1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 1266a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139929d34caSEric Biggersif CRYPTO_MANAGER2 140929d34caSEric Biggers 141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 142326a6346SHerbert Xu bool "Disable run-time self tests" 14300ca28a5SHerbert Xu default y 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158929d34caSEric Biggersendif # if CRYPTO_MANAGER2 159929d34caSEric Biggers 160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 161e590e132SEric Biggers tristate 162584fffc8SSebastian Siewior 163584fffc8SSebastian Siewiorconfig CRYPTO_NULL 164584fffc8SSebastian Siewior tristate "Null algorithms" 165149a3971SHerbert Xu select CRYPTO_NULL2 166584fffc8SSebastian Siewior help 167584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 168584fffc8SSebastian Siewior 169149a3971SHerbert Xuconfig CRYPTO_NULL2 170dd43c4e9SHerbert Xu tristate 171149a3971SHerbert Xu select CRYPTO_ALGAPI2 172149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 173149a3971SHerbert Xu select CRYPTO_HASH2 174149a3971SHerbert Xu 1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1763b4afaf2SKees Cook tristate "Parallel crypto engine" 1773b4afaf2SKees Cook depends on SMP 1785068c7a8SSteffen Klassert select PADATA 1795068c7a8SSteffen Klassert select CRYPTO_MANAGER 1805068c7a8SSteffen Klassert select CRYPTO_AEAD 1815068c7a8SSteffen Klassert help 1825068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1835068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1845068c7a8SSteffen Klassert 185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 186584fffc8SSebastian Siewior tristate "Software async crypto daemon" 187584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 188b8a28251SLoc Ho select CRYPTO_HASH 189584fffc8SSebastian Siewior select CRYPTO_MANAGER 190584fffc8SSebastian Siewior help 191584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 192584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 193584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 194584fffc8SSebastian Siewior 195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 196584fffc8SSebastian Siewior tristate "Authenc support" 197584fffc8SSebastian Siewior select CRYPTO_AEAD 198584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 199584fffc8SSebastian Siewior select CRYPTO_MANAGER 200584fffc8SSebastian Siewior select CRYPTO_HASH 201e94c6a7aSHerbert Xu select CRYPTO_NULL 202584fffc8SSebastian Siewior help 203584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 204584fffc8SSebastian Siewior This is required for IPSec. 205584fffc8SSebastian Siewior 206584fffc8SSebastian Siewiorconfig CRYPTO_TEST 207584fffc8SSebastian Siewior tristate "Testing module" 208584fffc8SSebastian Siewior depends on m 209da7f033dSHerbert Xu select CRYPTO_MANAGER 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Quick & dirty crypto test module. 212584fffc8SSebastian Siewior 213266d0516SHerbert Xuconfig CRYPTO_SIMD 214266d0516SHerbert Xu tristate 215266d0516SHerbert Xu select CRYPTO_CRYPTD 216266d0516SHerbert Xu 217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 218596d8750SJussi Kivilinna tristate 219596d8750SJussi Kivilinna depends on X86 220065ce327SHerbert Xu select CRYPTO_BLKCIPHER 221596d8750SJussi Kivilinna 222735d37b5SBaolin Wangconfig CRYPTO_ENGINE 223735d37b5SBaolin Wang tristate 224735d37b5SBaolin Wang 2253d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2283d6228a5SVitaly Chikunov tristate "RSA algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2303d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2313d6228a5SVitaly Chikunov select MPILIB 2323d6228a5SVitaly Chikunov select ASN1 2333d6228a5SVitaly Chikunov help 2343d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2353d6228a5SVitaly Chikunov 2363d6228a5SVitaly Chikunovconfig CRYPTO_DH 2373d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2383d6228a5SVitaly Chikunov select CRYPTO_KPP 2393d6228a5SVitaly Chikunov select MPILIB 2403d6228a5SVitaly Chikunov help 2413d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2423d6228a5SVitaly Chikunov 2434a2289daSVitaly Chikunovconfig CRYPTO_ECC 2444a2289daSVitaly Chikunov tristate 2454a2289daSVitaly Chikunov 2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2473d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2484a2289daSVitaly Chikunov select CRYPTO_ECC 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2513d6228a5SVitaly Chikunov help 2523d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2533d6228a5SVitaly Chikunov 2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2550d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2560d7a7864SVitaly Chikunov select CRYPTO_ECC 2570d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2580d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2591036633eSVitaly Chikunov select OID_REGISTRY 2601036633eSVitaly Chikunov select ASN1 2610d7a7864SVitaly Chikunov help 2620d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2630d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2640d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2650d7a7864SVitaly Chikunov is implemented. 