1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 116cfc2bb32STadeusz Strukconfig CRYPTO_RSA 117cfc2bb32STadeusz Struk tristate "RSA algorithm" 118425e0172STadeusz Struk select CRYPTO_AKCIPHER 11958446fefSTadeusz Struk select CRYPTO_MANAGER 120cfc2bb32STadeusz Struk select MPILIB 121cfc2bb32STadeusz Struk select ASN1 122cfc2bb32STadeusz Struk help 123cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 124cfc2bb32STadeusz Struk 125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 126802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 127802c7f1cSSalvatore Benedetto select CRYPTO_KPP 128802c7f1cSSalvatore Benedetto select MPILIB 129802c7f1cSSalvatore Benedetto help 130802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 131802c7f1cSSalvatore Benedetto 1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1333c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 134b5b90077SHauke Mehrtens select CRYPTO_KPP 1356755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1363c4b2390SSalvatore Benedetto help 1373c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 138802c7f1cSSalvatore Benedetto 1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1402b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1416a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1422b8c19dbSHerbert Xu help 1432b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1442b8c19dbSHerbert Xu cbc(aes). 1452b8c19dbSHerbert Xu 1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1476a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1486a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1496a0fcbb4SHerbert Xu select CRYPTO_HASH2 1506a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 151946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1524e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1532ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1546a0fcbb4SHerbert Xu 155a38f7907SSteffen Klassertconfig CRYPTO_USER 156a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1575db017aaSHerbert Xu depends on NET 158a38f7907SSteffen Klassert select CRYPTO_MANAGER 159a38f7907SSteffen Klassert help 160d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 161a38f7907SSteffen Klassert cbc(aes). 162a38f7907SSteffen Klassert 163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 164326a6346SHerbert Xu bool "Disable run-time self tests" 16500ca28a5SHerbert Xu default y 16600ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1670b767f96SAlexander Shishkin help 168326a6346SHerbert Xu Disable run-time self tests that normally take place at 169326a6346SHerbert Xu algorithm registration. 1700b767f96SAlexander Shishkin 171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 175584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 176584fffc8SSebastian Siewior option will be selected automatically if you select such a 177584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 178584fffc8SSebastian Siewior an external module that requires these functions. 179584fffc8SSebastian Siewior 180584fffc8SSebastian Siewiorconfig CRYPTO_NULL 181584fffc8SSebastian Siewior tristate "Null algorithms" 182149a3971SHerbert Xu select CRYPTO_NULL2 183584fffc8SSebastian Siewior help 184584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 185584fffc8SSebastian Siewior 186149a3971SHerbert Xuconfig CRYPTO_NULL2 187dd43c4e9SHerbert Xu tristate 188149a3971SHerbert Xu select CRYPTO_ALGAPI2 189149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 190149a3971SHerbert Xu select CRYPTO_HASH2 191149a3971SHerbert Xu 1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1933b4afaf2SKees Cook tristate "Parallel crypto engine" 1943b4afaf2SKees Cook depends on SMP 1955068c7a8SSteffen Klassert select PADATA 1965068c7a8SSteffen Klassert select CRYPTO_MANAGER 1975068c7a8SSteffen Klassert select CRYPTO_AEAD 1985068c7a8SSteffen Klassert help 1995068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2005068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2015068c7a8SSteffen Klassert 20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20325c38d3fSHuang Ying tristate 20425c38d3fSHuang Ying 205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 206584fffc8SSebastian Siewior tristate "Software async crypto daemon" 207584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 208b8a28251SLoc Ho select CRYPTO_HASH 209584fffc8SSebastian Siewior select CRYPTO_MANAGER 210254eff77SHuang Ying select CRYPTO_WORKQUEUE 211584fffc8SSebastian Siewior help 212584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 213584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 214584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 215584fffc8SSebastian Siewior 216584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 217584fffc8SSebastian Siewior tristate "Authenc support" 218584fffc8SSebastian Siewior select CRYPTO_AEAD 219584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 220584fffc8SSebastian Siewior select CRYPTO_MANAGER 221584fffc8SSebastian Siewior select CRYPTO_HASH 222e94c6a7aSHerbert Xu select CRYPTO_NULL 223584fffc8SSebastian Siewior help 224584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 225584fffc8SSebastian Siewior This is required for IPSec. 226584fffc8SSebastian Siewior 227584fffc8SSebastian Siewiorconfig CRYPTO_TEST 228584fffc8SSebastian Siewior tristate "Testing module" 229584fffc8SSebastian Siewior depends on m 230da7f033dSHerbert Xu select CRYPTO_MANAGER 231584fffc8SSebastian Siewior help 232584fffc8SSebastian Siewior Quick & dirty crypto test module. 233584fffc8SSebastian Siewior 234266d0516SHerbert Xuconfig CRYPTO_SIMD 235266d0516SHerbert Xu tristate 236266d0516SHerbert Xu select CRYPTO_CRYPTD 237266d0516SHerbert Xu 238596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 239596d8750SJussi Kivilinna tristate 240596d8750SJussi Kivilinna depends on X86 241065ce327SHerbert Xu select CRYPTO_BLKCIPHER 242596d8750SJussi Kivilinna 243735d37b5SBaolin Wangconfig CRYPTO_ENGINE 244735d37b5SBaolin Wang tristate 245735d37b5SBaolin Wang 246584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 247584fffc8SSebastian Siewior 248584fffc8SSebastian Siewiorconfig CRYPTO_CCM 249584fffc8SSebastian Siewior tristate "CCM support" 250584fffc8SSebastian Siewior select CRYPTO_CTR 251f15f05b0SArd Biesheuvel select CRYPTO_HASH 252584fffc8SSebastian Siewior select CRYPTO_AEAD 253584fffc8SSebastian Siewior help 254584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 255584fffc8SSebastian Siewior 256584fffc8SSebastian Siewiorconfig CRYPTO_GCM 257584fffc8SSebastian Siewior tristate "GCM/GMAC support" 258584fffc8SSebastian Siewior select CRYPTO_CTR 259584fffc8SSebastian Siewior select CRYPTO_AEAD 2609382d97aSHuang Ying select CRYPTO_GHASH 2619489667dSJussi Kivilinna select CRYPTO_NULL 262584fffc8SSebastian Siewior help 263584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 264584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 265584fffc8SSebastian Siewior 26671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 26771ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 26871ebc4d1SMartin Willi select CRYPTO_CHACHA20 26971ebc4d1SMartin Willi select CRYPTO_POLY1305 27071ebc4d1SMartin Willi select CRYPTO_AEAD 27171ebc4d1SMartin Willi help 27271ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 27371ebc4d1SMartin Willi 27471ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 27571ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 27671ebc4d1SMartin Willi IETF protocols. 27771ebc4d1SMartin Willi 278f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 279f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 280f606a88eSOndrej Mosnacek select CRYPTO_AEAD 281f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 282f606a88eSOndrej Mosnacek help 283f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 284f606a88eSOndrej Mosnacek 285f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 286f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 287f606a88eSOndrej Mosnacek select CRYPTO_AEAD 288f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 289f606a88eSOndrej Mosnacek help 290f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 291f606a88eSOndrej Mosnacek 292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 293f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 294f606a88eSOndrej Mosnacek select CRYPTO_AEAD 295f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 296f606a88eSOndrej Mosnacek help 297f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 298f606a88eSOndrej Mosnacek 2991d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3001d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3011d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3021d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3031d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3041d373d4eSOndrej Mosnacek help 3051d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm. 3061d373d4eSOndrej Mosnacek 3071d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3081d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3091d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3101d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3111d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3121d373d4eSOndrej Mosnacek help 3131d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm. 3141d373d4eSOndrej Mosnacek 3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3161d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3171d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3181d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3191d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3201d373d4eSOndrej Mosnacek help 3211d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm. 3221d373d4eSOndrej Mosnacek 323396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 324396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 325396be41fSOndrej Mosnacek select CRYPTO_AEAD 326396be41fSOndrej Mosnacek help 327396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 328396be41fSOndrej Mosnacek 32956e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 3302808f173SOndrej Mosnacek tristate 3312808f173SOndrej Mosnacek depends on X86 33256e8e57fSOndrej Mosnacek select CRYPTO_AEAD 33356e8e57fSOndrej Mosnacek select CRYPTO_CRYPTD 33456e8e57fSOndrej Mosnacek help 33556e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 33656e8e57fSOndrej Mosnacek algorithm. 