xref: /linux/crypto/Kconfig (revision b5e0b032b6c31c052ee0132ee70b155c22cf7b28)
11da177e4SLinus Torvalds#
2685784aaSDan Williams# Generic algorithms support
3685784aaSDan Williams#
4685784aaSDan Williamsconfig XOR_BLOCKS
5685784aaSDan Williams	tristate
6685784aaSDan Williams
7685784aaSDan Williams#
89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
99bc89cd8SDan Williams#
109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
119bc89cd8SDan Williams
129bc89cd8SDan Williams#
131da177e4SLinus Torvalds# Cryptographic API Configuration
141da177e4SLinus Torvalds#
152e290f43SJan Engelhardtmenuconfig CRYPTO
16c3715cb9SSebastian Siewior	tristate "Cryptographic API"
171da177e4SLinus Torvalds	help
181da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
191da177e4SLinus Torvalds
20cce9e06dSHerbert Xuif CRYPTO
21cce9e06dSHerbert Xu
22584fffc8SSebastian Siewiorcomment "Crypto core or helper"
23584fffc8SSebastian Siewior
24ccb778e1SNeil Hormanconfig CRYPTO_FIPS
25ccb778e1SNeil Horman	bool "FIPS 200 compliance"
26f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
271f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
28ccb778e1SNeil Horman	help
29ccb778e1SNeil Horman	  This options enables the fips boot option which is
30ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
31ccb778e1SNeil Horman	  certification.  You should say no unless you know what
32e84c5480SChuck Ebbert	  this is.
33ccb778e1SNeil Horman
34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
35cce9e06dSHerbert Xu	tristate
366a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
37cce9e06dSHerbert Xu	help
38cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
39cce9e06dSHerbert Xu
406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
416a0fcbb4SHerbert Xu	tristate
426a0fcbb4SHerbert Xu
431ae97820SHerbert Xuconfig CRYPTO_AEAD
441ae97820SHerbert Xu	tristate
456a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
461ae97820SHerbert Xu	select CRYPTO_ALGAPI
471ae97820SHerbert Xu
486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
496a0fcbb4SHerbert Xu	tristate
506a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
51149a3971SHerbert Xu	select CRYPTO_NULL2
52149a3971SHerbert Xu	select CRYPTO_RNG2
536a0fcbb4SHerbert Xu
545cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
555cde0af2SHerbert Xu	tristate
566a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
575cde0af2SHerbert Xu	select CRYPTO_ALGAPI
586a0fcbb4SHerbert Xu
596a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
606a0fcbb4SHerbert Xu	tristate
616a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
626a0fcbb4SHerbert Xu	select CRYPTO_RNG2
630a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1082ebda74fSGiovanni Cabiddu
1092ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1102ebda74fSGiovanni Cabiddu	tristate
1112ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1132ebda74fSGiovanni Cabiddu
114cfc2bb32STadeusz Strukconfig CRYPTO_RSA
115cfc2bb32STadeusz Struk	tristate "RSA algorithm"
116425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11758446fefSTadeusz Struk	select CRYPTO_MANAGER
118cfc2bb32STadeusz Struk	select MPILIB
119cfc2bb32STadeusz Struk	select ASN1
120cfc2bb32STadeusz Struk	help
121cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
122cfc2bb32STadeusz Struk
123802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
124802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
125802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
126802c7f1cSSalvatore Benedetto	select MPILIB
127802c7f1cSSalvatore Benedetto	help
128802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
129802c7f1cSSalvatore Benedetto
1303c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1313c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
1323c4b2390SSalvatore Benedetto	select CRYTPO_KPP
1333c4b2390SSalvatore Benedetto	help
1343c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
135802c7f1cSSalvatore Benedetto
1362b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1372b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1386a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1392b8c19dbSHerbert Xu	help
1402b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1412b8c19dbSHerbert Xu	  cbc(aes).
1422b8c19dbSHerbert Xu
1436a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1446a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1456a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1466a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1476a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
148946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1494e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1502ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1516a0fcbb4SHerbert Xu
152a38f7907SSteffen Klassertconfig CRYPTO_USER
153a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1545db017aaSHerbert Xu	depends on NET
155a38f7907SSteffen Klassert	select CRYPTO_MANAGER
156a38f7907SSteffen Klassert	help
157d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
158a38f7907SSteffen Klassert	  cbc(aes).
159a38f7907SSteffen Klassert
160326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
161326a6346SHerbert Xu	bool "Disable run-time self tests"
16200ca28a5SHerbert Xu	default y
16300ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1640b767f96SAlexander Shishkin	help
165326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
166326a6346SHerbert Xu	  algorithm registration.
1670b767f96SAlexander Shishkin
168584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
16908c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
170584fffc8SSebastian Siewior	help
171584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
172584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
173584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
174584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
175584fffc8SSebastian Siewior	  an external module that requires these functions.
176584fffc8SSebastian Siewior
177584fffc8SSebastian Siewiorconfig CRYPTO_NULL
178584fffc8SSebastian Siewior	tristate "Null algorithms"
179149a3971SHerbert Xu	select CRYPTO_NULL2
180584fffc8SSebastian Siewior	help
181584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
182584fffc8SSebastian Siewior
183149a3971SHerbert Xuconfig CRYPTO_NULL2
184dd43c4e9SHerbert Xu	tristate
185149a3971SHerbert Xu	select CRYPTO_ALGAPI2
186149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
187149a3971SHerbert Xu	select CRYPTO_HASH2
188149a3971SHerbert Xu
1895068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1903b4afaf2SKees Cook	tristate "Parallel crypto engine"
1913b4afaf2SKees Cook	depends on SMP
1925068c7a8SSteffen Klassert	select PADATA
1935068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1945068c7a8SSteffen Klassert	select CRYPTO_AEAD
1955068c7a8SSteffen Klassert	help
1965068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1975068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1985068c7a8SSteffen Klassert
19925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20025c38d3fSHuang Ying       tristate
20125c38d3fSHuang Ying
202584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
203584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
204584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
205b8a28251SLoc Ho	select CRYPTO_HASH
206584fffc8SSebastian Siewior	select CRYPTO_MANAGER
207254eff77SHuang Ying	select CRYPTO_WORKQUEUE
208584fffc8SSebastian Siewior	help
209584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
210584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
211584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
212584fffc8SSebastian Siewior
2131e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2141e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2151e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2161e65b81aSTim Chen	select CRYPTO_HASH
2171e65b81aSTim Chen	select CRYPTO_MANAGER
2181e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2191e65b81aSTim Chen	help
2201e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2211e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2221e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2231e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2241e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2250e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2261e65b81aSTim Chen
227584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
228584fffc8SSebastian Siewior	tristate "Authenc support"
229584fffc8SSebastian Siewior	select CRYPTO_AEAD
230584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
231584fffc8SSebastian Siewior	select CRYPTO_MANAGER
232584fffc8SSebastian Siewior	select CRYPTO_HASH
233e94c6a7aSHerbert Xu	select CRYPTO_NULL
234584fffc8SSebastian Siewior	help
235584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
236584fffc8SSebastian Siewior	  This is required for IPSec.
