11da177e4SLinus Torvalds# 2685784aaSDan Williams# Generic algorithms support 3685784aaSDan Williams# 4685784aaSDan Williamsconfig XOR_BLOCKS 5685784aaSDan Williams tristate 6685784aaSDan Williams 7685784aaSDan Williams# 89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 99bc89cd8SDan Williams# 109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 119bc89cd8SDan Williams 129bc89cd8SDan Williams# 131da177e4SLinus Torvalds# Cryptographic API Configuration 141da177e4SLinus Torvalds# 152e290f43SJan Engelhardtmenuconfig CRYPTO 16c3715cb9SSebastian Siewior tristate "Cryptographic API" 171da177e4SLinus Torvalds help 181da177e4SLinus Torvalds This option provides the core Cryptographic API. 191da177e4SLinus Torvalds 20cce9e06dSHerbert Xuif CRYPTO 21cce9e06dSHerbert Xu 22584fffc8SSebastian Siewiorcomment "Crypto core or helper" 23584fffc8SSebastian Siewior 24ccb778e1SNeil Hormanconfig CRYPTO_FIPS 25ccb778e1SNeil Horman bool "FIPS 200 compliance" 26f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 271f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 28ccb778e1SNeil Horman help 29ccb778e1SNeil Horman This options enables the fips boot option which is 30ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 31ccb778e1SNeil Horman certification. You should say no unless you know what 32e84c5480SChuck Ebbert this is. 33ccb778e1SNeil Horman 34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 35cce9e06dSHerbert Xu tristate 366a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 37cce9e06dSHerbert Xu help 38cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 39cce9e06dSHerbert Xu 406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 416a0fcbb4SHerbert Xu tristate 426a0fcbb4SHerbert Xu 431ae97820SHerbert Xuconfig CRYPTO_AEAD 441ae97820SHerbert Xu tristate 456a0fcbb4SHerbert Xu select CRYPTO_AEAD2 461ae97820SHerbert Xu select CRYPTO_ALGAPI 471ae97820SHerbert Xu 486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 496a0fcbb4SHerbert Xu tristate 506a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 51149a3971SHerbert Xu select CRYPTO_NULL2 52149a3971SHerbert Xu select CRYPTO_RNG2 536a0fcbb4SHerbert Xu 545cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 555cde0af2SHerbert Xu tristate 566a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 575cde0af2SHerbert Xu select CRYPTO_ALGAPI 586a0fcbb4SHerbert Xu 596a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 606a0fcbb4SHerbert Xu tristate 616a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 626a0fcbb4SHerbert Xu select CRYPTO_RNG2 630a2e821dSHuang Ying select CRYPTO_WORKQUEUE 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1082ebda74fSGiovanni Cabiddu 1092ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1102ebda74fSGiovanni Cabiddu tristate 1112ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1122ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1132ebda74fSGiovanni Cabiddu 114cfc2bb32STadeusz Strukconfig CRYPTO_RSA 115cfc2bb32STadeusz Struk tristate "RSA algorithm" 116425e0172STadeusz Struk select CRYPTO_AKCIPHER 11758446fefSTadeusz Struk select CRYPTO_MANAGER 118cfc2bb32STadeusz Struk select MPILIB 119cfc2bb32STadeusz Struk select ASN1 120cfc2bb32STadeusz Struk help 121cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 122cfc2bb32STadeusz Struk 123802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 124802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 125802c7f1cSSalvatore Benedetto select CRYPTO_KPP 126802c7f1cSSalvatore Benedetto select MPILIB 127802c7f1cSSalvatore Benedetto help 128802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 129802c7f1cSSalvatore Benedetto 1303c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1313c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 1323c4b2390SSalvatore Benedetto select CRYTPO_KPP 1333c4b2390SSalvatore Benedetto help 1343c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 135802c7f1cSSalvatore Benedetto 1362b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1372b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1386a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1392b8c19dbSHerbert Xu help 1402b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1412b8c19dbSHerbert Xu cbc(aes). 1422b8c19dbSHerbert Xu 1436a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1446a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1456a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1466a0fcbb4SHerbert Xu select CRYPTO_HASH2 1476a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 148946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1494e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1502ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1516a0fcbb4SHerbert Xu 152a38f7907SSteffen Klassertconfig CRYPTO_USER 153a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1545db017aaSHerbert Xu depends on NET 155a38f7907SSteffen Klassert select CRYPTO_MANAGER 156a38f7907SSteffen Klassert help 157d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 158a38f7907SSteffen Klassert cbc(aes). 159a38f7907SSteffen Klassert 160326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 161326a6346SHerbert Xu bool "Disable run-time self tests" 16200ca28a5SHerbert Xu default y 16300ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1640b767f96SAlexander Shishkin help 165326a6346SHerbert Xu Disable run-time self tests that normally take place at 166326a6346SHerbert Xu algorithm registration. 1670b767f96SAlexander Shishkin 168584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 16908c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 170584fffc8SSebastian Siewior help 171584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 172584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 173584fffc8SSebastian Siewior option will be selected automatically if you select such a 174584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 175584fffc8SSebastian Siewior an external module that requires these functions. 176584fffc8SSebastian Siewior 177584fffc8SSebastian Siewiorconfig CRYPTO_NULL 178584fffc8SSebastian Siewior tristate "Null algorithms" 179149a3971SHerbert Xu select CRYPTO_NULL2 180584fffc8SSebastian Siewior help 181584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 182584fffc8SSebastian Siewior 183149a3971SHerbert Xuconfig CRYPTO_NULL2 184dd43c4e9SHerbert Xu tristate 185149a3971SHerbert Xu select CRYPTO_ALGAPI2 186149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 187149a3971SHerbert Xu select CRYPTO_HASH2 188149a3971SHerbert Xu 1895068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1903b4afaf2SKees Cook tristate "Parallel crypto engine" 1913b4afaf2SKees Cook depends on SMP 1925068c7a8SSteffen Klassert select PADATA 1935068c7a8SSteffen Klassert select CRYPTO_MANAGER 1945068c7a8SSteffen Klassert select CRYPTO_AEAD 1955068c7a8SSteffen Klassert help 1965068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1975068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1985068c7a8SSteffen Klassert 19925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20025c38d3fSHuang Ying tristate 20125c38d3fSHuang Ying 202584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 203584fffc8SSebastian Siewior tristate "Software async crypto daemon" 204584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 205b8a28251SLoc Ho select CRYPTO_HASH 206584fffc8SSebastian Siewior select CRYPTO_MANAGER 207254eff77SHuang Ying select CRYPTO_WORKQUEUE 208584fffc8SSebastian Siewior help 209584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 210584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 211584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 212584fffc8SSebastian Siewior 2131e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2141e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2151e65b81aSTim Chen select CRYPTO_BLKCIPHER 2161e65b81aSTim Chen select CRYPTO_HASH 2171e65b81aSTim Chen select CRYPTO_MANAGER 2181e65b81aSTim Chen select CRYPTO_WORKQUEUE 2191e65b81aSTim Chen help 2201e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2211e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2221e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2231e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2241e65b81aSTim Chen in the context of this kernel thread and drivers can post 2250e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2261e65b81aSTim Chen 227584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 228584fffc8SSebastian Siewior tristate "Authenc support" 229584fffc8SSebastian Siewior select CRYPTO_AEAD 230584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 231584fffc8SSebastian Siewior select CRYPTO_MANAGER 232584fffc8SSebastian Siewior select CRYPTO_HASH 233e94c6a7aSHerbert Xu select CRYPTO_NULL 234584fffc8SSebastian Siewior help 235584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 236584fffc8SSebastian Siewior This is required for IPSec. 237584fffc8SSebastian Siewior 238584fffc8SSebastian Siewiorconfig CRYPTO_TEST 239584fffc8SSebastian Siewior tristate "Testing module" 240584fffc8SSebastian Siewior depends on m 241da7f033dSHerbert Xu select CRYPTO_MANAGER 242584fffc8SSebastian Siewior help 243584fffc8SSebastian Siewior Quick & dirty crypto test module. 244584fffc8SSebastian Siewior 245a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER 246ffaf9156SJussi Kivilinna tristate 247ffaf9156SJussi Kivilinna select CRYPTO_CRYPTD 248ffaf9156SJussi Kivilinna 249266d0516SHerbert Xuconfig CRYPTO_SIMD 250266d0516SHerbert Xu tristate 251266d0516SHerbert Xu select CRYPTO_CRYPTD 252266d0516SHerbert Xu 253596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 254596d8750SJussi Kivilinna tristate 255596d8750SJussi Kivilinna depends on X86 256065ce327SHerbert Xu select CRYPTO_BLKCIPHER 257596d8750SJussi Kivilinna 258735d37b5SBaolin Wangconfig CRYPTO_ENGINE 259735d37b5SBaolin Wang tristate 260735d37b5SBaolin Wang 261584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 262584fffc8SSebastian Siewior 263584fffc8SSebastian Siewiorconfig CRYPTO_CCM 264584fffc8SSebastian Siewior tristate "CCM support" 265584fffc8SSebastian Siewior select CRYPTO_CTR 266f15f05b0SArd Biesheuvel select CRYPTO_HASH 267584fffc8SSebastian Siewior select CRYPTO_AEAD 268584fffc8SSebastian Siewior help 269584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 270584fffc8SSebastian Siewior 271584fffc8SSebastian Siewiorconfig CRYPTO_GCM 272584fffc8SSebastian Siewior tristate "GCM/GMAC support" 273584fffc8SSebastian Siewior select CRYPTO_CTR 274584fffc8SSebastian Siewior select CRYPTO_AEAD 2759382d97aSHuang Ying select CRYPTO_GHASH 2769489667dSJussi Kivilinna select CRYPTO_NULL 277584fffc8SSebastian Siewior help 278584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 279584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 280584fffc8SSebastian Siewior 28171ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28271ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28371ebc4d1SMartin Willi select CRYPTO_CHACHA20 28471ebc4d1SMartin Willi select CRYPTO_POLY1305 28571ebc4d1SMartin Willi select CRYPTO_AEAD 28671ebc4d1SMartin Willi help 28771ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28871ebc4d1SMartin Willi 28971ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29071ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29171ebc4d1SMartin Willi IETF protocols. 