeSElena Petrova 2040b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 2041b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 2042b64a2d95SHerbert Xu depends on NET 2043b64a2d95SHerbert Xu select CRYPTO_AEAD 2044b95bba5dSEric Biggers select CRYPTO_SKCIPHER 204572548b09SStephan Mueller select CRYPTO_NULL 2046b64a2d95SHerbert Xu select CRYPTO_USER_API 2047b64a2d95SHerbert Xu help 2048b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 2049b64a2d95SHerbert Xu cipher algorithms. 2050b64a2d95SHerbert Xu 20519ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 20529ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 20539ace6771SArd Biesheuvel depends on CRYPTO_USER_API 20549ace6771SArd Biesheuvel default y 20559ace6771SArd Biesheuvel help 20569ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 20579ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 20589ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 20599ace6771SArd Biesheuvel 2060cac5818cSCorentin Labbeconfig CRYPTO_STATS 2061cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 2062a6a31385SCorentin Labbe depends on CRYPTO_USER 2063cac5818cSCorentin Labbe help 2064cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 2065cac5818cSCorentin Labbe This will collect: 2066cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 2067cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 2068cac5818cSCorentin Labbe - size and numbers of hash operations 2069cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 2070cac5818cSCorentin Labbe - generate/seed numbers for rng operations 2071cac5818cSCorentin Labbe 2072ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 2073ee08997fSDmitry Kasatkin bool 2074ee08997fSDmitry Kasatkin 20751da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 20768636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 20778636a1f9SMasahiro Yamadasource "certs/Kconfig" 20781da177e4SLinus Torvalds 2079cce9e06dSHerbert Xuendif # if CRYPTO 2080