2660d7a7864SVitaly Chikunov 267584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 268584fffc8SSebastian Siewior 269584fffc8SSebastian Siewiorconfig CRYPTO_CCM 270584fffc8SSebastian Siewior tristate "CCM support" 271584fffc8SSebastian Siewior select CRYPTO_CTR 272f15f05b0SArd Biesheuvel select CRYPTO_HASH 273584fffc8SSebastian Siewior select CRYPTO_AEAD 274c8a3315aSEric Biggers select CRYPTO_MANAGER 275584fffc8SSebastian Siewior help 276584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 277584fffc8SSebastian Siewior 278584fffc8SSebastian Siewiorconfig CRYPTO_GCM 279584fffc8SSebastian Siewior tristate "GCM/GMAC support" 280584fffc8SSebastian Siewior select CRYPTO_CTR 281584fffc8SSebastian Siewior select CRYPTO_AEAD 2829382d97aSHuang Ying select CRYPTO_GHASH 2839489667dSJussi Kivilinna select CRYPTO_NULL 284c8a3315aSEric Biggers select CRYPTO_MANAGER 285584fffc8SSebastian Siewior help 286584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 287584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 288584fffc8SSebastian Siewior 28971ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29071ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29171ebc4d1SMartin Willi select CRYPTO_CHACHA20 29271ebc4d1SMartin Willi select CRYPTO_POLY1305 29371ebc4d1SMartin Willi select CRYPTO_AEAD 294c8a3315aSEric Biggers select CRYPTO_MANAGER 29571ebc4d1SMartin Willi help 29671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 29771ebc4d1SMartin Willi 29871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30071ebc4d1SMartin Willi IETF protocols. 30171ebc4d1SMartin Willi 302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 303f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 304f606a88eSOndrej Mosnacek select CRYPTO_AEAD 305f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 306f606a88eSOndrej Mosnacek help 307f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 308f606a88eSOndrej Mosnacek 309*a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 310*a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 311*a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 312*a4397635SArd Biesheuvel default y 313*a4397635SArd Biesheuvel 3141d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3151d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3161d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3171d373d4eSOndrej Mosnacek select CRYPTO_AEAD 318de272ca7SEric Biggers select CRYPTO_SIMD 3191d373d4eSOndrej Mosnacek help 3204e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3211d373d4eSOndrej Mosnacek 322584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 323584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 324584fffc8SSebastian Siewior select CRYPTO_AEAD 325584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 326856e3f40SHerbert Xu select CRYPTO_NULL 327401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 328c8a3315aSEric Biggers select CRYPTO_MANAGER 329584fffc8SSebastian Siewior help 330584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 331584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 332584fffc8SSebastian Siewior 333a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 334a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 335a10f554fSHerbert Xu select CRYPTO_AEAD 336a10f554fSHerbert Xu select CRYPTO_NULL 337401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 338c8a3315aSEric Biggers select CRYPTO_MANAGER 339a10f554fSHerbert Xu help 340a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 341a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 342a10f554fSHerbert Xu algorithm for CBC. 343a10f554fSHerbert Xu 344584fffc8SSebastian Siewiorcomment "Block modes" 345584fffc8SSebastian Siewior 346584fffc8SSebastian Siewiorconfig CRYPTO_CBC 347584fffc8SSebastian Siewior tristate "CBC support" 348584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 349584fffc8SSebastian Siewior select CRYPTO_MANAGER 350584fffc8SSebastian Siewior help 351584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 352584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 353584fffc8SSebastian Siewior 354a7d85e06SJames Bottomleyconfig CRYPTO_CFB 355a7d85e06SJames Bottomley tristate "CFB support" 356a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 357a7d85e06SJames Bottomley select CRYPTO_MANAGER 358a7d85e06SJames Bottomley help 359a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 360a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 361a7d85e06SJames Bottomley 362584fffc8SSebastian Siewiorconfig CRYPTO_CTR 363584fffc8SSebastian Siewior tristate "CTR support" 364584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 365584fffc8SSebastian Siewior select CRYPTO_SEQIV 366584fffc8SSebastian Siewior select CRYPTO_MANAGER 367584fffc8SSebastian Siewior help 368584fffc8SSebastian Siewior CTR: Counter mode 369584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 370584fffc8SSebastian Siewior 371584fffc8SSebastian Siewiorconfig CRYPTO_CTS 372584fffc8SSebastian Siewior tristate "CTS support" 373584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 374c8a3315aSEric Biggers select CRYPTO_MANAGER 375584fffc8SSebastian Siewior help 376584fffc8SSebastian Siewior CTS: Cipher Text Stealing 377584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 378ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 379ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 380ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 381584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 382584fffc8SSebastian Siewior for AES encryption. 