xref: /linux/crypto/Kconfig (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1*b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1092ebda74fSGiovanni Cabiddu
1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1112ebda74fSGiovanni Cabiddu	tristate
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1142ebda74fSGiovanni Cabiddu
115cfc2bb32STadeusz Strukconfig CRYPTO_RSA
116cfc2bb32STadeusz Struk	tristate "RSA algorithm"
117425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11858446fefSTadeusz Struk	select CRYPTO_MANAGER
119cfc2bb32STadeusz Struk	select MPILIB
120cfc2bb32STadeusz Struk	select ASN1
121cfc2bb32STadeusz Struk	help
122cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
123cfc2bb32STadeusz Struk
124802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
125802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
126802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
127802c7f1cSSalvatore Benedetto	select MPILIB
128802c7f1cSSalvatore Benedetto	help
129802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
130802c7f1cSSalvatore Benedetto
1313c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1323c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
1333c4b2390SSalvatore Benedetto	select CRYTPO_KPP
1346755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1353c4b2390SSalvatore Benedetto	help
1363c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
137802c7f1cSSalvatore Benedetto
1382b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1392b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1406a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1412b8c19dbSHerbert Xu	help
1422b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1432b8c19dbSHerbert Xu	  cbc(aes).
1442b8c19dbSHerbert Xu
1456a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1466a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1476a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1486a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1496a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
150946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1514e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1522ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1536a0fcbb4SHerbert Xu
154a38f7907SSteffen Klassertconfig CRYPTO_USER
155a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1565db017aaSHerbert Xu	depends on NET
157a38f7907SSteffen Klassert	select CRYPTO_MANAGER
158a38f7907SSteffen Klassert	help
159d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
160a38f7907SSteffen Klassert	  cbc(aes).
161a38f7907SSteffen Klassert
162326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
163326a6346SHerbert Xu	bool "Disable run-time self tests"
16400ca28a5SHerbert Xu	default y
16500ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1660b767f96SAlexander Shishkin	help
167326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
168326a6346SHerbert Xu	  algorithm registration.
1690b767f96SAlexander Shishkin
170584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17108c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
172584fffc8SSebastian Siewior	help
173584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
174584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
175584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
176584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
177584fffc8SSebastian Siewior	  an external module that requires these functions.
178584fffc8SSebastian Siewior
179584fffc8SSebastian Siewiorconfig CRYPTO_NULL
180584fffc8SSebastian Siewior	tristate "Null algorithms"
181149a3971SHerbert Xu	select CRYPTO_NULL2
182584fffc8SSebastian Siewior	help
183584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
184584fffc8SSebastian Siewior
185149a3971SHerbert Xuconfig CRYPTO_NULL2
186dd43c4e9SHerbert Xu	tristate
187149a3971SHerbert Xu	select CRYPTO_ALGAPI2
188149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
189149a3971SHerbert Xu	select CRYPTO_HASH2
190149a3971SHerbert Xu
1915068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1923b4afaf2SKees Cook	tristate "Parallel crypto engine"
1933b4afaf2SKees Cook	depends on SMP
1945068c7a8SSteffen Klassert	select PADATA
1955068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1965068c7a8SSteffen Klassert	select CRYPTO_AEAD
1975068c7a8SSteffen Klassert	help
1985068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1995068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2005068c7a8SSteffen Klassert
20125c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20225c38d3fSHuang Ying       tristate
20325c38d3fSHuang Ying
204584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
205584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
206584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
207b8a28251SLoc Ho	select CRYPTO_HASH
208584fffc8SSebastian Siewior	select CRYPTO_MANAGER
209254eff77SHuang Ying	select CRYPTO_WORKQUEUE
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
212584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
213584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
214584fffc8SSebastian Siewior
2151e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2161e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2171e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2181e65b81aSTim Chen	select CRYPTO_HASH
2191e65b81aSTim Chen	select CRYPTO_MANAGER
2201e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2211e65b81aSTim Chen	help
2221e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2231e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2241e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2251e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2261e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2270e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2281e65b81aSTim Chen
229584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
230584fffc8SSebastian Siewior	tristate "Authenc support"
231584fffc8SSebastian Siewior	select CRYPTO_AEAD
232584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
233584fffc8SSebastian Siewior	select CRYPTO_MANAGER
234584fffc8SSebastian Siewior	select CRYPTO_HASH
235e94c6a7aSHerbert Xu	select CRYPTO_NULL
236584fffc8SSebastian Siewior	help
237584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
238584fffc8SSebastian Siewior	  This is required for IPSec.
239584fffc8SSebastian Siewior
240584fffc8SSebastian Siewiorconfig CRYPTO_TEST
241584fffc8SSebastian Siewior	tristate "Testing module"
242584fffc8SSebastian Siewior	depends on m
243da7f033dSHerbert Xu	select CRYPTO_MANAGER
244584fffc8SSebastian Siewior	help
245584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
246584fffc8SSebastian Siewior
247a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER
248ffaf9156SJussi Kivilinna	tristate
249ffaf9156SJussi Kivilinna	select CRYPTO_CRYPTD
250ffaf9156SJussi Kivilinna
251266d0516SHerbert Xuconfig CRYPTO_SIMD
252266d0516SHerbert Xu	tristate
253266d0516SHerbert Xu	select CRYPTO_CRYPTD
254266d0516SHerbert Xu
255596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
256596d8750SJussi Kivilinna	tristate
257596d8750SJussi Kivilinna	depends on X86
258065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
259596d8750SJussi Kivilinna
260735d37b5SBaolin Wangconfig CRYPTO_ENGINE
261735d37b5SBaolin Wang	tristate
262735d37b5SBaolin Wang
263584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
264584fffc8SSebastian Siewior
265584fffc8SSebastian Siewiorconfig CRYPTO_CCM
266584fffc8SSebastian Siewior	tristate "CCM support"
267584fffc8SSebastian Siewior	select CRYPTO_CTR
268f15f05b0SArd Biesheuvel	select CRYPTO_HASH
269584fffc8SSebastian Siewior	select CRYPTO_AEAD
270584fffc8SSebastian Siewior	help
271584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
272584fffc8SSebastian Siewior
273584fffc8SSebastian Siewiorconfig CRYPTO_GCM
274584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
275584fffc8SSebastian Siewior	select CRYPTO_CTR
276584fffc8SSebastian Siewior	select CRYPTO_AEAD
2779382d97aSHuang Ying	select CRYPTO_GHASH
2789489667dSJussi Kivilinna	select CRYPTO_NULL
279584fffc8SSebastian Siewior	help
280584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
281584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
282584fffc8SSebastian Siewior
28371ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28471ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28571ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28671ebc4d1SMartin Willi	select CRYPTO_POLY1305
28771ebc4d1SMartin Willi	select CRYPTO_AEAD
28871ebc4d1SMartin Willi	help
28971ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
29071ebc4d1SMartin Willi
29171ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29271ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29371ebc4d1SMartin Willi	  IETF protocols.