29271ebc4d1SMartin Willi 293584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 294584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 295584fffc8SSebastian Siewior select CRYPTO_AEAD 296584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 297856e3f40SHerbert Xu select CRYPTO_NULL 298401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 299584fffc8SSebastian Siewior help 300584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 301584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 302584fffc8SSebastian Siewior 303a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 304a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 305a10f554fSHerbert Xu select CRYPTO_AEAD 306a10f554fSHerbert Xu select CRYPTO_NULL 307401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3083491244cSHerbert Xu default m 309a10f554fSHerbert Xu help 310a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 311a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 312a10f554fSHerbert Xu algorithm for CBC. 313a10f554fSHerbert Xu 314584fffc8SSebastian Siewiorcomment "Block modes" 315584fffc8SSebastian Siewior 316584fffc8SSebastian Siewiorconfig CRYPTO_CBC 317584fffc8SSebastian Siewior tristate "CBC support" 318584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 319584fffc8SSebastian Siewior select CRYPTO_MANAGER 320584fffc8SSebastian Siewior help 321584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 322584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 323584fffc8SSebastian Siewior 324584fffc8SSebastian Siewiorconfig CRYPTO_CTR 325584fffc8SSebastian Siewior tristate "CTR support" 326584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 327584fffc8SSebastian Siewior select CRYPTO_SEQIV 328584fffc8SSebastian Siewior select CRYPTO_MANAGER 329584fffc8SSebastian Siewior help 330584fffc8SSebastian Siewior CTR: Counter mode 331584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 332584fffc8SSebastian Siewior 333584fffc8SSebastian Siewiorconfig CRYPTO_CTS 334584fffc8SSebastian Siewior tristate "CTS support" 335584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 336584fffc8SSebastian Siewior help 337584fffc8SSebastian Siewior CTS: Cipher Text Stealing 338584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 339584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 340584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 341584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 342584fffc8SSebastian Siewior for AES encryption. 343584fffc8SSebastian Siewior 344584fffc8SSebastian Siewiorconfig CRYPTO_ECB 345584fffc8SSebastian Siewior tristate "ECB support" 346584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 347584fffc8SSebastian Siewior select CRYPTO_MANAGER 348584fffc8SSebastian Siewior help 349584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 350584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 351584fffc8SSebastian Siewior the input block by block. 352584fffc8SSebastian Siewior 353584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3542470a2b2SJussi Kivilinna tristate "LRW support" 355584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 356584fffc8SSebastian Siewior select CRYPTO_MANAGER 357584fffc8SSebastian Siewior select CRYPTO_GF128MUL 358584fffc8SSebastian Siewior help 359584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 360584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 361584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 362584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 363584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 364584fffc8SSebastian Siewior 365584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 366584fffc8SSebastian Siewior tristate "PCBC support" 367584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 368584fffc8SSebastian Siewior select CRYPTO_MANAGER 369584fffc8SSebastian Siewior help 370584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 371584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 372584fffc8SSebastian Siewior 373584fffc8SSebastian Siewiorconfig CRYPTO_XTS 3745bcf8e6dSJussi Kivilinna tristate "XTS support" 375584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 376584fffc8SSebastian Siewior select CRYPTO_MANAGER 377584fffc8SSebastian Siewior select CRYPTO_GF128MUL 37812cb3a1cSMilan Broz select CRYPTO_ECB 379584fffc8SSebastian Siewior help 380584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 381584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 382584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 383584fffc8SSebastian Siewior 3841c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 3851c49678eSStephan Mueller tristate "Key wrapping support" 3861c49678eSStephan Mueller select CRYPTO_BLKCIPHER 3871c49678eSStephan Mueller help 3881c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 3891c49678eSStephan Mueller padding. 3901c49678eSStephan Mueller 391584fffc8SSebastian Siewiorcomment "Hash modes" 392584fffc8SSebastian Siewior 39393b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 39493b5e86aSJussi Kivilinna tristate "CMAC support" 39593b5e86aSJussi Kivilinna select CRYPTO_HASH 39693b5e86aSJussi Kivilinna select CRYPTO_MANAGER 39793b5e86aSJussi Kivilinna help 39893b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 39993b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 40093b5e86aSJussi Kivilinna 40193b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 40293b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 40393b5e86aSJussi Kivilinna 4041da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4058425165dSHerbert Xu tristate "HMAC support" 4060796ae06SHerbert Xu select CRYPTO_HASH 40743518407SHerbert Xu select CRYPTO_MANAGER 4081da177e4SLinus Torvalds help 4091da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4101da177e4SLinus Torvalds This is required for IPSec. 4111da177e4SLinus Torvalds 412333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 413333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 414333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 415333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 416333b0d7eSKazunori MIYAZAWA help 417333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 418333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 419333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 420333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 421333b0d7eSKazunori MIYAZAWA 422f1939f7cSShane Wangconfig CRYPTO_VMAC 423f1939f7cSShane Wang tristate "VMAC support" 424f1939f7cSShane Wang select CRYPTO_HASH 425f1939f7cSShane Wang select CRYPTO_MANAGER 426f1939f7cSShane Wang help 427f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 428f1939f7cSShane Wang very high speed on 64-bit architectures. 429f1939f7cSShane Wang 430f1939f7cSShane Wang See also: 431f1939f7cSShane Wang <http://fastcrypto.org/vmac> 432f1939f7cSShane Wang 433584fffc8SSebastian Siewiorcomment "Digest" 434584fffc8SSebastian Siewior 435584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 436584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4375773a3e6SHerbert Xu select CRYPTO_HASH 4386a0962b2SDarrick J. Wong select CRC32 4391da177e4SLinus Torvalds help 440584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 441584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 44269c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4431da177e4SLinus Torvalds 4448cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4458cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4468cb51ba8SAustin Zhang depends on X86 4478cb51ba8SAustin Zhang select CRYPTO_HASH 4488cb51ba8SAustin Zhang help 4498cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4508cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4518cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4528cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4538cb51ba8SAustin Zhang gain performance compared with software implementation. 4548cb51ba8SAustin Zhang Module will be crc32c-intel. 4558cb51ba8SAustin Zhang 4567cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4576dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 458c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4596dd7a82cSAnton Blanchard select CRYPTO_HASH 4606dd7a82cSAnton Blanchard select CRC32 4616dd7a82cSAnton Blanchard help 4626dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4636dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4646dd7a82cSAnton Blanchard and newer processors for improved performance. 4656dd7a82cSAnton Blanchard 4666dd7a82cSAnton Blanchard 467442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 468442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 469442a7c40SDavid S. Miller depends on SPARC64 470442a7c40SDavid S. Miller select CRYPTO_HASH 471442a7c40SDavid S. Miller select CRC32 472442a7c40SDavid S. Miller help 473442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 474442a7c40SDavid S. Miller when available. 