383584fffc8SSebastian Siewior 384ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 385ecd6d5c9SGilad Ben-Yossef 386584fffc8SSebastian Siewiorconfig CRYPTO_ECB 387584fffc8SSebastian Siewior tristate "ECB support" 388584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 389584fffc8SSebastian Siewior select CRYPTO_MANAGER 390584fffc8SSebastian Siewior help 391584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 392584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 393584fffc8SSebastian Siewior the input block by block. 394584fffc8SSebastian Siewior 395584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3962470a2b2SJussi Kivilinna tristate "LRW support" 397584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 398584fffc8SSebastian Siewior select CRYPTO_MANAGER 399584fffc8SSebastian Siewior select CRYPTO_GF128MUL 400584fffc8SSebastian Siewior help 401584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 402584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 403584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 404584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 405584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 406584fffc8SSebastian Siewior 407e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 408e497c518SGilad Ben-Yossef tristate "OFB support" 409e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 410e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 411e497c518SGilad Ben-Yossef help 412e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 413e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 414e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 415e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 416e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 417e497c518SGilad Ben-Yossef normally even when applied before encryption. 418e497c518SGilad Ben-Yossef 419584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 420584fffc8SSebastian Siewior tristate "PCBC support" 421584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 422584fffc8SSebastian Siewior select CRYPTO_MANAGER 423584fffc8SSebastian Siewior help 424584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 425584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 426584fffc8SSebastian Siewior 427584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4285bcf8e6dSJussi Kivilinna tristate "XTS support" 429584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 430584fffc8SSebastian Siewior select CRYPTO_MANAGER 43112cb3a1cSMilan Broz select CRYPTO_ECB 432584fffc8SSebastian Siewior help 433584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 434584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 435584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 436584fffc8SSebastian Siewior 4371c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4381c49678eSStephan Mueller tristate "Key wrapping support" 4391c49678eSStephan Mueller select CRYPTO_BLKCIPHER 440c8a3315aSEric Biggers select CRYPTO_MANAGER 4411c49678eSStephan Mueller help 4421c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4431c49678eSStephan Mueller padding. 4441c49678eSStephan Mueller 44526609a21SEric Biggersconfig CRYPTO_NHPOLY1305 44626609a21SEric Biggers tristate 44726609a21SEric Biggers select CRYPTO_HASH 44826609a21SEric Biggers select CRYPTO_POLY1305 44926609a21SEric Biggers 450012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 451012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 452012c8238SEric Biggers depends on X86 && 64BIT 453012c8238SEric Biggers select CRYPTO_NHPOLY1305 454012c8238SEric Biggers help 455012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 456012c8238SEric Biggers Adiantum encryption mode. 457012c8238SEric Biggers 4580f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4590f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4600f961f9fSEric Biggers depends on X86 && 64BIT 4610f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4620f961f9fSEric Biggers help 4630f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4640f961f9fSEric Biggers Adiantum encryption mode. 4650f961f9fSEric Biggers 466059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 467059c2a4dSEric Biggers tristate "Adiantum support" 468059c2a4dSEric Biggers select CRYPTO_CHACHA20 469059c2a4dSEric Biggers select CRYPTO_POLY1305 470059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 471c8a3315aSEric Biggers select CRYPTO_MANAGER 472059c2a4dSEric Biggers help 473059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 474059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 475059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 476059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 477059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 478059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 479059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 480059c2a4dSEric Biggers AES-XTS. 481059c2a4dSEric Biggers 482059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 483059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 484059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 485059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 486059c2a4dSEric Biggers security than XTS, subject to the security bound. 