29471ebc4d1SMartin Willi
295584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
296584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
297584fffc8SSebastian Siewior	select CRYPTO_AEAD
298584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
299856e3f40SHerbert Xu	select CRYPTO_NULL
300401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
301584fffc8SSebastian Siewior	help
302584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
303584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
304584fffc8SSebastian Siewior
305a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
306a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
307a10f554fSHerbert Xu	select CRYPTO_AEAD
308a10f554fSHerbert Xu	select CRYPTO_NULL
309401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3103491244cSHerbert Xu	default m
311a10f554fSHerbert Xu	help
312a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
313a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
314a10f554fSHerbert Xu	  algorithm for CBC.
315a10f554fSHerbert Xu
316584fffc8SSebastian Siewiorcomment "Block modes"
317584fffc8SSebastian Siewior
318584fffc8SSebastian Siewiorconfig CRYPTO_CBC
319584fffc8SSebastian Siewior	tristate "CBC support"
320584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
321584fffc8SSebastian Siewior	select CRYPTO_MANAGER
322584fffc8SSebastian Siewior	help
323584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
324584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
325584fffc8SSebastian Siewior
326584fffc8SSebastian Siewiorconfig CRYPTO_CTR
327584fffc8SSebastian Siewior	tristate "CTR support"
328584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
329584fffc8SSebastian Siewior	select CRYPTO_SEQIV
330584fffc8SSebastian Siewior	select CRYPTO_MANAGER
331584fffc8SSebastian Siewior	help
332584fffc8SSebastian Siewior	  CTR: Counter mode
333584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
334584fffc8SSebastian Siewior
335584fffc8SSebastian Siewiorconfig CRYPTO_CTS
336584fffc8SSebastian Siewior	tristate "CTS support"
337584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
338584fffc8SSebastian Siewior	help
339584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
340584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
341584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
342584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
343584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
344584fffc8SSebastian Siewior	  for AES encryption.
345584fffc8SSebastian Siewior
346584fffc8SSebastian Siewiorconfig CRYPTO_ECB
347584fffc8SSebastian Siewior	tristate "ECB support"
348584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
349584fffc8SSebastian Siewior	select CRYPTO_MANAGER
350584fffc8SSebastian Siewior	help
351584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
352584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
353584fffc8SSebastian Siewior	  the input block by block.
354584fffc8SSebastian Siewior
355584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3562470a2b2SJussi Kivilinna	tristate "LRW support"
357584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
358584fffc8SSebastian Siewior	select CRYPTO_MANAGER
359584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
360584fffc8SSebastian Siewior	help
361584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
362584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
363584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
364584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
365584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
366584fffc8SSebastian Siewior
367584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
368584fffc8SSebastian Siewior	tristate "PCBC support"
369584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
370584fffc8SSebastian Siewior	select CRYPTO_MANAGER
371584fffc8SSebastian Siewior	help
372584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
373584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
374584fffc8SSebastian Siewior
375584fffc8SSebastian Siewiorconfig CRYPTO_XTS
3765bcf8e6dSJussi Kivilinna	tristate "XTS support"
377584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
378584fffc8SSebastian Siewior	select CRYPTO_MANAGER
37912cb3a1cSMilan Broz	select CRYPTO_ECB
380584fffc8SSebastian Siewior	help
381584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
382584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
383584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
384584fffc8SSebastian Siewior
3851c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
3861c49678eSStephan Mueller	tristate "Key wrapping support"
3871c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
3881c49678eSStephan Mueller	help
3891c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
3901c49678eSStephan Mueller	  padding.
3911c49678eSStephan Mueller
392584fffc8SSebastian Siewiorcomment "Hash modes"
393584fffc8SSebastian Siewior
39493b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
39593b5e86aSJussi Kivilinna	tristate "CMAC support"
39693b5e86aSJussi Kivilinna	select CRYPTO_HASH
39793b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
39893b5e86aSJussi Kivilinna	help
39993b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
40093b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
40193b5e86aSJussi Kivilinna
40293b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
40393b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
40493b5e86aSJussi Kivilinna
4051da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4068425165dSHerbert Xu	tristate "HMAC support"
4070796ae06SHerbert Xu	select CRYPTO_HASH
40843518407SHerbert Xu	select CRYPTO_MANAGER
4091da177e4SLinus Torvalds	help
4101da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4111da177e4SLinus Torvalds	  This is required for IPSec.
4121da177e4SLinus Torvalds
413333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
414333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
415333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
416333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
417333b0d7eSKazunori MIYAZAWA	help
418333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
419333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
420333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
421333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
422333b0d7eSKazunori MIYAZAWA
423f1939f7cSShane Wangconfig CRYPTO_VMAC
424f1939f7cSShane Wang	tristate "VMAC support"
425f1939f7cSShane Wang	select CRYPTO_HASH
426f1939f7cSShane Wang	select CRYPTO_MANAGER
427f1939f7cSShane Wang	help
428f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
429f1939f7cSShane Wang	  very high speed on 64-bit architectures.
430f1939f7cSShane Wang
431f1939f7cSShane Wang	  See also:
432f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
433f1939f7cSShane Wang
434584fffc8SSebastian Siewiorcomment "Digest"
435584fffc8SSebastian Siewior
436584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
437584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
4385773a3e6SHerbert Xu	select CRYPTO_HASH
4396a0962b2SDarrick J. Wong	select CRC32
4401da177e4SLinus Torvalds	help
441584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
442584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
44369c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
4441da177e4SLinus Torvalds
4458cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
4468cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
4478cb51ba8SAustin Zhang	depends on X86
4488cb51ba8SAustin Zhang	select CRYPTO_HASH
4498cb51ba8SAustin Zhang	help
4508cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
4518cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
4528cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
4538cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
4548cb51ba8SAustin Zhang	  gain performance compared with software implementation.
4558cb51ba8SAustin Zhang	  Module will be crc32c-intel.
4568cb51ba8SAustin Zhang
4577cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
4586dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
459c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
4606dd7a82cSAnton Blanchard	select CRYPTO_HASH
4616dd7a82cSAnton Blanchard	select CRC32
4626dd7a82cSAnton Blanchard	help
4636dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
4646dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
4656dd7a82cSAnton Blanchard	  and newer processors for improved performance.
4666dd7a82cSAnton Blanchard
4676dd7a82cSAnton Blanchard
468442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
469442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
470442a7c40SDavid S. Miller	depends on SPARC64
471442a7c40SDavid S. Miller	select CRYPTO_HASH
472442a7c40SDavid S. Miller	select CRC32
473442a7c40SDavid S. Miller	help
474442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
475442a7c40SDavid S. Miller	  when available.
