1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 116cfc2bb32STadeusz Strukconfig CRYPTO_RSA 117cfc2bb32STadeusz Struk tristate "RSA algorithm" 118425e0172STadeusz Struk select CRYPTO_AKCIPHER 11958446fefSTadeusz Struk select CRYPTO_MANAGER 120cfc2bb32STadeusz Struk select MPILIB 121cfc2bb32STadeusz Struk select ASN1 122cfc2bb32STadeusz Struk help 123cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 124cfc2bb32STadeusz Struk 125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 126802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 127802c7f1cSSalvatore Benedetto select CRYPTO_KPP 128802c7f1cSSalvatore Benedetto select MPILIB 129802c7f1cSSalvatore Benedetto help 130802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 131802c7f1cSSalvatore Benedetto 1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1333c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 134b5b90077SHauke Mehrtens select CRYPTO_KPP 1356755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1363c4b2390SSalvatore Benedetto help 1373c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 138802c7f1cSSalvatore Benedetto 1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1402b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1416a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1422b8c19dbSHerbert Xu help 1432b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1442b8c19dbSHerbert Xu cbc(aes). 1452b8c19dbSHerbert Xu 1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1476a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1486a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1496a0fcbb4SHerbert Xu select CRYPTO_HASH2 1506a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 151946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1524e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1532ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1546a0fcbb4SHerbert Xu 155a38f7907SSteffen Klassertconfig CRYPTO_USER 156a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1575db017aaSHerbert Xu depends on NET 158a38f7907SSteffen Klassert select CRYPTO_MANAGER 159a38f7907SSteffen Klassert help 160d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 161a38f7907SSteffen Klassert cbc(aes). 162a38f7907SSteffen Klassert 163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 164326a6346SHerbert Xu bool "Disable run-time self tests" 16500ca28a5SHerbert Xu default y 16600ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1670b767f96SAlexander Shishkin help 168326a6346SHerbert Xu Disable run-time self tests that normally take place at 169326a6346SHerbert Xu algorithm registration. 1700b767f96SAlexander Shishkin 171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 175584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 176584fffc8SSebastian Siewior option will be selected automatically if you select such a 177584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 178584fffc8SSebastian Siewior an external module that requires these functions. 179584fffc8SSebastian Siewior 180584fffc8SSebastian Siewiorconfig CRYPTO_NULL 181584fffc8SSebastian Siewior tristate "Null algorithms" 182149a3971SHerbert Xu select CRYPTO_NULL2 183584fffc8SSebastian Siewior help 184584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 185584fffc8SSebastian Siewior 186149a3971SHerbert Xuconfig CRYPTO_NULL2 187dd43c4e9SHerbert Xu tristate 188149a3971SHerbert Xu select CRYPTO_ALGAPI2 189149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 190149a3971SHerbert Xu select CRYPTO_HASH2 191149a3971SHerbert Xu 1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1933b4afaf2SKees Cook tristate "Parallel crypto engine" 1943b4afaf2SKees Cook depends on SMP 1955068c7a8SSteffen Klassert select PADATA 1965068c7a8SSteffen Klassert select CRYPTO_MANAGER 1975068c7a8SSteffen Klassert select CRYPTO_AEAD 1985068c7a8SSteffen Klassert help 1995068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2005068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2015068c7a8SSteffen Klassert 20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20325c38d3fSHuang Ying tristate 20425c38d3fSHuang Ying 205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 206584fffc8SSebastian Siewior tristate "Software async crypto daemon" 207584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 208b8a28251SLoc Ho select CRYPTO_HASH 209584fffc8SSebastian Siewior select CRYPTO_MANAGER 210254eff77SHuang Ying select CRYPTO_WORKQUEUE 211584fffc8SSebastian Siewior help 212584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 213584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 214584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 215584fffc8SSebastian Siewior 2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2171e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2181e65b81aSTim Chen select CRYPTO_BLKCIPHER 2191e65b81aSTim Chen select CRYPTO_HASH 2201e65b81aSTim Chen select CRYPTO_MANAGER 2211e65b81aSTim Chen select CRYPTO_WORKQUEUE 2221e65b81aSTim Chen help 2231e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2241e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2251e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2261e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2271e65b81aSTim Chen in the context of this kernel thread and drivers can post 2280e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2291e65b81aSTim Chen 230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 231584fffc8SSebastian Siewior tristate "Authenc support" 232584fffc8SSebastian Siewior select CRYPTO_AEAD 233584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 234584fffc8SSebastian Siewior select CRYPTO_MANAGER 235584fffc8SSebastian Siewior select CRYPTO_HASH 236e94c6a7aSHerbert Xu select CRYPTO_NULL 237584fffc8SSebastian Siewior help 238584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 239584fffc8SSebastian Siewior This is required for IPSec. 240584fffc8SSebastian Siewior 241584fffc8SSebastian Siewiorconfig CRYPTO_TEST 242584fffc8SSebastian Siewior tristate "Testing module" 243584fffc8SSebastian Siewior depends on m 244da7f033dSHerbert Xu select CRYPTO_MANAGER 245584fffc8SSebastian Siewior help 246584fffc8SSebastian Siewior Quick & dirty crypto test module. 247584fffc8SSebastian Siewior 248266d0516SHerbert Xuconfig CRYPTO_SIMD 249266d0516SHerbert Xu tristate 250266d0516SHerbert Xu select CRYPTO_CRYPTD 251266d0516SHerbert Xu 252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 253596d8750SJussi Kivilinna tristate 254596d8750SJussi Kivilinna depends on X86 255065ce327SHerbert Xu select CRYPTO_BLKCIPHER 256596d8750SJussi Kivilinna 257735d37b5SBaolin Wangconfig CRYPTO_ENGINE 258735d37b5SBaolin Wang tristate 259735d37b5SBaolin Wang 260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 261584fffc8SSebastian Siewior 262584fffc8SSebastian Siewiorconfig CRYPTO_CCM 263584fffc8SSebastian Siewior tristate "CCM support" 264584fffc8SSebastian Siewior select CRYPTO_CTR 265f15f05b0SArd Biesheuvel select CRYPTO_HASH 266584fffc8SSebastian Siewior select CRYPTO_AEAD 267584fffc8SSebastian Siewior help 268584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 269584fffc8SSebastian Siewior 270584fffc8SSebastian Siewiorconfig CRYPTO_GCM 271584fffc8SSebastian Siewior tristate "GCM/GMAC support" 272584fffc8SSebastian Siewior select CRYPTO_CTR 273584fffc8SSebastian Siewior select CRYPTO_AEAD 2749382d97aSHuang Ying select CRYPTO_GHASH 2759489667dSJussi Kivilinna select CRYPTO_NULL 276584fffc8SSebastian Siewior help 277584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 278584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 279584fffc8SSebastian Siewior 28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28171ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28271ebc4d1SMartin Willi select CRYPTO_CHACHA20 28371ebc4d1SMartin Willi select CRYPTO_POLY1305 28471ebc4d1SMartin Willi select CRYPTO_AEAD 28571ebc4d1SMartin Willi help 28671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28771ebc4d1SMartin Willi 28871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 28971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29071ebc4d1SMartin Willi IETF protocols. 29171ebc4d1SMartin Willi 292584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 293584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 294584fffc8SSebastian Siewior select CRYPTO_AEAD 295584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 296856e3f40SHerbert Xu select CRYPTO_NULL 297401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 298584fffc8SSebastian Siewior help 299584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 300584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 301584fffc8SSebastian Siewior 302a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 303a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 304a10f554fSHerbert Xu select CRYPTO_AEAD 305a10f554fSHerbert Xu select CRYPTO_NULL 306401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3073491244cSHerbert Xu default m 308a10f554fSHerbert Xu help 309a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 310a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 311a10f554fSHerbert Xu algorithm for CBC. 312a10f554fSHerbert Xu 313584fffc8SSebastian Siewiorcomment "Block modes" 314584fffc8SSebastian Siewior 315584fffc8SSebastian Siewiorconfig CRYPTO_CBC 316584fffc8SSebastian Siewior tristate "CBC support" 317584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 318584fffc8SSebastian Siewior select CRYPTO_MANAGER 319584fffc8SSebastian Siewior help 320584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 321584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 322584fffc8SSebastian Siewior 323*a7d85e06SJames Bottomleyconfig CRYPTO_CFB 324*a7d85e06SJames Bottomley tristate "CFB support" 325*a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 326*a7d85e06SJames Bottomley select CRYPTO_MANAGER 327*a7d85e06SJames Bottomley help 328*a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 329*a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 330*a7d85e06SJames Bottomley 331584fffc8SSebastian Siewiorconfig CRYPTO_CTR 332584fffc8SSebastian Siewior tristate "CTR support" 333584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 334584fffc8SSebastian Siewior select CRYPTO_SEQIV 335584fffc8SSebastian Siewior select CRYPTO_MANAGER 336584fffc8SSebastian Siewior help 337584fffc8SSebastian Siewior CTR: Counter mode 338584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 339584fffc8SSebastian Siewior 340584fffc8SSebastian Siewiorconfig CRYPTO_CTS 341584fffc8SSebastian Siewior tristate "CTS support" 342584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 343584fffc8SSebastian Siewior help 344584fffc8SSebastian Siewior CTS: Cipher Text Stealing 345584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 346584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 347584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 348584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 349584fffc8SSebastian Siewior for AES encryption. 