1*b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 115cfc2bb32STadeusz Strukconfig CRYPTO_RSA 116cfc2bb32STadeusz Struk tristate "RSA algorithm" 117425e0172STadeusz Struk select CRYPTO_AKCIPHER 11858446fefSTadeusz Struk select CRYPTO_MANAGER 119cfc2bb32STadeusz Struk select MPILIB 120cfc2bb32STadeusz Struk select ASN1 121cfc2bb32STadeusz Struk help 122cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 123cfc2bb32STadeusz Struk 124802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 125802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 126802c7f1cSSalvatore Benedetto select CRYPTO_KPP 127802c7f1cSSalvatore Benedetto select MPILIB 128802c7f1cSSalvatore Benedetto help 129802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 130802c7f1cSSalvatore Benedetto 1313c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1323c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 1333c4b2390SSalvatore Benedetto select CRYTPO_KPP 1346755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1353c4b2390SSalvatore Benedetto help 1363c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 137802c7f1cSSalvatore Benedetto 1382b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1392b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1406a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1412b8c19dbSHerbert Xu help 1422b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1432b8c19dbSHerbert Xu cbc(aes). 1442b8c19dbSHerbert Xu 1456a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1466a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1476a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1486a0fcbb4SHerbert Xu select CRYPTO_HASH2 1496a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 150946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1514e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1522ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1536a0fcbb4SHerbert Xu 154a38f7907SSteffen Klassertconfig CRYPTO_USER 155a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1565db017aaSHerbert Xu depends on NET 157a38f7907SSteffen Klassert select CRYPTO_MANAGER 158a38f7907SSteffen Klassert help 159d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 160a38f7907SSteffen Klassert cbc(aes). 161a38f7907SSteffen Klassert 162326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 163326a6346SHerbert Xu bool "Disable run-time self tests" 16400ca28a5SHerbert Xu default y 16500ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1660b767f96SAlexander Shishkin help 167326a6346SHerbert Xu Disable run-time self tests that normally take place at 168326a6346SHerbert Xu algorithm registration. 1690b767f96SAlexander Shishkin 170584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17108c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 172584fffc8SSebastian Siewior help 173584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 174584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 175584fffc8SSebastian Siewior option will be selected automatically if you select such a 176584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 177584fffc8SSebastian Siewior an external module that requires these functions. 178584fffc8SSebastian Siewior 179584fffc8SSebastian Siewiorconfig CRYPTO_NULL 180584fffc8SSebastian Siewior tristate "Null algorithms" 181149a3971SHerbert Xu select CRYPTO_NULL2 182584fffc8SSebastian Siewior help 183584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 184584fffc8SSebastian Siewior 185149a3971SHerbert Xuconfig CRYPTO_NULL2 186dd43c4e9SHerbert Xu tristate 187149a3971SHerbert Xu select CRYPTO_ALGAPI2 188149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 189149a3971SHerbert Xu select CRYPTO_HASH2 190149a3971SHerbert Xu 1915068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1923b4afaf2SKees Cook tristate "Parallel crypto engine" 1933b4afaf2SKees Cook depends on SMP 1945068c7a8SSteffen Klassert select PADATA 1955068c7a8SSteffen Klassert select CRYPTO_MANAGER 1965068c7a8SSteffen Klassert select CRYPTO_AEAD 1975068c7a8SSteffen Klassert help 1985068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1995068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2005068c7a8SSteffen Klassert 20125c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20225c38d3fSHuang Ying tristate 20325c38d3fSHuang Ying 204584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 205584fffc8SSebastian Siewior tristate "Software async crypto daemon" 206584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 207b8a28251SLoc Ho select CRYPTO_HASH 208584fffc8SSebastian Siewior select CRYPTO_MANAGER 209254eff77SHuang Ying select CRYPTO_WORKQUEUE 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 212584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 213584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 214584fffc8SSebastian Siewior 2151e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2161e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2171e65b81aSTim Chen select CRYPTO_BLKCIPHER 2181e65b81aSTim Chen select CRYPTO_HASH 2191e65b81aSTim Chen select CRYPTO_MANAGER 2201e65b81aSTim Chen select CRYPTO_WORKQUEUE 2211e65b81aSTim Chen help 2221e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2231e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2241e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2251e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2261e65b81aSTim Chen in the context of this kernel thread and drivers can post 2270e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2281e65b81aSTim Chen 229584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 230584fffc8SSebastian Siewior tristate "Authenc support" 231584fffc8SSebastian Siewior select CRYPTO_AEAD 232584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 233584fffc8SSebastian Siewior select CRYPTO_MANAGER 234584fffc8SSebastian Siewior select CRYPTO_HASH 235e94c6a7aSHerbert Xu select CRYPTO_NULL 236584fffc8SSebastian Siewior help 237584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 238584fffc8SSebastian Siewior This is required for IPSec. 239584fffc8SSebastian Siewior 240584fffc8SSebastian Siewiorconfig CRYPTO_TEST 241584fffc8SSebastian Siewior tristate "Testing module" 242584fffc8SSebastian Siewior depends on m 243da7f033dSHerbert Xu select CRYPTO_MANAGER 244584fffc8SSebastian Siewior help 245584fffc8SSebastian Siewior Quick & dirty crypto test module. 246584fffc8SSebastian Siewior 247a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER 248ffaf9156SJussi Kivilinna tristate 249ffaf9156SJussi Kivilinna select CRYPTO_CRYPTD 250ffaf9156SJussi Kivilinna 251266d0516SHerbert Xuconfig CRYPTO_SIMD 252266d0516SHerbert Xu tristate 253266d0516SHerbert Xu select CRYPTO_CRYPTD 254266d0516SHerbert Xu 255596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 256596d8750SJussi Kivilinna tristate 257596d8750SJussi Kivilinna depends on X86 258065ce327SHerbert Xu select CRYPTO_BLKCIPHER 259596d8750SJussi Kivilinna 260735d37b5SBaolin Wangconfig CRYPTO_ENGINE 261735d37b5SBaolin Wang tristate 262735d37b5SBaolin Wang 263584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 264584fffc8SSebastian Siewior 265584fffc8SSebastian Siewiorconfig CRYPTO_CCM 266584fffc8SSebastian Siewior tristate "CCM support" 267584fffc8SSebastian Siewior select CRYPTO_CTR 268f15f05b0SArd Biesheuvel select CRYPTO_HASH 269584fffc8SSebastian Siewior select CRYPTO_AEAD 270584fffc8SSebastian Siewior help 271584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 272584fffc8SSebastian Siewior 273584fffc8SSebastian Siewiorconfig CRYPTO_GCM 274584fffc8SSebastian Siewior tristate "GCM/GMAC support" 275584fffc8SSebastian Siewior select CRYPTO_CTR 276584fffc8SSebastian Siewior select CRYPTO_AEAD 2779382d97aSHuang Ying select CRYPTO_GHASH 2789489667dSJussi Kivilinna select CRYPTO_NULL 279584fffc8SSebastian Siewior help 280584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 281584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 282584fffc8SSebastian Siewior 28371ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28471ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28571ebc4d1SMartin Willi select CRYPTO_CHACHA20 28671ebc4d1SMartin Willi select CRYPTO_POLY1305 28771ebc4d1SMartin Willi select CRYPTO_AEAD 28871ebc4d1SMartin Willi help 28971ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 29071ebc4d1SMartin Willi 29171ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29271ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29371ebc4d1SMartin Willi IETF protocols. 29471ebc4d1SMartin Willi 295584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 296584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 297584fffc8SSebastian Siewior select CRYPTO_AEAD 298584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 299856e3f40SHerbert Xu select CRYPTO_NULL 300401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 301584fffc8SSebastian Siewior help 302584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 303584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 304584fffc8SSebastian Siewior 305a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 306a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 307a10f554fSHerbert Xu select CRYPTO_AEAD 308a10f554fSHerbert Xu select CRYPTO_NULL 309401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3103491244cSHerbert Xu default m 311a10f554fSHerbert Xu help 312a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 313a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 314a10f554fSHerbert Xu algorithm for CBC. 315a10f554fSHerbert Xu 316584fffc8SSebastian Siewiorcomment "Block modes" 317584fffc8SSebastian Siewior 318584fffc8SSebastian Siewiorconfig CRYPTO_CBC 319584fffc8SSebastian Siewior tristate "CBC support" 320584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 321584fffc8SSebastian Siewior select CRYPTO_MANAGER 322584fffc8SSebastian Siewior help 323584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 324584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 325584fffc8SSebastian Siewior 326584fffc8SSebastian Siewiorconfig CRYPTO_CTR 327584fffc8SSebastian Siewior tristate "CTR support" 328584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 329584fffc8SSebastian Siewior select CRYPTO_SEQIV 330584fffc8SSebastian Siewior select CRYPTO_MANAGER 331584fffc8SSebastian Siewior help 332584fffc8SSebastian Siewior CTR: Counter mode 333584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 334584fffc8SSebastian Siewior 335584fffc8SSebastian Siewiorconfig CRYPTO_CTS 336584fffc8SSebastian Siewior tristate "CTS support" 337584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 338584fffc8SSebastian Siewior help 339584fffc8SSebastian Siewior CTS: Cipher Text Stealing 340584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 341584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 342584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 343584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 344584fffc8SSebastian Siewior for AES encryption. 