33756e8e57fSOndrej Mosnacek 3386ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3396ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3406ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3416ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3426ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3436ecc9d9fSOndrej Mosnacek help 3446ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3456ecc9d9fSOndrej Mosnacek 346396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 347396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 348396be41fSOndrej Mosnacek select CRYPTO_AEAD 349396be41fSOndrej Mosnacek help 350396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 351396be41fSOndrej Mosnacek 35256e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 3532808f173SOndrej Mosnacek tristate 3542808f173SOndrej Mosnacek depends on X86 35556e8e57fSOndrej Mosnacek select CRYPTO_AEAD 35656e8e57fSOndrej Mosnacek select CRYPTO_CRYPTD 35756e8e57fSOndrej Mosnacek help 35856e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 35956e8e57fSOndrej Mosnacek algorithm. 36056e8e57fSOndrej Mosnacek 3616ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3626ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3636ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3646ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3656ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3666ecc9d9fSOndrej Mosnacek help 3676ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 3686ecc9d9fSOndrej Mosnacek algorithm. 3696ecc9d9fSOndrej Mosnacek 3706ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 3716ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 3726ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3736ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3746ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3756ecc9d9fSOndrej Mosnacek help 3766ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 3776ecc9d9fSOndrej Mosnacek algorithm. 3786ecc9d9fSOndrej Mosnacek 379584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 380584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 381584fffc8SSebastian Siewior select CRYPTO_AEAD 382584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 383856e3f40SHerbert Xu select CRYPTO_NULL 384401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 385584fffc8SSebastian Siewior help 386584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 387584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 388584fffc8SSebastian Siewior 389a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 390a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 391a10f554fSHerbert Xu select CRYPTO_AEAD 392a10f554fSHerbert Xu select CRYPTO_NULL 393401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3943491244cSHerbert Xu default m 395a10f554fSHerbert Xu help 396a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 397a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 398a10f554fSHerbert Xu algorithm for CBC. 399a10f554fSHerbert Xu 400584fffc8SSebastian Siewiorcomment "Block modes" 401584fffc8SSebastian Siewior 402584fffc8SSebastian Siewiorconfig CRYPTO_CBC 403584fffc8SSebastian Siewior tristate "CBC support" 404584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 405584fffc8SSebastian Siewior select CRYPTO_MANAGER 406584fffc8SSebastian Siewior help 407584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 408584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 409584fffc8SSebastian Siewior 410a7d85e06SJames Bottomleyconfig CRYPTO_CFB 411a7d85e06SJames Bottomley tristate "CFB support" 412a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 413a7d85e06SJames Bottomley select CRYPTO_MANAGER 414a7d85e06SJames Bottomley help 415a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 416a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 417a7d85e06SJames Bottomley 418584fffc8SSebastian Siewiorconfig CRYPTO_CTR 419584fffc8SSebastian Siewior tristate "CTR support" 420584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 421584fffc8SSebastian Siewior select CRYPTO_SEQIV 422584fffc8SSebastian Siewior select CRYPTO_MANAGER 423584fffc8SSebastian Siewior help 424584fffc8SSebastian Siewior CTR: Counter mode 425584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 426584fffc8SSebastian Siewior 427584fffc8SSebastian Siewiorconfig CRYPTO_CTS 428584fffc8SSebastian Siewior tristate "CTS support" 429584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 430584fffc8SSebastian Siewior help 431584fffc8SSebastian Siewior CTS: Cipher Text Stealing 432584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 433ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 434ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 435ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 436584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 437584fffc8SSebastian Siewior for AES encryption. 438584fffc8SSebastian Siewior 439ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 440ecd6d5c9SGilad Ben-Yossef 441584fffc8SSebastian Siewiorconfig CRYPTO_ECB 442584fffc8SSebastian Siewior tristate "ECB support" 443584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 444584fffc8SSebastian Siewior select CRYPTO_MANAGER 445584fffc8SSebastian Siewior help 446584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 447584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 448584fffc8SSebastian Siewior the input block by block. 449584fffc8SSebastian Siewior 450584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4512470a2b2SJussi Kivilinna tristate "LRW support" 452584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 453584fffc8SSebastian Siewior select CRYPTO_MANAGER 454584fffc8SSebastian Siewior select CRYPTO_GF128MUL 455584fffc8SSebastian Siewior help 456584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 457584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 458584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 459584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 460584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 461584fffc8SSebastian Siewior 462e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 463e497c518SGilad Ben-Yossef tristate "OFB support" 464e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 465e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 466e497c518SGilad Ben-Yossef help 467e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 468e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 469e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 470e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 471e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 472e497c518SGilad Ben-Yossef normally even when applied before encryption. 473e497c518SGilad Ben-Yossef 474584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 475584fffc8SSebastian Siewior tristate "PCBC support" 476584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 477584fffc8SSebastian Siewior select CRYPTO_MANAGER 478584fffc8SSebastian Siewior help 479584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 480584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 481584fffc8SSebastian Siewior 482584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4835bcf8e6dSJussi Kivilinna tristate "XTS support" 484584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 485584fffc8SSebastian Siewior select CRYPTO_MANAGER 48612cb3a1cSMilan Broz select CRYPTO_ECB 487584fffc8SSebastian Siewior help 488584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 489584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 490584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 491584fffc8SSebastian Siewior 4921c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4931c49678eSStephan Mueller tristate "Key wrapping support" 4941c49678eSStephan Mueller select CRYPTO_BLKCIPHER 4951c49678eSStephan Mueller help 4961c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4971c49678eSStephan Mueller padding. 4981c49678eSStephan Mueller 49926609a21SEric Biggersconfig CRYPTO_NHPOLY1305 50026609a21SEric Biggers tristate 50126609a21SEric Biggers select CRYPTO_HASH 50226609a21SEric Biggers select CRYPTO_POLY1305 50326609a21SEric Biggers 504059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 505059c2a4dSEric Biggers tristate "Adiantum support" 506059c2a4dSEric Biggers select CRYPTO_CHACHA20 507059c2a4dSEric Biggers select CRYPTO_POLY1305 508059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 509059c2a4dSEric Biggers help 510059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 511059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 512059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 513059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 514059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 515059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 516059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 517059c2a4dSEric Biggers AES-XTS. 518059c2a4dSEric Biggers 519059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 520059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 521059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 522059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 523059c2a4dSEric Biggers security than XTS, subject to the security bound. 524059c2a4dSEric Biggers 525059c2a4dSEric Biggers If unsure, say N. 526059c2a4dSEric Biggers 527584fffc8SSebastian Siewiorcomment "Hash modes" 528584fffc8SSebastian Siewior 52993b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 53093b5e86aSJussi Kivilinna tristate "CMAC support" 53193b5e86aSJussi Kivilinna select CRYPTO_HASH 53293b5e86aSJussi Kivilinna select CRYPTO_MANAGER 53393b5e86aSJussi Kivilinna help 53493b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 53593b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 53693b5e86aSJussi Kivilinna 53793b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 53893b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 53993b5e86aSJussi Kivilinna 5401da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5418425165dSHerbert Xu tristate "HMAC support" 5420796ae06SHerbert Xu select CRYPTO_HASH 54343518407SHerbert Xu select CRYPTO_MANAGER 5441da177e4SLinus Torvalds help 5451da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5461da177e4SLinus Torvalds This is required for IPSec. 5471da177e4SLinus Torvalds 548333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 549333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 550333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 551333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 552333b0d7eSKazunori MIYAZAWA help 553333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 554333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 555333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 556333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 557333b0d7eSKazunori MIYAZAWA 558f1939f7cSShane Wangconfig CRYPTO_VMAC 559f1939f7cSShane Wang tristate "VMAC support" 560f1939f7cSShane Wang select CRYPTO_HASH 561f1939f7cSShane Wang select CRYPTO_MANAGER 562f1939f7cSShane Wang help 563f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 564f1939f7cSShane Wang very high speed on 64-bit architectures. 