476442a7c40SDavid S. Miller
47778c37d19SAlexander Boykoconfig CRYPTO_CRC32
47878c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
47978c37d19SAlexander Boyko	select CRYPTO_HASH
48078c37d19SAlexander Boyko	select CRC32
48178c37d19SAlexander Boyko	help
48278c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
48378c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
48478c37d19SAlexander Boyko
48578c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
48678c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
48778c37d19SAlexander Boyko	depends on X86
48878c37d19SAlexander Boyko	select CRYPTO_HASH
48978c37d19SAlexander Boyko	select CRC32
49078c37d19SAlexander Boyko	help
49178c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
49278c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
49378c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
49478c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
49578c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
49678c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
49778c37d19SAlexander Boyko
49868411521SHerbert Xuconfig CRYPTO_CRCT10DIF
49968411521SHerbert Xu	tristate "CRCT10DIF algorithm"
50068411521SHerbert Xu	select CRYPTO_HASH
50168411521SHerbert Xu	help
50268411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
50368411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
50468411521SHerbert Xu	  transforms to be used if they are available.
50568411521SHerbert Xu
50668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
50768411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
50868411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
50968411521SHerbert Xu	select CRYPTO_HASH
51068411521SHerbert Xu	help
51168411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
51268411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
51368411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
51468411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
51568411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
51668411521SHerbert Xu
517b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
518b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
519b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
520b01df1c1SDaniel Axtens	select CRYPTO_HASH
521b01df1c1SDaniel Axtens	help
522b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
523b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
524b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
525b01df1c1SDaniel Axtens
526146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
527146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
528146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
529146c8688SDaniel Axtens	help
530146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
531146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
532146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
533146c8688SDaniel Axtens
5342cdc6899SHuang Yingconfig CRYPTO_GHASH
5352cdc6899SHuang Ying	tristate "GHASH digest algorithm"
5362cdc6899SHuang Ying	select CRYPTO_GF128MUL
537578c60fbSArnd Bergmann	select CRYPTO_HASH
5382cdc6899SHuang Ying	help
5392cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
5402cdc6899SHuang Ying
541f979e014SMartin Williconfig CRYPTO_POLY1305
542f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
543578c60fbSArnd Bergmann	select CRYPTO_HASH
544f979e014SMartin Willi	help
545f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
546f979e014SMartin Willi
547f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
548f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
549f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
550f979e014SMartin Willi
551c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
552b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
553c70f4abeSMartin Willi	depends on X86 && 64BIT
554c70f4abeSMartin Willi	select CRYPTO_POLY1305
555c70f4abeSMartin Willi	help
556c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
557c70f4abeSMartin Willi
558c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
559c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
560c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
561c70f4abeSMartin Willi	  instructions.
562c70f4abeSMartin Willi
5631da177e4SLinus Torvaldsconfig CRYPTO_MD4
5641da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
565808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5661da177e4SLinus Torvalds	help
5671da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
5681da177e4SLinus Torvalds
5691da177e4SLinus Torvaldsconfig CRYPTO_MD5
5701da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
57114b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5721da177e4SLinus Torvalds	help
5731da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
5741da177e4SLinus Torvalds
575d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
576d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
577d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
578d69e75deSAaro Koskinen	select CRYPTO_MD5
579d69e75deSAaro Koskinen	select CRYPTO_HASH
580d69e75deSAaro Koskinen	help
581d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
582d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
583d69e75deSAaro Koskinen
584e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
585e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
586e8e59953SMarkus Stockhausen	depends on PPC
587e8e59953SMarkus Stockhausen	select CRYPTO_HASH
588e8e59953SMarkus Stockhausen	help
589e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
590e8e59953SMarkus Stockhausen	  in PPC assembler.
591e8e59953SMarkus Stockhausen
592fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
593fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
594fa4dfedcSDavid S. Miller	depends on SPARC64
595fa4dfedcSDavid S. Miller	select CRYPTO_MD5
596fa4dfedcSDavid S. Miller	select CRYPTO_HASH
597fa4dfedcSDavid S. Miller	help
598fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
599fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
600fa4dfedcSDavid S. Miller
601584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
602584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
60319e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
604584fffc8SSebastian Siewior	help
605584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
606584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
607584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
608584fffc8SSebastian Siewior	  of the algorithm.
609584fffc8SSebastian Siewior
61082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
61182798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
6127c4468bcSHerbert Xu	select CRYPTO_HASH
61382798f90SAdrian-Ken Rueegsegger	help
61482798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
61582798f90SAdrian-Ken Rueegsegger
61682798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
61735ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
61882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
61982798f90SAdrian-Ken Rueegsegger
62082798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6216d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
62282798f90SAdrian-Ken Rueegsegger
62382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
62482798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
625e5835fbaSHerbert Xu	select CRYPTO_HASH
62682798f90SAdrian-Ken Rueegsegger	help
62782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
62882798f90SAdrian-Ken Rueegsegger
62982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
63082798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
631b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
632b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
63382798f90SAdrian-Ken Rueegsegger
634b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
635b6d44341SAdrian Bunk	  against RIPEMD-160.
636534fe2c1SAdrian-Ken Rueegsegger
637534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6386d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
639534fe2c1SAdrian-Ken Rueegsegger
640534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
641534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
642d8a5e2e9SHerbert Xu	select CRYPTO_HASH
643534fe2c1SAdrian-Ken Rueegsegger	help
644b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
645b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
646b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
647b6d44341SAdrian Bunk	  (than RIPEMD-128).
648534fe2c1SAdrian-Ken Rueegsegger
649534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6506d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
651534fe2c1SAdrian-Ken Rueegsegger
652534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
653534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
6543b8efb4cSHerbert Xu	select CRYPTO_HASH
655534fe2c1SAdrian-Ken Rueegsegger	help
656b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
657b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
658b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
659b6d44341SAdrian Bunk	  (than RIPEMD-160).
660534fe2c1SAdrian-Ken Rueegsegger
66182798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6626d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
66382798f90SAdrian-Ken Rueegsegger
6641da177e4SLinus Torvaldsconfig CRYPTO_SHA1
6651da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
66654ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6671da177e4SLinus Torvalds	help
6681da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
6691da177e4SLinus Torvalds
67066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
671e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
67266be8951SMathias Krause	depends on X86 && 64BIT
67366be8951SMathias Krause	select CRYPTO_SHA1
67466be8951SMathias Krause	select CRYPTO_HASH
67566be8951SMathias Krause	help
67666be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
67766be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
678e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
679e38b6b7fStim	  when available.
68066be8951SMathias Krause
6818275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
682e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
6838275d1aaSTim Chen	depends on X86 && 64BIT
6848275d1aaSTim Chen	select CRYPTO_SHA256
6858275d1aaSTim Chen	select CRYPTO_HASH
6868275d1aaSTim Chen	help
6878275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
6888275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
6898275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
690e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
691e38b6b7fStim	  Instructions) when available.