345584fffc8SSebastian Siewior 346584fffc8SSebastian Siewiorconfig CRYPTO_ECB 347584fffc8SSebastian Siewior tristate "ECB support" 348584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 349584fffc8SSebastian Siewior select CRYPTO_MANAGER 350584fffc8SSebastian Siewior help 351584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 352584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 353584fffc8SSebastian Siewior the input block by block. 354584fffc8SSebastian Siewior 355584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3562470a2b2SJussi Kivilinna tristate "LRW support" 357584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 358584fffc8SSebastian Siewior select CRYPTO_MANAGER 359584fffc8SSebastian Siewior select CRYPTO_GF128MUL 360584fffc8SSebastian Siewior help 361584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 362584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 363584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 364584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 365584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 366584fffc8SSebastian Siewior 367584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 368584fffc8SSebastian Siewior tristate "PCBC support" 369584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 370584fffc8SSebastian Siewior select CRYPTO_MANAGER 371584fffc8SSebastian Siewior help 372584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 373584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 374584fffc8SSebastian Siewior 375584fffc8SSebastian Siewiorconfig CRYPTO_XTS 3765bcf8e6dSJussi Kivilinna tristate "XTS support" 377584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 378584fffc8SSebastian Siewior select CRYPTO_MANAGER 37912cb3a1cSMilan Broz select CRYPTO_ECB 380584fffc8SSebastian Siewior help 381584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 382584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 383584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 384584fffc8SSebastian Siewior 3851c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 3861c49678eSStephan Mueller tristate "Key wrapping support" 3871c49678eSStephan Mueller select CRYPTO_BLKCIPHER 3881c49678eSStephan Mueller help 3891c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 3901c49678eSStephan Mueller padding. 3911c49678eSStephan Mueller 392584fffc8SSebastian Siewiorcomment "Hash modes" 393584fffc8SSebastian Siewior 39493b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 39593b5e86aSJussi Kivilinna tristate "CMAC support" 39693b5e86aSJussi Kivilinna select CRYPTO_HASH 39793b5e86aSJussi Kivilinna select CRYPTO_MANAGER 39893b5e86aSJussi Kivilinna help 39993b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 40093b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 40193b5e86aSJussi Kivilinna 40293b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 40393b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 40493b5e86aSJussi Kivilinna 4051da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4068425165dSHerbert Xu tristate "HMAC support" 4070796ae06SHerbert Xu select CRYPTO_HASH 40843518407SHerbert Xu select CRYPTO_MANAGER 4091da177e4SLinus Torvalds help 4101da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4111da177e4SLinus Torvalds This is required for IPSec. 4121da177e4SLinus Torvalds 413333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 414333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 415333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 416333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 417333b0d7eSKazunori MIYAZAWA help 418333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 419333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 420333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 421333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 422333b0d7eSKazunori MIYAZAWA 423f1939f7cSShane Wangconfig CRYPTO_VMAC 424f1939f7cSShane Wang tristate "VMAC support" 425f1939f7cSShane Wang select CRYPTO_HASH 426f1939f7cSShane Wang select CRYPTO_MANAGER 427f1939f7cSShane Wang help 428f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 429f1939f7cSShane Wang very high speed on 64-bit architectures. 430f1939f7cSShane Wang 431f1939f7cSShane Wang See also: 432f1939f7cSShane Wang <http://fastcrypto.org/vmac> 433f1939f7cSShane Wang 434584fffc8SSebastian Siewiorcomment "Digest" 435584fffc8SSebastian Siewior 436584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 437584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4385773a3e6SHerbert Xu select CRYPTO_HASH 4396a0962b2SDarrick J. Wong select CRC32 4401da177e4SLinus Torvalds help 441584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 442584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 44369c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4441da177e4SLinus Torvalds 4458cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4468cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4478cb51ba8SAustin Zhang depends on X86 4488cb51ba8SAustin Zhang select CRYPTO_HASH 4498cb51ba8SAustin Zhang help 4508cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4518cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4528cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4538cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4548cb51ba8SAustin Zhang gain performance compared with software implementation. 4558cb51ba8SAustin Zhang Module will be crc32c-intel. 4568cb51ba8SAustin Zhang 4577cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4586dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 459c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4606dd7a82cSAnton Blanchard select CRYPTO_HASH 4616dd7a82cSAnton Blanchard select CRC32 4626dd7a82cSAnton Blanchard help 4636dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4646dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4656dd7a82cSAnton Blanchard and newer processors for improved performance. 4666dd7a82cSAnton Blanchard 4676dd7a82cSAnton Blanchard 468442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 469442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 470442a7c40SDavid S. Miller depends on SPARC64 471442a7c40SDavid S. Miller select CRYPTO_HASH 472442a7c40SDavid S. Miller select CRC32 473442a7c40SDavid S. Miller help 474442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 475442a7c40SDavid S. Miller when available. 476442a7c40SDavid S. Miller 47778c37d19SAlexander Boykoconfig CRYPTO_CRC32 47878c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 47978c37d19SAlexander Boyko select CRYPTO_HASH 48078c37d19SAlexander Boyko select CRC32 48178c37d19SAlexander Boyko help 48278c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 48378c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 48478c37d19SAlexander Boyko 48578c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 48678c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 48778c37d19SAlexander Boyko depends on X86 48878c37d19SAlexander Boyko select CRYPTO_HASH 48978c37d19SAlexander Boyko select CRC32 49078c37d19SAlexander Boyko help 49178c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 49278c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 49378c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 49478c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 49578c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 49678c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 49778c37d19SAlexander Boyko 49868411521SHerbert Xuconfig CRYPTO_CRCT10DIF 49968411521SHerbert Xu tristate "CRCT10DIF algorithm" 50068411521SHerbert Xu select CRYPTO_HASH 50168411521SHerbert Xu help 50268411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 50368411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 50468411521SHerbert Xu transforms to be used if they are available. 50568411521SHerbert Xu 50668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 50768411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 50868411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 50968411521SHerbert Xu select CRYPTO_HASH 51068411521SHerbert Xu help 51168411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 51268411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 51368411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 51468411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 51568411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 51668411521SHerbert Xu 517b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 518b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 519b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 520b01df1c1SDaniel Axtens select CRYPTO_HASH 521b01df1c1SDaniel Axtens help 522b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 523b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 524b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 525b01df1c1SDaniel Axtens 526146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 527146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 528146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 529146c8688SDaniel Axtens help 530146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 531146c8688SDaniel Axtens POWER8 vpmsum instructions. 