350584fffc8SSebastian Siewior 351584fffc8SSebastian Siewiorconfig CRYPTO_ECB 352584fffc8SSebastian Siewior tristate "ECB support" 353584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 354584fffc8SSebastian Siewior select CRYPTO_MANAGER 355584fffc8SSebastian Siewior help 356584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 357584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 358584fffc8SSebastian Siewior the input block by block. 359584fffc8SSebastian Siewior 360584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3612470a2b2SJussi Kivilinna tristate "LRW support" 362584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 363584fffc8SSebastian Siewior select CRYPTO_MANAGER 364584fffc8SSebastian Siewior select CRYPTO_GF128MUL 365584fffc8SSebastian Siewior help 366584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 367584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 368584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 369584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 370584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 371584fffc8SSebastian Siewior 372584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 373584fffc8SSebastian Siewior tristate "PCBC support" 374584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 375584fffc8SSebastian Siewior select CRYPTO_MANAGER 376584fffc8SSebastian Siewior help 377584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 378584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 379584fffc8SSebastian Siewior 380584fffc8SSebastian Siewiorconfig CRYPTO_XTS 3815bcf8e6dSJussi Kivilinna tristate "XTS support" 382584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 383584fffc8SSebastian Siewior select CRYPTO_MANAGER 38412cb3a1cSMilan Broz select CRYPTO_ECB 385584fffc8SSebastian Siewior help 386584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 387584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 388584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 389584fffc8SSebastian Siewior 3901c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 3911c49678eSStephan Mueller tristate "Key wrapping support" 3921c49678eSStephan Mueller select CRYPTO_BLKCIPHER 3931c49678eSStephan Mueller help 3941c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 3951c49678eSStephan Mueller padding. 3961c49678eSStephan Mueller 397584fffc8SSebastian Siewiorcomment "Hash modes" 398584fffc8SSebastian Siewior 39993b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 40093b5e86aSJussi Kivilinna tristate "CMAC support" 40193b5e86aSJussi Kivilinna select CRYPTO_HASH 40293b5e86aSJussi Kivilinna select CRYPTO_MANAGER 40393b5e86aSJussi Kivilinna help 40493b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 40593b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 40693b5e86aSJussi Kivilinna 40793b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 40893b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 40993b5e86aSJussi Kivilinna 4101da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4118425165dSHerbert Xu tristate "HMAC support" 4120796ae06SHerbert Xu select CRYPTO_HASH 41343518407SHerbert Xu select CRYPTO_MANAGER 4141da177e4SLinus Torvalds help 4151da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4161da177e4SLinus Torvalds This is required for IPSec. 4171da177e4SLinus Torvalds 418333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 419333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 420333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 421333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 422333b0d7eSKazunori MIYAZAWA help 423333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 424333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 425333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 426333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 427333b0d7eSKazunori MIYAZAWA 428f1939f7cSShane Wangconfig CRYPTO_VMAC 429f1939f7cSShane Wang tristate "VMAC support" 430f1939f7cSShane Wang select CRYPTO_HASH 431f1939f7cSShane Wang select CRYPTO_MANAGER 432f1939f7cSShane Wang help 433f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 434f1939f7cSShane Wang very high speed on 64-bit architectures. 435f1939f7cSShane Wang 436f1939f7cSShane Wang See also: 437f1939f7cSShane Wang <http://fastcrypto.org/vmac> 438f1939f7cSShane Wang 439584fffc8SSebastian Siewiorcomment "Digest" 440584fffc8SSebastian Siewior 441584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 442584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4435773a3e6SHerbert Xu select CRYPTO_HASH 4446a0962b2SDarrick J. Wong select CRC32 4451da177e4SLinus Torvalds help 446584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 447584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 44869c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4491da177e4SLinus Torvalds 4508cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4518cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4528cb51ba8SAustin Zhang depends on X86 4538cb51ba8SAustin Zhang select CRYPTO_HASH 4548cb51ba8SAustin Zhang help 4558cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4568cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4578cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4588cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4598cb51ba8SAustin Zhang gain performance compared with software implementation. 4608cb51ba8SAustin Zhang Module will be crc32c-intel. 4618cb51ba8SAustin Zhang 4627cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4636dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 464c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4656dd7a82cSAnton Blanchard select CRYPTO_HASH 4666dd7a82cSAnton Blanchard select CRC32 4676dd7a82cSAnton Blanchard help 4686dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4696dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4706dd7a82cSAnton Blanchard and newer processors for improved performance. 4716dd7a82cSAnton Blanchard 4726dd7a82cSAnton Blanchard 473442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 474442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 475442a7c40SDavid S. Miller depends on SPARC64 476442a7c40SDavid S. Miller select CRYPTO_HASH 477442a7c40SDavid S. Miller select CRC32 478442a7c40SDavid S. Miller help 479442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 480442a7c40SDavid S. Miller when available. 481442a7c40SDavid S. Miller 48278c37d19SAlexander Boykoconfig CRYPTO_CRC32 48378c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 48478c37d19SAlexander Boyko select CRYPTO_HASH 48578c37d19SAlexander Boyko select CRC32 48678c37d19SAlexander Boyko help 48778c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 48878c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 48978c37d19SAlexander Boyko 49078c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 49178c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 49278c37d19SAlexander Boyko depends on X86 49378c37d19SAlexander Boyko select CRYPTO_HASH 49478c37d19SAlexander Boyko select CRC32 49578c37d19SAlexander Boyko help 49678c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 49778c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 49878c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 49978c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 50078c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 50178c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 50278c37d19SAlexander Boyko 50368411521SHerbert Xuconfig CRYPTO_CRCT10DIF 50468411521SHerbert Xu tristate "CRCT10DIF algorithm" 50568411521SHerbert Xu select CRYPTO_HASH 50668411521SHerbert Xu help 50768411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 50868411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 50968411521SHerbert Xu transforms to be used if they are available. 51068411521SHerbert Xu 51168411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 51268411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 51368411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 51468411521SHerbert Xu select CRYPTO_HASH 51568411521SHerbert Xu help 51668411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 51768411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 51868411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 51968411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 52068411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 52168411521SHerbert Xu 522b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 523b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 524b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 525b01df1c1SDaniel Axtens select CRYPTO_HASH 526b01df1c1SDaniel Axtens help 527b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 528b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 529b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 530b01df1c1SDaniel Axtens 531146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 532146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 533146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 534146c8688SDaniel Axtens help 535146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 536146c8688SDaniel Axtens POWER8 vpmsum instructions. 