6928275d1aaSTim Chen
69387de4579STim Chenconfig CRYPTO_SHA512_SSSE3
69487de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
69587de4579STim Chen	depends on X86 && 64BIT
69687de4579STim Chen	select CRYPTO_SHA512
69787de4579STim Chen	select CRYPTO_HASH
69887de4579STim Chen	help
69987de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
70087de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
70187de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
70287de4579STim Chen	  version 2 (AVX2) instructions, when available.
70387de4579STim Chen
704efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
705efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
706efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
707efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
708efdb6f6eSAaro Koskinen	select CRYPTO_HASH
709efdb6f6eSAaro Koskinen	help
710efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
711efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
712efdb6f6eSAaro Koskinen
7134ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
7144ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
7154ff28d4cSDavid S. Miller	depends on SPARC64
7164ff28d4cSDavid S. Miller	select CRYPTO_SHA1
7174ff28d4cSDavid S. Miller	select CRYPTO_HASH
7184ff28d4cSDavid S. Miller	help
7194ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7204ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7214ff28d4cSDavid S. Miller
722323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
723323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
724323a6bf1SMichael Ellerman	depends on PPC
725323a6bf1SMichael Ellerman	help
726323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
727323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
728323a6bf1SMichael Ellerman
729d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
730d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
731d9850fc5SMarkus Stockhausen	depends on PPC && SPE
732d9850fc5SMarkus Stockhausen	help
733d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
734d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
735d9850fc5SMarkus Stockhausen
7361e65b81aSTim Chenconfig CRYPTO_SHA1_MB
7371e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7381e65b81aSTim Chen	depends on X86 && 64BIT
7391e65b81aSTim Chen	select CRYPTO_SHA1
7401e65b81aSTim Chen	select CRYPTO_HASH
7411e65b81aSTim Chen	select CRYPTO_MCRYPTD
7421e65b81aSTim Chen	help
7431e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7441e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
7451e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
7461e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
7471e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
7481e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
7491e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
7501e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
7511e65b81aSTim Chen
7529be7e244SMegha Deyconfig CRYPTO_SHA256_MB
7539be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7549be7e244SMegha Dey	depends on X86 && 64BIT
7559be7e244SMegha Dey	select CRYPTO_SHA256
7569be7e244SMegha Dey	select CRYPTO_HASH
7579be7e244SMegha Dey	select CRYPTO_MCRYPTD
7589be7e244SMegha Dey	help
7599be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7609be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
7619be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
7629be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
7639be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
7649be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
7659be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
7669be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
7679be7e244SMegha Dey
768026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
769026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
770026bb8aaSMegha Dey        depends on X86 && 64BIT
771026bb8aaSMegha Dey        select CRYPTO_SHA512
772026bb8aaSMegha Dey        select CRYPTO_HASH
773026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
774026bb8aaSMegha Dey        help
775026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
776026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
777026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
778026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
779026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
780026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
781026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
782026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
783026bb8aaSMegha Dey
7841da177e4SLinus Torvaldsconfig CRYPTO_SHA256
785cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
78650e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7871da177e4SLinus Torvalds	help
7881da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
7891da177e4SLinus Torvalds
7901da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
7911da177e4SLinus Torvalds	  security against collision attacks.
7921da177e4SLinus Torvalds
793cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
794cd12fb90SJonathan Lynch	  of security against collision attacks.
795cd12fb90SJonathan Lynch
7962ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
7972ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
7982ecc1e95SMarkus Stockhausen	depends on PPC && SPE
7992ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
8002ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8012ecc1e95SMarkus Stockhausen	help
8022ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8032ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
8042ecc1e95SMarkus Stockhausen
805efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
806efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
807efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
808efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
809efdb6f6eSAaro Koskinen	select CRYPTO_HASH
810efdb6f6eSAaro Koskinen	help
811efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
812efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
813efdb6f6eSAaro Koskinen
81486c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
81586c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
81686c93b24SDavid S. Miller	depends on SPARC64
81786c93b24SDavid S. Miller	select CRYPTO_SHA256
81886c93b24SDavid S. Miller	select CRYPTO_HASH
81986c93b24SDavid S. Miller	help
82086c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
82186c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
82286c93b24SDavid S. Miller
8231da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8241da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
825bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8261da177e4SLinus Torvalds	help
8271da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8281da177e4SLinus Torvalds
8291da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8301da177e4SLinus Torvalds	  security against collision attacks.
8311da177e4SLinus Torvalds
8321da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
8331da177e4SLinus Torvalds	  of security against collision attacks.
8341da177e4SLinus Torvalds
835efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
836efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
837efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
838efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
839efdb6f6eSAaro Koskinen	select CRYPTO_HASH
840efdb6f6eSAaro Koskinen	help
841efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
842efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
843efdb6f6eSAaro Koskinen
844775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
845775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
846775e0c69SDavid S. Miller	depends on SPARC64
847775e0c69SDavid S. Miller	select CRYPTO_SHA512
848775e0c69SDavid S. Miller	select CRYPTO_HASH
849775e0c69SDavid S. Miller	help
850775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
851775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
852775e0c69SDavid S. Miller
85353964b9eSJeff Garzikconfig CRYPTO_SHA3
85453964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
85553964b9eSJeff Garzik	select CRYPTO_HASH
85653964b9eSJeff Garzik	help
85753964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
85853964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
85953964b9eSJeff Garzik
86053964b9eSJeff Garzik	  References:
86153964b9eSJeff Garzik	  http://keccak.noekeon.org/
86253964b9eSJeff Garzik
8631da177e4SLinus Torvaldsconfig CRYPTO_TGR192
8641da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
865f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8661da177e4SLinus Torvalds	help
8671da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
8681da177e4SLinus Torvalds
8691da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
8701da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
8711da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
8721da177e4SLinus Torvalds
8731da177e4SLinus Torvalds	  See also:
8741da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
8751da177e4SLinus Torvalds
876584fffc8SSebastian Siewiorconfig CRYPTO_WP512
877584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
8784946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8791da177e4SLinus Torvalds	help
880584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
8811da177e4SLinus Torvalds
882584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
883584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
8841da177e4SLinus Torvalds
8851da177e4SLinus Torvalds	  See also:
8866d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
8871da177e4SLinus Torvalds
8880e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
8890e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
8908af00860SRichard Weinberger	depends on X86 && 64BIT
8910e1227d3SHuang Ying	select CRYPTO_CRYPTD
8920e1227d3SHuang Ying	help
8930e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
8940e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
8950e1227d3SHuang Ying
896584fffc8SSebastian Siewiorcomment "Ciphers"
8971da177e4SLinus Torvalds
8981da177e4SLinus Torvaldsconfig CRYPTO_AES
8991da177e4SLinus Torvalds	tristate "AES cipher algorithms"
900cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9011da177e4SLinus Torvalds	help
9021da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9031da177e4SLinus Torvalds	  algorithm.