565f1939f7cSShane Wang 566f1939f7cSShane Wang See also: 567f1939f7cSShane Wang <http://fastcrypto.org/vmac> 568f1939f7cSShane Wang 569584fffc8SSebastian Siewiorcomment "Digest" 570584fffc8SSebastian Siewior 571584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 572584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5735773a3e6SHerbert Xu select CRYPTO_HASH 5746a0962b2SDarrick J. Wong select CRC32 5751da177e4SLinus Torvalds help 576584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 577584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 57869c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5791da177e4SLinus Torvalds 5808cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5818cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5828cb51ba8SAustin Zhang depends on X86 5838cb51ba8SAustin Zhang select CRYPTO_HASH 5848cb51ba8SAustin Zhang help 5858cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5868cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5878cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5888cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5898cb51ba8SAustin Zhang gain performance compared with software implementation. 5908cb51ba8SAustin Zhang Module will be crc32c-intel. 5918cb51ba8SAustin Zhang 5927cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5936dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 594c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5956dd7a82cSAnton Blanchard select CRYPTO_HASH 5966dd7a82cSAnton Blanchard select CRC32 5976dd7a82cSAnton Blanchard help 5986dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 5996dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6006dd7a82cSAnton Blanchard and newer processors for improved performance. 6016dd7a82cSAnton Blanchard 6026dd7a82cSAnton Blanchard 603442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 604442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 605442a7c40SDavid S. Miller depends on SPARC64 606442a7c40SDavid S. Miller select CRYPTO_HASH 607442a7c40SDavid S. Miller select CRC32 608442a7c40SDavid S. Miller help 609442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 610442a7c40SDavid S. Miller when available. 611442a7c40SDavid S. Miller 61278c37d19SAlexander Boykoconfig CRYPTO_CRC32 61378c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 61478c37d19SAlexander Boyko select CRYPTO_HASH 61578c37d19SAlexander Boyko select CRC32 61678c37d19SAlexander Boyko help 61778c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 61878c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 61978c37d19SAlexander Boyko 62078c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 62178c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 62278c37d19SAlexander Boyko depends on X86 62378c37d19SAlexander Boyko select CRYPTO_HASH 62478c37d19SAlexander Boyko select CRC32 62578c37d19SAlexander Boyko help 62678c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 62778c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 62878c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 62978c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 63078c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 63178c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 63278c37d19SAlexander Boyko 6334a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6344a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6354a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6364a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6374a5dc51eSMarcin Nowakowski help 6384a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6394a5dc51eSMarcin Nowakowski instructions, when available. 6404a5dc51eSMarcin Nowakowski 6414a5dc51eSMarcin Nowakowski 64268411521SHerbert Xuconfig CRYPTO_CRCT10DIF 64368411521SHerbert Xu tristate "CRCT10DIF algorithm" 64468411521SHerbert Xu select CRYPTO_HASH 64568411521SHerbert Xu help 64668411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 64768411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 64868411521SHerbert Xu transforms to be used if they are available. 64968411521SHerbert Xu 65068411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 65168411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 65268411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 65368411521SHerbert Xu select CRYPTO_HASH 65468411521SHerbert Xu help 65568411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 65668411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 65768411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 65868411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 65968411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 66068411521SHerbert Xu 661b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 662b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 663b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 664b01df1c1SDaniel Axtens select CRYPTO_HASH 665b01df1c1SDaniel Axtens help 666b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 667b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 668b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 669b01df1c1SDaniel Axtens 670146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 671146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 672146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 673146c8688SDaniel Axtens help 674146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 675146c8688SDaniel Axtens POWER8 vpmsum instructions. 676146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 677146c8688SDaniel Axtens 6782cdc6899SHuang Yingconfig CRYPTO_GHASH 6792cdc6899SHuang Ying tristate "GHASH digest algorithm" 6802cdc6899SHuang Ying select CRYPTO_GF128MUL 681578c60fbSArnd Bergmann select CRYPTO_HASH 6822cdc6899SHuang Ying help 6832cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 6842cdc6899SHuang Ying 685f979e014SMartin Williconfig CRYPTO_POLY1305 686f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 687578c60fbSArnd Bergmann select CRYPTO_HASH 688f979e014SMartin Willi help 689f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 690f979e014SMartin Willi 691f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 692f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 693f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 694f979e014SMartin Willi 695c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 696b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 697c70f4abeSMartin Willi depends on X86 && 64BIT 698c70f4abeSMartin Willi select CRYPTO_POLY1305 699c70f4abeSMartin Willi help 700c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 701c70f4abeSMartin Willi 702c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 703c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 704c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 705c70f4abeSMartin Willi instructions. 706c70f4abeSMartin Willi 7071da177e4SLinus Torvaldsconfig CRYPTO_MD4 7081da177e4SLinus Torvalds tristate "MD4 digest algorithm" 709808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7101da177e4SLinus Torvalds help 7111da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7121da177e4SLinus Torvalds 7131da177e4SLinus Torvaldsconfig CRYPTO_MD5 7141da177e4SLinus Torvalds tristate "MD5 digest algorithm" 71514b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7161da177e4SLinus Torvalds help 7171da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7181da177e4SLinus Torvalds 719d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 720d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 721d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 722d69e75deSAaro Koskinen select CRYPTO_MD5 723d69e75deSAaro Koskinen select CRYPTO_HASH 724d69e75deSAaro Koskinen help 725d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 726d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 727d69e75deSAaro Koskinen 728e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 729e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 730e8e59953SMarkus Stockhausen depends on PPC 731e8e59953SMarkus Stockhausen select CRYPTO_HASH 732e8e59953SMarkus Stockhausen help 733e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 734e8e59953SMarkus Stockhausen in PPC assembler. 735e8e59953SMarkus Stockhausen 736fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 737fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 738fa4dfedcSDavid S. Miller depends on SPARC64 739fa4dfedcSDavid S. Miller select CRYPTO_MD5 740fa4dfedcSDavid S. Miller select CRYPTO_HASH 741fa4dfedcSDavid S. Miller help 742fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 743fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 744fa4dfedcSDavid S. Miller 745584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 746584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 74719e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 748584fffc8SSebastian Siewior help 749584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 750584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 751584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 752584fffc8SSebastian Siewior of the algorithm. 753584fffc8SSebastian Siewior 75482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 75582798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7567c4468bcSHerbert Xu select CRYPTO_HASH 75782798f90SAdrian-Ken Rueegsegger help 75882798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 75982798f90SAdrian-Ken Rueegsegger 76082798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 76135ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 76282798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 76382798f90SAdrian-Ken Rueegsegger 76482798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7656d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 76682798f90SAdrian-Ken Rueegsegger 76782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 76882798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 769e5835fbaSHerbert Xu select CRYPTO_HASH 77082798f90SAdrian-Ken Rueegsegger help 77182798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 77282798f90SAdrian-Ken Rueegsegger 77382798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 77482798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 775b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 776b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 77782798f90SAdrian-Ken Rueegsegger 778b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 779b6d44341SAdrian Bunk against RIPEMD-160. 780534fe2c1SAdrian-Ken Rueegsegger 781534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7826d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 783534fe2c1SAdrian-Ken Rueegsegger 784534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 785534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 786d8a5e2e9SHerbert Xu select CRYPTO_HASH 787534fe2c1SAdrian-Ken Rueegsegger help 788b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 789b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 790b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 791b6d44341SAdrian Bunk (than RIPEMD-128). 