532146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 533146c8688SDaniel Axtens 5342cdc6899SHuang Yingconfig CRYPTO_GHASH 5352cdc6899SHuang Ying tristate "GHASH digest algorithm" 5362cdc6899SHuang Ying select CRYPTO_GF128MUL 537578c60fbSArnd Bergmann select CRYPTO_HASH 5382cdc6899SHuang Ying help 5392cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5402cdc6899SHuang Ying 541f979e014SMartin Williconfig CRYPTO_POLY1305 542f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 543578c60fbSArnd Bergmann select CRYPTO_HASH 544f979e014SMartin Willi help 545f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 546f979e014SMartin Willi 547f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 548f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 549f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 550f979e014SMartin Willi 551c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 552b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 553c70f4abeSMartin Willi depends on X86 && 64BIT 554c70f4abeSMartin Willi select CRYPTO_POLY1305 555c70f4abeSMartin Willi help 556c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 557c70f4abeSMartin Willi 558c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 559c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 560c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 561c70f4abeSMartin Willi instructions. 562c70f4abeSMartin Willi 5631da177e4SLinus Torvaldsconfig CRYPTO_MD4 5641da177e4SLinus Torvalds tristate "MD4 digest algorithm" 565808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 5661da177e4SLinus Torvalds help 5671da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 5681da177e4SLinus Torvalds 5691da177e4SLinus Torvaldsconfig CRYPTO_MD5 5701da177e4SLinus Torvalds tristate "MD5 digest algorithm" 57114b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 5721da177e4SLinus Torvalds help 5731da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 5741da177e4SLinus Torvalds 575d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 576d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 577d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 578d69e75deSAaro Koskinen select CRYPTO_MD5 579d69e75deSAaro Koskinen select CRYPTO_HASH 580d69e75deSAaro Koskinen help 581d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 582d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 583d69e75deSAaro Koskinen 584e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 585e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 586e8e59953SMarkus Stockhausen depends on PPC 587e8e59953SMarkus Stockhausen select CRYPTO_HASH 588e8e59953SMarkus Stockhausen help 589e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 590e8e59953SMarkus Stockhausen in PPC assembler. 591e8e59953SMarkus Stockhausen 592fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 593fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 594fa4dfedcSDavid S. Miller depends on SPARC64 595fa4dfedcSDavid S. Miller select CRYPTO_MD5 596fa4dfedcSDavid S. Miller select CRYPTO_HASH 597fa4dfedcSDavid S. Miller help 598fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 599fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 600fa4dfedcSDavid S. Miller 601584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 602584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 60319e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 604584fffc8SSebastian Siewior help 605584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 606584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 607584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 608584fffc8SSebastian Siewior of the algorithm. 609584fffc8SSebastian Siewior 61082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 61182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 6127c4468bcSHerbert Xu select CRYPTO_HASH 61382798f90SAdrian-Ken Rueegsegger help 61482798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 61582798f90SAdrian-Ken Rueegsegger 61682798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 61735ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 61882798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 61982798f90SAdrian-Ken Rueegsegger 62082798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6216d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 62282798f90SAdrian-Ken Rueegsegger 62382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 62482798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 625e5835fbaSHerbert Xu select CRYPTO_HASH 62682798f90SAdrian-Ken Rueegsegger help 62782798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 62882798f90SAdrian-Ken Rueegsegger 62982798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 63082798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 631b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 632b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 63382798f90SAdrian-Ken Rueegsegger 634b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 635b6d44341SAdrian Bunk against RIPEMD-160. 636534fe2c1SAdrian-Ken Rueegsegger 637534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6386d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 639534fe2c1SAdrian-Ken Rueegsegger 640534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 641534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 642d8a5e2e9SHerbert Xu select CRYPTO_HASH 643534fe2c1SAdrian-Ken Rueegsegger help 644b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 645b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 646b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 647b6d44341SAdrian Bunk (than RIPEMD-128). 648534fe2c1SAdrian-Ken Rueegsegger 649534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6506d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 651534fe2c1SAdrian-Ken Rueegsegger 652534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 653534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6543b8efb4cSHerbert Xu select CRYPTO_HASH 655534fe2c1SAdrian-Ken Rueegsegger help 656b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 657b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 658b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 659b6d44341SAdrian Bunk (than RIPEMD-160). 660534fe2c1SAdrian-Ken Rueegsegger 66182798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6626d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 66382798f90SAdrian-Ken Rueegsegger 6641da177e4SLinus Torvaldsconfig CRYPTO_SHA1 6651da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 66654ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 6671da177e4SLinus Torvalds help 6681da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 6691da177e4SLinus Torvalds 67066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 671e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 67266be8951SMathias Krause depends on X86 && 64BIT 67366be8951SMathias Krause select CRYPTO_SHA1 67466be8951SMathias Krause select CRYPTO_HASH 67566be8951SMathias Krause help 67666be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 67766be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 678e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 679e38b6b7fStim when available. 68066be8951SMathias Krause 6818275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 682e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 6838275d1aaSTim Chen depends on X86 && 64BIT 6848275d1aaSTim Chen select CRYPTO_SHA256 6858275d1aaSTim Chen select CRYPTO_HASH 6868275d1aaSTim Chen help 6878275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 6888275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 6898275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 690e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 691e38b6b7fStim Instructions) when available. 6928275d1aaSTim Chen 69387de4579STim Chenconfig CRYPTO_SHA512_SSSE3 69487de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 69587de4579STim Chen depends on X86 && 64BIT 69687de4579STim Chen select CRYPTO_SHA512 69787de4579STim Chen select CRYPTO_HASH 69887de4579STim Chen help 69987de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 70087de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 70187de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 70287de4579STim Chen version 2 (AVX2) instructions, when available. 70387de4579STim Chen 704efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 705efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 706efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 707efdb6f6eSAaro Koskinen select CRYPTO_SHA1 708efdb6f6eSAaro Koskinen select CRYPTO_HASH 709efdb6f6eSAaro Koskinen help 710efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 711efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 712efdb6f6eSAaro Koskinen 7134ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 7144ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 7154ff28d4cSDavid S. Miller depends on SPARC64 7164ff28d4cSDavid S. Miller select CRYPTO_SHA1 7174ff28d4cSDavid S. Miller select CRYPTO_HASH 7184ff28d4cSDavid S. Miller help 7194ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7204ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7214ff28d4cSDavid S. Miller 722323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 723323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 724323a6bf1SMichael Ellerman depends on PPC 725323a6bf1SMichael Ellerman help 726323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 727323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 728323a6bf1SMichael Ellerman 729d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 730d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 731d9850fc5SMarkus Stockhausen depends on PPC && SPE 732d9850fc5SMarkus Stockhausen help 733d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 734d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 735d9850fc5SMarkus Stockhausen 7361e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7371e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7381e65b81aSTim Chen depends on X86 && 64BIT 7391e65b81aSTim Chen select CRYPTO_SHA1 7401e65b81aSTim Chen select CRYPTO_HASH 7411e65b81aSTim Chen select CRYPTO_MCRYPTD 7421e65b81aSTim Chen help 7431e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7441e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7451e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7461e65b81aSTim Chen better throughput. It should not be enabled by default but 7471e65b81aSTim Chen used when there is significant amount of work to keep the keep 7481e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7491e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7501e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7511e65b81aSTim Chen 7529be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7539be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7549be7e244SMegha Dey depends on X86 && 64BIT 7559be7e244SMegha Dey select CRYPTO_SHA256 7569be7e244SMegha Dey select CRYPTO_HASH 7579be7e244SMegha Dey select CRYPTO_MCRYPTD 7589be7e244SMegha Dey help 7599be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7609be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7619be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7629be7e244SMegha Dey better throughput. It should not be enabled by default but 7639be7e244SMegha Dey used when there is significant amount of work to keep the keep 7649be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 7659be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 7669be7e244SMegha Dey process the crypto jobs, adding a slight latency. 