487059c2a4dSEric Biggers 488059c2a4dSEric Biggers If unsure, say N. 489059c2a4dSEric Biggers 490584fffc8SSebastian Siewiorcomment "Hash modes" 491584fffc8SSebastian Siewior 49293b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 49393b5e86aSJussi Kivilinna tristate "CMAC support" 49493b5e86aSJussi Kivilinna select CRYPTO_HASH 49593b5e86aSJussi Kivilinna select CRYPTO_MANAGER 49693b5e86aSJussi Kivilinna help 49793b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 49893b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 49993b5e86aSJussi Kivilinna 50093b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 50193b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 50293b5e86aSJussi Kivilinna 5031da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5048425165dSHerbert Xu tristate "HMAC support" 5050796ae06SHerbert Xu select CRYPTO_HASH 50643518407SHerbert Xu select CRYPTO_MANAGER 5071da177e4SLinus Torvalds help 5081da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5091da177e4SLinus Torvalds This is required for IPSec. 5101da177e4SLinus Torvalds 511333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 512333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 513333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 514333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 515333b0d7eSKazunori MIYAZAWA help 516333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 517333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 518333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 519333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 520333b0d7eSKazunori MIYAZAWA 521f1939f7cSShane Wangconfig CRYPTO_VMAC 522f1939f7cSShane Wang tristate "VMAC support" 523f1939f7cSShane Wang select CRYPTO_HASH 524f1939f7cSShane Wang select CRYPTO_MANAGER 525f1939f7cSShane Wang help 526f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 527f1939f7cSShane Wang very high speed on 64-bit architectures. 528f1939f7cSShane Wang 529f1939f7cSShane Wang See also: 530f1939f7cSShane Wang <http://fastcrypto.org/vmac> 531f1939f7cSShane Wang 532584fffc8SSebastian Siewiorcomment "Digest" 533584fffc8SSebastian Siewior 534584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 535584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5365773a3e6SHerbert Xu select CRYPTO_HASH 5376a0962b2SDarrick J. Wong select CRC32 5381da177e4SLinus Torvalds help 539584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 540584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 54169c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5421da177e4SLinus Torvalds 5438cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5448cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5458cb51ba8SAustin Zhang depends on X86 5468cb51ba8SAustin Zhang select CRYPTO_HASH 5478cb51ba8SAustin Zhang help 5488cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5498cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5508cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5518cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5528cb51ba8SAustin Zhang gain performance compared with software implementation. 5538cb51ba8SAustin Zhang Module will be crc32c-intel. 5548cb51ba8SAustin Zhang 5557cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5566dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 557c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5586dd7a82cSAnton Blanchard select CRYPTO_HASH 5596dd7a82cSAnton Blanchard select CRC32 5606dd7a82cSAnton Blanchard help 5616dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 5626dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 5636dd7a82cSAnton Blanchard and newer processors for improved performance. 5646dd7a82cSAnton Blanchard 5656dd7a82cSAnton Blanchard 566442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 567442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 568442a7c40SDavid S. Miller depends on SPARC64 569442a7c40SDavid S. Miller select CRYPTO_HASH 570442a7c40SDavid S. Miller select CRC32 571442a7c40SDavid S. Miller help 572442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 573442a7c40SDavid S. Miller when available. 574442a7c40SDavid S. Miller 57578c37d19SAlexander Boykoconfig CRYPTO_CRC32 57678c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 57778c37d19SAlexander Boyko select CRYPTO_HASH 57878c37d19SAlexander Boyko select CRC32 57978c37d19SAlexander Boyko help 58078c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 58178c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 58278c37d19SAlexander Boyko 58378c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 58478c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 58578c37d19SAlexander Boyko depends on X86 58678c37d19SAlexander Boyko select CRYPTO_HASH 58778c37d19SAlexander Boyko select CRC32 58878c37d19SAlexander Boyko help 58978c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 59078c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 59178c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 592af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 59378c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 59478c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 59578c37d19SAlexander Boyko 5964a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 5974a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 5984a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 5994a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6004a5dc51eSMarcin Nowakowski help 6014a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6024a5dc51eSMarcin Nowakowski instructions, when available. 