475442a7c40SDavid S. Miller 47678c37d19SAlexander Boykoconfig CRYPTO_CRC32 47778c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 47878c37d19SAlexander Boyko select CRYPTO_HASH 47978c37d19SAlexander Boyko select CRC32 48078c37d19SAlexander Boyko help 48178c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 48278c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 48378c37d19SAlexander Boyko 48478c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 48578c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 48678c37d19SAlexander Boyko depends on X86 48778c37d19SAlexander Boyko select CRYPTO_HASH 48878c37d19SAlexander Boyko select CRC32 48978c37d19SAlexander Boyko help 49078c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 49178c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 49278c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 49378c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 49478c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 49578c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 49678c37d19SAlexander Boyko 49768411521SHerbert Xuconfig CRYPTO_CRCT10DIF 49868411521SHerbert Xu tristate "CRCT10DIF algorithm" 49968411521SHerbert Xu select CRYPTO_HASH 50068411521SHerbert Xu help 50168411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 50268411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 50368411521SHerbert Xu transforms to be used if they are available. 50468411521SHerbert Xu 50568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 50668411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 50768411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 50868411521SHerbert Xu select CRYPTO_HASH 50968411521SHerbert Xu help 51068411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 51168411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 51268411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 51368411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 51468411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 51568411521SHerbert Xu 516*b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 517*b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 518*b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 519*b01df1c1SDaniel Axtens select CRYPTO_HASH 520*b01df1c1SDaniel Axtens help 521*b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 522*b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 523*b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 524*b01df1c1SDaniel Axtens 5252cdc6899SHuang Yingconfig CRYPTO_GHASH 5262cdc6899SHuang Ying tristate "GHASH digest algorithm" 5272cdc6899SHuang Ying select CRYPTO_GF128MUL 528578c60fbSArnd Bergmann select CRYPTO_HASH 5292cdc6899SHuang Ying help 5302cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5312cdc6899SHuang Ying 532f979e014SMartin Williconfig CRYPTO_POLY1305 533f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 534578c60fbSArnd Bergmann select CRYPTO_HASH 535f979e014SMartin Willi help 536f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 537f979e014SMartin Willi 538f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 539f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 540f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 541f979e014SMartin Willi 542c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 543b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 544c70f4abeSMartin Willi depends on X86 && 64BIT 545c70f4abeSMartin Willi select CRYPTO_POLY1305 546c70f4abeSMartin Willi help 547c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 548c70f4abeSMartin Willi 549c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 550c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 551c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 552c70f4abeSMartin Willi instructions. 553c70f4abeSMartin Willi 5541da177e4SLinus Torvaldsconfig CRYPTO_MD4 5551da177e4SLinus Torvalds tristate "MD4 digest algorithm" 556808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 5571da177e4SLinus Torvalds help 5581da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 5591da177e4SLinus Torvalds 5601da177e4SLinus Torvaldsconfig CRYPTO_MD5 5611da177e4SLinus Torvalds tristate "MD5 digest algorithm" 56214b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 5631da177e4SLinus Torvalds help 5641da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 5651da177e4SLinus Torvalds 566d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 567d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 568d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 569d69e75deSAaro Koskinen select CRYPTO_MD5 570d69e75deSAaro Koskinen select CRYPTO_HASH 571d69e75deSAaro Koskinen help 572d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 573d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 574d69e75deSAaro Koskinen 575e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 576e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 577e8e59953SMarkus Stockhausen depends on PPC 578e8e59953SMarkus Stockhausen select CRYPTO_HASH 579e8e59953SMarkus Stockhausen help 580e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 581e8e59953SMarkus Stockhausen in PPC assembler. 582e8e59953SMarkus Stockhausen 583fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 584fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 585fa4dfedcSDavid S. Miller depends on SPARC64 586fa4dfedcSDavid S. Miller select CRYPTO_MD5 587fa4dfedcSDavid S. Miller select CRYPTO_HASH 588fa4dfedcSDavid S. Miller help 589fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 590fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 591fa4dfedcSDavid S. Miller 592584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 593584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 59419e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 595584fffc8SSebastian Siewior help 596584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 597584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 598584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 599584fffc8SSebastian Siewior of the algorithm. 600584fffc8SSebastian Siewior 60182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 60282798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 6037c4468bcSHerbert Xu select CRYPTO_HASH 60482798f90SAdrian-Ken Rueegsegger help 60582798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 60682798f90SAdrian-Ken Rueegsegger 60782798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 60835ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 60982798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 61082798f90SAdrian-Ken Rueegsegger 61182798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6126d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 61382798f90SAdrian-Ken Rueegsegger 61482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 61582798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 616e5835fbaSHerbert Xu select CRYPTO_HASH 61782798f90SAdrian-Ken Rueegsegger help 61882798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 61982798f90SAdrian-Ken Rueegsegger 62082798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 62182798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 622b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 623b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 62482798f90SAdrian-Ken Rueegsegger 625b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 626b6d44341SAdrian Bunk against RIPEMD-160. 627534fe2c1SAdrian-Ken Rueegsegger 628534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6296d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 630534fe2c1SAdrian-Ken Rueegsegger 631534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 632534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 633d8a5e2e9SHerbert Xu select CRYPTO_HASH 634534fe2c1SAdrian-Ken Rueegsegger help 635b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 636b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 637b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 638b6d44341SAdrian Bunk (than RIPEMD-128). 639534fe2c1SAdrian-Ken Rueegsegger 640534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6416d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 642534fe2c1SAdrian-Ken Rueegsegger 643534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 644534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6453b8efb4cSHerbert Xu select CRYPTO_HASH 646534fe2c1SAdrian-Ken Rueegsegger help 647b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 648b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 649b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 650b6d44341SAdrian Bunk (than RIPEMD-160). 651534fe2c1SAdrian-Ken Rueegsegger 65282798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6536d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 65482798f90SAdrian-Ken Rueegsegger 6551da177e4SLinus Torvaldsconfig CRYPTO_SHA1 6561da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 65754ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 6581da177e4SLinus Torvalds help 6591da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 6601da177e4SLinus Torvalds 66166be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 662e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 66366be8951SMathias Krause depends on X86 && 64BIT 66466be8951SMathias Krause select CRYPTO_SHA1 66566be8951SMathias Krause select CRYPTO_HASH 66666be8951SMathias Krause help 66766be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 66866be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 669e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 670e38b6b7fStim when available. 67166be8951SMathias Krause 6728275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 673e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 6748275d1aaSTim Chen depends on X86 && 64BIT 6758275d1aaSTim Chen select CRYPTO_SHA256 6768275d1aaSTim Chen select CRYPTO_HASH 6778275d1aaSTim Chen help 6788275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 6798275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 6808275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 681e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 682e38b6b7fStim Instructions) when available. 6838275d1aaSTim Chen 68487de4579STim Chenconfig CRYPTO_SHA512_SSSE3 68587de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 68687de4579STim Chen depends on X86 && 64BIT 68787de4579STim Chen select CRYPTO_SHA512 68887de4579STim Chen select CRYPTO_HASH 68987de4579STim Chen help 69087de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 69187de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 69287de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 69387de4579STim Chen version 2 (AVX2) instructions, when available. 