7679be7e244SMegha Dey 768026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 769026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 770026bb8aaSMegha Dey depends on X86 && 64BIT 771026bb8aaSMegha Dey select CRYPTO_SHA512 772026bb8aaSMegha Dey select CRYPTO_HASH 773026bb8aaSMegha Dey select CRYPTO_MCRYPTD 774026bb8aaSMegha Dey help 775026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 776026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 777026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 778026bb8aaSMegha Dey better throughput. It should not be enabled by default but 779026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 780026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 781026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 782026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 783026bb8aaSMegha Dey 7841da177e4SLinus Torvaldsconfig CRYPTO_SHA256 785cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 78650e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 7871da177e4SLinus Torvalds help 7881da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 7891da177e4SLinus Torvalds 7901da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 7911da177e4SLinus Torvalds security against collision attacks. 7921da177e4SLinus Torvalds 793cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 794cd12fb90SJonathan Lynch of security against collision attacks. 795cd12fb90SJonathan Lynch 7962ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 7972ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 7982ecc1e95SMarkus Stockhausen depends on PPC && SPE 7992ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 8002ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8012ecc1e95SMarkus Stockhausen help 8022ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8032ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 8042ecc1e95SMarkus Stockhausen 805efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 806efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 807efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 808efdb6f6eSAaro Koskinen select CRYPTO_SHA256 809efdb6f6eSAaro Koskinen select CRYPTO_HASH 810efdb6f6eSAaro Koskinen help 811efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 812efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 813efdb6f6eSAaro Koskinen 81486c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 81586c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 81686c93b24SDavid S. Miller depends on SPARC64 81786c93b24SDavid S. Miller select CRYPTO_SHA256 81886c93b24SDavid S. Miller select CRYPTO_HASH 81986c93b24SDavid S. Miller help 82086c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 82186c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 82286c93b24SDavid S. Miller 8231da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8241da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 825bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8261da177e4SLinus Torvalds help 8271da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8281da177e4SLinus Torvalds 8291da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8301da177e4SLinus Torvalds security against collision attacks. 8311da177e4SLinus Torvalds 8321da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8331da177e4SLinus Torvalds of security against collision attacks. 8341da177e4SLinus Torvalds 835efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 836efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 837efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 838efdb6f6eSAaro Koskinen select CRYPTO_SHA512 839efdb6f6eSAaro Koskinen select CRYPTO_HASH 840efdb6f6eSAaro Koskinen help 841efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 842efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 843efdb6f6eSAaro Koskinen 844775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 845775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 846775e0c69SDavid S. Miller depends on SPARC64 847775e0c69SDavid S. Miller select CRYPTO_SHA512 848775e0c69SDavid S. Miller select CRYPTO_HASH 849775e0c69SDavid S. Miller help 850775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 851775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 852775e0c69SDavid S. Miller 85353964b9eSJeff Garzikconfig CRYPTO_SHA3 85453964b9eSJeff Garzik tristate "SHA3 digest algorithm" 85553964b9eSJeff Garzik select CRYPTO_HASH 85653964b9eSJeff Garzik help 85753964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 85853964b9eSJeff Garzik cryptographic sponge function family called Keccak. 85953964b9eSJeff Garzik 86053964b9eSJeff Garzik References: 86153964b9eSJeff Garzik http://keccak.noekeon.org/ 86253964b9eSJeff Garzik 8631da177e4SLinus Torvaldsconfig CRYPTO_TGR192 8641da177e4SLinus Torvalds tristate "Tiger digest algorithms" 865f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 8661da177e4SLinus Torvalds help 8671da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 8681da177e4SLinus Torvalds 8691da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 8701da177e4SLinus Torvalds still having decent performance on 32-bit processors. 8711da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 8721da177e4SLinus Torvalds 8731da177e4SLinus Torvalds See also: 8741da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 8751da177e4SLinus Torvalds 876584fffc8SSebastian Siewiorconfig CRYPTO_WP512 877584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 8784946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 8791da177e4SLinus Torvalds help 880584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 8811da177e4SLinus Torvalds 882584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 883584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 8841da177e4SLinus Torvalds 8851da177e4SLinus Torvalds See also: 8866d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 8871da177e4SLinus Torvalds 8880e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 8890e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 8908af00860SRichard Weinberger depends on X86 && 64BIT 8910e1227d3SHuang Ying select CRYPTO_CRYPTD 8920e1227d3SHuang Ying help 8930e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 8940e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 8950e1227d3SHuang Ying 896584fffc8SSebastian Siewiorcomment "Ciphers" 8971da177e4SLinus Torvalds 8981da177e4SLinus Torvaldsconfig CRYPTO_AES 8991da177e4SLinus Torvalds tristate "AES cipher algorithms" 900cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9011da177e4SLinus Torvalds help 9021da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9031da177e4SLinus Torvalds algorithm. 9041da177e4SLinus Torvalds 9051da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9061da177e4SLinus Torvalds both hardware and software across a wide range of computing 9071da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9081da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9091da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9101da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9111da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9121da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9131da177e4SLinus Torvalds 9141da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9151da177e4SLinus Torvalds 9161da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 9171da177e4SLinus Torvalds 918b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 919b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 920b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 921b5e0b032SArd Biesheuvel help 922b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 923b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 924b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 925b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 926b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 927b5e0b032SArd Biesheuvel with a more dramatic performance hit) 928b5e0b032SArd Biesheuvel 929b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 930b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 931b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 932b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 933b5e0b032SArd Biesheuvel block. 934b5e0b032SArd Biesheuvel 9351da177e4SLinus Torvaldsconfig CRYPTO_AES_586 9361da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 937cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 938cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9395157dea8SSebastian Siewior select CRYPTO_AES 9401da177e4SLinus Torvalds help 9411da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9421da177e4SLinus Torvalds algorithm. 