537146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 538146c8688SDaniel Axtens 5392cdc6899SHuang Yingconfig CRYPTO_GHASH 5402cdc6899SHuang Ying tristate "GHASH digest algorithm" 5412cdc6899SHuang Ying select CRYPTO_GF128MUL 542578c60fbSArnd Bergmann select CRYPTO_HASH 5432cdc6899SHuang Ying help 5442cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5452cdc6899SHuang Ying 546f979e014SMartin Williconfig CRYPTO_POLY1305 547f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 548578c60fbSArnd Bergmann select CRYPTO_HASH 549f979e014SMartin Willi help 550f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 551f979e014SMartin Willi 552f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 553f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 554f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 555f979e014SMartin Willi 556c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 557b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 558c70f4abeSMartin Willi depends on X86 && 64BIT 559c70f4abeSMartin Willi select CRYPTO_POLY1305 560c70f4abeSMartin Willi help 561c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 562c70f4abeSMartin Willi 563c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 564c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 565c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 566c70f4abeSMartin Willi instructions. 567c70f4abeSMartin Willi 5681da177e4SLinus Torvaldsconfig CRYPTO_MD4 5691da177e4SLinus Torvalds tristate "MD4 digest algorithm" 570808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 5711da177e4SLinus Torvalds help 5721da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 5731da177e4SLinus Torvalds 5741da177e4SLinus Torvaldsconfig CRYPTO_MD5 5751da177e4SLinus Torvalds tristate "MD5 digest algorithm" 57614b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 5771da177e4SLinus Torvalds help 5781da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 5791da177e4SLinus Torvalds 580d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 581d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 582d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 583d69e75deSAaro Koskinen select CRYPTO_MD5 584d69e75deSAaro Koskinen select CRYPTO_HASH 585d69e75deSAaro Koskinen help 586d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 587d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 588d69e75deSAaro Koskinen 589e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 590e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 591e8e59953SMarkus Stockhausen depends on PPC 592e8e59953SMarkus Stockhausen select CRYPTO_HASH 593e8e59953SMarkus Stockhausen help 594e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 595e8e59953SMarkus Stockhausen in PPC assembler. 596e8e59953SMarkus Stockhausen 597fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 598fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 599fa4dfedcSDavid S. Miller depends on SPARC64 600fa4dfedcSDavid S. Miller select CRYPTO_MD5 601fa4dfedcSDavid S. Miller select CRYPTO_HASH 602fa4dfedcSDavid S. Miller help 603fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 604fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 605fa4dfedcSDavid S. Miller 606584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 607584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 60819e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 609584fffc8SSebastian Siewior help 610584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 611584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 612584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 613584fffc8SSebastian Siewior of the algorithm. 614584fffc8SSebastian Siewior 61582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 61682798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 6177c4468bcSHerbert Xu select CRYPTO_HASH 61882798f90SAdrian-Ken Rueegsegger help 61982798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 62082798f90SAdrian-Ken Rueegsegger 62182798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 62235ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 62382798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 62482798f90SAdrian-Ken Rueegsegger 62582798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6266d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 62782798f90SAdrian-Ken Rueegsegger 62882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 62982798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 630e5835fbaSHerbert Xu select CRYPTO_HASH 63182798f90SAdrian-Ken Rueegsegger help 63282798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 63382798f90SAdrian-Ken Rueegsegger 63482798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 63582798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 636b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 637b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 63882798f90SAdrian-Ken Rueegsegger 639b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 640b6d44341SAdrian Bunk against RIPEMD-160. 641534fe2c1SAdrian-Ken Rueegsegger 642534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6436d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 644534fe2c1SAdrian-Ken Rueegsegger 645534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 646534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 647d8a5e2e9SHerbert Xu select CRYPTO_HASH 648534fe2c1SAdrian-Ken Rueegsegger help 649b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 650b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 651b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 652b6d44341SAdrian Bunk (than RIPEMD-128). 653534fe2c1SAdrian-Ken Rueegsegger 654534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6556d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 656534fe2c1SAdrian-Ken Rueegsegger 657534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 658534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6593b8efb4cSHerbert Xu select CRYPTO_HASH 660534fe2c1SAdrian-Ken Rueegsegger help 661b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 662b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 663b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 664b6d44341SAdrian Bunk (than RIPEMD-160). 665534fe2c1SAdrian-Ken Rueegsegger 66682798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6676d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 66882798f90SAdrian-Ken Rueegsegger 6691da177e4SLinus Torvaldsconfig CRYPTO_SHA1 6701da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 67154ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 6721da177e4SLinus Torvalds help 6731da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 6741da177e4SLinus Torvalds 67566be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 676e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 67766be8951SMathias Krause depends on X86 && 64BIT 67866be8951SMathias Krause select CRYPTO_SHA1 67966be8951SMathias Krause select CRYPTO_HASH 68066be8951SMathias Krause help 68166be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 68266be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 683e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 684e38b6b7fStim when available. 68566be8951SMathias Krause 6868275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 687e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 6888275d1aaSTim Chen depends on X86 && 64BIT 6898275d1aaSTim Chen select CRYPTO_SHA256 6908275d1aaSTim Chen select CRYPTO_HASH 6918275d1aaSTim Chen help 6928275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 6938275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 6948275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 695e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 696e38b6b7fStim Instructions) when available. 6978275d1aaSTim Chen 69887de4579STim Chenconfig CRYPTO_SHA512_SSSE3 69987de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 70087de4579STim Chen depends on X86 && 64BIT 70187de4579STim Chen select CRYPTO_SHA512 70287de4579STim Chen select CRYPTO_HASH 70387de4579STim Chen help 70487de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 70587de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 70687de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 70787de4579STim Chen version 2 (AVX2) instructions, when available. 70887de4579STim Chen 709efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 710efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 711efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 712efdb6f6eSAaro Koskinen select CRYPTO_SHA1 713efdb6f6eSAaro Koskinen select CRYPTO_HASH 714efdb6f6eSAaro Koskinen help 715efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 716efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 717efdb6f6eSAaro Koskinen 7184ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 7194ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 7204ff28d4cSDavid S. Miller depends on SPARC64 7214ff28d4cSDavid S. Miller select CRYPTO_SHA1 7224ff28d4cSDavid S. Miller select CRYPTO_HASH 7234ff28d4cSDavid S. Miller help 7244ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7254ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7264ff28d4cSDavid S. Miller 727323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 728323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 729323a6bf1SMichael Ellerman depends on PPC 730323a6bf1SMichael Ellerman help 731323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 732323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 733323a6bf1SMichael Ellerman 734d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 735d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 736d9850fc5SMarkus Stockhausen depends on PPC && SPE 737d9850fc5SMarkus Stockhausen help 738d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 739d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 740d9850fc5SMarkus Stockhausen 7411e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7421e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7431e65b81aSTim Chen depends on X86 && 64BIT 7441e65b81aSTim Chen select CRYPTO_SHA1 7451e65b81aSTim Chen select CRYPTO_HASH 7461e65b81aSTim Chen select CRYPTO_MCRYPTD 7471e65b81aSTim Chen help 7481e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7491e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7501e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7511e65b81aSTim Chen better throughput. It should not be enabled by default but 7521e65b81aSTim Chen used when there is significant amount of work to keep the keep 7531e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7541e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7551e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7561e65b81aSTim Chen 7579be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7589be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7599be7e244SMegha Dey depends on X86 && 64BIT 7609be7e244SMegha Dey select CRYPTO_SHA256 7619be7e244SMegha Dey select CRYPTO_HASH 7629be7e244SMegha Dey select CRYPTO_MCRYPTD 7639be7e244SMegha Dey help 7649be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7659be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7669be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7679be7e244SMegha Dey better throughput. It should not be enabled by default but 7689be7e244SMegha Dey used when there is significant amount of work to keep the keep 7699be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 7709be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 7719be7e244SMegha Dey process the crypto jobs, adding a slight latency. 