9041da177e4SLinus Torvalds
9051da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9061da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9071da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9081da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9091da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9101da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9111da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9121da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9131da177e4SLinus Torvalds
9141da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9151da177e4SLinus Torvalds
9161da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
9171da177e4SLinus Torvalds
918b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
919b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
920b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
921b5e0b032SArd Biesheuvel	help
922b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
923b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
924b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
925b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
926b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
927b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
928b5e0b032SArd Biesheuvel
929b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
930b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
931b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
932b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
933b5e0b032SArd Biesheuvel	  block.
934b5e0b032SArd Biesheuvel
9351da177e4SLinus Torvaldsconfig CRYPTO_AES_586
9361da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
937cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
938cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9395157dea8SSebastian Siewior	select CRYPTO_AES
9401da177e4SLinus Torvalds	help
9411da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9421da177e4SLinus Torvalds	  algorithm.
9431da177e4SLinus Torvalds
9441da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9451da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9461da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9471da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9481da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9491da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9501da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9511da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9521da177e4SLinus Torvalds
9531da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9541da177e4SLinus Torvalds
9551da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
9561da177e4SLinus Torvalds
957a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
958a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
959cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
960cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
96181190b32SSebastian Siewior	select CRYPTO_AES
962a2a892a2SAndreas Steinmetz	help
963a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
964a2a892a2SAndreas Steinmetz	  algorithm.
965a2a892a2SAndreas Steinmetz
966a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
967a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
968a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
969a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
970a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
971a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
972a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
973a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
974a2a892a2SAndreas Steinmetz
975a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
976a2a892a2SAndreas Steinmetz
977a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
978a2a892a2SAndreas Steinmetz
97954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
98054b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
9818af00860SRichard Weinberger	depends on X86
98285671860SHerbert Xu	select CRYPTO_AEAD
9830d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
9840d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
98554b6a1bdSHuang Ying	select CRYPTO_ALGAPI
98685671860SHerbert Xu	select CRYPTO_BLKCIPHER
9877643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
98885671860SHerbert Xu	select CRYPTO_SIMD
98954b6a1bdSHuang Ying	help
99054b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
99154b6a1bdSHuang Ying
99254b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
99354b6a1bdSHuang Ying	  algorithm.
99454b6a1bdSHuang Ying
99554b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
99654b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
99754b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
99854b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
99954b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
100054b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
100154b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
100254b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
100354b6a1bdSHuang Ying
100454b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
100554b6a1bdSHuang Ying
100654b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
100754b6a1bdSHuang Ying
10080d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
10090d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
10100d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
10110d258efbSMathias Krause	  acceleration for CTR.
10122cf4ac8bSHuang Ying
10139bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
10149bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
10159bf4852dSDavid S. Miller	depends on SPARC64
10169bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
10179bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
10189bf4852dSDavid S. Miller	help
10199bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
10209bf4852dSDavid S. Miller
10219bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10229bf4852dSDavid S. Miller	  algorithm.
10239bf4852dSDavid S. Miller
10249bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
10259bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
10269bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
10279bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
10289bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
10299bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
10309bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
10319bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
10329bf4852dSDavid S. Miller
10339bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
10349bf4852dSDavid S. Miller
10359bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10369bf4852dSDavid S. Miller
10379bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
10389bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
10399bf4852dSDavid S. Miller	  ECB and CBC.
10409bf4852dSDavid S. Miller
1041504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1042504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1043504c6143SMarkus Stockhausen	depends on PPC && SPE
1044504c6143SMarkus Stockhausen	help
1045504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1046504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1047504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1048504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1049504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1050504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1051504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1052504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1053504c6143SMarkus Stockhausen
10541da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
10551da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1056cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10571da177e4SLinus Torvalds	help
10581da177e4SLinus Torvalds	  Anubis cipher algorithm.
10591da177e4SLinus Torvalds
10601da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
10611da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
10621da177e4SLinus Torvalds	  in the NESSIE competition.
10631da177e4SLinus Torvalds
10641da177e4SLinus Torvalds	  See also:
10656d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
10666d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
10671da177e4SLinus Torvalds
1068584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1069584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1070b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1071e2ee95b8SHye-Shik Chang	help
1072584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1073e2ee95b8SHye-Shik Chang
1074584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1075584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1076584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1077584fffc8SSebastian Siewior	  weakness of the algorithm.
1078584fffc8SSebastian Siewior
1079584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1080584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1081584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
108252ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1083584fffc8SSebastian Siewior	help
1084584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1085584fffc8SSebastian Siewior
1086584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1087584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1088584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1089e2ee95b8SHye-Shik Chang
1090e2ee95b8SHye-Shik Chang	  See also:
1091584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1092584fffc8SSebastian Siewior
109352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
109452ba867cSJussi Kivilinna	tristate
109552ba867cSJussi Kivilinna	help
109652ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
109752ba867cSJussi Kivilinna	  generic c and the assembler implementations.