6034a5dc51eSMarcin Nowakowski 6044a5dc51eSMarcin Nowakowski 60567882e76SNikolay Borisovconfig CRYPTO_XXHASH 60667882e76SNikolay Borisov tristate "xxHash hash algorithm" 60767882e76SNikolay Borisov select CRYPTO_HASH 60867882e76SNikolay Borisov select XXHASH 60967882e76SNikolay Borisov help 61067882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 61167882e76SNikolay Borisov speeds close to RAM limits. 61267882e76SNikolay Borisov 61368411521SHerbert Xuconfig CRYPTO_CRCT10DIF 61468411521SHerbert Xu tristate "CRCT10DIF algorithm" 61568411521SHerbert Xu select CRYPTO_HASH 61668411521SHerbert Xu help 61768411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 61868411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 61968411521SHerbert Xu transforms to be used if they are available. 62068411521SHerbert Xu 62168411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 62268411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 62368411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 62468411521SHerbert Xu select CRYPTO_HASH 62568411521SHerbert Xu help 62668411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 62768411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 62868411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 629af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 63068411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 63168411521SHerbert Xu 632b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 633b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 634b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 635b01df1c1SDaniel Axtens select CRYPTO_HASH 636b01df1c1SDaniel Axtens help 637b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 638b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 639b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 640b01df1c1SDaniel Axtens 641146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 642146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 643146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 644146c8688SDaniel Axtens help 645146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 646146c8688SDaniel Axtens POWER8 vpmsum instructions. 647146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 648146c8688SDaniel Axtens 6492cdc6899SHuang Yingconfig CRYPTO_GHASH 6508dfa20fcSEric Biggers tristate "GHASH hash function" 6512cdc6899SHuang Ying select CRYPTO_GF128MUL 652578c60fbSArnd Bergmann select CRYPTO_HASH 6532cdc6899SHuang Ying help 6548dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 6558dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 6562cdc6899SHuang Ying 657f979e014SMartin Williconfig CRYPTO_POLY1305 658f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 659578c60fbSArnd Bergmann select CRYPTO_HASH 660f979e014SMartin Willi help 661f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 662f979e014SMartin Willi 663f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 664f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 665f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 666f979e014SMartin Willi 667c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 668b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 669c70f4abeSMartin Willi depends on X86 && 64BIT 670c70f4abeSMartin Willi select CRYPTO_POLY1305 671c70f4abeSMartin Willi help 672c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 673c70f4abeSMartin Willi 674c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 675c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 676c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 677c70f4abeSMartin Willi instructions. 678c70f4abeSMartin Willi 6791da177e4SLinus Torvaldsconfig CRYPTO_MD4 6801da177e4SLinus Torvalds tristate "MD4 digest algorithm" 681808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 6821da177e4SLinus Torvalds help 6831da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 6841da177e4SLinus Torvalds 6851da177e4SLinus Torvaldsconfig CRYPTO_MD5 6861da177e4SLinus Torvalds tristate "MD5 digest algorithm" 68714b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 6881da177e4SLinus Torvalds help 6891da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 6901da177e4SLinus Torvalds 691d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 692d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 693d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 694d69e75deSAaro Koskinen select CRYPTO_MD5 695d69e75deSAaro Koskinen select CRYPTO_HASH 696d69e75deSAaro Koskinen help 697d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 698d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 699d69e75deSAaro Koskinen 700e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 701e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 702e8e59953SMarkus Stockhausen depends on PPC 703e8e59953SMarkus Stockhausen select CRYPTO_HASH 704e8e59953SMarkus Stockhausen help 705e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 706e8e59953SMarkus Stockhausen in PPC assembler. 