9431da177e4SLinus Torvalds 9441da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9451da177e4SLinus Torvalds both hardware and software across a wide range of computing 9461da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9471da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9481da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9491da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9501da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9511da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9521da177e4SLinus Torvalds 9531da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9541da177e4SLinus Torvalds 9551da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 9561da177e4SLinus Torvalds 957a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 958a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 959cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 960cce9e06dSHerbert Xu select CRYPTO_ALGAPI 96181190b32SSebastian Siewior select CRYPTO_AES 962a2a892a2SAndreas Steinmetz help 963a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 964a2a892a2SAndreas Steinmetz algorithm. 965a2a892a2SAndreas Steinmetz 966a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 967a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 968a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 969a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 970a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 971a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 972a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 973a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 974a2a892a2SAndreas Steinmetz 975a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 976a2a892a2SAndreas Steinmetz 977a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 978a2a892a2SAndreas Steinmetz 97954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 98054b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 9818af00860SRichard Weinberger depends on X86 98285671860SHerbert Xu select CRYPTO_AEAD 9830d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 9840d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 98554b6a1bdSHuang Ying select CRYPTO_ALGAPI 98685671860SHerbert Xu select CRYPTO_BLKCIPHER 9877643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 98885671860SHerbert Xu select CRYPTO_SIMD 98954b6a1bdSHuang Ying help 99054b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 99154b6a1bdSHuang Ying 99254b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 99354b6a1bdSHuang Ying algorithm. 99454b6a1bdSHuang Ying 99554b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 99654b6a1bdSHuang Ying both hardware and software across a wide range of computing 99754b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 99854b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 99954b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 100054b6a1bdSHuang Ying suited for restricted-space environments, in which it also 100154b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 100254b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 100354b6a1bdSHuang Ying 100454b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 100554b6a1bdSHuang Ying 100654b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 100754b6a1bdSHuang Ying 10080d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10090d258efbSMathias Krause for some popular block cipher mode is supported too, including 10100d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 10110d258efbSMathias Krause acceleration for CTR. 10122cf4ac8bSHuang Ying 10139bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10149bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10159bf4852dSDavid S. Miller depends on SPARC64 10169bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10179bf4852dSDavid S. Miller select CRYPTO_ALGAPI 10189bf4852dSDavid S. Miller help 10199bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10209bf4852dSDavid S. Miller 10219bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10229bf4852dSDavid S. Miller algorithm. 10239bf4852dSDavid S. Miller 10249bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10259bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10269bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10279bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10289bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10299bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10309bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10319bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10329bf4852dSDavid S. Miller 10339bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10349bf4852dSDavid S. Miller 10359bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10369bf4852dSDavid S. Miller 10379bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10389bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10399bf4852dSDavid S. Miller ECB and CBC. 10409bf4852dSDavid S. Miller 1041504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1042504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1043504c6143SMarkus Stockhausen depends on PPC && SPE 1044504c6143SMarkus Stockhausen help 1045504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1046504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1047504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1048504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1049504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1050504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1051504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1052504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1053504c6143SMarkus Stockhausen 10541da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 10551da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1056cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10571da177e4SLinus Torvalds help 10581da177e4SLinus Torvalds Anubis cipher algorithm. 10591da177e4SLinus Torvalds 10601da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 10611da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 10621da177e4SLinus Torvalds in the NESSIE competition. 10631da177e4SLinus Torvalds 10641da177e4SLinus Torvalds See also: 10656d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 10666d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 10671da177e4SLinus Torvalds 1068584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1069584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1070b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1071e2ee95b8SHye-Shik Chang help 1072584fffc8SSebastian Siewior ARC4 cipher algorithm. 1073e2ee95b8SHye-Shik Chang 1074584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1075584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1076584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1077584fffc8SSebastian Siewior weakness of the algorithm. 1078584fffc8SSebastian Siewior 1079584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1080584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1081584fffc8SSebastian Siewior select CRYPTO_ALGAPI 108252ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1083584fffc8SSebastian Siewior help 1084584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1085584fffc8SSebastian Siewior 1086584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1087584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1088584fffc8SSebastian Siewior designed for use on "large microprocessors". 1089e2ee95b8SHye-Shik Chang 1090e2ee95b8SHye-Shik Chang See also: 1091584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1092584fffc8SSebastian Siewior 109352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 109452ba867cSJussi Kivilinna tristate 109552ba867cSJussi Kivilinna help 109652ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 109752ba867cSJussi Kivilinna generic c and the assembler implementations. 109852ba867cSJussi Kivilinna 109952ba867cSJussi Kivilinna See also: 110052ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 110152ba867cSJussi Kivilinna 110264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 110364b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1104f21a7c19SAl Viro depends on X86 && 64BIT 110564b94ceaSJussi Kivilinna select CRYPTO_ALGAPI 110664b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 110764b94ceaSJussi Kivilinna help 110864b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 110964b94ceaSJussi Kivilinna 111064b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 111164b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 111264b94ceaSJussi Kivilinna designed for use on "large microprocessors". 111364b94ceaSJussi Kivilinna 111464b94ceaSJussi Kivilinna See also: 111564b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 111664b94ceaSJussi Kivilinna 1117584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1118584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1119584fffc8SSebastian Siewior depends on CRYPTO 1120584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1121584fffc8SSebastian Siewior help 1122584fffc8SSebastian Siewior Camellia cipher algorithms module. 