792534fe2c1SAdrian-Ken Rueegsegger 793534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7946d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 795534fe2c1SAdrian-Ken Rueegsegger 796534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 797534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 7983b8efb4cSHerbert Xu select CRYPTO_HASH 799534fe2c1SAdrian-Ken Rueegsegger help 800b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 801b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 802b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 803b6d44341SAdrian Bunk (than RIPEMD-160). 804534fe2c1SAdrian-Ken Rueegsegger 80582798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8066d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 80782798f90SAdrian-Ken Rueegsegger 8081da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8091da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 81054ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8111da177e4SLinus Torvalds help 8121da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8131da177e4SLinus Torvalds 81466be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 815e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 81666be8951SMathias Krause depends on X86 && 64BIT 81766be8951SMathias Krause select CRYPTO_SHA1 81866be8951SMathias Krause select CRYPTO_HASH 81966be8951SMathias Krause help 82066be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 82166be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 822e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 823e38b6b7fStim when available. 82466be8951SMathias Krause 8258275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 826e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8278275d1aaSTim Chen depends on X86 && 64BIT 8288275d1aaSTim Chen select CRYPTO_SHA256 8298275d1aaSTim Chen select CRYPTO_HASH 8308275d1aaSTim Chen help 8318275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8328275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8338275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 834e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 835e38b6b7fStim Instructions) when available. 8368275d1aaSTim Chen 83787de4579STim Chenconfig CRYPTO_SHA512_SSSE3 83887de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 83987de4579STim Chen depends on X86 && 64BIT 84087de4579STim Chen select CRYPTO_SHA512 84187de4579STim Chen select CRYPTO_HASH 84287de4579STim Chen help 84387de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 84487de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 84587de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 84687de4579STim Chen version 2 (AVX2) instructions, when available. 84787de4579STim Chen 848efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 849efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 850efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 851efdb6f6eSAaro Koskinen select CRYPTO_SHA1 852efdb6f6eSAaro Koskinen select CRYPTO_HASH 853efdb6f6eSAaro Koskinen help 854efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 855efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 856efdb6f6eSAaro Koskinen 8574ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8584ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8594ff28d4cSDavid S. Miller depends on SPARC64 8604ff28d4cSDavid S. Miller select CRYPTO_SHA1 8614ff28d4cSDavid S. Miller select CRYPTO_HASH 8624ff28d4cSDavid S. Miller help 8634ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8644ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 8654ff28d4cSDavid S. Miller 866323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 867323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 868323a6bf1SMichael Ellerman depends on PPC 869323a6bf1SMichael Ellerman help 870323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 871323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 872323a6bf1SMichael Ellerman 873d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 874d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 875d9850fc5SMarkus Stockhausen depends on PPC && SPE 876d9850fc5SMarkus Stockhausen help 877d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 878d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 879d9850fc5SMarkus Stockhausen 8801da177e4SLinus Torvaldsconfig CRYPTO_SHA256 881cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 88250e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 8831da177e4SLinus Torvalds help 8841da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 8851da177e4SLinus Torvalds 8861da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 8871da177e4SLinus Torvalds security against collision attacks. 8881da177e4SLinus Torvalds 889cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 890cd12fb90SJonathan Lynch of security against collision attacks. 891cd12fb90SJonathan Lynch 8922ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 8932ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 8942ecc1e95SMarkus Stockhausen depends on PPC && SPE 8952ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 8962ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8972ecc1e95SMarkus Stockhausen help 8982ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8992ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9002ecc1e95SMarkus Stockhausen 901efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 902efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 903efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 904efdb6f6eSAaro Koskinen select CRYPTO_SHA256 905efdb6f6eSAaro Koskinen select CRYPTO_HASH 906efdb6f6eSAaro Koskinen help 907efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 908efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 909efdb6f6eSAaro Koskinen 91086c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 91186c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 91286c93b24SDavid S. Miller depends on SPARC64 91386c93b24SDavid S. Miller select CRYPTO_SHA256 91486c93b24SDavid S. Miller select CRYPTO_HASH 91586c93b24SDavid S. Miller help 91686c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 91786c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 91886c93b24SDavid S. Miller 9191da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9201da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 921bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9221da177e4SLinus Torvalds help 9231da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9241da177e4SLinus Torvalds 9251da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9261da177e4SLinus Torvalds security against collision attacks. 9271da177e4SLinus Torvalds 9281da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9291da177e4SLinus Torvalds of security against collision attacks. 9301da177e4SLinus Torvalds 931efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 932efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 933efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 934efdb6f6eSAaro Koskinen select CRYPTO_SHA512 935efdb6f6eSAaro Koskinen select CRYPTO_HASH 936efdb6f6eSAaro Koskinen help 937efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 938efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 939efdb6f6eSAaro Koskinen 940775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 941775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 942775e0c69SDavid S. Miller depends on SPARC64 943775e0c69SDavid S. Miller select CRYPTO_SHA512 944775e0c69SDavid S. Miller select CRYPTO_HASH 945775e0c69SDavid S. Miller help 946775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 947775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 948775e0c69SDavid S. Miller 94953964b9eSJeff Garzikconfig CRYPTO_SHA3 95053964b9eSJeff Garzik tristate "SHA3 digest algorithm" 95153964b9eSJeff Garzik select CRYPTO_HASH 95253964b9eSJeff Garzik help 95353964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 95453964b9eSJeff Garzik cryptographic sponge function family called Keccak. 95553964b9eSJeff Garzik 95653964b9eSJeff Garzik References: 95753964b9eSJeff Garzik http://keccak.noekeon.org/ 95853964b9eSJeff Garzik 9594f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9604f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9614f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9624f0fc160SGilad Ben-Yossef help 9634f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9644f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9654f0fc160SGilad Ben-Yossef 9664f0fc160SGilad Ben-Yossef References: 9674f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9684f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9694f0fc160SGilad Ben-Yossef 970fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 971fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 972fe18957eSVitaly Chikunov select CRYPTO_HASH 973fe18957eSVitaly Chikunov help 974fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 975fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 976fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 977fe18957eSVitaly Chikunov 978fe18957eSVitaly Chikunov References: 979fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 980fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 981fe18957eSVitaly Chikunov 9821da177e4SLinus Torvaldsconfig CRYPTO_TGR192 9831da177e4SLinus Torvalds tristate "Tiger digest algorithms" 984f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 9851da177e4SLinus Torvalds help 9861da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 9871da177e4SLinus Torvalds 9881da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 9891da177e4SLinus Torvalds still having decent performance on 32-bit processors. 9901da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 9911da177e4SLinus Torvalds 9921da177e4SLinus Torvalds See also: 9931da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 9941da177e4SLinus Torvalds 995584fffc8SSebastian Siewiorconfig CRYPTO_WP512 996584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 9974946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 9981da177e4SLinus Torvalds help 999584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10001da177e4SLinus Torvalds 1001584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1002584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10031da177e4SLinus Torvalds 10041da177e4SLinus Torvalds See also: 10056d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10061da177e4SLinus Torvalds 10070e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10080e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10098af00860SRichard Weinberger depends on X86 && 64BIT 10100e1227d3SHuang Ying select CRYPTO_CRYPTD 10110e1227d3SHuang Ying help 10120e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10130e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10140e1227d3SHuang Ying 1015584fffc8SSebastian Siewiorcomment "Ciphers" 10161da177e4SLinus Torvalds 10171da177e4SLinus Torvaldsconfig CRYPTO_AES 10181da177e4SLinus Torvalds tristate "AES cipher algorithms" 1019cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10201da177e4SLinus Torvalds help 10211da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10221da177e4SLinus Torvalds algorithm. 