69487de4579STim Chen 695efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 696efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 697efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 698efdb6f6eSAaro Koskinen select CRYPTO_SHA1 699efdb6f6eSAaro Koskinen select CRYPTO_HASH 700efdb6f6eSAaro Koskinen help 701efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 702efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 703efdb6f6eSAaro Koskinen 7044ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 7054ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 7064ff28d4cSDavid S. Miller depends on SPARC64 7074ff28d4cSDavid S. Miller select CRYPTO_SHA1 7084ff28d4cSDavid S. Miller select CRYPTO_HASH 7094ff28d4cSDavid S. Miller help 7104ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7114ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7124ff28d4cSDavid S. Miller 713323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 714323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 715323a6bf1SMichael Ellerman depends on PPC 716323a6bf1SMichael Ellerman help 717323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 718323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 719323a6bf1SMichael Ellerman 720d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 721d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 722d9850fc5SMarkus Stockhausen depends on PPC && SPE 723d9850fc5SMarkus Stockhausen help 724d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 725d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 726d9850fc5SMarkus Stockhausen 7271e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7281e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7291e65b81aSTim Chen depends on X86 && 64BIT 7301e65b81aSTim Chen select CRYPTO_SHA1 7311e65b81aSTim Chen select CRYPTO_HASH 7321e65b81aSTim Chen select CRYPTO_MCRYPTD 7331e65b81aSTim Chen help 7341e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7351e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7361e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7371e65b81aSTim Chen better throughput. It should not be enabled by default but 7381e65b81aSTim Chen used when there is significant amount of work to keep the keep 7391e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7401e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7411e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7421e65b81aSTim Chen 7439be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7449be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7459be7e244SMegha Dey depends on X86 && 64BIT 7469be7e244SMegha Dey select CRYPTO_SHA256 7479be7e244SMegha Dey select CRYPTO_HASH 7489be7e244SMegha Dey select CRYPTO_MCRYPTD 7499be7e244SMegha Dey help 7509be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7519be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7529be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7539be7e244SMegha Dey better throughput. It should not be enabled by default but 7549be7e244SMegha Dey used when there is significant amount of work to keep the keep 7559be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 7569be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 7579be7e244SMegha Dey process the crypto jobs, adding a slight latency. 7589be7e244SMegha Dey 759026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 760026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 761026bb8aaSMegha Dey depends on X86 && 64BIT 762026bb8aaSMegha Dey select CRYPTO_SHA512 763026bb8aaSMegha Dey select CRYPTO_HASH 764026bb8aaSMegha Dey select CRYPTO_MCRYPTD 765026bb8aaSMegha Dey help 766026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 767026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 768026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 769026bb8aaSMegha Dey better throughput. It should not be enabled by default but 770026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 771026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 772026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 773026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 774026bb8aaSMegha Dey 7751da177e4SLinus Torvaldsconfig CRYPTO_SHA256 776cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 77750e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 7781da177e4SLinus Torvalds help 7791da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 7801da177e4SLinus Torvalds 7811da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 7821da177e4SLinus Torvalds security against collision attacks. 7831da177e4SLinus Torvalds 784cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 785cd12fb90SJonathan Lynch of security against collision attacks. 786cd12fb90SJonathan Lynch 7872ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 7882ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 7892ecc1e95SMarkus Stockhausen depends on PPC && SPE 7902ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 7912ecc1e95SMarkus Stockhausen select CRYPTO_HASH 7922ecc1e95SMarkus Stockhausen help 7932ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 7942ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 7952ecc1e95SMarkus Stockhausen 796efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 797efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 798efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 799efdb6f6eSAaro Koskinen select CRYPTO_SHA256 800efdb6f6eSAaro Koskinen select CRYPTO_HASH 801efdb6f6eSAaro Koskinen help 802efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 803efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 804efdb6f6eSAaro Koskinen 80586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 80686c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 80786c93b24SDavid S. Miller depends on SPARC64 80886c93b24SDavid S. Miller select CRYPTO_SHA256 80986c93b24SDavid S. Miller select CRYPTO_HASH 81086c93b24SDavid S. Miller help 81186c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 81286c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 81386c93b24SDavid S. Miller 8141da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8151da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 816bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8171da177e4SLinus Torvalds help 8181da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8191da177e4SLinus Torvalds 8201da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8211da177e4SLinus Torvalds security against collision attacks. 8221da177e4SLinus Torvalds 8231da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8241da177e4SLinus Torvalds of security against collision attacks. 8251da177e4SLinus Torvalds 826efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 827efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 828efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 829efdb6f6eSAaro Koskinen select CRYPTO_SHA512 830efdb6f6eSAaro Koskinen select CRYPTO_HASH 831efdb6f6eSAaro Koskinen help 832efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 833efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 834efdb6f6eSAaro Koskinen 835775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 836775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 837775e0c69SDavid S. Miller depends on SPARC64 838775e0c69SDavid S. Miller select CRYPTO_SHA512 839775e0c69SDavid S. Miller select CRYPTO_HASH 840775e0c69SDavid S. Miller help 841775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 842775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 843775e0c69SDavid S. Miller 84453964b9eSJeff Garzikconfig CRYPTO_SHA3 84553964b9eSJeff Garzik tristate "SHA3 digest algorithm" 84653964b9eSJeff Garzik select CRYPTO_HASH 84753964b9eSJeff Garzik help 84853964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 84953964b9eSJeff Garzik cryptographic sponge function family called Keccak. 85053964b9eSJeff Garzik 85153964b9eSJeff Garzik References: 85253964b9eSJeff Garzik http://keccak.noekeon.org/ 85353964b9eSJeff Garzik 8541da177e4SLinus Torvaldsconfig CRYPTO_TGR192 8551da177e4SLinus Torvalds tristate "Tiger digest algorithms" 856f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 8571da177e4SLinus Torvalds help 8581da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 8591da177e4SLinus Torvalds 8601da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 8611da177e4SLinus Torvalds still having decent performance on 32-bit processors. 8621da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 8631da177e4SLinus Torvalds 8641da177e4SLinus Torvalds See also: 8651da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 8661da177e4SLinus Torvalds 867584fffc8SSebastian Siewiorconfig CRYPTO_WP512 868584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 8694946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 8701da177e4SLinus Torvalds help 871584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 8721da177e4SLinus Torvalds 873584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 874584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 8751da177e4SLinus Torvalds 8761da177e4SLinus Torvalds See also: 8776d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 8781da177e4SLinus Torvalds 8790e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 8800e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 8818af00860SRichard Weinberger depends on X86 && 64BIT 8820e1227d3SHuang Ying select CRYPTO_CRYPTD 8830e1227d3SHuang Ying help 8840e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 8850e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 8860e1227d3SHuang Ying 887584fffc8SSebastian Siewiorcomment "Ciphers" 8881da177e4SLinus Torvalds 8891da177e4SLinus Torvaldsconfig CRYPTO_AES 8901da177e4SLinus Torvalds tristate "AES cipher algorithms" 891cce9e06dSHerbert Xu select CRYPTO_ALGAPI 8921da177e4SLinus Torvalds help 8931da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 8941da177e4SLinus Torvalds algorithm. 8951da177e4SLinus Torvalds 8961da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 8971da177e4SLinus Torvalds both hardware and software across a wide range of computing 8981da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 8991da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9001da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9011da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9021da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9031da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9041da177e4SLinus Torvalds 9051da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9061da177e4SLinus Torvalds 9071da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 9081da177e4SLinus Torvalds 909b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 910b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 911b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 912b5e0b032SArd Biesheuvel help 913b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 914b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 915b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 916b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 917b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 918b5e0b032SArd Biesheuvel with a more dramatic performance hit) 919b5e0b032SArd Biesheuvel 920b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 921b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 922b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 923b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 924b5e0b032SArd Biesheuvel block. 