237584fffc8SSebastian Siewior
238584fffc8SSebastian Siewiorconfig CRYPTO_TEST
239584fffc8SSebastian Siewior	tristate "Testing module"
240584fffc8SSebastian Siewior	depends on m
241da7f033dSHerbert Xu	select CRYPTO_MANAGER
242584fffc8SSebastian Siewior	help
243584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
244584fffc8SSebastian Siewior
245a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER
246ffaf9156SJussi Kivilinna	tristate
247ffaf9156SJussi Kivilinna	select CRYPTO_CRYPTD
248ffaf9156SJussi Kivilinna
249266d0516SHerbert Xuconfig CRYPTO_SIMD
250266d0516SHerbert Xu	tristate
251266d0516SHerbert Xu	select CRYPTO_CRYPTD
252266d0516SHerbert Xu
253596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
254596d8750SJussi Kivilinna	tristate
255596d8750SJussi Kivilinna	depends on X86
256065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
257596d8750SJussi Kivilinna
258735d37b5SBaolin Wangconfig CRYPTO_ENGINE
259735d37b5SBaolin Wang	tristate
260735d37b5SBaolin Wang
261584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
262584fffc8SSebastian Siewior
263584fffc8SSebastian Siewiorconfig CRYPTO_CCM
264584fffc8SSebastian Siewior	tristate "CCM support"
265584fffc8SSebastian Siewior	select CRYPTO_CTR
266584fffc8SSebastian Siewior	select CRYPTO_AEAD
267584fffc8SSebastian Siewior	help
268584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
269584fffc8SSebastian Siewior
270584fffc8SSebastian Siewiorconfig CRYPTO_GCM
271584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
272584fffc8SSebastian Siewior	select CRYPTO_CTR
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
2749382d97aSHuang Ying	select CRYPTO_GHASH
2759489667dSJussi Kivilinna	select CRYPTO_NULL
276584fffc8SSebastian Siewior	help
277584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
278584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
279584fffc8SSebastian Siewior
28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28171ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28271ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28371ebc4d1SMartin Willi	select CRYPTO_POLY1305
28471ebc4d1SMartin Willi	select CRYPTO_AEAD
28571ebc4d1SMartin Willi	help
28671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28771ebc4d1SMartin Willi
28871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29071ebc4d1SMartin Willi	  IETF protocols.
29171ebc4d1SMartin Willi
292584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
293584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
294584fffc8SSebastian Siewior	select CRYPTO_AEAD
295584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
296856e3f40SHerbert Xu	select CRYPTO_NULL
297401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
298584fffc8SSebastian Siewior	help
299584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
300584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
301584fffc8SSebastian Siewior
302a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
303a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
304a10f554fSHerbert Xu	select CRYPTO_AEAD
305a10f554fSHerbert Xu	select CRYPTO_NULL
306401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3073491244cSHerbert Xu	default m
308a10f554fSHerbert Xu	help
309a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
310a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
311a10f554fSHerbert Xu	  algorithm for CBC.
312a10f554fSHerbert Xu
313584fffc8SSebastian Siewiorcomment "Block modes"
314584fffc8SSebastian Siewior
315584fffc8SSebastian Siewiorconfig CRYPTO_CBC
316584fffc8SSebastian Siewior	tristate "CBC support"
317584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
318584fffc8SSebastian Siewior	select CRYPTO_MANAGER
319584fffc8SSebastian Siewior	help
320584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
321584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
322584fffc8SSebastian Siewior
323584fffc8SSebastian Siewiorconfig CRYPTO_CTR
324584fffc8SSebastian Siewior	tristate "CTR support"
325584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
326584fffc8SSebastian Siewior	select CRYPTO_SEQIV
327584fffc8SSebastian Siewior	select CRYPTO_MANAGER
328584fffc8SSebastian Siewior	help
329584fffc8SSebastian Siewior	  CTR: Counter mode
330584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
331584fffc8SSebastian Siewior
332584fffc8SSebastian Siewiorconfig CRYPTO_CTS
333584fffc8SSebastian Siewior	tristate "CTS support"
334584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
335584fffc8SSebastian Siewior	help
336584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
337584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
338584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
339584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
340584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
341584fffc8SSebastian Siewior	  for AES encryption.
342584fffc8SSebastian Siewior
343584fffc8SSebastian Siewiorconfig CRYPTO_ECB
344584fffc8SSebastian Siewior	tristate "ECB support"
345584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
346584fffc8SSebastian Siewior	select CRYPTO_MANAGER
347584fffc8SSebastian Siewior	help
348584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
349584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
350584fffc8SSebastian Siewior	  the input block by block.
351584fffc8SSebastian Siewior
352584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3532470a2b2SJussi Kivilinna	tristate "LRW support"
354584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
355584fffc8SSebastian Siewior	select CRYPTO_MANAGER
356584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
357584fffc8SSebastian Siewior	help
358584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
359584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
360584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
361584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
362584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
363584fffc8SSebastian Siewior
364584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
365584fffc8SSebastian Siewior	tristate "PCBC support"
366584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
367584fffc8SSebastian Siewior	select CRYPTO_MANAGER
368584fffc8SSebastian Siewior	help
369584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
370584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
371584fffc8SSebastian Siewior
372584fffc8SSebastian Siewiorconfig CRYPTO_XTS
3735bcf8e6dSJussi Kivilinna	tristate "XTS support"
374584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
375584fffc8SSebastian Siewior	select CRYPTO_MANAGER
376584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
377584fffc8SSebastian Siewior	help
378584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
379584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
380584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
381584fffc8SSebastian Siewior
3821c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
3831c49678eSStephan Mueller	tristate "Key wrapping support"
3841c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
3851c49678eSStephan Mueller	help
3861c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
3871c49678eSStephan Mueller	  padding.
3881c49678eSStephan Mueller
389584fffc8SSebastian Siewiorcomment "Hash modes"
390584fffc8SSebastian Siewior
39193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
39293b5e86aSJussi Kivilinna	tristate "CMAC support"
39393b5e86aSJussi Kivilinna	select CRYPTO_HASH
39493b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
39593b5e86aSJussi Kivilinna	help
39693b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
39793b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
39893b5e86aSJussi Kivilinna
39993b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
40093b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
40193b5e86aSJussi Kivilinna
4021da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4038425165dSHerbert Xu	tristate "HMAC support"
4040796ae06SHerbert Xu	select CRYPTO_HASH
40543518407SHerbert Xu	select CRYPTO_MANAGER
4061da177e4SLinus Torvalds	help
4071da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4081da177e4SLinus Torvalds	  This is required for IPSec.
4091da177e4SLinus Torvalds
410333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
411333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
412333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
413333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
414333b0d7eSKazunori MIYAZAWA	help
415333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
416333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
417333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
418333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
419333b0d7eSKazunori MIYAZAWA
420f1939f7cSShane Wangconfig CRYPTO_VMAC
421f1939f7cSShane Wang	tristate "VMAC support"
422f1939f7cSShane Wang	select CRYPTO_HASH
423f1939f7cSShane Wang	select CRYPTO_MANAGER
424f1939f7cSShane Wang	help
425f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
426f1939f7cSShane Wang	  very high speed on 64-bit architectures.