10231da177e4SLinus Torvalds 10241da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10251da177e4SLinus Torvalds both hardware and software across a wide range of computing 10261da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10271da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10281da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10291da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10301da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10311da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10321da177e4SLinus Torvalds 10331da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10341da177e4SLinus Torvalds 10351da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10361da177e4SLinus Torvalds 1037b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1038b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1039b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1040b5e0b032SArd Biesheuvel help 1041b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1042b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1043b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1044b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1045b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1046b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1047b5e0b032SArd Biesheuvel 1048b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1049b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1050b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1051b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10520a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10530a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1054b5e0b032SArd Biesheuvel 10551da177e4SLinus Torvaldsconfig CRYPTO_AES_586 10561da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1057cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1058cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10595157dea8SSebastian Siewior select CRYPTO_AES 10601da177e4SLinus Torvalds help 10611da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10621da177e4SLinus Torvalds algorithm. 10631da177e4SLinus Torvalds 10641da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10651da177e4SLinus Torvalds both hardware and software across a wide range of computing 10661da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10671da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10681da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10691da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10701da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10711da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10721da177e4SLinus Torvalds 10731da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10741da177e4SLinus Torvalds 10751da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 10761da177e4SLinus Torvalds 1077a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1078a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1079cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1080cce9e06dSHerbert Xu select CRYPTO_ALGAPI 108181190b32SSebastian Siewior select CRYPTO_AES 1082a2a892a2SAndreas Steinmetz help 1083a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1084a2a892a2SAndreas Steinmetz algorithm. 1085a2a892a2SAndreas Steinmetz 1086a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1087a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1088a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1089a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1090a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1091a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1092a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1093a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1094a2a892a2SAndreas Steinmetz 1095a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1096a2a892a2SAndreas Steinmetz 1097a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1098a2a892a2SAndreas Steinmetz 109954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 110054b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11018af00860SRichard Weinberger depends on X86 110285671860SHerbert Xu select CRYPTO_AEAD 11030d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11040d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 110554b6a1bdSHuang Ying select CRYPTO_ALGAPI 110685671860SHerbert Xu select CRYPTO_BLKCIPHER 11077643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 110885671860SHerbert Xu select CRYPTO_SIMD 110954b6a1bdSHuang Ying help 111054b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 111154b6a1bdSHuang Ying 111254b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 111354b6a1bdSHuang Ying algorithm. 111454b6a1bdSHuang Ying 111554b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 111654b6a1bdSHuang Ying both hardware and software across a wide range of computing 111754b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 111854b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 111954b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 112054b6a1bdSHuang Ying suited for restricted-space environments, in which it also 112154b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 112254b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 112354b6a1bdSHuang Ying 112454b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 112554b6a1bdSHuang Ying 112654b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 112754b6a1bdSHuang Ying 11280d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11290d258efbSMathias Krause for some popular block cipher mode is supported too, including 1130944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11310d258efbSMathias Krause acceleration for CTR. 11322cf4ac8bSHuang Ying 11339bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11349bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11359bf4852dSDavid S. Miller depends on SPARC64 11369bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11379bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11389bf4852dSDavid S. Miller help 11399bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11409bf4852dSDavid S. Miller 11419bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11429bf4852dSDavid S. Miller algorithm. 11439bf4852dSDavid S. Miller 11449bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11459bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11469bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11479bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11489bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11499bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11509bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11519bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11529bf4852dSDavid S. Miller 11539bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11549bf4852dSDavid S. Miller 11559bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11569bf4852dSDavid S. Miller 11579bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11589bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11599bf4852dSDavid S. Miller ECB and CBC. 11609bf4852dSDavid S. Miller 1161504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1162504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1163504c6143SMarkus Stockhausen depends on PPC && SPE 1164504c6143SMarkus Stockhausen help 1165504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1166504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1167504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1168504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1169504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1170504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1171504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1172504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1173504c6143SMarkus Stockhausen 11741da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11751da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1176cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11771da177e4SLinus Torvalds help 11781da177e4SLinus Torvalds Anubis cipher algorithm. 11791da177e4SLinus Torvalds 11801da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11811da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11821da177e4SLinus Torvalds in the NESSIE competition. 11831da177e4SLinus Torvalds 11841da177e4SLinus Torvalds See also: 11856d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11866d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11871da177e4SLinus Torvalds 1188584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1189584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1190b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1191e2ee95b8SHye-Shik Chang help 1192584fffc8SSebastian Siewior ARC4 cipher algorithm. 1193e2ee95b8SHye-Shik Chang 1194584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1195584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1196584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1197584fffc8SSebastian Siewior weakness of the algorithm. 1198584fffc8SSebastian Siewior 1199584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1200584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1201584fffc8SSebastian Siewior select CRYPTO_ALGAPI 120252ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1203584fffc8SSebastian Siewior help 1204584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1205584fffc8SSebastian Siewior 1206584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1207584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1208584fffc8SSebastian Siewior designed for use on "large microprocessors". 1209e2ee95b8SHye-Shik Chang 1210e2ee95b8SHye-Shik Chang See also: 1211584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1212584fffc8SSebastian Siewior 121352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 121452ba867cSJussi Kivilinna tristate 121552ba867cSJussi Kivilinna help 121652ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 121752ba867cSJussi Kivilinna generic c and the assembler implementations. 