925b5e0b032SArd Biesheuvel 9261da177e4SLinus Torvaldsconfig CRYPTO_AES_586 9271da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 928cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 929cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9305157dea8SSebastian Siewior select CRYPTO_AES 9311da177e4SLinus Torvalds help 9321da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9331da177e4SLinus Torvalds algorithm. 9341da177e4SLinus Torvalds 9351da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9361da177e4SLinus Torvalds both hardware and software across a wide range of computing 9371da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9381da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9391da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9401da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9411da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9421da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9431da177e4SLinus Torvalds 9441da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9451da177e4SLinus Torvalds 9461da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 9471da177e4SLinus Torvalds 948a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 949a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 950cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 951cce9e06dSHerbert Xu select CRYPTO_ALGAPI 95281190b32SSebastian Siewior select CRYPTO_AES 953a2a892a2SAndreas Steinmetz help 954a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 955a2a892a2SAndreas Steinmetz algorithm. 956a2a892a2SAndreas Steinmetz 957a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 958a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 959a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 960a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 961a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 962a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 963a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 964a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 965a2a892a2SAndreas Steinmetz 966a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 967a2a892a2SAndreas Steinmetz 968a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 969a2a892a2SAndreas Steinmetz 97054b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 97154b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 9728af00860SRichard Weinberger depends on X86 97385671860SHerbert Xu select CRYPTO_AEAD 9740d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 9750d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 97654b6a1bdSHuang Ying select CRYPTO_ALGAPI 97785671860SHerbert Xu select CRYPTO_BLKCIPHER 9787643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 97985671860SHerbert Xu select CRYPTO_SIMD 98054b6a1bdSHuang Ying help 98154b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 98254b6a1bdSHuang Ying 98354b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 98454b6a1bdSHuang Ying algorithm. 98554b6a1bdSHuang Ying 98654b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 98754b6a1bdSHuang Ying both hardware and software across a wide range of computing 98854b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 98954b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 99054b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 99154b6a1bdSHuang Ying suited for restricted-space environments, in which it also 99254b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 99354b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 99454b6a1bdSHuang Ying 99554b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 99654b6a1bdSHuang Ying 99754b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 99854b6a1bdSHuang Ying 9990d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10000d258efbSMathias Krause for some popular block cipher mode is supported too, including 10010d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 10020d258efbSMathias Krause acceleration for CTR. 10032cf4ac8bSHuang Ying 10049bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10059bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10069bf4852dSDavid S. Miller depends on SPARC64 10079bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10089bf4852dSDavid S. Miller select CRYPTO_ALGAPI 10099bf4852dSDavid S. Miller help 10109bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10119bf4852dSDavid S. Miller 10129bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10139bf4852dSDavid S. Miller algorithm. 10149bf4852dSDavid S. Miller 10159bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10169bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10179bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10189bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10199bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10209bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10219bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10229bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10239bf4852dSDavid S. Miller 10249bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10259bf4852dSDavid S. Miller 10269bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10279bf4852dSDavid S. Miller 10289bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10299bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10309bf4852dSDavid S. Miller ECB and CBC. 10319bf4852dSDavid S. Miller 1032504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1033504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1034504c6143SMarkus Stockhausen depends on PPC && SPE 1035504c6143SMarkus Stockhausen help 1036504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1037504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1038504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1039504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1040504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1041504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1042504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1043504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1044504c6143SMarkus Stockhausen 10451da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 10461da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1047cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10481da177e4SLinus Torvalds help 10491da177e4SLinus Torvalds Anubis cipher algorithm. 10501da177e4SLinus Torvalds 10511da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 10521da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 10531da177e4SLinus Torvalds in the NESSIE competition. 10541da177e4SLinus Torvalds 10551da177e4SLinus Torvalds See also: 10566d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 10576d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 10581da177e4SLinus Torvalds 1059584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1060584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1061b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1062e2ee95b8SHye-Shik Chang help 1063584fffc8SSebastian Siewior ARC4 cipher algorithm. 1064e2ee95b8SHye-Shik Chang 1065584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1066584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1067584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1068584fffc8SSebastian Siewior weakness of the algorithm. 1069584fffc8SSebastian Siewior 1070584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1071584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1072584fffc8SSebastian Siewior select CRYPTO_ALGAPI 107352ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1074584fffc8SSebastian Siewior help 1075584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1076584fffc8SSebastian Siewior 1077584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1078584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1079584fffc8SSebastian Siewior designed for use on "large microprocessors". 1080e2ee95b8SHye-Shik Chang 1081e2ee95b8SHye-Shik Chang See also: 1082584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1083584fffc8SSebastian Siewior 108452ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 108552ba867cSJussi Kivilinna tristate 108652ba867cSJussi Kivilinna help 108752ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 108852ba867cSJussi Kivilinna generic c and the assembler implementations. 108952ba867cSJussi Kivilinna 109052ba867cSJussi Kivilinna See also: 109152ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 109252ba867cSJussi Kivilinna 109364b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 109464b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1095f21a7c19SAl Viro depends on X86 && 64BIT 109664b94ceaSJussi Kivilinna select CRYPTO_ALGAPI 109764b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 109864b94ceaSJussi Kivilinna help 109964b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 110064b94ceaSJussi Kivilinna 110164b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 110264b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 110364b94ceaSJussi Kivilinna designed for use on "large microprocessors". 110464b94ceaSJussi Kivilinna 110564b94ceaSJussi Kivilinna See also: 110664b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 110764b94ceaSJussi Kivilinna 1108584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1109584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1110584fffc8SSebastian Siewior depends on CRYPTO 1111584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1112584fffc8SSebastian Siewior help 1113584fffc8SSebastian Siewior Camellia cipher algorithms module. 