7729be7e244SMegha Dey 773026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 774026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 775026bb8aaSMegha Dey depends on X86 && 64BIT 776026bb8aaSMegha Dey select CRYPTO_SHA512 777026bb8aaSMegha Dey select CRYPTO_HASH 778026bb8aaSMegha Dey select CRYPTO_MCRYPTD 779026bb8aaSMegha Dey help 780026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 781026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 782026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 783026bb8aaSMegha Dey better throughput. It should not be enabled by default but 784026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 785026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 786026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 787026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 788026bb8aaSMegha Dey 7891da177e4SLinus Torvaldsconfig CRYPTO_SHA256 790cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 79150e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 7921da177e4SLinus Torvalds help 7931da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 7941da177e4SLinus Torvalds 7951da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 7961da177e4SLinus Torvalds security against collision attacks. 7971da177e4SLinus Torvalds 798cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 799cd12fb90SJonathan Lynch of security against collision attacks. 800cd12fb90SJonathan Lynch 8012ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 8022ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 8032ecc1e95SMarkus Stockhausen depends on PPC && SPE 8042ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 8052ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8062ecc1e95SMarkus Stockhausen help 8072ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8082ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 8092ecc1e95SMarkus Stockhausen 810efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 811efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 812efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 813efdb6f6eSAaro Koskinen select CRYPTO_SHA256 814efdb6f6eSAaro Koskinen select CRYPTO_HASH 815efdb6f6eSAaro Koskinen help 816efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 817efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 818efdb6f6eSAaro Koskinen 81986c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 82086c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 82186c93b24SDavid S. Miller depends on SPARC64 82286c93b24SDavid S. Miller select CRYPTO_SHA256 82386c93b24SDavid S. Miller select CRYPTO_HASH 82486c93b24SDavid S. Miller help 82586c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 82686c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 82786c93b24SDavid S. Miller 8281da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8291da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 830bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8311da177e4SLinus Torvalds help 8321da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8331da177e4SLinus Torvalds 8341da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8351da177e4SLinus Torvalds security against collision attacks. 8361da177e4SLinus Torvalds 8371da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8381da177e4SLinus Torvalds of security against collision attacks. 8391da177e4SLinus Torvalds 840efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 841efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 842efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 843efdb6f6eSAaro Koskinen select CRYPTO_SHA512 844efdb6f6eSAaro Koskinen select CRYPTO_HASH 845efdb6f6eSAaro Koskinen help 846efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 847efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 848efdb6f6eSAaro Koskinen 849775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 850775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 851775e0c69SDavid S. Miller depends on SPARC64 852775e0c69SDavid S. Miller select CRYPTO_SHA512 853775e0c69SDavid S. Miller select CRYPTO_HASH 854775e0c69SDavid S. Miller help 855775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 856775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 857775e0c69SDavid S. Miller 85853964b9eSJeff Garzikconfig CRYPTO_SHA3 85953964b9eSJeff Garzik tristate "SHA3 digest algorithm" 86053964b9eSJeff Garzik select CRYPTO_HASH 86153964b9eSJeff Garzik help 86253964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 86353964b9eSJeff Garzik cryptographic sponge function family called Keccak. 86453964b9eSJeff Garzik 86553964b9eSJeff Garzik References: 86653964b9eSJeff Garzik http://keccak.noekeon.org/ 86753964b9eSJeff Garzik 8684f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 8694f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 8704f0fc160SGilad Ben-Yossef select CRYPTO_HASH 8714f0fc160SGilad Ben-Yossef help 8724f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 8734f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 8744f0fc160SGilad Ben-Yossef 8754f0fc160SGilad Ben-Yossef References: 8764f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 8774f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 8784f0fc160SGilad Ben-Yossef 8791da177e4SLinus Torvaldsconfig CRYPTO_TGR192 8801da177e4SLinus Torvalds tristate "Tiger digest algorithms" 881f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 8821da177e4SLinus Torvalds help 8831da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 8841da177e4SLinus Torvalds 8851da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 8861da177e4SLinus Torvalds still having decent performance on 32-bit processors. 8871da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 8881da177e4SLinus Torvalds 8891da177e4SLinus Torvalds See also: 8901da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 8911da177e4SLinus Torvalds 892584fffc8SSebastian Siewiorconfig CRYPTO_WP512 893584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 8944946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 8951da177e4SLinus Torvalds help 896584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 8971da177e4SLinus Torvalds 898584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 899584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 9001da177e4SLinus Torvalds 9011da177e4SLinus Torvalds See also: 9026d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 9031da177e4SLinus Torvalds 9040e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 9050e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 9068af00860SRichard Weinberger depends on X86 && 64BIT 9070e1227d3SHuang Ying select CRYPTO_CRYPTD 9080e1227d3SHuang Ying help 9090e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 9100e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 9110e1227d3SHuang Ying 912584fffc8SSebastian Siewiorcomment "Ciphers" 9131da177e4SLinus Torvalds 9141da177e4SLinus Torvaldsconfig CRYPTO_AES 9151da177e4SLinus Torvalds tristate "AES cipher algorithms" 916cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9171da177e4SLinus Torvalds help 9181da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9191da177e4SLinus Torvalds algorithm. 9201da177e4SLinus Torvalds 9211da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9221da177e4SLinus Torvalds both hardware and software across a wide range of computing 9231da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9241da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9251da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9261da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9271da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9281da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9291da177e4SLinus Torvalds 9301da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9311da177e4SLinus Torvalds 9321da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 9331da177e4SLinus Torvalds 934b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 935b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 936b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 937b5e0b032SArd Biesheuvel help 938b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 939b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 940b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 941b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 942b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 943b5e0b032SArd Biesheuvel with a more dramatic performance hit) 944b5e0b032SArd Biesheuvel 945b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 946b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 947b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 948b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 949b5e0b032SArd Biesheuvel block. 