121852ba867cSJussi Kivilinna 121952ba867cSJussi Kivilinna See also: 122052ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 122152ba867cSJussi Kivilinna 122264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 122364b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1224f21a7c19SAl Viro depends on X86 && 64BIT 1225c1679171SEric Biggers select CRYPTO_BLKCIPHER 122664b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 122764b94ceaSJussi Kivilinna help 122864b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 122964b94ceaSJussi Kivilinna 123064b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 123164b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 123264b94ceaSJussi Kivilinna designed for use on "large microprocessors". 123364b94ceaSJussi Kivilinna 123464b94ceaSJussi Kivilinna See also: 123564b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 123664b94ceaSJussi Kivilinna 1237584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1238584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1239584fffc8SSebastian Siewior depends on CRYPTO 1240584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1241584fffc8SSebastian Siewior help 1242584fffc8SSebastian Siewior Camellia cipher algorithms module. 1243584fffc8SSebastian Siewior 1244584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1245584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1246584fffc8SSebastian Siewior 1247584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1248584fffc8SSebastian Siewior 1249584fffc8SSebastian Siewior See also: 1250584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1251584fffc8SSebastian Siewior 12520b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12530b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1254f21a7c19SAl Viro depends on X86 && 64BIT 12550b95ec56SJussi Kivilinna depends on CRYPTO 12561af6d037SEric Biggers select CRYPTO_BLKCIPHER 1257964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12580b95ec56SJussi Kivilinna help 12590b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12600b95ec56SJussi Kivilinna 12610b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12620b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12630b95ec56SJussi Kivilinna 12640b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12650b95ec56SJussi Kivilinna 12660b95ec56SJussi Kivilinna See also: 12670b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12680b95ec56SJussi Kivilinna 1269d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1270d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1271d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1272d9b1d2e7SJussi Kivilinna depends on CRYPTO 127344893bc2SEric Biggers select CRYPTO_BLKCIPHER 1274d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 127544893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 127644893bc2SEric Biggers select CRYPTO_SIMD 1277d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1278d9b1d2e7SJussi Kivilinna help 1279d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1280d9b1d2e7SJussi Kivilinna 1281d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1282d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1283d9b1d2e7SJussi Kivilinna 1284d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1285d9b1d2e7SJussi Kivilinna 1286d9b1d2e7SJussi Kivilinna See also: 1287d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1288d9b1d2e7SJussi Kivilinna 1289f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1290f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1291f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1292f3f935a7SJussi Kivilinna depends on CRYPTO 1293f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1294f3f935a7SJussi Kivilinna help 1295f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1296f3f935a7SJussi Kivilinna 1297f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1298f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1299f3f935a7SJussi Kivilinna 1300f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1301f3f935a7SJussi Kivilinna 1302f3f935a7SJussi Kivilinna See also: 1303f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1304f3f935a7SJussi Kivilinna 130581658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 130681658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 130781658ad0SDavid S. Miller depends on SPARC64 130881658ad0SDavid S. Miller depends on CRYPTO 130981658ad0SDavid S. Miller select CRYPTO_ALGAPI 131081658ad0SDavid S. Miller help 131181658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 131281658ad0SDavid S. Miller 131381658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 131481658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 131581658ad0SDavid S. Miller 131681658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 131781658ad0SDavid S. Miller 131881658ad0SDavid S. Miller See also: 131981658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 132081658ad0SDavid S. Miller 1321044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1322044ab525SJussi Kivilinna tristate 1323044ab525SJussi Kivilinna help 1324044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1325044ab525SJussi Kivilinna generic c and the assembler implementations. 1326044ab525SJussi Kivilinna 1327584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1328584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1329584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1330044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1331584fffc8SSebastian Siewior help 1332584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1333584fffc8SSebastian Siewior described in RFC2144. 1334584fffc8SSebastian Siewior 13354d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13364d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13374d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13381e63183aSEric Biggers select CRYPTO_BLKCIPHER 13394d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13401e63183aSEric Biggers select CRYPTO_CAST_COMMON 13411e63183aSEric Biggers select CRYPTO_SIMD 13424d6d6a2cSJohannes Goetzfried help 13434d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13444d6d6a2cSJohannes Goetzfried described in RFC2144. 13454d6d6a2cSJohannes Goetzfried 13464d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13474d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13484d6d6a2cSJohannes Goetzfried 1349584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1350584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1351584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1352044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1353584fffc8SSebastian Siewior help 1354584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1355584fffc8SSebastian Siewior described in RFC2612. 1356584fffc8SSebastian Siewior 13574ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13584ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13594ea1277dSJohannes Goetzfried depends on X86 && 64BIT 13604bd96924SEric Biggers select CRYPTO_BLKCIPHER 13614ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13624bd96924SEric Biggers select CRYPTO_CAST_COMMON 13634bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13644bd96924SEric Biggers select CRYPTO_SIMD 13654ea1277dSJohannes Goetzfried select CRYPTO_XTS 13664ea1277dSJohannes Goetzfried help 13674ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13684ea1277dSJohannes Goetzfried described in RFC2612. 13694ea1277dSJohannes Goetzfried 13704ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13714ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13724ea1277dSJohannes Goetzfried 1373584fffc8SSebastian Siewiorconfig CRYPTO_DES 1374584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1375584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1376584fffc8SSebastian Siewior help 1377584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1378584fffc8SSebastian Siewior 1379c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1380c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 138197da37b3SDave Jones depends on SPARC64 1382c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1383c5aac2dfSDavid S. Miller select CRYPTO_DES 1384c5aac2dfSDavid S. Miller help 1385c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1386c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1387c5aac2dfSDavid S. Miller 13886574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13896574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13906574e6c6SJussi Kivilinna depends on X86 && 64BIT 139109c0f03bSEric Biggers select CRYPTO_BLKCIPHER 13926574e6c6SJussi Kivilinna select CRYPTO_DES 13936574e6c6SJussi Kivilinna help 13946574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13956574e6c6SJussi Kivilinna 13966574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13976574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13986574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13996574e6c6SJussi Kivilinna one that processes three blocks parallel. 14006574e6c6SJussi Kivilinna 1401584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1402584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1403584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1404584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1405584fffc8SSebastian Siewior help 1406584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1407584fffc8SSebastian Siewior 1408584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1409584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1410584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1411584fffc8SSebastian Siewior help 1412584fffc8SSebastian Siewior Khazad cipher algorithm. 1413584fffc8SSebastian Siewior 1414584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1415584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1416584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1417584fffc8SSebastian Siewior 1418584fffc8SSebastian Siewior See also: 14196d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1420e2ee95b8SHye-Shik Chang 14212407d608STan Swee Hengconfig CRYPTO_SALSA20 14223b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14232407d608STan Swee Heng select CRYPTO_BLKCIPHER 14242407d608STan Swee Heng help 14252407d608STan Swee Heng Salsa20 stream cipher algorithm. 14262407d608STan Swee Heng 14272407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14282407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14292407d608STan Swee Heng 14302407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14312407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14321da177e4SLinus Torvalds 1433c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1434aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1435c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1436c08d0e64SMartin Willi help 1437aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1438c08d0e64SMartin Willi 1439c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1440c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1441de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1442c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1443c08d0e64SMartin Willi 1444de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1445de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1446de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1447de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1448de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1449de61d7aeSEric Biggers 1450aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1451aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1452aa762409SEric Biggers in some performance-sensitive scenarios. 