1114584fffc8SSebastian Siewior 1115584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1116584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1117584fffc8SSebastian Siewior 1118584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1119584fffc8SSebastian Siewior 1120584fffc8SSebastian Siewior See also: 1121584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1122584fffc8SSebastian Siewior 11230b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11240b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1125f21a7c19SAl Viro depends on X86 && 64BIT 11260b95ec56SJussi Kivilinna depends on CRYPTO 11270b95ec56SJussi Kivilinna select CRYPTO_ALGAPI 1128964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11290b95ec56SJussi Kivilinna select CRYPTO_LRW 11300b95ec56SJussi Kivilinna select CRYPTO_XTS 11310b95ec56SJussi Kivilinna help 11320b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11330b95ec56SJussi Kivilinna 11340b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11350b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11360b95ec56SJussi Kivilinna 11370b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11380b95ec56SJussi Kivilinna 11390b95ec56SJussi Kivilinna See also: 11400b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11410b95ec56SJussi Kivilinna 1142d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1143d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1144d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1145d9b1d2e7SJussi Kivilinna depends on CRYPTO 1146d9b1d2e7SJussi Kivilinna select CRYPTO_ALGAPI 1147d9b1d2e7SJussi Kivilinna select CRYPTO_CRYPTD 1148801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1149d9b1d2e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1150d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1151d9b1d2e7SJussi Kivilinna select CRYPTO_LRW 1152d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1153d9b1d2e7SJussi Kivilinna help 1154d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1155d9b1d2e7SJussi Kivilinna 1156d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1157d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1158d9b1d2e7SJussi Kivilinna 1159d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1160d9b1d2e7SJussi Kivilinna 1161d9b1d2e7SJussi Kivilinna See also: 1162d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1163d9b1d2e7SJussi Kivilinna 1164f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1165f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1166f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1167f3f935a7SJussi Kivilinna depends on CRYPTO 1168f3f935a7SJussi Kivilinna select CRYPTO_ALGAPI 1169f3f935a7SJussi Kivilinna select CRYPTO_CRYPTD 1170801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1171f3f935a7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1172f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1173f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1174f3f935a7SJussi Kivilinna select CRYPTO_LRW 1175f3f935a7SJussi Kivilinna select CRYPTO_XTS 1176f3f935a7SJussi Kivilinna help 1177f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1178f3f935a7SJussi Kivilinna 1179f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1180f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1181f3f935a7SJussi Kivilinna 1182f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1183f3f935a7SJussi Kivilinna 1184f3f935a7SJussi Kivilinna See also: 1185f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1186f3f935a7SJussi Kivilinna 118781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 118881658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 118981658ad0SDavid S. Miller depends on SPARC64 119081658ad0SDavid S. Miller depends on CRYPTO 119181658ad0SDavid S. Miller select CRYPTO_ALGAPI 119281658ad0SDavid S. Miller help 119381658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 119481658ad0SDavid S. Miller 119581658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 119681658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 119781658ad0SDavid S. Miller 119881658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 119981658ad0SDavid S. Miller 120081658ad0SDavid S. Miller See also: 120181658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 120281658ad0SDavid S. Miller 1203044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1204044ab525SJussi Kivilinna tristate 1205044ab525SJussi Kivilinna help 1206044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1207044ab525SJussi Kivilinna generic c and the assembler implementations. 1208044ab525SJussi Kivilinna 1209584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1210584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1211584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1212044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1213584fffc8SSebastian Siewior help 1214584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1215584fffc8SSebastian Siewior described in RFC2144. 1216584fffc8SSebastian Siewior 12174d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12184d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12194d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12204d6d6a2cSJohannes Goetzfried select CRYPTO_ALGAPI 12214d6d6a2cSJohannes Goetzfried select CRYPTO_CRYPTD 1222801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1223044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12244d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12254d6d6a2cSJohannes Goetzfried help 12264d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12274d6d6a2cSJohannes Goetzfried described in RFC2144. 12284d6d6a2cSJohannes Goetzfried 12294d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12304d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12314d6d6a2cSJohannes Goetzfried 1232584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1233584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1234584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1235044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1236584fffc8SSebastian Siewior help 1237584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1238584fffc8SSebastian Siewior described in RFC2612. 1239584fffc8SSebastian Siewior 12404ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12414ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12424ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12434ea1277dSJohannes Goetzfried select CRYPTO_ALGAPI 12444ea1277dSJohannes Goetzfried select CRYPTO_CRYPTD 1245801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 12464ea1277dSJohannes Goetzfried select CRYPTO_GLUE_HELPER_X86 1247044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12484ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12494ea1277dSJohannes Goetzfried select CRYPTO_LRW 12504ea1277dSJohannes Goetzfried select CRYPTO_XTS 12514ea1277dSJohannes Goetzfried help 12524ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12534ea1277dSJohannes Goetzfried described in RFC2612. 12544ea1277dSJohannes Goetzfried 12554ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12564ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12574ea1277dSJohannes Goetzfried 1258584fffc8SSebastian Siewiorconfig CRYPTO_DES 1259584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1260584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1261584fffc8SSebastian Siewior help 1262584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1263584fffc8SSebastian Siewior 1264c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1265c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 126697da37b3SDave Jones depends on SPARC64 1267c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1268c5aac2dfSDavid S. Miller select CRYPTO_DES 1269c5aac2dfSDavid S. Miller help 1270c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1271c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1272c5aac2dfSDavid S. Miller 12736574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 12746574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 12756574e6c6SJussi Kivilinna depends on X86 && 64BIT 12766574e6c6SJussi Kivilinna select CRYPTO_ALGAPI 12776574e6c6SJussi Kivilinna select CRYPTO_DES 12786574e6c6SJussi Kivilinna help 12796574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 12806574e6c6SJussi Kivilinna 12816574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 12826574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 12836574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 12846574e6c6SJussi Kivilinna one that processes three blocks parallel. 12856574e6c6SJussi Kivilinna 1286584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1287584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1288584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1289584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1290584fffc8SSebastian Siewior help 1291584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1292584fffc8SSebastian Siewior 1293584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1294584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1295584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1296584fffc8SSebastian Siewior help 1297584fffc8SSebastian Siewior Khazad cipher algorithm. 1298584fffc8SSebastian Siewior 1299584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1300584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1301584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1302584fffc8SSebastian Siewior 1303584fffc8SSebastian Siewior See also: 13046d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1305e2ee95b8SHye-Shik Chang 13062407d608STan Swee Hengconfig CRYPTO_SALSA20 13073b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13082407d608STan Swee Heng select CRYPTO_BLKCIPHER 13092407d608STan Swee Heng help 13102407d608STan Swee Heng Salsa20 stream cipher algorithm. 