109852ba867cSJussi Kivilinna
109952ba867cSJussi Kivilinna	  See also:
110052ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
110152ba867cSJussi Kivilinna
110264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
110364b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1104f21a7c19SAl Viro	depends on X86 && 64BIT
110564b94ceaSJussi Kivilinna	select CRYPTO_ALGAPI
110664b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
110764b94ceaSJussi Kivilinna	help
110864b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
110964b94ceaSJussi Kivilinna
111064b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
111164b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
111264b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
111364b94ceaSJussi Kivilinna
111464b94ceaSJussi Kivilinna	  See also:
111564b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
111664b94ceaSJussi Kivilinna
1117584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1118584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1119584fffc8SSebastian Siewior	depends on CRYPTO
1120584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1121584fffc8SSebastian Siewior	help
1122584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1123584fffc8SSebastian Siewior
1124584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1125584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1126584fffc8SSebastian Siewior
1127584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1128584fffc8SSebastian Siewior
1129584fffc8SSebastian Siewior	  See also:
1130584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1131584fffc8SSebastian Siewior
11320b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
11330b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1134f21a7c19SAl Viro	depends on X86 && 64BIT
11350b95ec56SJussi Kivilinna	depends on CRYPTO
11360b95ec56SJussi Kivilinna	select CRYPTO_ALGAPI
1137964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
11380b95ec56SJussi Kivilinna	select CRYPTO_LRW
11390b95ec56SJussi Kivilinna	select CRYPTO_XTS
11400b95ec56SJussi Kivilinna	help
11410b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
11420b95ec56SJussi Kivilinna
11430b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
11440b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
11450b95ec56SJussi Kivilinna
11460b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
11470b95ec56SJussi Kivilinna
11480b95ec56SJussi Kivilinna	  See also:
11490b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
11500b95ec56SJussi Kivilinna
1151d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1152d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1153d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1154d9b1d2e7SJussi Kivilinna	depends on CRYPTO
1155d9b1d2e7SJussi Kivilinna	select CRYPTO_ALGAPI
1156d9b1d2e7SJussi Kivilinna	select CRYPTO_CRYPTD
1157801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1158d9b1d2e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1159d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1160d9b1d2e7SJussi Kivilinna	select CRYPTO_LRW
1161d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1162d9b1d2e7SJussi Kivilinna	help
1163d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1164d9b1d2e7SJussi Kivilinna
1165d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1166d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1167d9b1d2e7SJussi Kivilinna
1168d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1169d9b1d2e7SJussi Kivilinna
1170d9b1d2e7SJussi Kivilinna	  See also:
1171d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1172d9b1d2e7SJussi Kivilinna
1173f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1174f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1175f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1176f3f935a7SJussi Kivilinna	depends on CRYPTO
1177f3f935a7SJussi Kivilinna	select CRYPTO_ALGAPI
1178f3f935a7SJussi Kivilinna	select CRYPTO_CRYPTD
1179801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1180f3f935a7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1181f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1182f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1183f3f935a7SJussi Kivilinna	select CRYPTO_LRW
1184f3f935a7SJussi Kivilinna	select CRYPTO_XTS
1185f3f935a7SJussi Kivilinna	help
1186f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1187f3f935a7SJussi Kivilinna
1188f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1189f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1190f3f935a7SJussi Kivilinna
1191f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1192f3f935a7SJussi Kivilinna
1193f3f935a7SJussi Kivilinna	  See also:
1194f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1195f3f935a7SJussi Kivilinna
119681658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
119781658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
119881658ad0SDavid S. Miller	depends on SPARC64
119981658ad0SDavid S. Miller	depends on CRYPTO
120081658ad0SDavid S. Miller	select CRYPTO_ALGAPI
120181658ad0SDavid S. Miller	help
120281658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
120381658ad0SDavid S. Miller
120481658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
120581658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
120681658ad0SDavid S. Miller
120781658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
120881658ad0SDavid S. Miller
120981658ad0SDavid S. Miller	  See also:
121081658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
121181658ad0SDavid S. Miller
1212044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1213044ab525SJussi Kivilinna	tristate
1214044ab525SJussi Kivilinna	help
1215044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1216044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1217044ab525SJussi Kivilinna
1218584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1219584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1220584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1221044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1222584fffc8SSebastian Siewior	help
1223584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1224584fffc8SSebastian Siewior	  described in RFC2144.
1225584fffc8SSebastian Siewior
12264d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12274d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12284d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12294d6d6a2cSJohannes Goetzfried	select CRYPTO_ALGAPI
12304d6d6a2cSJohannes Goetzfried	select CRYPTO_CRYPTD
1231801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1232044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12334d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
12344d6d6a2cSJohannes Goetzfried	help
12354d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
12364d6d6a2cSJohannes Goetzfried	  described in RFC2144.
12374d6d6a2cSJohannes Goetzfried
12384d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
12394d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
12404d6d6a2cSJohannes Goetzfried
1241584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1242584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1243584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1244044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1245584fffc8SSebastian Siewior	help
1246584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1247584fffc8SSebastian Siewior	  described in RFC2612.
1248584fffc8SSebastian Siewior
12494ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
12504ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
12514ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
12524ea1277dSJohannes Goetzfried	select CRYPTO_ALGAPI
12534ea1277dSJohannes Goetzfried	select CRYPTO_CRYPTD
1254801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
12554ea1277dSJohannes Goetzfried	select CRYPTO_GLUE_HELPER_X86
1256044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12574ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
12584ea1277dSJohannes Goetzfried	select CRYPTO_LRW
12594ea1277dSJohannes Goetzfried	select CRYPTO_XTS
12604ea1277dSJohannes Goetzfried	help
12614ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
12624ea1277dSJohannes Goetzfried	  described in RFC2612.
12634ea1277dSJohannes Goetzfried
12644ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
12654ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
12664ea1277dSJohannes Goetzfried
1267584fffc8SSebastian Siewiorconfig CRYPTO_DES
1268584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1269584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1270584fffc8SSebastian Siewior	help
1271584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1272584fffc8SSebastian Siewior
1273c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1274c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
127597da37b3SDave Jones	depends on SPARC64
1276c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1277c5aac2dfSDavid S. Miller	select CRYPTO_DES
1278c5aac2dfSDavid S. Miller	help
1279c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1280c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1281c5aac2dfSDavid S. Miller
12826574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
12836574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
12846574e6c6SJussi Kivilinna	depends on X86 && 64BIT
12856574e6c6SJussi Kivilinna	select CRYPTO_ALGAPI
12866574e6c6SJussi Kivilinna	select CRYPTO_DES
12876574e6c6SJussi Kivilinna	help
12886574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
12896574e6c6SJussi Kivilinna
12906574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
12916574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
12926574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
12936574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
12946574e6c6SJussi Kivilinna
1295584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1296584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1297584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1298584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1299584fffc8SSebastian Siewior	help
1300584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1301584fffc8SSebastian Siewior
1302584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1303584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1304584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1305584fffc8SSebastian Siewior	help
1306584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1307584fffc8SSebastian Siewior
1308584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1309584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1310584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1311584fffc8SSebastian Siewior
1312584fffc8SSebastian Siewior	  See also:
13136d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1314e2ee95b8SHye-Shik Chang
13152407d608STan Swee Hengconfig CRYPTO_SALSA20
13163b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
13172407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13182407d608STan Swee Heng	help
13192407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13202407d608STan Swee Heng
13212407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13222407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13232407d608STan Swee Heng
13242407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13252407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13261da177e4SLinus Torvalds
1327974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13283b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1329974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1330974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1331974e4b75STan Swee Heng	help
1332974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1333974e4b75STan Swee Heng
1334974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1335974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1336974e4b75STan Swee Heng
1337974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1338974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1339974e4b75STan Swee Heng
13409a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
13413b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
13429a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
13439a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
13449a7dafbbSTan Swee Heng	help
13459a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
13469a7dafbbSTan Swee Heng
13479a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13489a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13499a7dafbbSTan Swee Heng
13509a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13519a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13529a7dafbbSTan Swee Heng
1353c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1354c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1355c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1356c08d0e64SMartin Willi	help
1357c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1358c08d0e64SMartin Willi
1359c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1360c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1361c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1362c08d0e64SMartin Willi
1363c08d0e64SMartin Willi	  See also:
1364c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1365c08d0e64SMartin Willi
1366c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
13673d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1368c9320b6dSMartin Willi	depends on X86 && 64BIT
1369c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1370c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1371c9320b6dSMartin Willi	help
1372c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1373c9320b6dSMartin Willi
1374c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1375c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1376c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1377c9320b6dSMartin Willi
1378c9320b6dSMartin Willi	  See also:
1379c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1380c9320b6dSMartin Willi
1381584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1382584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1383584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1384584fffc8SSebastian Siewior	help
1385584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1386584fffc8SSebastian Siewior
1387584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1388584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1389584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1390584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1391584fffc8SSebastian Siewior
1392584fffc8SSebastian Siewior	  See also:
1393584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1394584fffc8SSebastian Siewior
1395584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1396584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1397584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1398584fffc8SSebastian Siewior	help
1399584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1400584fffc8SSebastian Siewior
1401584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1402584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1403584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1404584fffc8SSebastian Siewior
1405584fffc8SSebastian Siewior	  See also:
1406584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1407584fffc8SSebastian Siewior
1408937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1409937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1410937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1411937c30d7SJussi Kivilinna	select CRYPTO_ALGAPI
1412341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1413801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1414596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1415937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1416feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1417feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1418937c30d7SJussi Kivilinna	help
1419937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1420937c30d7SJussi Kivilinna
1421937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1422937c30d7SJussi Kivilinna	  of 8 bits.