1123584fffc8SSebastian Siewior 1124584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1125584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1126584fffc8SSebastian Siewior 1127584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1128584fffc8SSebastian Siewior 1129584fffc8SSebastian Siewior See also: 1130584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1131584fffc8SSebastian Siewior 11320b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11330b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1134f21a7c19SAl Viro depends on X86 && 64BIT 11350b95ec56SJussi Kivilinna depends on CRYPTO 11360b95ec56SJussi Kivilinna select CRYPTO_ALGAPI 1137964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11380b95ec56SJussi Kivilinna select CRYPTO_LRW 11390b95ec56SJussi Kivilinna select CRYPTO_XTS 11400b95ec56SJussi Kivilinna help 11410b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11420b95ec56SJussi Kivilinna 11430b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11440b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11450b95ec56SJussi Kivilinna 11460b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11470b95ec56SJussi Kivilinna 11480b95ec56SJussi Kivilinna See also: 11490b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11500b95ec56SJussi Kivilinna 1151d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1152d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1153d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1154d9b1d2e7SJussi Kivilinna depends on CRYPTO 1155d9b1d2e7SJussi Kivilinna select CRYPTO_ALGAPI 1156d9b1d2e7SJussi Kivilinna select CRYPTO_CRYPTD 1157801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1158d9b1d2e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1159d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1160d9b1d2e7SJussi Kivilinna select CRYPTO_LRW 1161d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1162d9b1d2e7SJussi Kivilinna help 1163d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1164d9b1d2e7SJussi Kivilinna 1165d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1166d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1167d9b1d2e7SJussi Kivilinna 1168d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1169d9b1d2e7SJussi Kivilinna 1170d9b1d2e7SJussi Kivilinna See also: 1171d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1172d9b1d2e7SJussi Kivilinna 1173f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1174f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1175f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1176f3f935a7SJussi Kivilinna depends on CRYPTO 1177f3f935a7SJussi Kivilinna select CRYPTO_ALGAPI 1178f3f935a7SJussi Kivilinna select CRYPTO_CRYPTD 1179801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1180f3f935a7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1181f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1182f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1183f3f935a7SJussi Kivilinna select CRYPTO_LRW 1184f3f935a7SJussi Kivilinna select CRYPTO_XTS 1185f3f935a7SJussi Kivilinna help 1186f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1187f3f935a7SJussi Kivilinna 1188f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1189f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1190f3f935a7SJussi Kivilinna 1191f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1192f3f935a7SJussi Kivilinna 1193f3f935a7SJussi Kivilinna See also: 1194f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1195f3f935a7SJussi Kivilinna 119681658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 119781658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 119881658ad0SDavid S. Miller depends on SPARC64 119981658ad0SDavid S. Miller depends on CRYPTO 120081658ad0SDavid S. Miller select CRYPTO_ALGAPI 120181658ad0SDavid S. Miller help 120281658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 120381658ad0SDavid S. Miller 120481658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 120581658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 120681658ad0SDavid S. Miller 120781658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 120881658ad0SDavid S. Miller 120981658ad0SDavid S. Miller See also: 121081658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 121181658ad0SDavid S. Miller 1212044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1213044ab525SJussi Kivilinna tristate 1214044ab525SJussi Kivilinna help 1215044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1216044ab525SJussi Kivilinna generic c and the assembler implementations. 1217044ab525SJussi Kivilinna 1218584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1219584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1220584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1221044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1222584fffc8SSebastian Siewior help 1223584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1224584fffc8SSebastian Siewior described in RFC2144. 1225584fffc8SSebastian Siewior 12264d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12274d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12284d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12294d6d6a2cSJohannes Goetzfried select CRYPTO_ALGAPI 12304d6d6a2cSJohannes Goetzfried select CRYPTO_CRYPTD 1231801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1232044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12334d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12344d6d6a2cSJohannes Goetzfried help 12354d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12364d6d6a2cSJohannes Goetzfried described in RFC2144. 12374d6d6a2cSJohannes Goetzfried 12384d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12394d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12404d6d6a2cSJohannes Goetzfried 1241584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1242584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1243584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1244044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1245584fffc8SSebastian Siewior help 1246584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1247584fffc8SSebastian Siewior described in RFC2612. 1248584fffc8SSebastian Siewior 12494ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12504ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12514ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12524ea1277dSJohannes Goetzfried select CRYPTO_ALGAPI 12534ea1277dSJohannes Goetzfried select CRYPTO_CRYPTD 1254801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 12554ea1277dSJohannes Goetzfried select CRYPTO_GLUE_HELPER_X86 1256044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12574ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12584ea1277dSJohannes Goetzfried select CRYPTO_LRW 12594ea1277dSJohannes Goetzfried select CRYPTO_XTS 12604ea1277dSJohannes Goetzfried help 12614ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12624ea1277dSJohannes Goetzfried described in RFC2612. 12634ea1277dSJohannes Goetzfried 12644ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12654ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12664ea1277dSJohannes Goetzfried 1267584fffc8SSebastian Siewiorconfig CRYPTO_DES 1268584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1269584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1270584fffc8SSebastian Siewior help 1271584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1272584fffc8SSebastian Siewior 1273c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1274c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 127597da37b3SDave Jones depends on SPARC64 1276c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1277c5aac2dfSDavid S. Miller select CRYPTO_DES 1278c5aac2dfSDavid S. Miller help 1279c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1280c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1281c5aac2dfSDavid S. Miller 12826574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 12836574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 12846574e6c6SJussi Kivilinna depends on X86 && 64BIT 12856574e6c6SJussi Kivilinna select CRYPTO_ALGAPI 12866574e6c6SJussi Kivilinna select CRYPTO_DES 12876574e6c6SJussi Kivilinna help 12886574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 12896574e6c6SJussi Kivilinna 12906574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 12916574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 12926574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 12936574e6c6SJussi Kivilinna one that processes three blocks parallel. 12946574e6c6SJussi Kivilinna 1295584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1296584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1297584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1298584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1299584fffc8SSebastian Siewior help 1300584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1301584fffc8SSebastian Siewior 1302584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1303584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1304584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1305584fffc8SSebastian Siewior help 1306584fffc8SSebastian Siewior Khazad cipher algorithm. 1307584fffc8SSebastian Siewior 1308584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1309584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1310584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1311584fffc8SSebastian Siewior 1312584fffc8SSebastian Siewior See also: 13136d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1314e2ee95b8SHye-Shik Chang 13152407d608STan Swee Hengconfig CRYPTO_SALSA20 13163b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13172407d608STan Swee Heng select CRYPTO_BLKCIPHER 13182407d608STan Swee Heng help 13192407d608STan Swee Heng Salsa20 stream cipher algorithm. 13202407d608STan Swee Heng 13212407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13222407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13232407d608STan Swee Heng 13242407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13252407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13261da177e4SLinus Torvalds 1327974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13283b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1329974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1330974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1331974e4b75STan Swee Heng help 1332974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1333974e4b75STan Swee Heng 1334974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1335974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1336974e4b75STan Swee Heng 1337974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1338974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1339974e4b75STan Swee Heng 13409a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13413b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13429a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13439a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 13449a7dafbbSTan Swee Heng help 13459a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13469a7dafbbSTan Swee Heng 13479a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13489a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13499a7dafbbSTan Swee Heng 13509a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13519a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13529a7dafbbSTan Swee Heng 