427f1939f7cSShane Wang
428f1939f7cSShane Wang	  See also:
429f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
430f1939f7cSShane Wang
431584fffc8SSebastian Siewiorcomment "Digest"
432584fffc8SSebastian Siewior
433584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
434584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
4355773a3e6SHerbert Xu	select CRYPTO_HASH
4366a0962b2SDarrick J. Wong	select CRC32
4371da177e4SLinus Torvalds	help
438584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
439584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
44069c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
4411da177e4SLinus Torvalds
4428cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
4438cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
4448cb51ba8SAustin Zhang	depends on X86
4458cb51ba8SAustin Zhang	select CRYPTO_HASH
4468cb51ba8SAustin Zhang	help
4478cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
4488cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
4498cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
4508cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
4518cb51ba8SAustin Zhang	  gain performance compared with software implementation.
4528cb51ba8SAustin Zhang	  Module will be crc32c-intel.
4538cb51ba8SAustin Zhang
4547cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
4556dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
456c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
4576dd7a82cSAnton Blanchard	select CRYPTO_HASH
4586dd7a82cSAnton Blanchard	select CRC32
4596dd7a82cSAnton Blanchard	help
4606dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
4616dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
4626dd7a82cSAnton Blanchard	  and newer processors for improved performance.
4636dd7a82cSAnton Blanchard
4646dd7a82cSAnton Blanchard
465442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
466442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
467442a7c40SDavid S. Miller	depends on SPARC64
468442a7c40SDavid S. Miller	select CRYPTO_HASH
469442a7c40SDavid S. Miller	select CRC32
470442a7c40SDavid S. Miller	help
471442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
472442a7c40SDavid S. Miller	  when available.
473442a7c40SDavid S. Miller
47478c37d19SAlexander Boykoconfig CRYPTO_CRC32
47578c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
47678c37d19SAlexander Boyko	select CRYPTO_HASH
47778c37d19SAlexander Boyko	select CRC32
47878c37d19SAlexander Boyko	help
47978c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
48078c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
48178c37d19SAlexander Boyko
48278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
48378c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
48478c37d19SAlexander Boyko	depends on X86
48578c37d19SAlexander Boyko	select CRYPTO_HASH
48678c37d19SAlexander Boyko	select CRC32
48778c37d19SAlexander Boyko	help
48878c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
48978c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
49078c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
49178c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
49278c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
49378c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
49478c37d19SAlexander Boyko
49568411521SHerbert Xuconfig CRYPTO_CRCT10DIF
49668411521SHerbert Xu	tristate "CRCT10DIF algorithm"
49768411521SHerbert Xu	select CRYPTO_HASH
49868411521SHerbert Xu	help
49968411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
50068411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
50168411521SHerbert Xu	  transforms to be used if they are available.
50268411521SHerbert Xu
50368411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
50468411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
50568411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
50668411521SHerbert Xu	select CRYPTO_HASH
50768411521SHerbert Xu	help
50868411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
50968411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
51068411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
51168411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
51268411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
51368411521SHerbert Xu
5142cdc6899SHuang Yingconfig CRYPTO_GHASH
5152cdc6899SHuang Ying	tristate "GHASH digest algorithm"
5162cdc6899SHuang Ying	select CRYPTO_GF128MUL
517578c60fbSArnd Bergmann	select CRYPTO_HASH
5182cdc6899SHuang Ying	help
5192cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
5202cdc6899SHuang Ying
521f979e014SMartin Williconfig CRYPTO_POLY1305
522f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
523578c60fbSArnd Bergmann	select CRYPTO_HASH
524f979e014SMartin Willi	help
525f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
526f979e014SMartin Willi
527f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
528f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
529f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
530f979e014SMartin Willi
531c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
532b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
533c70f4abeSMartin Willi	depends on X86 && 64BIT
534c70f4abeSMartin Willi	select CRYPTO_POLY1305
535c70f4abeSMartin Willi	help
536c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
537c70f4abeSMartin Willi
538c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
539c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
540c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
541c70f4abeSMartin Willi	  instructions.
542c70f4abeSMartin Willi
5431da177e4SLinus Torvaldsconfig CRYPTO_MD4
5441da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
545808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5461da177e4SLinus Torvalds	help
5471da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
5481da177e4SLinus Torvalds
5491da177e4SLinus Torvaldsconfig CRYPTO_MD5
5501da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
55114b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5521da177e4SLinus Torvalds	help
5531da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
5541da177e4SLinus Torvalds
555d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
556d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
557d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
558d69e75deSAaro Koskinen	select CRYPTO_MD5
559d69e75deSAaro Koskinen	select CRYPTO_HASH
560d69e75deSAaro Koskinen	help
561d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
562d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
563d69e75deSAaro Koskinen
564e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
565e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
566e8e59953SMarkus Stockhausen	depends on PPC
567e8e59953SMarkus Stockhausen	select CRYPTO_HASH
568e8e59953SMarkus Stockhausen	help
569e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
570e8e59953SMarkus Stockhausen	  in PPC assembler.
571e8e59953SMarkus Stockhausen
572fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
573fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
574fa4dfedcSDavid S. Miller	depends on SPARC64
575fa4dfedcSDavid S. Miller	select CRYPTO_MD5
576fa4dfedcSDavid S. Miller	select CRYPTO_HASH
577fa4dfedcSDavid S. Miller	help
578fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
579fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
580fa4dfedcSDavid S. Miller
581584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
582584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
58319e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
584584fffc8SSebastian Siewior	help
585584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
586584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
587584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
588584fffc8SSebastian Siewior	  of the algorithm.
589584fffc8SSebastian Siewior
59082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
59182798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
5927c4468bcSHerbert Xu	select CRYPTO_HASH
59382798f90SAdrian-Ken Rueegsegger	help
59482798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
59582798f90SAdrian-Ken Rueegsegger
59682798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
59735ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
59882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
59982798f90SAdrian-Ken Rueegsegger
60082798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6016d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
60282798f90SAdrian-Ken Rueegsegger
60382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
60482798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
605e5835fbaSHerbert Xu	select CRYPTO_HASH
60682798f90SAdrian-Ken Rueegsegger	help
60782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
60882798f90SAdrian-Ken Rueegsegger
60982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
61082798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
611b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
612b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
61382798f90SAdrian-Ken Rueegsegger
614b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
615b6d44341SAdrian Bunk	  against RIPEMD-160.
616534fe2c1SAdrian-Ken Rueegsegger
617534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6186d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
619534fe2c1SAdrian-Ken Rueegsegger
620534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
621534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
622d8a5e2e9SHerbert Xu	select CRYPTO_HASH
623534fe2c1SAdrian-Ken Rueegsegger	help
624b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
625b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
626b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
627b6d44341SAdrian Bunk	  (than RIPEMD-128).