1423937c30d7SJussi Kivilinna
14241e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1425937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1426937c30d7SJussi Kivilinna
1427937c30d7SJussi Kivilinna	  See also:
1428937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1429937c30d7SJussi Kivilinna
1430251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1431251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1432251496dbSJussi Kivilinna	depends on X86 && !64BIT
1433251496dbSJussi Kivilinna	select CRYPTO_ALGAPI
1434341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1435801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1436596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1437251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1438feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1439feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1440251496dbSJussi Kivilinna	help
1441251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1442251496dbSJussi Kivilinna
1443251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1444251496dbSJussi Kivilinna	  of 8 bits.
1445251496dbSJussi Kivilinna
1446251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1447251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1448251496dbSJussi Kivilinna
1449251496dbSJussi Kivilinna	  See also:
1450251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1451251496dbSJussi Kivilinna
14527efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
14537efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
14547efe4076SJohannes Goetzfried	depends on X86 && 64BIT
14557efe4076SJohannes Goetzfried	select CRYPTO_ALGAPI
14567efe4076SJohannes Goetzfried	select CRYPTO_CRYPTD
1457801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
14581d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
14597efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
14607efe4076SJohannes Goetzfried	select CRYPTO_LRW
14617efe4076SJohannes Goetzfried	select CRYPTO_XTS
14627efe4076SJohannes Goetzfried	help
14637efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
14647efe4076SJohannes Goetzfried
14657efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
14667efe4076SJohannes Goetzfried	  of 8 bits.
14677efe4076SJohannes Goetzfried
14687efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
14697efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14707efe4076SJohannes Goetzfried
14717efe4076SJohannes Goetzfried	  See also:
14727efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
14737efe4076SJohannes Goetzfried
147456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
147556d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
147656d76c96SJussi Kivilinna	depends on X86 && 64BIT
147756d76c96SJussi Kivilinna	select CRYPTO_ALGAPI
147856d76c96SJussi Kivilinna	select CRYPTO_CRYPTD
1479801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
148056d76c96SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
148156d76c96SJussi Kivilinna	select CRYPTO_SERPENT
148256d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
148356d76c96SJussi Kivilinna	select CRYPTO_LRW
148456d76c96SJussi Kivilinna	select CRYPTO_XTS
148556d76c96SJussi Kivilinna	help
148656d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
148756d76c96SJussi Kivilinna
148856d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
148956d76c96SJussi Kivilinna	  of 8 bits.
149056d76c96SJussi Kivilinna
149156d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
149256d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
149356d76c96SJussi Kivilinna
149456d76c96SJussi Kivilinna	  See also:
149556d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
149656d76c96SJussi Kivilinna
1497584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1498584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1499584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1500584fffc8SSebastian Siewior	help
1501584fffc8SSebastian Siewior	  TEA cipher algorithm.
1502584fffc8SSebastian Siewior
1503584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1504584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1505584fffc8SSebastian Siewior	  little memory.
1506584fffc8SSebastian Siewior
1507584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1508584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1509584fffc8SSebastian Siewior	  in the TEA algorithm.
1510584fffc8SSebastian Siewior
1511584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1512584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1513584fffc8SSebastian Siewior
1514584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1515584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1516584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1517584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1518584fffc8SSebastian Siewior	help
1519584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1520584fffc8SSebastian Siewior
1521584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1522584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1523584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1524584fffc8SSebastian Siewior	  bits.
1525584fffc8SSebastian Siewior
1526584fffc8SSebastian Siewior	  See also:
1527584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1528584fffc8SSebastian Siewior
1529584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1530584fffc8SSebastian Siewior	tristate
1531584fffc8SSebastian Siewior	help
1532584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1533584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1534584fffc8SSebastian Siewior
1535584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1536584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1537584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1538584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1539584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1540584fffc8SSebastian Siewior	help
1541584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1542584fffc8SSebastian Siewior
1543584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1544584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1545584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1546584fffc8SSebastian Siewior	  bits.
1547584fffc8SSebastian Siewior
1548584fffc8SSebastian Siewior	  See also:
1549584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1550584fffc8SSebastian Siewior
1551584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1552584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1553584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1554584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1555584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1556584fffc8SSebastian Siewior	help
1557584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1558584fffc8SSebastian Siewior
1559584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1560584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1561584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1562584fffc8SSebastian Siewior	  bits.
1563584fffc8SSebastian Siewior
1564584fffc8SSebastian Siewior	  See also:
1565584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1566584fffc8SSebastian Siewior
15678280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
15688280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1569f21a7c19SAl Viro	depends on X86 && 64BIT
15708280daadSJussi Kivilinna	select CRYPTO_ALGAPI
15718280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
15728280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1573414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1574e7cda5d2SJussi Kivilinna	select CRYPTO_LRW
1575e7cda5d2SJussi Kivilinna	select CRYPTO_XTS
15768280daadSJussi Kivilinna	help
15778280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
15788280daadSJussi Kivilinna
15798280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
15808280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
15818280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
15828280daadSJussi Kivilinna	  bits.
15838280daadSJussi Kivilinna
15848280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
15858280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
15868280daadSJussi Kivilinna
15878280daadSJussi Kivilinna	  See also:
15888280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
15898280daadSJussi Kivilinna
1590107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1591107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1592107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1593107778b5SJohannes Goetzfried	select CRYPTO_ALGAPI
1594107778b5SJohannes Goetzfried	select CRYPTO_CRYPTD
1595801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1596a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1597107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1598107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1599107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1600107778b5SJohannes Goetzfried	select CRYPTO_LRW
1601107778b5SJohannes Goetzfried	select CRYPTO_XTS
1602107778b5SJohannes Goetzfried	help
1603107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1604107778b5SJohannes Goetzfried
1605107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1606107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1607107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1608107778b5SJohannes Goetzfried	  bits.