1453aa762409SEric Biggers 1454c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14553d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1456c9320b6dSMartin Willi depends on X86 && 64BIT 1457c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1458c9320b6dSMartin Willi select CRYPTO_CHACHA20 1459c9320b6dSMartin Willi help 1460c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1461c9320b6dSMartin Willi 1462c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1463c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1464c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1465c9320b6dSMartin Willi 1466c9320b6dSMartin Willi See also: 1467c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1468c9320b6dSMartin Willi 1469584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1470584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1471584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1472584fffc8SSebastian Siewior help 1473584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1474584fffc8SSebastian Siewior 1475584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1476584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1477584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1478584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1479584fffc8SSebastian Siewior 1480584fffc8SSebastian Siewior See also: 1481584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1482584fffc8SSebastian Siewior 1483584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1484584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1485584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1486584fffc8SSebastian Siewior help 1487584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1488584fffc8SSebastian Siewior 1489584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1490584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1491584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1492584fffc8SSebastian Siewior 1493584fffc8SSebastian Siewior See also: 1494584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1495584fffc8SSebastian Siewior 1496937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1497937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1498937c30d7SJussi Kivilinna depends on X86 && 64BIT 1499e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1500596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1501937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1502e0f409dcSEric Biggers select CRYPTO_SIMD 1503937c30d7SJussi Kivilinna help 1504937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1505937c30d7SJussi Kivilinna 1506937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1507937c30d7SJussi Kivilinna of 8 bits. 1508937c30d7SJussi Kivilinna 15091e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1510937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1511937c30d7SJussi Kivilinna 1512937c30d7SJussi Kivilinna See also: 1513937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1514937c30d7SJussi Kivilinna 1515251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1516251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1517251496dbSJussi Kivilinna depends on X86 && !64BIT 1518e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1519596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1520251496dbSJussi Kivilinna select CRYPTO_SERPENT 1521e0f409dcSEric Biggers select CRYPTO_SIMD 1522251496dbSJussi Kivilinna help 1523251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1524251496dbSJussi Kivilinna 1525251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1526251496dbSJussi Kivilinna of 8 bits. 1527251496dbSJussi Kivilinna 1528251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1529251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1530251496dbSJussi Kivilinna 1531251496dbSJussi Kivilinna See also: 1532251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1533251496dbSJussi Kivilinna 15347efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15357efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15367efe4076SJohannes Goetzfried depends on X86 && 64BIT 1537e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15381d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15397efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1540e16bf974SEric Biggers select CRYPTO_SIMD 15417efe4076SJohannes Goetzfried select CRYPTO_XTS 15427efe4076SJohannes Goetzfried help 15437efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15447efe4076SJohannes Goetzfried 15457efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15467efe4076SJohannes Goetzfried of 8 bits. 15477efe4076SJohannes Goetzfried 15487efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15497efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15507efe4076SJohannes Goetzfried 15517efe4076SJohannes Goetzfried See also: 15527efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15537efe4076SJohannes Goetzfried 155456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 155556d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 155656d76c96SJussi Kivilinna depends on X86 && 64BIT 155756d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 155856d76c96SJussi Kivilinna help 155956d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 156056d76c96SJussi Kivilinna 156156d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 156256d76c96SJussi Kivilinna of 8 bits. 156356d76c96SJussi Kivilinna 156456d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 156556d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 156656d76c96SJussi Kivilinna 156756d76c96SJussi Kivilinna See also: 156856d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 156956d76c96SJussi Kivilinna 1570747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1571747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1572747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1573747c8ce4SGilad Ben-Yossef help 1574747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1575747c8ce4SGilad Ben-Yossef 1576747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1577747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1578747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1579747c8ce4SGilad Ben-Yossef 1580747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1581747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1582747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1583747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1584747c8ce4SGilad Ben-Yossef 1585747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1586747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1587747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1588747c8ce4SGilad Ben-Yossef 1589747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1590747c8ce4SGilad Ben-Yossef 1591747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1592747c8ce4SGilad Ben-Yossef 1593747c8ce4SGilad Ben-Yossef If unsure, say N. 1594747c8ce4SGilad Ben-Yossef 1595584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1596584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1597584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1598584fffc8SSebastian Siewior help 1599584fffc8SSebastian Siewior TEA cipher algorithm. 1600584fffc8SSebastian Siewior 1601584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1602584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1603584fffc8SSebastian Siewior little memory. 1604584fffc8SSebastian Siewior 1605584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1606584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1607584fffc8SSebastian Siewior in the TEA algorithm. 1608584fffc8SSebastian Siewior 1609584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1610584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1611584fffc8SSebastian Siewior 1612584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1613584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1614584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1615584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1616584fffc8SSebastian Siewior help 1617584fffc8SSebastian Siewior Twofish cipher algorithm. 1618584fffc8SSebastian Siewior 1619584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1620584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1621584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1622584fffc8SSebastian Siewior bits. 1623584fffc8SSebastian Siewior 1624584fffc8SSebastian Siewior See also: 1625584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1626584fffc8SSebastian Siewior 1627584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1628584fffc8SSebastian Siewior tristate 1629584fffc8SSebastian Siewior help 1630584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1631584fffc8SSebastian Siewior generic c and the assembler implementations. 1632584fffc8SSebastian Siewior 1633584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1634584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1635584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1636584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1637584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1638584fffc8SSebastian Siewior help 1639584fffc8SSebastian Siewior Twofish cipher algorithm. 