950b5e0b032SArd Biesheuvel 9511da177e4SLinus Torvaldsconfig CRYPTO_AES_586 9521da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 953cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 954cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9555157dea8SSebastian Siewior select CRYPTO_AES 9561da177e4SLinus Torvalds help 9571da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9581da177e4SLinus Torvalds algorithm. 9591da177e4SLinus Torvalds 9601da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9611da177e4SLinus Torvalds both hardware and software across a wide range of computing 9621da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9631da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9641da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9651da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9661da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9671da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9681da177e4SLinus Torvalds 9691da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9701da177e4SLinus Torvalds 9711da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 9721da177e4SLinus Torvalds 973a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 974a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 975cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 976cce9e06dSHerbert Xu select CRYPTO_ALGAPI 97781190b32SSebastian Siewior select CRYPTO_AES 978a2a892a2SAndreas Steinmetz help 979a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 980a2a892a2SAndreas Steinmetz algorithm. 981a2a892a2SAndreas Steinmetz 982a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 983a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 984a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 985a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 986a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 987a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 988a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 989a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 990a2a892a2SAndreas Steinmetz 991a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 992a2a892a2SAndreas Steinmetz 993a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 994a2a892a2SAndreas Steinmetz 99554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 99654b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 9978af00860SRichard Weinberger depends on X86 99885671860SHerbert Xu select CRYPTO_AEAD 9990d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 10000d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 100154b6a1bdSHuang Ying select CRYPTO_ALGAPI 100285671860SHerbert Xu select CRYPTO_BLKCIPHER 10037643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 100485671860SHerbert Xu select CRYPTO_SIMD 100554b6a1bdSHuang Ying help 100654b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 100754b6a1bdSHuang Ying 100854b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 100954b6a1bdSHuang Ying algorithm. 101054b6a1bdSHuang Ying 101154b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 101254b6a1bdSHuang Ying both hardware and software across a wide range of computing 101354b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 101454b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 101554b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 101654b6a1bdSHuang Ying suited for restricted-space environments, in which it also 101754b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 101854b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 101954b6a1bdSHuang Ying 102054b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 102154b6a1bdSHuang Ying 102254b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 102354b6a1bdSHuang Ying 10240d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10250d258efbSMathias Krause for some popular block cipher mode is supported too, including 10260d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 10270d258efbSMathias Krause acceleration for CTR. 10282cf4ac8bSHuang Ying 10299bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10309bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10319bf4852dSDavid S. Miller depends on SPARC64 10329bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10339bf4852dSDavid S. Miller select CRYPTO_ALGAPI 10349bf4852dSDavid S. Miller help 10359bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10369bf4852dSDavid S. Miller 10379bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10389bf4852dSDavid S. Miller algorithm. 10399bf4852dSDavid S. Miller 10409bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10419bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10429bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10439bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10449bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10459bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10469bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10479bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10489bf4852dSDavid S. Miller 10499bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10509bf4852dSDavid S. Miller 10519bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10529bf4852dSDavid S. Miller 10539bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10549bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10559bf4852dSDavid S. Miller ECB and CBC. 10569bf4852dSDavid S. Miller 1057504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1058504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1059504c6143SMarkus Stockhausen depends on PPC && SPE 1060504c6143SMarkus Stockhausen help 1061504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1062504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1063504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1064504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1065504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1066504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1067504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1068504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1069504c6143SMarkus Stockhausen 10701da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 10711da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1072cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10731da177e4SLinus Torvalds help 10741da177e4SLinus Torvalds Anubis cipher algorithm. 10751da177e4SLinus Torvalds 10761da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 10771da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 10781da177e4SLinus Torvalds in the NESSIE competition. 10791da177e4SLinus Torvalds 10801da177e4SLinus Torvalds See also: 10816d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 10826d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 10831da177e4SLinus Torvalds 1084584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1085584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1086b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1087e2ee95b8SHye-Shik Chang help 1088584fffc8SSebastian Siewior ARC4 cipher algorithm. 1089e2ee95b8SHye-Shik Chang 1090584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1091584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1092584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1093584fffc8SSebastian Siewior weakness of the algorithm. 1094584fffc8SSebastian Siewior 1095584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1096584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1097584fffc8SSebastian Siewior select CRYPTO_ALGAPI 109852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1099584fffc8SSebastian Siewior help 1100584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1101584fffc8SSebastian Siewior 1102584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1103584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1104584fffc8SSebastian Siewior designed for use on "large microprocessors". 1105e2ee95b8SHye-Shik Chang 1106e2ee95b8SHye-Shik Chang See also: 1107584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1108584fffc8SSebastian Siewior 110952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 111052ba867cSJussi Kivilinna tristate 111152ba867cSJussi Kivilinna help 111252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 111352ba867cSJussi Kivilinna generic c and the assembler implementations. 111452ba867cSJussi Kivilinna 111552ba867cSJussi Kivilinna See also: 111652ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 111752ba867cSJussi Kivilinna 111864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 111964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1120f21a7c19SAl Viro depends on X86 && 64BIT 1121c1679171SEric Biggers select CRYPTO_BLKCIPHER 112264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 112364b94ceaSJussi Kivilinna help 112464b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 112564b94ceaSJussi Kivilinna 112664b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 112764b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 112864b94ceaSJussi Kivilinna designed for use on "large microprocessors". 112964b94ceaSJussi Kivilinna 113064b94ceaSJussi Kivilinna See also: 113164b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 113264b94ceaSJussi Kivilinna 1133584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1134584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1135584fffc8SSebastian Siewior depends on CRYPTO 1136584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1137584fffc8SSebastian Siewior help 1138584fffc8SSebastian Siewior Camellia cipher algorithms module. 