628534fe2c1SAdrian-Ken Rueegsegger
629534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6306d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
631534fe2c1SAdrian-Ken Rueegsegger
632534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
633534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
6343b8efb4cSHerbert Xu	select CRYPTO_HASH
635534fe2c1SAdrian-Ken Rueegsegger	help
636b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
637b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
638b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
639b6d44341SAdrian Bunk	  (than RIPEMD-160).
640534fe2c1SAdrian-Ken Rueegsegger
64182798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6426d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
64382798f90SAdrian-Ken Rueegsegger
6441da177e4SLinus Torvaldsconfig CRYPTO_SHA1
6451da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
64654ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6471da177e4SLinus Torvalds	help
6481da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
6491da177e4SLinus Torvalds
65066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
651e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
65266be8951SMathias Krause	depends on X86 && 64BIT
65366be8951SMathias Krause	select CRYPTO_SHA1
65466be8951SMathias Krause	select CRYPTO_HASH
65566be8951SMathias Krause	help
65666be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
65766be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
658e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
659e38b6b7fStim	  when available.
66066be8951SMathias Krause
6618275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
662e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
6638275d1aaSTim Chen	depends on X86 && 64BIT
6648275d1aaSTim Chen	select CRYPTO_SHA256
6658275d1aaSTim Chen	select CRYPTO_HASH
6668275d1aaSTim Chen	help
6678275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
6688275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
6698275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
670e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
671e38b6b7fStim	  Instructions) when available.
6728275d1aaSTim Chen
67387de4579STim Chenconfig CRYPTO_SHA512_SSSE3
67487de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
67587de4579STim Chen	depends on X86 && 64BIT
67687de4579STim Chen	select CRYPTO_SHA512
67787de4579STim Chen	select CRYPTO_HASH
67887de4579STim Chen	help
67987de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
68087de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
68187de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
68287de4579STim Chen	  version 2 (AVX2) instructions, when available.
68387de4579STim Chen
684efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
685efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
686efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
687efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
688efdb6f6eSAaro Koskinen	select CRYPTO_HASH
689efdb6f6eSAaro Koskinen	help
690efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
691efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
692efdb6f6eSAaro Koskinen
6934ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
6944ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
6954ff28d4cSDavid S. Miller	depends on SPARC64
6964ff28d4cSDavid S. Miller	select CRYPTO_SHA1
6974ff28d4cSDavid S. Miller	select CRYPTO_HASH
6984ff28d4cSDavid S. Miller	help
6994ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7004ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7014ff28d4cSDavid S. Miller
702323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
703323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
704323a6bf1SMichael Ellerman	depends on PPC
705323a6bf1SMichael Ellerman	help
706323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
707323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
708323a6bf1SMichael Ellerman
709d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
710d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
711d9850fc5SMarkus Stockhausen	depends on PPC && SPE
712d9850fc5SMarkus Stockhausen	help
713d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
714d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
715d9850fc5SMarkus Stockhausen
7161e65b81aSTim Chenconfig CRYPTO_SHA1_MB
7171e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7181e65b81aSTim Chen	depends on X86 && 64BIT
7191e65b81aSTim Chen	select CRYPTO_SHA1
7201e65b81aSTim Chen	select CRYPTO_HASH
7211e65b81aSTim Chen	select CRYPTO_MCRYPTD
7221e65b81aSTim Chen	help
7231e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7241e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
7251e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
7261e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
7271e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
7281e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
7291e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
7301e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
7311e65b81aSTim Chen
7329be7e244SMegha Deyconfig CRYPTO_SHA256_MB
7339be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7349be7e244SMegha Dey	depends on X86 && 64BIT
7359be7e244SMegha Dey	select CRYPTO_SHA256
7369be7e244SMegha Dey	select CRYPTO_HASH
7379be7e244SMegha Dey	select CRYPTO_MCRYPTD
7389be7e244SMegha Dey	help
7399be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7409be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
7419be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
7429be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
7439be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
7449be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
7459be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
7469be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
7479be7e244SMegha Dey
748026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
749026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
750026bb8aaSMegha Dey        depends on X86 && 64BIT
751026bb8aaSMegha Dey        select CRYPTO_SHA512
752026bb8aaSMegha Dey        select CRYPTO_HASH
753026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
754026bb8aaSMegha Dey        help
755026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
756026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
757026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
758026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
759026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
760026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
761026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
762026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
763026bb8aaSMegha Dey
7641da177e4SLinus Torvaldsconfig CRYPTO_SHA256
765cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
76650e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7671da177e4SLinus Torvalds	help
7681da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
7691da177e4SLinus Torvalds
7701da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
7711da177e4SLinus Torvalds	  security against collision attacks.
7721da177e4SLinus Torvalds
773cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
774cd12fb90SJonathan Lynch	  of security against collision attacks.
775cd12fb90SJonathan Lynch
7762ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
7772ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
7782ecc1e95SMarkus Stockhausen	depends on PPC && SPE
7792ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
7802ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
7812ecc1e95SMarkus Stockhausen	help
7822ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
7832ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
7842ecc1e95SMarkus Stockhausen
785efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
786efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
787efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
788efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
789efdb6f6eSAaro Koskinen	select CRYPTO_HASH
790efdb6f6eSAaro Koskinen	help
791efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
792efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
793efdb6f6eSAaro Koskinen
79486c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
79586c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
79686c93b24SDavid S. Miller	depends on SPARC64
79786c93b24SDavid S. Miller	select CRYPTO_SHA256
79886c93b24SDavid S. Miller	select CRYPTO_HASH
79986c93b24SDavid S. Miller	help
80086c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
80186c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
80286c93b24SDavid S. Miller
8031da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8041da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
805bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8061da177e4SLinus Torvalds	help
8071da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8081da177e4SLinus Torvalds
8091da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8101da177e4SLinus Torvalds	  security against collision attacks.
8111da177e4SLinus Torvalds
8121da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
8131da177e4SLinus Torvalds	  of security against collision attacks.