1353c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1354c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1355c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1356c08d0e64SMartin Willi help 1357c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1358c08d0e64SMartin Willi 1359c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1360c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1361c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1362c08d0e64SMartin Willi 1363c08d0e64SMartin Willi See also: 1364c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1365c08d0e64SMartin Willi 1366c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13673d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1368c9320b6dSMartin Willi depends on X86 && 64BIT 1369c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1370c9320b6dSMartin Willi select CRYPTO_CHACHA20 1371c9320b6dSMartin Willi help 1372c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1373c9320b6dSMartin Willi 1374c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1375c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1376c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1377c9320b6dSMartin Willi 1378c9320b6dSMartin Willi See also: 1379c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1380c9320b6dSMartin Willi 1381584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1382584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1383584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1384584fffc8SSebastian Siewior help 1385584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1386584fffc8SSebastian Siewior 1387584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1388584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1389584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1390584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1391584fffc8SSebastian Siewior 1392584fffc8SSebastian Siewior See also: 1393584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1394584fffc8SSebastian Siewior 1395584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1396584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1397584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1398584fffc8SSebastian Siewior help 1399584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1400584fffc8SSebastian Siewior 1401584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1402584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1403584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1404584fffc8SSebastian Siewior 1405584fffc8SSebastian Siewior See also: 1406584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1407584fffc8SSebastian Siewior 1408937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1409937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1410937c30d7SJussi Kivilinna depends on X86 && 64BIT 1411937c30d7SJussi Kivilinna select CRYPTO_ALGAPI 1412341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1413801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1414596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1415937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1416feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1417feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1418937c30d7SJussi Kivilinna help 1419937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1420937c30d7SJussi Kivilinna 1421937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1422937c30d7SJussi Kivilinna of 8 bits. 1423937c30d7SJussi Kivilinna 14241e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1425937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1426937c30d7SJussi Kivilinna 1427937c30d7SJussi Kivilinna See also: 1428937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1429937c30d7SJussi Kivilinna 1430251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1431251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1432251496dbSJussi Kivilinna depends on X86 && !64BIT 1433251496dbSJussi Kivilinna select CRYPTO_ALGAPI 1434341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1435801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1436596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1437251496dbSJussi Kivilinna select CRYPTO_SERPENT 1438feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1439feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1440251496dbSJussi Kivilinna help 1441251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1442251496dbSJussi Kivilinna 1443251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1444251496dbSJussi Kivilinna of 8 bits. 1445251496dbSJussi Kivilinna 1446251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1447251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1448251496dbSJussi Kivilinna 1449251496dbSJussi Kivilinna See also: 1450251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1451251496dbSJussi Kivilinna 14527efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14537efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14547efe4076SJohannes Goetzfried depends on X86 && 64BIT 14557efe4076SJohannes Goetzfried select CRYPTO_ALGAPI 14567efe4076SJohannes Goetzfried select CRYPTO_CRYPTD 1457801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 14581d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14597efe4076SJohannes Goetzfried select CRYPTO_SERPENT 14607efe4076SJohannes Goetzfried select CRYPTO_LRW 14617efe4076SJohannes Goetzfried select CRYPTO_XTS 14627efe4076SJohannes Goetzfried help 14637efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14647efe4076SJohannes Goetzfried 14657efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14667efe4076SJohannes Goetzfried of 8 bits. 14677efe4076SJohannes Goetzfried 14687efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14697efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14707efe4076SJohannes Goetzfried 14717efe4076SJohannes Goetzfried See also: 14727efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14737efe4076SJohannes Goetzfried 147456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 147556d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 147656d76c96SJussi Kivilinna depends on X86 && 64BIT 147756d76c96SJussi Kivilinna select CRYPTO_ALGAPI 147856d76c96SJussi Kivilinna select CRYPTO_CRYPTD 1479801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 148056d76c96SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 148156d76c96SJussi Kivilinna select CRYPTO_SERPENT 148256d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 148356d76c96SJussi Kivilinna select CRYPTO_LRW 148456d76c96SJussi Kivilinna select CRYPTO_XTS 148556d76c96SJussi Kivilinna help 148656d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 148756d76c96SJussi Kivilinna 148856d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 148956d76c96SJussi Kivilinna of 8 bits. 149056d76c96SJussi Kivilinna 149156d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 149256d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 149356d76c96SJussi Kivilinna 149456d76c96SJussi Kivilinna See also: 149556d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 149656d76c96SJussi Kivilinna 1497584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1498584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1499584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1500584fffc8SSebastian Siewior help 1501584fffc8SSebastian Siewior TEA cipher algorithm. 1502584fffc8SSebastian Siewior 1503584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1504584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1505584fffc8SSebastian Siewior little memory. 1506584fffc8SSebastian Siewior 1507584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1508584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1509584fffc8SSebastian Siewior in the TEA algorithm. 1510584fffc8SSebastian Siewior 1511584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1512584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1513584fffc8SSebastian Siewior 1514584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1515584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1516584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1517584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1518584fffc8SSebastian Siewior help 1519584fffc8SSebastian Siewior Twofish cipher algorithm. 1520584fffc8SSebastian Siewior 1521584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1522584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1523584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1524584fffc8SSebastian Siewior bits. 1525584fffc8SSebastian Siewior 1526584fffc8SSebastian Siewior See also: 1527584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1528584fffc8SSebastian Siewior 1529584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1530584fffc8SSebastian Siewior tristate 1531584fffc8SSebastian Siewior help 1532584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1533584fffc8SSebastian Siewior generic c and the assembler implementations. 1534584fffc8SSebastian Siewior 1535584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1536584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1537584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1538584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1539584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1540584fffc8SSebastian Siewior help 1541584fffc8SSebastian Siewior Twofish cipher algorithm. 