1139584fffc8SSebastian Siewior 1140584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1141584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1142584fffc8SSebastian Siewior 1143584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1144584fffc8SSebastian Siewior 1145584fffc8SSebastian Siewior See also: 1146584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1147584fffc8SSebastian Siewior 11480b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11490b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1150f21a7c19SAl Viro depends on X86 && 64BIT 11510b95ec56SJussi Kivilinna depends on CRYPTO 11521af6d037SEric Biggers select CRYPTO_BLKCIPHER 1153964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11540b95ec56SJussi Kivilinna help 11550b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11560b95ec56SJussi Kivilinna 11570b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11580b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11590b95ec56SJussi Kivilinna 11600b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11610b95ec56SJussi Kivilinna 11620b95ec56SJussi Kivilinna See also: 11630b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11640b95ec56SJussi Kivilinna 1165d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1166d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1167d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1168d9b1d2e7SJussi Kivilinna depends on CRYPTO 116944893bc2SEric Biggers select CRYPTO_BLKCIPHER 1170d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 117144893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 117244893bc2SEric Biggers select CRYPTO_SIMD 1173d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1174d9b1d2e7SJussi Kivilinna help 1175d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1176d9b1d2e7SJussi Kivilinna 1177d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1178d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1179d9b1d2e7SJussi Kivilinna 1180d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1181d9b1d2e7SJussi Kivilinna 1182d9b1d2e7SJussi Kivilinna See also: 1183d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1184d9b1d2e7SJussi Kivilinna 1185f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1186f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1187f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1188f3f935a7SJussi Kivilinna depends on CRYPTO 1189f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1190f3f935a7SJussi Kivilinna help 1191f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1192f3f935a7SJussi Kivilinna 1193f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1194f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1195f3f935a7SJussi Kivilinna 1196f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1197f3f935a7SJussi Kivilinna 1198f3f935a7SJussi Kivilinna See also: 1199f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1200f3f935a7SJussi Kivilinna 120181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 120281658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 120381658ad0SDavid S. Miller depends on SPARC64 120481658ad0SDavid S. Miller depends on CRYPTO 120581658ad0SDavid S. Miller select CRYPTO_ALGAPI 120681658ad0SDavid S. Miller help 120781658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 120881658ad0SDavid S. Miller 120981658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 121081658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 121181658ad0SDavid S. Miller 121281658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 121381658ad0SDavid S. Miller 121481658ad0SDavid S. Miller See also: 121581658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 121681658ad0SDavid S. Miller 1217044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1218044ab525SJussi Kivilinna tristate 1219044ab525SJussi Kivilinna help 1220044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1221044ab525SJussi Kivilinna generic c and the assembler implementations. 1222044ab525SJussi Kivilinna 1223584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1224584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1225584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1226044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1227584fffc8SSebastian Siewior help 1228584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1229584fffc8SSebastian Siewior described in RFC2144. 1230584fffc8SSebastian Siewior 12314d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12324d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12334d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12341e63183aSEric Biggers select CRYPTO_BLKCIPHER 12354d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12361e63183aSEric Biggers select CRYPTO_CAST_COMMON 12371e63183aSEric Biggers select CRYPTO_SIMD 12384d6d6a2cSJohannes Goetzfried help 12394d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12404d6d6a2cSJohannes Goetzfried described in RFC2144. 12414d6d6a2cSJohannes Goetzfried 12424d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12434d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12444d6d6a2cSJohannes Goetzfried 1245584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1246584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1247584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1248044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1249584fffc8SSebastian Siewior help 1250584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1251584fffc8SSebastian Siewior described in RFC2612. 1252584fffc8SSebastian Siewior 12534ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12544ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12554ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12564bd96924SEric Biggers select CRYPTO_BLKCIPHER 12574ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12584bd96924SEric Biggers select CRYPTO_CAST_COMMON 12594bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 12604bd96924SEric Biggers select CRYPTO_SIMD 12614ea1277dSJohannes Goetzfried select CRYPTO_XTS 12624ea1277dSJohannes Goetzfried help 12634ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12644ea1277dSJohannes Goetzfried described in RFC2612. 12654ea1277dSJohannes Goetzfried 12664ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12674ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12684ea1277dSJohannes Goetzfried 1269584fffc8SSebastian Siewiorconfig CRYPTO_DES 1270584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1271584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1272584fffc8SSebastian Siewior help 1273584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1274584fffc8SSebastian Siewior 1275c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1276c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 127797da37b3SDave Jones depends on SPARC64 1278c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1279c5aac2dfSDavid S. Miller select CRYPTO_DES 1280c5aac2dfSDavid S. Miller help 1281c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1282c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1283c5aac2dfSDavid S. Miller 12846574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 12856574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 12866574e6c6SJussi Kivilinna depends on X86 && 64BIT 128709c0f03bSEric Biggers select CRYPTO_BLKCIPHER 12886574e6c6SJussi Kivilinna select CRYPTO_DES 12896574e6c6SJussi Kivilinna help 12906574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 12916574e6c6SJussi Kivilinna 12926574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 12936574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 12946574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 12956574e6c6SJussi Kivilinna one that processes three blocks parallel. 12966574e6c6SJussi Kivilinna 1297584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1298584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1299584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1300584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1301584fffc8SSebastian Siewior help 1302584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1303584fffc8SSebastian Siewior 1304584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1305584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1306584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1307584fffc8SSebastian Siewior help 1308584fffc8SSebastian Siewior Khazad cipher algorithm. 1309584fffc8SSebastian Siewior 1310584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1311584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1312584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1313584fffc8SSebastian Siewior 1314584fffc8SSebastian Siewior See also: 13156d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1316e2ee95b8SHye-Shik Chang 13172407d608STan Swee Hengconfig CRYPTO_SALSA20 13183b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13192407d608STan Swee Heng select CRYPTO_BLKCIPHER 13202407d608STan Swee Heng help 13212407d608STan Swee Heng Salsa20 stream cipher algorithm. 