8141da177e4SLinus Torvalds
815efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
816efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
817efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
818efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
819efdb6f6eSAaro Koskinen	select CRYPTO_HASH
820efdb6f6eSAaro Koskinen	help
821efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
822efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
823efdb6f6eSAaro Koskinen
824775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
825775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
826775e0c69SDavid S. Miller	depends on SPARC64
827775e0c69SDavid S. Miller	select CRYPTO_SHA512
828775e0c69SDavid S. Miller	select CRYPTO_HASH
829775e0c69SDavid S. Miller	help
830775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
831775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
832775e0c69SDavid S. Miller
83353964b9eSJeff Garzikconfig CRYPTO_SHA3
83453964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
83553964b9eSJeff Garzik	select CRYPTO_HASH
83653964b9eSJeff Garzik	help
83753964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
83853964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
83953964b9eSJeff Garzik
84053964b9eSJeff Garzik	  References:
84153964b9eSJeff Garzik	  http://keccak.noekeon.org/
84253964b9eSJeff Garzik
8431da177e4SLinus Torvaldsconfig CRYPTO_TGR192
8441da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
845f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8461da177e4SLinus Torvalds	help
8471da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
8481da177e4SLinus Torvalds
8491da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
8501da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
8511da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
8521da177e4SLinus Torvalds
8531da177e4SLinus Torvalds	  See also:
8541da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
8551da177e4SLinus Torvalds
856584fffc8SSebastian Siewiorconfig CRYPTO_WP512
857584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
8584946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8591da177e4SLinus Torvalds	help
860584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
8611da177e4SLinus Torvalds
862584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
863584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
8641da177e4SLinus Torvalds
8651da177e4SLinus Torvalds	  See also:
8666d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
8671da177e4SLinus Torvalds
8680e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
8690e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
8708af00860SRichard Weinberger	depends on X86 && 64BIT
8710e1227d3SHuang Ying	select CRYPTO_CRYPTD
8720e1227d3SHuang Ying	help
8730e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
8740e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
8750e1227d3SHuang Ying
876584fffc8SSebastian Siewiorcomment "Ciphers"
8771da177e4SLinus Torvalds
8781da177e4SLinus Torvaldsconfig CRYPTO_AES
8791da177e4SLinus Torvalds	tristate "AES cipher algorithms"
880cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
8811da177e4SLinus Torvalds	help
8821da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
8831da177e4SLinus Torvalds	  algorithm.
8841da177e4SLinus Torvalds
8851da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
8861da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
8871da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
8881da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
8891da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
8901da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
8911da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
8921da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
8931da177e4SLinus Torvalds
8941da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
8951da177e4SLinus Torvalds
8961da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
8971da177e4SLinus Torvalds
898*b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
899*b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
900*b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
901*b5e0b032SArd Biesheuvel	help
902*b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
903*b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
904*b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
905*b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
906*b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
907*b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
908*b5e0b032SArd Biesheuvel
909*b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
910*b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
911*b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
912*b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
913*b5e0b032SArd Biesheuvel	  block.
914*b5e0b032SArd Biesheuvel
9151da177e4SLinus Torvaldsconfig CRYPTO_AES_586
9161da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
917cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
918cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9195157dea8SSebastian Siewior	select CRYPTO_AES
9201da177e4SLinus Torvalds	help
9211da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9221da177e4SLinus Torvalds	  algorithm.
9231da177e4SLinus Torvalds
9241da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9251da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9261da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9271da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9281da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9291da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9301da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9311da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9321da177e4SLinus Torvalds
9331da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9341da177e4SLinus Torvalds
9351da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
9361da177e4SLinus Torvalds
937a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
938a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
939cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
940cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
94181190b32SSebastian Siewior	select CRYPTO_AES
942a2a892a2SAndreas Steinmetz	help
943a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
944a2a892a2SAndreas Steinmetz	  algorithm.
945a2a892a2SAndreas Steinmetz
946a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
947a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
948a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
949a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
950a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
951a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
952a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
953a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
954a2a892a2SAndreas Steinmetz
955a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
956a2a892a2SAndreas Steinmetz
957a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
958a2a892a2SAndreas Steinmetz
95954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
96054b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
9618af00860SRichard Weinberger	depends on X86
96285671860SHerbert Xu	select CRYPTO_AEAD
9630d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
9640d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
96554b6a1bdSHuang Ying	select CRYPTO_ALGAPI
96685671860SHerbert Xu	select CRYPTO_BLKCIPHER
9677643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
96885671860SHerbert Xu	select CRYPTO_SIMD
96954b6a1bdSHuang Ying	help
97054b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
97154b6a1bdSHuang Ying
97254b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
97354b6a1bdSHuang Ying	  algorithm.
97454b6a1bdSHuang Ying
97554b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
97654b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
97754b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
97854b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
97954b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
98054b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
98154b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
98254b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
98354b6a1bdSHuang Ying
98454b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
98554b6a1bdSHuang Ying
98654b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
98754b6a1bdSHuang Ying
9880d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
9890d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
9900d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
9910d258efbSMathias Krause	  acceleration for CTR.
9922cf4ac8bSHuang Ying
9939bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
9949bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
9959bf4852dSDavid S. Miller	depends on SPARC64
9969bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
9979bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
9989bf4852dSDavid S. Miller	help
9999bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
10009bf4852dSDavid S. Miller
10019bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10029bf4852dSDavid S. Miller	  algorithm.
10039bf4852dSDavid S. Miller
10049bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
10059bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
10069bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
10079bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
10089bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
10099bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
10109bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
10119bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
10129bf4852dSDavid S. Miller
10139bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
10149bf4852dSDavid S. Miller
10159bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10169bf4852dSDavid S. Miller
10179bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
10189bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
10199bf4852dSDavid S. Miller	  ECB and CBC.
10209bf4852dSDavid S. Miller
1021504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1022504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1023504c6143SMarkus Stockhausen	depends on PPC && SPE
1024504c6143SMarkus Stockhausen	help
1025504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1026504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1027504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1028504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1029504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1030504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1031504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1032504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1033504c6143SMarkus Stockhausen
10341da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
10351da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1036cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10371da177e4SLinus Torvalds	help
10381da177e4SLinus Torvalds	  Anubis cipher algorithm.
10391da177e4SLinus Torvalds
10401da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
10411da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
10421da177e4SLinus Torvalds	  in the NESSIE competition.
10431da177e4SLinus Torvalds
10441da177e4SLinus Torvalds	  See also:
10456d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
10466d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
10471da177e4SLinus Torvalds
1048584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1049584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1050b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1051e2ee95b8SHye-Shik Chang	help
1052584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1053e2ee95b8SHye-Shik Chang
1054584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1055584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1056584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1057584fffc8SSebastian Siewior	  weakness of the algorithm.
1058584fffc8SSebastian Siewior
1059584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1060584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1061584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
106252ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1063584fffc8SSebastian Siewior	help
1064584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1065584fffc8SSebastian Siewior
1066584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1067584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1068584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1069e2ee95b8SHye-Shik Chang
1070e2ee95b8SHye-Shik Chang	  See also:
1071584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1072584fffc8SSebastian Siewior
107352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
107452ba867cSJussi Kivilinna	tristate
107552ba867cSJussi Kivilinna	help
107652ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
107752ba867cSJussi Kivilinna	  generic c and the assembler implementations.