13112407d608STan Swee Heng 13122407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13132407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13142407d608STan Swee Heng 13152407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13162407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13171da177e4SLinus Torvalds 1318974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13193b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1320974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1321974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1322974e4b75STan Swee Heng help 1323974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1324974e4b75STan Swee Heng 1325974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1326974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1327974e4b75STan Swee Heng 1328974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1329974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1330974e4b75STan Swee Heng 13319a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13323b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13339a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13349a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 13359a7dafbbSTan Swee Heng help 13369a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13379a7dafbbSTan Swee Heng 13389a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13399a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13409a7dafbbSTan Swee Heng 13419a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13429a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13439a7dafbbSTan Swee Heng 1344c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1345c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1346c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1347c08d0e64SMartin Willi help 1348c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1349c08d0e64SMartin Willi 1350c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1351c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1352c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1353c08d0e64SMartin Willi 1354c08d0e64SMartin Willi See also: 1355c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1356c08d0e64SMartin Willi 1357c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13583d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1359c9320b6dSMartin Willi depends on X86 && 64BIT 1360c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1361c9320b6dSMartin Willi select CRYPTO_CHACHA20 1362c9320b6dSMartin Willi help 1363c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1364c9320b6dSMartin Willi 1365c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1366c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1367c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1368c9320b6dSMartin Willi 1369c9320b6dSMartin Willi See also: 1370c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1371c9320b6dSMartin Willi 1372584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1373584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1374584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1375584fffc8SSebastian Siewior help 1376584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1377584fffc8SSebastian Siewior 1378584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1379584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1380584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1381584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1382584fffc8SSebastian Siewior 1383584fffc8SSebastian Siewior See also: 1384584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1385584fffc8SSebastian Siewior 1386584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1387584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1388584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1389584fffc8SSebastian Siewior help 1390584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1391584fffc8SSebastian Siewior 1392584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1393584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1394584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1395584fffc8SSebastian Siewior 1396584fffc8SSebastian Siewior See also: 1397584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1398584fffc8SSebastian Siewior 1399937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1400937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1401937c30d7SJussi Kivilinna depends on X86 && 64BIT 1402937c30d7SJussi Kivilinna select CRYPTO_ALGAPI 1403341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1404801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1405596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1406937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1407feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1408feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1409937c30d7SJussi Kivilinna help 1410937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1411937c30d7SJussi Kivilinna 1412937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1413937c30d7SJussi Kivilinna of 8 bits. 1414937c30d7SJussi Kivilinna 14151e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1416937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1417937c30d7SJussi Kivilinna 1418937c30d7SJussi Kivilinna See also: 1419937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1420937c30d7SJussi Kivilinna 1421251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1422251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1423251496dbSJussi Kivilinna depends on X86 && !64BIT 1424251496dbSJussi Kivilinna select CRYPTO_ALGAPI 1425341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1426801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1427596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1428251496dbSJussi Kivilinna select CRYPTO_SERPENT 1429feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1430feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1431251496dbSJussi Kivilinna help 1432251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1433251496dbSJussi Kivilinna 1434251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1435251496dbSJussi Kivilinna of 8 bits. 1436251496dbSJussi Kivilinna 1437251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1438251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1439251496dbSJussi Kivilinna 1440251496dbSJussi Kivilinna See also: 1441251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1442251496dbSJussi Kivilinna 14437efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14447efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14457efe4076SJohannes Goetzfried depends on X86 && 64BIT 14467efe4076SJohannes Goetzfried select CRYPTO_ALGAPI 14477efe4076SJohannes Goetzfried select CRYPTO_CRYPTD 1448801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 14491d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14507efe4076SJohannes Goetzfried select CRYPTO_SERPENT 14517efe4076SJohannes Goetzfried select CRYPTO_LRW 14527efe4076SJohannes Goetzfried select CRYPTO_XTS 14537efe4076SJohannes Goetzfried help 14547efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14557efe4076SJohannes Goetzfried 14567efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14577efe4076SJohannes Goetzfried of 8 bits. 14587efe4076SJohannes Goetzfried 14597efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14607efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14617efe4076SJohannes Goetzfried 14627efe4076SJohannes Goetzfried See also: 14637efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14647efe4076SJohannes Goetzfried 146556d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 146656d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 146756d76c96SJussi Kivilinna depends on X86 && 64BIT 146856d76c96SJussi Kivilinna select CRYPTO_ALGAPI 146956d76c96SJussi Kivilinna select CRYPTO_CRYPTD 1470801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 147156d76c96SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 147256d76c96SJussi Kivilinna select CRYPTO_SERPENT 147356d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 147456d76c96SJussi Kivilinna select CRYPTO_LRW 147556d76c96SJussi Kivilinna select CRYPTO_XTS 147656d76c96SJussi Kivilinna help 147756d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 147856d76c96SJussi Kivilinna 147956d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 148056d76c96SJussi Kivilinna of 8 bits. 148156d76c96SJussi Kivilinna 148256d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 148356d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 148456d76c96SJussi Kivilinna 148556d76c96SJussi Kivilinna See also: 148656d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 148756d76c96SJussi Kivilinna 1488584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1489584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1490584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1491584fffc8SSebastian Siewior help 1492584fffc8SSebastian Siewior TEA cipher algorithm. 1493584fffc8SSebastian Siewior 1494584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1495584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1496584fffc8SSebastian Siewior little memory. 1497584fffc8SSebastian Siewior 1498584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1499584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1500584fffc8SSebastian Siewior in the TEA algorithm. 1501584fffc8SSebastian Siewior 1502584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1503584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1504584fffc8SSebastian Siewior 1505584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1506584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1507584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1508584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1509584fffc8SSebastian Siewior help 1510584fffc8SSebastian Siewior Twofish cipher algorithm. 1511584fffc8SSebastian Siewior 1512584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1513584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1514584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1515584fffc8SSebastian Siewior bits. 1516584fffc8SSebastian Siewior 1517584fffc8SSebastian Siewior See also: 1518584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1519584fffc8SSebastian Siewior 1520584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1521584fffc8SSebastian Siewior tristate 1522584fffc8SSebastian Siewior help 1523584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1524584fffc8SSebastian Siewior generic c and the assembler implementations. 1525584fffc8SSebastian Siewior 1526584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1527584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1528584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1529584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1530584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1531584fffc8SSebastian Siewior help 1532584fffc8SSebastian Siewior Twofish cipher algorithm. 