1640584fffc8SSebastian Siewior 1641584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1642584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1643584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1644584fffc8SSebastian Siewior bits. 1645584fffc8SSebastian Siewior 1646584fffc8SSebastian Siewior See also: 1647584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1648584fffc8SSebastian Siewior 1649584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1650584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1651584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1652584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1653584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1654584fffc8SSebastian Siewior help 1655584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1656584fffc8SSebastian Siewior 1657584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1658584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1659584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1660584fffc8SSebastian Siewior bits. 1661584fffc8SSebastian Siewior 1662584fffc8SSebastian Siewior See also: 1663584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1664584fffc8SSebastian Siewior 16658280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16668280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1667f21a7c19SAl Viro depends on X86 && 64BIT 166837992fa4SEric Biggers select CRYPTO_BLKCIPHER 16698280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16708280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1671414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16728280daadSJussi Kivilinna help 16738280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16748280daadSJussi Kivilinna 16758280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16768280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16778280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16788280daadSJussi Kivilinna bits. 16798280daadSJussi Kivilinna 16808280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16818280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16828280daadSJussi Kivilinna 16838280daadSJussi Kivilinna See also: 16848280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16858280daadSJussi Kivilinna 1686107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1687107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1688107778b5SJohannes Goetzfried depends on X86 && 64BIT 16890e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1690a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16910e6ab46dSEric Biggers select CRYPTO_SIMD 1692107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1693107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1694107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1695107778b5SJohannes Goetzfried help 1696107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1697107778b5SJohannes Goetzfried 1698107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1699107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1700107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1701107778b5SJohannes Goetzfried bits. 1702107778b5SJohannes Goetzfried 1703107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1704107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1705107778b5SJohannes Goetzfried 1706107778b5SJohannes Goetzfried See also: 1707107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1708107778b5SJohannes Goetzfried 1709584fffc8SSebastian Siewiorcomment "Compression" 1710584fffc8SSebastian Siewior 17111da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17121da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1713cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1714f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17151da177e4SLinus Torvalds select ZLIB_INFLATE 17161da177e4SLinus Torvalds select ZLIB_DEFLATE 17171da177e4SLinus Torvalds help 17181da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17191da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17201da177e4SLinus Torvalds 17211da177e4SLinus Torvalds You will most probably want this if using IPSec. 17221da177e4SLinus Torvalds 17230b77abb3SZoltan Sogorconfig CRYPTO_LZO 17240b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17250b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1726ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17270b77abb3SZoltan Sogor select LZO_COMPRESS 17280b77abb3SZoltan Sogor select LZO_DECOMPRESS 17290b77abb3SZoltan Sogor help 17300b77abb3SZoltan Sogor This is the LZO algorithm. 17310b77abb3SZoltan Sogor 173235a1fc18SSeth Jenningsconfig CRYPTO_842 173335a1fc18SSeth Jennings tristate "842 compression algorithm" 17342062c5b6SDan Streetman select CRYPTO_ALGAPI 17356a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17362062c5b6SDan Streetman select 842_COMPRESS 17372062c5b6SDan Streetman select 842_DECOMPRESS 173835a1fc18SSeth Jennings help 173935a1fc18SSeth Jennings This is the 842 algorithm. 174035a1fc18SSeth Jennings 17410ea8530dSChanho Minconfig CRYPTO_LZ4 17420ea8530dSChanho Min tristate "LZ4 compression algorithm" 17430ea8530dSChanho Min select CRYPTO_ALGAPI 17448cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17450ea8530dSChanho Min select LZ4_COMPRESS 17460ea8530dSChanho Min select LZ4_DECOMPRESS 17470ea8530dSChanho Min help 17480ea8530dSChanho Min This is the LZ4 algorithm. 17490ea8530dSChanho Min 17500ea8530dSChanho Minconfig CRYPTO_LZ4HC 17510ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17520ea8530dSChanho Min select CRYPTO_ALGAPI 175391d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17540ea8530dSChanho Min select LZ4HC_COMPRESS 17550ea8530dSChanho Min select LZ4_DECOMPRESS 17560ea8530dSChanho Min help 17570ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17580ea8530dSChanho Min 1759d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1760d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1761d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1762d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1763d28fc3dbSNick Terrell select ZSTD_COMPRESS 1764d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1765d28fc3dbSNick Terrell help 1766d28fc3dbSNick Terrell This is the zstd algorithm. 1767d28fc3dbSNick Terrell 176817f0f4a4SNeil Hormancomment "Random Number Generation" 176917f0f4a4SNeil Horman 177017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 177117f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 177217f0f4a4SNeil Horman select CRYPTO_AES 177317f0f4a4SNeil Horman select CRYPTO_RNG 177417f0f4a4SNeil Horman help 177517f0f4a4SNeil Horman This option enables the generic pseudo random number generator 177617f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17777dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17787dd607e8SJiri Kosina CRYPTO_FIPS is selected 177917f0f4a4SNeil Horman 1780f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1781419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1782419090c6SStephan Mueller help 1783419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1784419090c6SStephan Mueller more of the DRBG types must be selected. 1785419090c6SStephan Mueller 1786f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1787419090c6SStephan Mueller 1788419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1789401e4238SHerbert Xu bool 1790419090c6SStephan Mueller default y 1791419090c6SStephan Mueller select CRYPTO_HMAC 1792826775bbSHerbert Xu select CRYPTO_SHA256 1793419090c6SStephan Mueller 1794419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1795419090c6SStephan Mueller bool "Enable Hash DRBG" 1796826775bbSHerbert Xu select CRYPTO_SHA256 1797419090c6SStephan Mueller help 1798419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1799419090c6SStephan Mueller 1800419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1801419090c6SStephan Mueller bool "Enable CTR DRBG" 1802419090c6SStephan Mueller select CRYPTO_AES 180335591285SStephan Mueller depends on CRYPTO_CTR 1804419090c6SStephan Mueller help 1805419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1806419090c6SStephan Mueller 1807f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1808f2c89a10SHerbert Xu tristate 1809401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1810f2c89a10SHerbert Xu select CRYPTO_RNG 1811bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1812f2c89a10SHerbert Xu 1813f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1814419090c6SStephan Mueller 1815bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1816bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18172f313e02SArnd Bergmann select CRYPTO_RNG 1818bb5530e4SStephan Mueller help 1819bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1820bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1821bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1822bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1823bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1824bb5530e4SStephan Mueller 182503c8efc1SHerbert Xuconfig CRYPTO_USER_API 182603c8efc1SHerbert Xu tristate 182703c8efc1SHerbert Xu 1828fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1829fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18307451708fSHerbert Xu depends on NET 1831fe869cdbSHerbert Xu select CRYPTO_HASH 1832fe869cdbSHerbert Xu select CRYPTO_USER_API 1833fe869cdbSHerbert Xu help 1834fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1835fe869cdbSHerbert Xu algorithms. 1836fe869cdbSHerbert Xu 18378ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18388ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18397451708fSHerbert Xu depends on NET 18408ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18418ff59090SHerbert Xu select CRYPTO_USER_API 18428ff59090SHerbert Xu help 18438ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18448ff59090SHerbert Xu key cipher algorithms. 18458ff59090SHerbert Xu 18462f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18472f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18482f375538SStephan Mueller depends on NET 18492f375538SStephan Mueller select CRYPTO_RNG 18502f375538SStephan Mueller select CRYPTO_USER_API 18512f375538SStephan Mueller help 18522f375538SStephan Mueller This option enables the user-spaces interface for random 18532f375538SStephan Mueller number generator algorithms. 18542f375538SStephan Mueller 1855b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1856b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1857b64a2d95SHerbert Xu depends on NET 1858b64a2d95SHerbert Xu select CRYPTO_AEAD 185972548b09SStephan Mueller select CRYPTO_BLKCIPHER 186072548b09SStephan Mueller select CRYPTO_NULL 1861b64a2d95SHerbert Xu select CRYPTO_USER_API 1862b64a2d95SHerbert Xu help 1863b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1864b64a2d95SHerbert Xu cipher algorithms. 1865b64a2d95SHerbert Xu 1866cac5818cSCorentin Labbeconfig CRYPTO_STATS 1867cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1868*a6a31385SCorentin Labbe depends on CRYPTO_USER 1869cac5818cSCorentin Labbe help 1870cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1871cac5818cSCorentin Labbe This will collect: 1872cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1873cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1874cac5818cSCorentin Labbe - size and numbers of hash operations 1875cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1876cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1877cac5818cSCorentin Labbe 1878ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1879ee08997fSDmitry Kasatkin bool 1880ee08997fSDmitry Kasatkin 18811da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1882964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1883cfc411e7SDavid Howellssource certs/Kconfig 18841da177e4SLinus Torvalds 1885cce9e06dSHerbert Xuendif # if CRYPTO 1886