107852ba867cSJussi Kivilinna
107952ba867cSJussi Kivilinna	  See also:
108052ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
108152ba867cSJussi Kivilinna
108264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
108364b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1084f21a7c19SAl Viro	depends on X86 && 64BIT
108564b94ceaSJussi Kivilinna	select CRYPTO_ALGAPI
108664b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
108764b94ceaSJussi Kivilinna	help
108864b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
108964b94ceaSJussi Kivilinna
109064b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
109164b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
109264b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
109364b94ceaSJussi Kivilinna
109464b94ceaSJussi Kivilinna	  See also:
109564b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
109664b94ceaSJussi Kivilinna
1097584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1098584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1099584fffc8SSebastian Siewior	depends on CRYPTO
1100584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1101584fffc8SSebastian Siewior	help
1102584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1103584fffc8SSebastian Siewior
1104584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1105584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1106584fffc8SSebastian Siewior
1107584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1108584fffc8SSebastian Siewior
1109584fffc8SSebastian Siewior	  See also:
1110584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1111584fffc8SSebastian Siewior
11120b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
11130b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1114f21a7c19SAl Viro	depends on X86 && 64BIT
11150b95ec56SJussi Kivilinna	depends on CRYPTO
11160b95ec56SJussi Kivilinna	select CRYPTO_ALGAPI
1117964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
11180b95ec56SJussi Kivilinna	select CRYPTO_LRW
11190b95ec56SJussi Kivilinna	select CRYPTO_XTS
11200b95ec56SJussi Kivilinna	help
11210b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
11220b95ec56SJussi Kivilinna
11230b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
11240b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
11250b95ec56SJussi Kivilinna
11260b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
11270b95ec56SJussi Kivilinna
11280b95ec56SJussi Kivilinna	  See also:
11290b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
11300b95ec56SJussi Kivilinna
1131d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1132d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1133d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1134d9b1d2e7SJussi Kivilinna	depends on CRYPTO
1135d9b1d2e7SJussi Kivilinna	select CRYPTO_ALGAPI
1136d9b1d2e7SJussi Kivilinna	select CRYPTO_CRYPTD
1137801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1138d9b1d2e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1139d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1140d9b1d2e7SJussi Kivilinna	select CRYPTO_LRW
1141d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1142d9b1d2e7SJussi Kivilinna	help
1143d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1144d9b1d2e7SJussi Kivilinna
1145d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1146d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1147d9b1d2e7SJussi Kivilinna
1148d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1149d9b1d2e7SJussi Kivilinna
1150d9b1d2e7SJussi Kivilinna	  See also:
1151d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1152d9b1d2e7SJussi Kivilinna
1153f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1154f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1155f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1156f3f935a7SJussi Kivilinna	depends on CRYPTO
1157f3f935a7SJussi Kivilinna	select CRYPTO_ALGAPI
1158f3f935a7SJussi Kivilinna	select CRYPTO_CRYPTD
1159801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1160f3f935a7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1161f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1162f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1163f3f935a7SJussi Kivilinna	select CRYPTO_LRW
1164f3f935a7SJussi Kivilinna	select CRYPTO_XTS
1165f3f935a7SJussi Kivilinna	help
1166f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1167f3f935a7SJussi Kivilinna
1168f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1169f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1170f3f935a7SJussi Kivilinna
1171f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1172f3f935a7SJussi Kivilinna
1173f3f935a7SJussi Kivilinna	  See also:
1174f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1175f3f935a7SJussi Kivilinna
117681658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
117781658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
117881658ad0SDavid S. Miller	depends on SPARC64
117981658ad0SDavid S. Miller	depends on CRYPTO
118081658ad0SDavid S. Miller	select CRYPTO_ALGAPI
118181658ad0SDavid S. Miller	help
118281658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
118381658ad0SDavid S. Miller
118481658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
118581658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
118681658ad0SDavid S. Miller
118781658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
118881658ad0SDavid S. Miller
118981658ad0SDavid S. Miller	  See also:
119081658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
119181658ad0SDavid S. Miller
1192044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1193044ab525SJussi Kivilinna	tristate
1194044ab525SJussi Kivilinna	help
1195044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1196044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1197044ab525SJussi Kivilinna
1198584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1199584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1200584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1201044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1202584fffc8SSebastian Siewior	help
1203584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1204584fffc8SSebastian Siewior	  described in RFC2144.
1205584fffc8SSebastian Siewior
12064d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12074d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12084d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12094d6d6a2cSJohannes Goetzfried	select CRYPTO_ALGAPI
12104d6d6a2cSJohannes Goetzfried	select CRYPTO_CRYPTD
1211801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1212044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12134d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
12144d6d6a2cSJohannes Goetzfried	help
12154d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
12164d6d6a2cSJohannes Goetzfried	  described in RFC2144.
12174d6d6a2cSJohannes Goetzfried
12184d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
12194d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
12204d6d6a2cSJohannes Goetzfried
1221584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1222584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1223584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1224044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1225584fffc8SSebastian Siewior	help
1226584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1227584fffc8SSebastian Siewior	  described in RFC2612.
1228584fffc8SSebastian Siewior
12294ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
12304ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
12314ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
12324ea1277dSJohannes Goetzfried	select CRYPTO_ALGAPI
12334ea1277dSJohannes Goetzfried	select CRYPTO_CRYPTD
1234801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
12354ea1277dSJohannes Goetzfried	select CRYPTO_GLUE_HELPER_X86
1236044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12374ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
12384ea1277dSJohannes Goetzfried	select CRYPTO_LRW
12394ea1277dSJohannes Goetzfried	select CRYPTO_XTS
12404ea1277dSJohannes Goetzfried	help
12414ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
12424ea1277dSJohannes Goetzfried	  described in RFC2612.
12434ea1277dSJohannes Goetzfried
12444ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
12454ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
12464ea1277dSJohannes Goetzfried
1247584fffc8SSebastian Siewiorconfig CRYPTO_DES
1248584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1249584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1250584fffc8SSebastian Siewior	help
1251584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1252584fffc8SSebastian Siewior
1253c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1254c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
125597da37b3SDave Jones	depends on SPARC64
1256c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1257c5aac2dfSDavid S. Miller	select CRYPTO_DES
1258c5aac2dfSDavid S. Miller	help
1259c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1260c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1261c5aac2dfSDavid S. Miller
12626574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
12636574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
12646574e6c6SJussi Kivilinna	depends on X86 && 64BIT
12656574e6c6SJussi Kivilinna	select CRYPTO_ALGAPI
12666574e6c6SJussi Kivilinna	select CRYPTO_DES
12676574e6c6SJussi Kivilinna	help
12686574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
12696574e6c6SJussi Kivilinna
12706574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
12716574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
12726574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
12736574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
12746574e6c6SJussi Kivilinna
1275584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1276584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1277584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1278584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1279584fffc8SSebastian Siewior	help
1280584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1281584fffc8SSebastian Siewior
1282584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1283584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1284584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1285584fffc8SSebastian Siewior	help
1286584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1287584fffc8SSebastian Siewior
1288584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1289584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1290584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1291584fffc8SSebastian Siewior
1292584fffc8SSebastian Siewior	  See also:
12936d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1294e2ee95b8SHye-Shik Chang
12952407d608STan Swee Hengconfig CRYPTO_SALSA20
12963b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
12972407d608STan Swee Heng	select CRYPTO_BLKCIPHER
12982407d608STan Swee Heng	help
12992407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13002407d608STan Swee Heng
13012407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13022407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13032407d608STan Swee Heng
13042407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13052407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13061da177e4SLinus Torvalds
1307974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13083b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1309974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1310974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1311974e4b75STan Swee Heng	help
1312974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1313974e4b75STan Swee Heng
1314974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1315974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1316974e4b75STan Swee Heng
1317974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1318974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1319974e4b75STan Swee Heng
13209a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
13213b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
13229a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
13239a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
13249a7dafbbSTan Swee Heng	help
13259a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
13269a7dafbbSTan Swee Heng
13279a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13289a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13299a7dafbbSTan Swee Heng
13309a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13319a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13329a7dafbbSTan Swee Heng
1333c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1334c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1335c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1336c08d0e64SMartin Willi	help
1337c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1338c08d0e64SMartin Willi
1339c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1340c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1341c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1342c08d0e64SMartin Willi
1343c08d0e64SMartin Willi	  See also:
1344c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1345c08d0e64SMartin Willi
1346c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
13473d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1348c9320b6dSMartin Willi	depends on X86 && 64BIT
1349c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1350c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1351c9320b6dSMartin Willi	help
1352c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1353c9320b6dSMartin Willi
1354c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1355c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1356c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1357c9320b6dSMartin Willi
1358c9320b6dSMartin Willi	  See also:
1359c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1360c9320b6dSMartin Willi
1361584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1362584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1363584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1364584fffc8SSebastian Siewior	help
1365584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1366584fffc8SSebastian Siewior
1367584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1368584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1369584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1370584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1371584fffc8SSebastian Siewior
1372584fffc8SSebastian Siewior	  See also:
1373584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1374584fffc8SSebastian Siewior
1375584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1376584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1377584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1378584fffc8SSebastian Siewior	help
1379584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1380584fffc8SSebastian Siewior
1381584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1382584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1383584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1384584fffc8SSebastian Siewior
1385584fffc8SSebastian Siewior	  See also:
1386584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1387584fffc8SSebastian Siewior
1388937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1389937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1390937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1391937c30d7SJussi Kivilinna	select CRYPTO_ALGAPI
1392341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1393801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1394596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1395937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1396feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1397feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1398937c30d7SJussi Kivilinna	help
1399937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1400937c30d7SJussi Kivilinna
1401937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1402937c30d7SJussi Kivilinna	  of 8 bits.