1533584fffc8SSebastian Siewior 1534584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1535584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1536584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1537584fffc8SSebastian Siewior bits. 1538584fffc8SSebastian Siewior 1539584fffc8SSebastian Siewior See also: 1540584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1541584fffc8SSebastian Siewior 1542584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1543584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1544584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1545584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1546584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1547584fffc8SSebastian Siewior help 1548584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1549584fffc8SSebastian Siewior 1550584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1551584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1552584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1553584fffc8SSebastian Siewior bits. 1554584fffc8SSebastian Siewior 1555584fffc8SSebastian Siewior See also: 1556584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1557584fffc8SSebastian Siewior 15588280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 15598280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1560f21a7c19SAl Viro depends on X86 && 64BIT 15618280daadSJussi Kivilinna select CRYPTO_ALGAPI 15628280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 15638280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1564414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1565e7cda5d2SJussi Kivilinna select CRYPTO_LRW 1566e7cda5d2SJussi Kivilinna select CRYPTO_XTS 15678280daadSJussi Kivilinna help 15688280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 15698280daadSJussi Kivilinna 15708280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 15718280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 15728280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 15738280daadSJussi Kivilinna bits. 15748280daadSJussi Kivilinna 15758280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 15768280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 15778280daadSJussi Kivilinna 15788280daadSJussi Kivilinna See also: 15798280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 15808280daadSJussi Kivilinna 1581107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1582107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1583107778b5SJohannes Goetzfried depends on X86 && 64BIT 1584107778b5SJohannes Goetzfried select CRYPTO_ALGAPI 1585107778b5SJohannes Goetzfried select CRYPTO_CRYPTD 1586801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1587a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1588107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1589107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1590107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1591107778b5SJohannes Goetzfried select CRYPTO_LRW 1592107778b5SJohannes Goetzfried select CRYPTO_XTS 1593107778b5SJohannes Goetzfried help 1594107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1595107778b5SJohannes Goetzfried 1596107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1597107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1598107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1599107778b5SJohannes Goetzfried bits. 1600107778b5SJohannes Goetzfried 1601107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1602107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1603107778b5SJohannes Goetzfried 1604107778b5SJohannes Goetzfried See also: 1605107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1606107778b5SJohannes Goetzfried 1607584fffc8SSebastian Siewiorcomment "Compression" 1608584fffc8SSebastian Siewior 16091da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16101da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1611cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1612f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16131da177e4SLinus Torvalds select ZLIB_INFLATE 16141da177e4SLinus Torvalds select ZLIB_DEFLATE 16151da177e4SLinus Torvalds help 16161da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16171da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16181da177e4SLinus Torvalds 16191da177e4SLinus Torvalds You will most probably want this if using IPSec. 16201da177e4SLinus Torvalds 16210b77abb3SZoltan Sogorconfig CRYPTO_LZO 16220b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16230b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1624ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16250b77abb3SZoltan Sogor select LZO_COMPRESS 16260b77abb3SZoltan Sogor select LZO_DECOMPRESS 16270b77abb3SZoltan Sogor help 16280b77abb3SZoltan Sogor This is the LZO algorithm. 16290b77abb3SZoltan Sogor 163035a1fc18SSeth Jenningsconfig CRYPTO_842 163135a1fc18SSeth Jennings tristate "842 compression algorithm" 16322062c5b6SDan Streetman select CRYPTO_ALGAPI 16336a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16342062c5b6SDan Streetman select 842_COMPRESS 16352062c5b6SDan Streetman select 842_DECOMPRESS 163635a1fc18SSeth Jennings help 163735a1fc18SSeth Jennings This is the 842 algorithm. 163835a1fc18SSeth Jennings 16390ea8530dSChanho Minconfig CRYPTO_LZ4 16400ea8530dSChanho Min tristate "LZ4 compression algorithm" 16410ea8530dSChanho Min select CRYPTO_ALGAPI 16428cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16430ea8530dSChanho Min select LZ4_COMPRESS 16440ea8530dSChanho Min select LZ4_DECOMPRESS 16450ea8530dSChanho Min help 16460ea8530dSChanho Min This is the LZ4 algorithm. 16470ea8530dSChanho Min 16480ea8530dSChanho Minconfig CRYPTO_LZ4HC 16490ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16500ea8530dSChanho Min select CRYPTO_ALGAPI 165191d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16520ea8530dSChanho Min select LZ4HC_COMPRESS 16530ea8530dSChanho Min select LZ4_DECOMPRESS 16540ea8530dSChanho Min help 16550ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16560ea8530dSChanho Min 165717f0f4a4SNeil Hormancomment "Random Number Generation" 165817f0f4a4SNeil Horman 165917f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 166017f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 166117f0f4a4SNeil Horman select CRYPTO_AES 166217f0f4a4SNeil Horman select CRYPTO_RNG 166317f0f4a4SNeil Horman help 166417f0f4a4SNeil Horman This option enables the generic pseudo random number generator 166517f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 16667dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 16677dd607e8SJiri Kosina CRYPTO_FIPS is selected 166817f0f4a4SNeil Horman 1669f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1670419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1671419090c6SStephan Mueller help 1672419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1673419090c6SStephan Mueller more of the DRBG types must be selected. 1674419090c6SStephan Mueller 1675f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1676419090c6SStephan Mueller 1677419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1678401e4238SHerbert Xu bool 1679419090c6SStephan Mueller default y 1680419090c6SStephan Mueller select CRYPTO_HMAC 1681826775bbSHerbert Xu select CRYPTO_SHA256 1682419090c6SStephan Mueller 1683419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1684419090c6SStephan Mueller bool "Enable Hash DRBG" 1685826775bbSHerbert Xu select CRYPTO_SHA256 1686419090c6SStephan Mueller help 1687419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1688419090c6SStephan Mueller 1689419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1690419090c6SStephan Mueller bool "Enable CTR DRBG" 1691419090c6SStephan Mueller select CRYPTO_AES 169235591285SStephan Mueller depends on CRYPTO_CTR 1693419090c6SStephan Mueller help 1694419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1695419090c6SStephan Mueller 1696f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1697f2c89a10SHerbert Xu tristate 1698401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1699f2c89a10SHerbert Xu select CRYPTO_RNG 1700bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1701f2c89a10SHerbert Xu 1702f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1703419090c6SStephan Mueller 1704bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1705bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17062f313e02SArnd Bergmann select CRYPTO_RNG 1707bb5530e4SStephan Mueller help 1708bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1709bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1710bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1711bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1712bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1713bb5530e4SStephan Mueller 171403c8efc1SHerbert Xuconfig CRYPTO_USER_API 171503c8efc1SHerbert Xu tristate 171603c8efc1SHerbert Xu 1717fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1718fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17197451708fSHerbert Xu depends on NET 1720fe869cdbSHerbert Xu select CRYPTO_HASH 1721fe869cdbSHerbert Xu select CRYPTO_USER_API 1722fe869cdbSHerbert Xu help 1723fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1724fe869cdbSHerbert Xu algorithms. 1725fe869cdbSHerbert Xu 17268ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17278ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17287451708fSHerbert Xu depends on NET 17298ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17308ff59090SHerbert Xu select CRYPTO_USER_API 17318ff59090SHerbert Xu help 17328ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17338ff59090SHerbert Xu key cipher algorithms. 17348ff59090SHerbert Xu 17352f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17362f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17372f375538SStephan Mueller depends on NET 17382f375538SStephan Mueller select CRYPTO_RNG 17392f375538SStephan Mueller select CRYPTO_USER_API 17402f375538SStephan Mueller help 17412f375538SStephan Mueller This option enables the user-spaces interface for random 17422f375538SStephan Mueller number generator algorithms. 17432f375538SStephan Mueller 1744b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1745b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1746b64a2d95SHerbert Xu depends on NET 1747b64a2d95SHerbert Xu select CRYPTO_AEAD 1748b64a2d95SHerbert Xu select CRYPTO_USER_API 1749b64a2d95SHerbert Xu help 1750b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1751b64a2d95SHerbert Xu cipher algorithms. 1752b64a2d95SHerbert Xu 1753ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1754ee08997fSDmitry Kasatkin bool 1755ee08997fSDmitry Kasatkin 17561da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1757964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1758cfc411e7SDavid Howellssource certs/Kconfig 17591da177e4SLinus Torvalds 1760cce9e06dSHerbert Xuendif # if CRYPTO 1761