13222407d608STan Swee Heng 13232407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13242407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13252407d608STan Swee Heng 13262407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13272407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13281da177e4SLinus Torvalds 1329974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13303b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1331974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1332974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1333c9a3ff8fSEric Biggers select CRYPTO_SALSA20 1334974e4b75STan Swee Heng help 1335974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1336974e4b75STan Swee Heng 1337974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1338974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1339974e4b75STan Swee Heng 1340974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1341974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1342974e4b75STan Swee Heng 13439a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13443b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13459a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13469a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 1347c9a3ff8fSEric Biggers select CRYPTO_SALSA20 13489a7dafbbSTan Swee Heng help 13499a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13509a7dafbbSTan Swee Heng 13519a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13529a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13539a7dafbbSTan Swee Heng 13549a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13559a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13569a7dafbbSTan Swee Heng 1357c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1358c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1359c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1360c08d0e64SMartin Willi help 1361c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1362c08d0e64SMartin Willi 1363c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1364c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1365c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1366c08d0e64SMartin Willi 1367c08d0e64SMartin Willi See also: 1368c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1369c08d0e64SMartin Willi 1370c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13713d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1372c9320b6dSMartin Willi depends on X86 && 64BIT 1373c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1374c9320b6dSMartin Willi select CRYPTO_CHACHA20 1375c9320b6dSMartin Willi help 1376c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1377c9320b6dSMartin Willi 1378c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1379c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1380c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1381c9320b6dSMartin Willi 1382c9320b6dSMartin Willi See also: 1383c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1384c9320b6dSMartin Willi 1385584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1386584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1387584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1388584fffc8SSebastian Siewior help 1389584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1390584fffc8SSebastian Siewior 1391584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1392584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1393584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1394584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1395584fffc8SSebastian Siewior 1396584fffc8SSebastian Siewior See also: 1397584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1398584fffc8SSebastian Siewior 1399584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1400584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1401584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1402584fffc8SSebastian Siewior help 1403584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1404584fffc8SSebastian Siewior 1405584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1406584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1407584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1408584fffc8SSebastian Siewior 1409584fffc8SSebastian Siewior See also: 1410584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1411584fffc8SSebastian Siewior 1412937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1413937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1414937c30d7SJussi Kivilinna depends on X86 && 64BIT 1415e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1416596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1417937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1418e0f409dcSEric Biggers select CRYPTO_SIMD 1419937c30d7SJussi Kivilinna help 1420937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1421937c30d7SJussi Kivilinna 1422937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1423937c30d7SJussi Kivilinna of 8 bits. 1424937c30d7SJussi Kivilinna 14251e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1426937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1427937c30d7SJussi Kivilinna 1428937c30d7SJussi Kivilinna See also: 1429937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1430937c30d7SJussi Kivilinna 1431251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1432251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1433251496dbSJussi Kivilinna depends on X86 && !64BIT 1434e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1435596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1436251496dbSJussi Kivilinna select CRYPTO_SERPENT 1437e0f409dcSEric Biggers select CRYPTO_SIMD 1438251496dbSJussi Kivilinna help 1439251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1440251496dbSJussi Kivilinna 1441251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1442251496dbSJussi Kivilinna of 8 bits. 1443251496dbSJussi Kivilinna 1444251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1445251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1446251496dbSJussi Kivilinna 1447251496dbSJussi Kivilinna See also: 1448251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1449251496dbSJussi Kivilinna 14507efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14517efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14527efe4076SJohannes Goetzfried depends on X86 && 64BIT 1453e16bf974SEric Biggers select CRYPTO_BLKCIPHER 14541d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14557efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1456e16bf974SEric Biggers select CRYPTO_SIMD 14577efe4076SJohannes Goetzfried select CRYPTO_XTS 14587efe4076SJohannes Goetzfried help 14597efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14607efe4076SJohannes Goetzfried 14617efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14627efe4076SJohannes Goetzfried of 8 bits. 14637efe4076SJohannes Goetzfried 14647efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14657efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14667efe4076SJohannes Goetzfried 14677efe4076SJohannes Goetzfried See also: 14687efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14697efe4076SJohannes Goetzfried 147056d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 147156d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 147256d76c96SJussi Kivilinna depends on X86 && 64BIT 147356d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 147456d76c96SJussi Kivilinna help 147556d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 147656d76c96SJussi Kivilinna 147756d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 147856d76c96SJussi Kivilinna of 8 bits. 147956d76c96SJussi Kivilinna 148056d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 148156d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 148256d76c96SJussi Kivilinna 148356d76c96SJussi Kivilinna See also: 148456d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 148556d76c96SJussi Kivilinna 1486da7a0ab5SEric Biggersconfig CRYPTO_SPECK 1487da7a0ab5SEric Biggers tristate "Speck cipher algorithm" 1488da7a0ab5SEric Biggers select CRYPTO_ALGAPI 1489da7a0ab5SEric Biggers help 1490da7a0ab5SEric Biggers Speck is a lightweight block cipher that is tuned for optimal 1491da7a0ab5SEric Biggers performance in software (rather than hardware). 1492da7a0ab5SEric Biggers 1493da7a0ab5SEric Biggers Speck may not be as secure as AES, and should only be used on systems 1494da7a0ab5SEric Biggers where AES is not fast enough. 1495da7a0ab5SEric Biggers 1496da7a0ab5SEric Biggers See also: <https://eprint.iacr.org/2013/404.pdf> 1497da7a0ab5SEric Biggers 1498da7a0ab5SEric Biggers If unsure, say N. 1499da7a0ab5SEric Biggers 1500584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1501584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1502584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1503584fffc8SSebastian Siewior help 1504584fffc8SSebastian Siewior TEA cipher algorithm. 1505584fffc8SSebastian Siewior 1506584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1507584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1508584fffc8SSebastian Siewior little memory. 1509584fffc8SSebastian Siewior 1510584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1511584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1512584fffc8SSebastian Siewior in the TEA algorithm. 1513584fffc8SSebastian Siewior 1514584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1515584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1516584fffc8SSebastian Siewior 1517584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1518584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1519584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1520584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1521584fffc8SSebastian Siewior help 1522584fffc8SSebastian Siewior Twofish cipher algorithm. 1523584fffc8SSebastian Siewior 1524584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1525584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1526584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1527584fffc8SSebastian Siewior bits. 1528584fffc8SSebastian Siewior 1529584fffc8SSebastian Siewior See also: 1530584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1531584fffc8SSebastian Siewior 1532584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1533584fffc8SSebastian Siewior tristate 1534584fffc8SSebastian Siewior help 1535584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1536584fffc8SSebastian Siewior generic c and the assembler implementations. 1537584fffc8SSebastian Siewior 1538584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1539584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1540584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1541584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1542584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1543584fffc8SSebastian Siewior help 1544584fffc8SSebastian Siewior Twofish cipher algorithm. 