1403937c30d7SJussi Kivilinna
14041e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1405937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1406937c30d7SJussi Kivilinna
1407937c30d7SJussi Kivilinna	  See also:
1408937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1409937c30d7SJussi Kivilinna
1410251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1411251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1412251496dbSJussi Kivilinna	depends on X86 && !64BIT
1413251496dbSJussi Kivilinna	select CRYPTO_ALGAPI
1414341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1415801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1416596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1417251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1418feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1419feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1420251496dbSJussi Kivilinna	help
1421251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1422251496dbSJussi Kivilinna
1423251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1424251496dbSJussi Kivilinna	  of 8 bits.
1425251496dbSJussi Kivilinna
1426251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1427251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1428251496dbSJussi Kivilinna
1429251496dbSJussi Kivilinna	  See also:
1430251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1431251496dbSJussi Kivilinna
14327efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
14337efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
14347efe4076SJohannes Goetzfried	depends on X86 && 64BIT
14357efe4076SJohannes Goetzfried	select CRYPTO_ALGAPI
14367efe4076SJohannes Goetzfried	select CRYPTO_CRYPTD
1437801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
14381d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
14397efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
14407efe4076SJohannes Goetzfried	select CRYPTO_LRW
14417efe4076SJohannes Goetzfried	select CRYPTO_XTS
14427efe4076SJohannes Goetzfried	help
14437efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
14447efe4076SJohannes Goetzfried
14457efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
14467efe4076SJohannes Goetzfried	  of 8 bits.
14477efe4076SJohannes Goetzfried
14487efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
14497efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14507efe4076SJohannes Goetzfried
14517efe4076SJohannes Goetzfried	  See also:
14527efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
14537efe4076SJohannes Goetzfried
145456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
145556d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
145656d76c96SJussi Kivilinna	depends on X86 && 64BIT
145756d76c96SJussi Kivilinna	select CRYPTO_ALGAPI
145856d76c96SJussi Kivilinna	select CRYPTO_CRYPTD
1459801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
146056d76c96SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
146156d76c96SJussi Kivilinna	select CRYPTO_SERPENT
146256d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
146356d76c96SJussi Kivilinna	select CRYPTO_LRW
146456d76c96SJussi Kivilinna	select CRYPTO_XTS
146556d76c96SJussi Kivilinna	help
146656d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
146756d76c96SJussi Kivilinna
146856d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
146956d76c96SJussi Kivilinna	  of 8 bits.
147056d76c96SJussi Kivilinna
147156d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
147256d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
147356d76c96SJussi Kivilinna
147456d76c96SJussi Kivilinna	  See also:
147556d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
147656d76c96SJussi Kivilinna
1477584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1478584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1479584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1480584fffc8SSebastian Siewior	help
1481584fffc8SSebastian Siewior	  TEA cipher algorithm.
1482584fffc8SSebastian Siewior
1483584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1484584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1485584fffc8SSebastian Siewior	  little memory.
1486584fffc8SSebastian Siewior
1487584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1488584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1489584fffc8SSebastian Siewior	  in the TEA algorithm.
1490584fffc8SSebastian Siewior
1491584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1492584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1493584fffc8SSebastian Siewior
1494584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1495584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1496584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1497584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1498584fffc8SSebastian Siewior	help
1499584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1500584fffc8SSebastian Siewior
1501584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1502584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1503584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1504584fffc8SSebastian Siewior	  bits.
1505584fffc8SSebastian Siewior
1506584fffc8SSebastian Siewior	  See also:
1507584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1508584fffc8SSebastian Siewior
1509584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1510584fffc8SSebastian Siewior	tristate
1511584fffc8SSebastian Siewior	help
1512584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1513584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1514584fffc8SSebastian Siewior
1515584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1516584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1517584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1518584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1519584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1520584fffc8SSebastian Siewior	help
1521584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1522584fffc8SSebastian Siewior
1523584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1524584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1525584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1526584fffc8SSebastian Siewior	  bits.
1527584fffc8SSebastian Siewior
1528584fffc8SSebastian Siewior	  See also:
1529584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1530584fffc8SSebastian Siewior
1531584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1532584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1533584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1534584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1535584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1536584fffc8SSebastian Siewior	help
1537584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1538584fffc8SSebastian Siewior
1539584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1540584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1541584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1542584fffc8SSebastian Siewior	  bits.
1543584fffc8SSebastian Siewior
1544584fffc8SSebastian Siewior	  See also:
1545584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1546584fffc8SSebastian Siewior
15478280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
15488280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1549f21a7c19SAl Viro	depends on X86 && 64BIT
15508280daadSJussi Kivilinna	select CRYPTO_ALGAPI
15518280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
15528280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1553414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1554e7cda5d2SJussi Kivilinna	select CRYPTO_LRW
1555e7cda5d2SJussi Kivilinna	select CRYPTO_XTS
15568280daadSJussi Kivilinna	help
15578280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
15588280daadSJussi Kivilinna
15598280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
15608280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
15618280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
15628280daadSJussi Kivilinna	  bits.