1542584fffc8SSebastian Siewior 1543584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1544584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1545584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1546584fffc8SSebastian Siewior bits. 1547584fffc8SSebastian Siewior 1548584fffc8SSebastian Siewior See also: 1549584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1550584fffc8SSebastian Siewior 1551584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1552584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1553584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1554584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1555584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1556584fffc8SSebastian Siewior help 1557584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1558584fffc8SSebastian Siewior 1559584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1560584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1561584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1562584fffc8SSebastian Siewior bits. 1563584fffc8SSebastian Siewior 1564584fffc8SSebastian Siewior See also: 1565584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1566584fffc8SSebastian Siewior 15678280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 15688280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1569f21a7c19SAl Viro depends on X86 && 64BIT 15708280daadSJussi Kivilinna select CRYPTO_ALGAPI 15718280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 15728280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1573414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1574e7cda5d2SJussi Kivilinna select CRYPTO_LRW 1575e7cda5d2SJussi Kivilinna select CRYPTO_XTS 15768280daadSJussi Kivilinna help 15778280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 15788280daadSJussi Kivilinna 15798280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 15808280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 15818280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 15828280daadSJussi Kivilinna bits. 15838280daadSJussi Kivilinna 15848280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 15858280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 15868280daadSJussi Kivilinna 15878280daadSJussi Kivilinna See also: 15888280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 15898280daadSJussi Kivilinna 1590107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1591107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1592107778b5SJohannes Goetzfried depends on X86 && 64BIT 1593107778b5SJohannes Goetzfried select CRYPTO_ALGAPI 1594107778b5SJohannes Goetzfried select CRYPTO_CRYPTD 1595801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1596a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1597107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1598107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1599107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1600107778b5SJohannes Goetzfried select CRYPTO_LRW 1601107778b5SJohannes Goetzfried select CRYPTO_XTS 1602107778b5SJohannes Goetzfried help 1603107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1604107778b5SJohannes Goetzfried 1605107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1606107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1607107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1608107778b5SJohannes Goetzfried bits. 1609107778b5SJohannes Goetzfried 1610107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1611107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1612107778b5SJohannes Goetzfried 1613107778b5SJohannes Goetzfried See also: 1614107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1615107778b5SJohannes Goetzfried 1616584fffc8SSebastian Siewiorcomment "Compression" 1617584fffc8SSebastian Siewior 16181da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16191da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1620cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1621f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16221da177e4SLinus Torvalds select ZLIB_INFLATE 16231da177e4SLinus Torvalds select ZLIB_DEFLATE 16241da177e4SLinus Torvalds help 16251da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16261da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16271da177e4SLinus Torvalds 16281da177e4SLinus Torvalds You will most probably want this if using IPSec. 16291da177e4SLinus Torvalds 16300b77abb3SZoltan Sogorconfig CRYPTO_LZO 16310b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16320b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1633ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16340b77abb3SZoltan Sogor select LZO_COMPRESS 16350b77abb3SZoltan Sogor select LZO_DECOMPRESS 16360b77abb3SZoltan Sogor help 16370b77abb3SZoltan Sogor This is the LZO algorithm. 16380b77abb3SZoltan Sogor 163935a1fc18SSeth Jenningsconfig CRYPTO_842 164035a1fc18SSeth Jennings tristate "842 compression algorithm" 16412062c5b6SDan Streetman select CRYPTO_ALGAPI 16426a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16432062c5b6SDan Streetman select 842_COMPRESS 16442062c5b6SDan Streetman select 842_DECOMPRESS 164535a1fc18SSeth Jennings help 164635a1fc18SSeth Jennings This is the 842 algorithm. 164735a1fc18SSeth Jennings 16480ea8530dSChanho Minconfig CRYPTO_LZ4 16490ea8530dSChanho Min tristate "LZ4 compression algorithm" 16500ea8530dSChanho Min select CRYPTO_ALGAPI 16518cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16520ea8530dSChanho Min select LZ4_COMPRESS 16530ea8530dSChanho Min select LZ4_DECOMPRESS 16540ea8530dSChanho Min help 16550ea8530dSChanho Min This is the LZ4 algorithm. 16560ea8530dSChanho Min 16570ea8530dSChanho Minconfig CRYPTO_LZ4HC 16580ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16590ea8530dSChanho Min select CRYPTO_ALGAPI 166091d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16610ea8530dSChanho Min select LZ4HC_COMPRESS 16620ea8530dSChanho Min select LZ4_DECOMPRESS 16630ea8530dSChanho Min help 16640ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16650ea8530dSChanho Min 166617f0f4a4SNeil Hormancomment "Random Number Generation" 166717f0f4a4SNeil Horman 166817f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 166917f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 167017f0f4a4SNeil Horman select CRYPTO_AES 167117f0f4a4SNeil Horman select CRYPTO_RNG 167217f0f4a4SNeil Horman help 167317f0f4a4SNeil Horman This option enables the generic pseudo random number generator 167417f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 16757dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 16767dd607e8SJiri Kosina CRYPTO_FIPS is selected 167717f0f4a4SNeil Horman 1678f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1679419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1680419090c6SStephan Mueller help 1681419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1682419090c6SStephan Mueller more of the DRBG types must be selected. 1683419090c6SStephan Mueller 1684f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1685419090c6SStephan Mueller 1686419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1687401e4238SHerbert Xu bool 1688419090c6SStephan Mueller default y 1689419090c6SStephan Mueller select CRYPTO_HMAC 1690826775bbSHerbert Xu select CRYPTO_SHA256 1691419090c6SStephan Mueller 1692419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1693419090c6SStephan Mueller bool "Enable Hash DRBG" 1694826775bbSHerbert Xu select CRYPTO_SHA256 1695419090c6SStephan Mueller help 1696419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1697419090c6SStephan Mueller 1698419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1699419090c6SStephan Mueller bool "Enable CTR DRBG" 1700419090c6SStephan Mueller select CRYPTO_AES 170135591285SStephan Mueller depends on CRYPTO_CTR 1702419090c6SStephan Mueller help 1703419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1704419090c6SStephan Mueller 1705f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1706f2c89a10SHerbert Xu tristate 1707401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1708f2c89a10SHerbert Xu select CRYPTO_RNG 1709bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1710f2c89a10SHerbert Xu 1711f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1712419090c6SStephan Mueller 1713bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1714bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17152f313e02SArnd Bergmann select CRYPTO_RNG 1716bb5530e4SStephan Mueller help 1717bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1718bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1719bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1720bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1721bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1722bb5530e4SStephan Mueller 172303c8efc1SHerbert Xuconfig CRYPTO_USER_API 172403c8efc1SHerbert Xu tristate 172503c8efc1SHerbert Xu 1726fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1727fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17287451708fSHerbert Xu depends on NET 1729fe869cdbSHerbert Xu select CRYPTO_HASH 1730fe869cdbSHerbert Xu select CRYPTO_USER_API 1731fe869cdbSHerbert Xu help 1732fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1733fe869cdbSHerbert Xu algorithms. 1734fe869cdbSHerbert Xu 17358ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17368ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17377451708fSHerbert Xu depends on NET 17388ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17398ff59090SHerbert Xu select CRYPTO_USER_API 17408ff59090SHerbert Xu help 17418ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17428ff59090SHerbert Xu key cipher algorithms. 17438ff59090SHerbert Xu 17442f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17452f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17462f375538SStephan Mueller depends on NET 17472f375538SStephan Mueller select CRYPTO_RNG 17482f375538SStephan Mueller select CRYPTO_USER_API 17492f375538SStephan Mueller help 17502f375538SStephan Mueller This option enables the user-spaces interface for random 17512f375538SStephan Mueller number generator algorithms. 17522f375538SStephan Mueller 1753b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1754b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1755b64a2d95SHerbert Xu depends on NET 1756b64a2d95SHerbert Xu select CRYPTO_AEAD 175772548b09SStephan Mueller select CRYPTO_BLKCIPHER 175872548b09SStephan Mueller select CRYPTO_NULL 1759b64a2d95SHerbert Xu select CRYPTO_USER_API 1760b64a2d95SHerbert Xu help 1761b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1762b64a2d95SHerbert Xu cipher algorithms. 1763b64a2d95SHerbert Xu 1764ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1765ee08997fSDmitry Kasatkin bool 1766ee08997fSDmitry Kasatkin 17671da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1768964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1769cfc411e7SDavid Howellssource certs/Kconfig 17701da177e4SLinus Torvalds 1771cce9e06dSHerbert Xuendif # if CRYPTO 1772