1609107778b5SJohannes Goetzfried
1610107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1611107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1612107778b5SJohannes Goetzfried
1613107778b5SJohannes Goetzfried	  See also:
1614107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1615107778b5SJohannes Goetzfried
1616584fffc8SSebastian Siewiorcomment "Compression"
1617584fffc8SSebastian Siewior
16181da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16191da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1620cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1621f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16221da177e4SLinus Torvalds	select ZLIB_INFLATE
16231da177e4SLinus Torvalds	select ZLIB_DEFLATE
16241da177e4SLinus Torvalds	help
16251da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16261da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16271da177e4SLinus Torvalds
16281da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16291da177e4SLinus Torvalds
16300b77abb3SZoltan Sogorconfig CRYPTO_LZO
16310b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16320b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1633ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16340b77abb3SZoltan Sogor	select LZO_COMPRESS
16350b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16360b77abb3SZoltan Sogor	help
16370b77abb3SZoltan Sogor	  This is the LZO algorithm.
16380b77abb3SZoltan Sogor
163935a1fc18SSeth Jenningsconfig CRYPTO_842
164035a1fc18SSeth Jennings	tristate "842 compression algorithm"
16412062c5b6SDan Streetman	select CRYPTO_ALGAPI
16426a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
16432062c5b6SDan Streetman	select 842_COMPRESS
16442062c5b6SDan Streetman	select 842_DECOMPRESS
164535a1fc18SSeth Jennings	help
164635a1fc18SSeth Jennings	  This is the 842 algorithm.
164735a1fc18SSeth Jennings
16480ea8530dSChanho Minconfig CRYPTO_LZ4
16490ea8530dSChanho Min	tristate "LZ4 compression algorithm"
16500ea8530dSChanho Min	select CRYPTO_ALGAPI
16518cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
16520ea8530dSChanho Min	select LZ4_COMPRESS
16530ea8530dSChanho Min	select LZ4_DECOMPRESS
16540ea8530dSChanho Min	help
16550ea8530dSChanho Min	  This is the LZ4 algorithm.
16560ea8530dSChanho Min
16570ea8530dSChanho Minconfig CRYPTO_LZ4HC
16580ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
16590ea8530dSChanho Min	select CRYPTO_ALGAPI
166091d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
16610ea8530dSChanho Min	select LZ4HC_COMPRESS
16620ea8530dSChanho Min	select LZ4_DECOMPRESS
16630ea8530dSChanho Min	help
16640ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
16650ea8530dSChanho Min
166617f0f4a4SNeil Hormancomment "Random Number Generation"
166717f0f4a4SNeil Horman
166817f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
166917f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
167017f0f4a4SNeil Horman	select CRYPTO_AES
167117f0f4a4SNeil Horman	select CRYPTO_RNG
167217f0f4a4SNeil Horman	help
167317f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
167417f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
16757dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
16767dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
167717f0f4a4SNeil Horman
1678f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1679419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1680419090c6SStephan Mueller	help
1681419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1682419090c6SStephan Mueller	  more of the DRBG types must be selected.
1683419090c6SStephan Mueller
1684f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1685419090c6SStephan Mueller
1686419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1687401e4238SHerbert Xu	bool
1688419090c6SStephan Mueller	default y
1689419090c6SStephan Mueller	select CRYPTO_HMAC
1690826775bbSHerbert Xu	select CRYPTO_SHA256
1691419090c6SStephan Mueller
1692419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1693419090c6SStephan Mueller	bool "Enable Hash DRBG"
1694826775bbSHerbert Xu	select CRYPTO_SHA256
1695419090c6SStephan Mueller	help
1696419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1697419090c6SStephan Mueller
1698419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1699419090c6SStephan Mueller	bool "Enable CTR DRBG"
1700419090c6SStephan Mueller	select CRYPTO_AES
170135591285SStephan Mueller	depends on CRYPTO_CTR
1702419090c6SStephan Mueller	help
1703419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1704419090c6SStephan Mueller
1705f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1706f2c89a10SHerbert Xu	tristate
1707401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1708f2c89a10SHerbert Xu	select CRYPTO_RNG
1709bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1710f2c89a10SHerbert Xu
1711f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1712419090c6SStephan Mueller
1713bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1714bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
17152f313e02SArnd Bergmann	select CRYPTO_RNG
1716bb5530e4SStephan Mueller	help
1717bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1718bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1719bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1720bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1721bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1722bb5530e4SStephan Mueller
172303c8efc1SHerbert Xuconfig CRYPTO_USER_API
172403c8efc1SHerbert Xu	tristate
172503c8efc1SHerbert Xu
1726fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1727fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17287451708fSHerbert Xu	depends on NET
1729fe869cdbSHerbert Xu	select CRYPTO_HASH
1730fe869cdbSHerbert Xu	select CRYPTO_USER_API
1731fe869cdbSHerbert Xu	help
1732fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1733fe869cdbSHerbert Xu	  algorithms.
1734fe869cdbSHerbert Xu
17358ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
17368ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
17377451708fSHerbert Xu	depends on NET
17388ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
17398ff59090SHerbert Xu	select CRYPTO_USER_API
17408ff59090SHerbert Xu	help
17418ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
17428ff59090SHerbert Xu	  key cipher algorithms.
17438ff59090SHerbert Xu
17442f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
17452f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
17462f375538SStephan Mueller	depends on NET
17472f375538SStephan Mueller	select CRYPTO_RNG
17482f375538SStephan Mueller	select CRYPTO_USER_API
17492f375538SStephan Mueller	help
17502f375538SStephan Mueller	  This option enables the user-spaces interface for random
17512f375538SStephan Mueller	  number generator algorithms.
17522f375538SStephan Mueller
1753b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1754b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1755b64a2d95SHerbert Xu	depends on NET
1756b64a2d95SHerbert Xu	select CRYPTO_AEAD
175772548b09SStephan Mueller	select CRYPTO_BLKCIPHER
175872548b09SStephan Mueller	select CRYPTO_NULL
1759b64a2d95SHerbert Xu	select CRYPTO_USER_API
1760b64a2d95SHerbert Xu	help
1761b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1762b64a2d95SHerbert Xu	  cipher algorithms.
1763b64a2d95SHerbert Xu
1764ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1765ee08997fSDmitry Kasatkin	bool
1766ee08997fSDmitry Kasatkin
17671da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1768964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1769cfc411e7SDavid Howellssource certs/Kconfig
17701da177e4SLinus Torvalds
1771cce9e06dSHerbert Xuendif	# if CRYPTO
1772