15638280daadSJussi Kivilinna
15648280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
15658280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
15668280daadSJussi Kivilinna
15678280daadSJussi Kivilinna	  See also:
15688280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
15698280daadSJussi Kivilinna
1570107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1571107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1572107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1573107778b5SJohannes Goetzfried	select CRYPTO_ALGAPI
1574107778b5SJohannes Goetzfried	select CRYPTO_CRYPTD
1575801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1576a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1577107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1578107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1579107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1580107778b5SJohannes Goetzfried	select CRYPTO_LRW
1581107778b5SJohannes Goetzfried	select CRYPTO_XTS
1582107778b5SJohannes Goetzfried	help
1583107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1584107778b5SJohannes Goetzfried
1585107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1586107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1587107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1588107778b5SJohannes Goetzfried	  bits.
1589107778b5SJohannes Goetzfried
1590107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1591107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1592107778b5SJohannes Goetzfried
1593107778b5SJohannes Goetzfried	  See also:
1594107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1595107778b5SJohannes Goetzfried
1596584fffc8SSebastian Siewiorcomment "Compression"
1597584fffc8SSebastian Siewior
15981da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
15991da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1600cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1601f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16021da177e4SLinus Torvalds	select ZLIB_INFLATE
16031da177e4SLinus Torvalds	select ZLIB_DEFLATE
16041da177e4SLinus Torvalds	help
16051da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16061da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16071da177e4SLinus Torvalds
16081da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16091da177e4SLinus Torvalds
16100b77abb3SZoltan Sogorconfig CRYPTO_LZO
16110b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16120b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1613ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16140b77abb3SZoltan Sogor	select LZO_COMPRESS
16150b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16160b77abb3SZoltan Sogor	help
16170b77abb3SZoltan Sogor	  This is the LZO algorithm.
16180b77abb3SZoltan Sogor
161935a1fc18SSeth Jenningsconfig CRYPTO_842
162035a1fc18SSeth Jennings	tristate "842 compression algorithm"
16212062c5b6SDan Streetman	select CRYPTO_ALGAPI
16226a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
16232062c5b6SDan Streetman	select 842_COMPRESS
16242062c5b6SDan Streetman	select 842_DECOMPRESS
162535a1fc18SSeth Jennings	help
162635a1fc18SSeth Jennings	  This is the 842 algorithm.
162735a1fc18SSeth Jennings
16280ea8530dSChanho Minconfig CRYPTO_LZ4
16290ea8530dSChanho Min	tristate "LZ4 compression algorithm"
16300ea8530dSChanho Min	select CRYPTO_ALGAPI
16318cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
16320ea8530dSChanho Min	select LZ4_COMPRESS
16330ea8530dSChanho Min	select LZ4_DECOMPRESS
16340ea8530dSChanho Min	help
16350ea8530dSChanho Min	  This is the LZ4 algorithm.
16360ea8530dSChanho Min
16370ea8530dSChanho Minconfig CRYPTO_LZ4HC
16380ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
16390ea8530dSChanho Min	select CRYPTO_ALGAPI
164091d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
16410ea8530dSChanho Min	select LZ4HC_COMPRESS
16420ea8530dSChanho Min	select LZ4_DECOMPRESS
16430ea8530dSChanho Min	help
16440ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
16450ea8530dSChanho Min
164617f0f4a4SNeil Hormancomment "Random Number Generation"
164717f0f4a4SNeil Horman
164817f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
164917f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
165017f0f4a4SNeil Horman	select CRYPTO_AES
165117f0f4a4SNeil Horman	select CRYPTO_RNG
165217f0f4a4SNeil Horman	help
165317f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
165417f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
16557dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
16567dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
165717f0f4a4SNeil Horman
1658f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1659419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1660419090c6SStephan Mueller	help
1661419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1662419090c6SStephan Mueller	  more of the DRBG types must be selected.
1663419090c6SStephan Mueller
1664f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1665419090c6SStephan Mueller
1666419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1667401e4238SHerbert Xu	bool
1668419090c6SStephan Mueller	default y
1669419090c6SStephan Mueller	select CRYPTO_HMAC
1670826775bbSHerbert Xu	select CRYPTO_SHA256
1671419090c6SStephan Mueller
1672419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1673419090c6SStephan Mueller	bool "Enable Hash DRBG"
1674826775bbSHerbert Xu	select CRYPTO_SHA256
1675419090c6SStephan Mueller	help
1676419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1677419090c6SStephan Mueller
1678419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1679419090c6SStephan Mueller	bool "Enable CTR DRBG"
1680419090c6SStephan Mueller	select CRYPTO_AES
168135591285SStephan Mueller	depends on CRYPTO_CTR
1682419090c6SStephan Mueller	help
1683419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1684419090c6SStephan Mueller
1685f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1686f2c89a10SHerbert Xu	tristate
1687401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1688f2c89a10SHerbert Xu	select CRYPTO_RNG
1689bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1690f2c89a10SHerbert Xu
1691f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1692419090c6SStephan Mueller
1693bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1694bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
16952f313e02SArnd Bergmann	select CRYPTO_RNG
1696bb5530e4SStephan Mueller	help
1697bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1698bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1699bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1700bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1701bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1702bb5530e4SStephan Mueller
170303c8efc1SHerbert Xuconfig CRYPTO_USER_API
170403c8efc1SHerbert Xu	tristate
170503c8efc1SHerbert Xu
1706fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1707fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17087451708fSHerbert Xu	depends on NET
1709fe869cdbSHerbert Xu	select CRYPTO_HASH
1710fe869cdbSHerbert Xu	select CRYPTO_USER_API
1711fe869cdbSHerbert Xu	help
1712fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1713fe869cdbSHerbert Xu	  algorithms.
1714fe869cdbSHerbert Xu
17158ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
17168ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
17177451708fSHerbert Xu	depends on NET
17188ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
17198ff59090SHerbert Xu	select CRYPTO_USER_API
17208ff59090SHerbert Xu	help
17218ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
17228ff59090SHerbert Xu	  key cipher algorithms.
17238ff59090SHerbert Xu
17242f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
17252f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
17262f375538SStephan Mueller	depends on NET
17272f375538SStephan Mueller	select CRYPTO_RNG
17282f375538SStephan Mueller	select CRYPTO_USER_API
17292f375538SStephan Mueller	help
17302f375538SStephan Mueller	  This option enables the user-spaces interface for random
17312f375538SStephan Mueller	  number generator algorithms.
17322f375538SStephan Mueller
1733b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1734b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1735b64a2d95SHerbert Xu	depends on NET
1736b64a2d95SHerbert Xu	select CRYPTO_AEAD
1737b64a2d95SHerbert Xu	select CRYPTO_USER_API
1738b64a2d95SHerbert Xu	help
1739b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1740b64a2d95SHerbert Xu	  cipher algorithms.
1741b64a2d95SHerbert Xu
1742ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1743ee08997fSDmitry Kasatkin	bool
1744ee08997fSDmitry Kasatkin
17451da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1746964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1747cfc411e7SDavid Howellssource certs/Kconfig
17481da177e4SLinus Torvalds
1749cce9e06dSHerbert Xuendif	# if CRYPTO
1750