1545584fffc8SSebastian Siewior 1546584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1547584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1548584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1549584fffc8SSebastian Siewior bits. 1550584fffc8SSebastian Siewior 1551584fffc8SSebastian Siewior See also: 1552584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1553584fffc8SSebastian Siewior 1554584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1555584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1556584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1557584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1558584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1559584fffc8SSebastian Siewior help 1560584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1561584fffc8SSebastian Siewior 1562584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1563584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1564584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1565584fffc8SSebastian Siewior bits. 1566584fffc8SSebastian Siewior 1567584fffc8SSebastian Siewior See also: 1568584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1569584fffc8SSebastian Siewior 15708280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 15718280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1572f21a7c19SAl Viro depends on X86 && 64BIT 157337992fa4SEric Biggers select CRYPTO_BLKCIPHER 15748280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 15758280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1576414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15778280daadSJussi Kivilinna help 15788280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 15798280daadSJussi Kivilinna 15808280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 15818280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 15828280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 15838280daadSJussi Kivilinna bits. 15848280daadSJussi Kivilinna 15858280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 15868280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 15878280daadSJussi Kivilinna 15888280daadSJussi Kivilinna See also: 15898280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 15908280daadSJussi Kivilinna 1591107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1592107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1593107778b5SJohannes Goetzfried depends on X86 && 64BIT 15940e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1595a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15960e6ab46dSEric Biggers select CRYPTO_SIMD 1597107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1598107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1599107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1600107778b5SJohannes Goetzfried help 1601107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1602107778b5SJohannes Goetzfried 1603107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1604107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1605107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1606107778b5SJohannes Goetzfried bits. 1607107778b5SJohannes Goetzfried 1608107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1609107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1610107778b5SJohannes Goetzfried 1611107778b5SJohannes Goetzfried See also: 1612107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1613107778b5SJohannes Goetzfried 1614584fffc8SSebastian Siewiorcomment "Compression" 1615584fffc8SSebastian Siewior 16161da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16171da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1618cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1619f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16201da177e4SLinus Torvalds select ZLIB_INFLATE 16211da177e4SLinus Torvalds select ZLIB_DEFLATE 16221da177e4SLinus Torvalds help 16231da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16241da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16251da177e4SLinus Torvalds 16261da177e4SLinus Torvalds You will most probably want this if using IPSec. 16271da177e4SLinus Torvalds 16280b77abb3SZoltan Sogorconfig CRYPTO_LZO 16290b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16300b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1631ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16320b77abb3SZoltan Sogor select LZO_COMPRESS 16330b77abb3SZoltan Sogor select LZO_DECOMPRESS 16340b77abb3SZoltan Sogor help 16350b77abb3SZoltan Sogor This is the LZO algorithm. 16360b77abb3SZoltan Sogor 163735a1fc18SSeth Jenningsconfig CRYPTO_842 163835a1fc18SSeth Jennings tristate "842 compression algorithm" 16392062c5b6SDan Streetman select CRYPTO_ALGAPI 16406a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16412062c5b6SDan Streetman select 842_COMPRESS 16422062c5b6SDan Streetman select 842_DECOMPRESS 164335a1fc18SSeth Jennings help 164435a1fc18SSeth Jennings This is the 842 algorithm. 164535a1fc18SSeth Jennings 16460ea8530dSChanho Minconfig CRYPTO_LZ4 16470ea8530dSChanho Min tristate "LZ4 compression algorithm" 16480ea8530dSChanho Min select CRYPTO_ALGAPI 16498cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16500ea8530dSChanho Min select LZ4_COMPRESS 16510ea8530dSChanho Min select LZ4_DECOMPRESS 16520ea8530dSChanho Min help 16530ea8530dSChanho Min This is the LZ4 algorithm. 16540ea8530dSChanho Min 16550ea8530dSChanho Minconfig CRYPTO_LZ4HC 16560ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16570ea8530dSChanho Min select CRYPTO_ALGAPI 165891d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16590ea8530dSChanho Min select LZ4HC_COMPRESS 16600ea8530dSChanho Min select LZ4_DECOMPRESS 16610ea8530dSChanho Min help 16620ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16630ea8530dSChanho Min 166417f0f4a4SNeil Hormancomment "Random Number Generation" 166517f0f4a4SNeil Horman 166617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 166717f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 166817f0f4a4SNeil Horman select CRYPTO_AES 166917f0f4a4SNeil Horman select CRYPTO_RNG 167017f0f4a4SNeil Horman help 167117f0f4a4SNeil Horman This option enables the generic pseudo random number generator 167217f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 16737dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 16747dd607e8SJiri Kosina CRYPTO_FIPS is selected 167517f0f4a4SNeil Horman 1676f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1677419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1678419090c6SStephan Mueller help 1679419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1680419090c6SStephan Mueller more of the DRBG types must be selected. 1681419090c6SStephan Mueller 1682f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1683419090c6SStephan Mueller 1684419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1685401e4238SHerbert Xu bool 1686419090c6SStephan Mueller default y 1687419090c6SStephan Mueller select CRYPTO_HMAC 1688826775bbSHerbert Xu select CRYPTO_SHA256 1689419090c6SStephan Mueller 1690419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1691419090c6SStephan Mueller bool "Enable Hash DRBG" 1692826775bbSHerbert Xu select CRYPTO_SHA256 1693419090c6SStephan Mueller help 1694419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1695419090c6SStephan Mueller 1696419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1697419090c6SStephan Mueller bool "Enable CTR DRBG" 1698419090c6SStephan Mueller select CRYPTO_AES 169935591285SStephan Mueller depends on CRYPTO_CTR 1700419090c6SStephan Mueller help 1701419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1702419090c6SStephan Mueller 1703f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1704f2c89a10SHerbert Xu tristate 1705401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1706f2c89a10SHerbert Xu select CRYPTO_RNG 1707bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1708f2c89a10SHerbert Xu 1709f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1710419090c6SStephan Mueller 1711bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1712bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17132f313e02SArnd Bergmann select CRYPTO_RNG 1714bb5530e4SStephan Mueller help 1715bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1716bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1717bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1718bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1719bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1720bb5530e4SStephan Mueller 172103c8efc1SHerbert Xuconfig CRYPTO_USER_API 172203c8efc1SHerbert Xu tristate 172303c8efc1SHerbert Xu 1724fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1725fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17267451708fSHerbert Xu depends on NET 1727fe869cdbSHerbert Xu select CRYPTO_HASH 1728fe869cdbSHerbert Xu select CRYPTO_USER_API 1729fe869cdbSHerbert Xu help 1730fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1731fe869cdbSHerbert Xu algorithms. 1732fe869cdbSHerbert Xu 17338ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17348ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17357451708fSHerbert Xu depends on NET 17368ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17378ff59090SHerbert Xu select CRYPTO_USER_API 17388ff59090SHerbert Xu help 17398ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17408ff59090SHerbert Xu key cipher algorithms. 17418ff59090SHerbert Xu 17422f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17432f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17442f375538SStephan Mueller depends on NET 17452f375538SStephan Mueller select CRYPTO_RNG 17462f375538SStephan Mueller select CRYPTO_USER_API 17472f375538SStephan Mueller help 17482f375538SStephan Mueller This option enables the user-spaces interface for random 17492f375538SStephan Mueller number generator algorithms. 17502f375538SStephan Mueller 1751b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1752b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1753b64a2d95SHerbert Xu depends on NET 1754b64a2d95SHerbert Xu select CRYPTO_AEAD 175572548b09SStephan Mueller select CRYPTO_BLKCIPHER 175672548b09SStephan Mueller select CRYPTO_NULL 1757b64a2d95SHerbert Xu select CRYPTO_USER_API 1758b64a2d95SHerbert Xu help 1759b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1760b64a2d95SHerbert Xu cipher algorithms. 1761b64a2d95SHerbert Xu 1762ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1763ee08997fSDmitry Kasatkin bool 1764ee08997fSDmitry Kasatkin 17651da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1766964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1767cfc411e7SDavid Howellssource certs/Kconfig 17681da177e4SLinus Torvalds 1769cce9e06dSHerbert Xuendif # if CRYPTO 1770