707e8e59953SMarkus Stockhausen 708fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 709fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 710fa4dfedcSDavid S. Miller depends on SPARC64 711fa4dfedcSDavid S. Miller select CRYPTO_MD5 712fa4dfedcSDavid S. Miller select CRYPTO_HASH 713fa4dfedcSDavid S. Miller help 714fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 715fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 716fa4dfedcSDavid S. Miller 717584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 718584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 71919e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 720584fffc8SSebastian Siewior help 721584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 722584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 723584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 724584fffc8SSebastian Siewior of the algorithm. 725584fffc8SSebastian Siewior 72682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 72782798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7287c4468bcSHerbert Xu select CRYPTO_HASH 72982798f90SAdrian-Ken Rueegsegger help 73082798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 73182798f90SAdrian-Ken Rueegsegger 73282798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 73335ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 73482798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 73582798f90SAdrian-Ken Rueegsegger 73682798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7376d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 73882798f90SAdrian-Ken Rueegsegger 73982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 74082798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 741e5835fbaSHerbert Xu select CRYPTO_HASH 74282798f90SAdrian-Ken Rueegsegger help 74382798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 74482798f90SAdrian-Ken Rueegsegger 74582798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 74682798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 747b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 748b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 74982798f90SAdrian-Ken Rueegsegger 750b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 751b6d44341SAdrian Bunk against RIPEMD-160. 752534fe2c1SAdrian-Ken Rueegsegger 753534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7546d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 755534fe2c1SAdrian-Ken Rueegsegger 756534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 757534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 758d8a5e2e9SHerbert Xu select CRYPTO_HASH 759534fe2c1SAdrian-Ken Rueegsegger help 760b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 761b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 762b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 763b6d44341SAdrian Bunk (than RIPEMD-128). 764534fe2c1SAdrian-Ken Rueegsegger 765534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7666d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 767534fe2c1SAdrian-Ken Rueegsegger 768534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 769534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 7703b8efb4cSHerbert Xu select CRYPTO_HASH 771534fe2c1SAdrian-Ken Rueegsegger help 772b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 773b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 774b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 775b6d44341SAdrian Bunk (than RIPEMD-160). 776534fe2c1SAdrian-Ken Rueegsegger 77782798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7786d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 77982798f90SAdrian-Ken Rueegsegger 7801da177e4SLinus Torvaldsconfig CRYPTO_SHA1 7811da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 78254ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 7831da177e4SLinus Torvalds help 7841da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 7851da177e4SLinus Torvalds 78666be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 787e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 78866be8951SMathias Krause depends on X86 && 64BIT 78966be8951SMathias Krause select CRYPTO_SHA1 79066be8951SMathias Krause select CRYPTO_HASH 79166be8951SMathias Krause help 79266be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 79366be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 794e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 795e38b6b7fStim when available. 79666be8951SMathias Krause 7978275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 798e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 7998275d1aaSTim Chen depends on X86 && 64BIT 8008275d1aaSTim Chen select CRYPTO_SHA256 8018275d1aaSTim Chen select CRYPTO_HASH 8028275d1aaSTim Chen help 8038275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8048275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8058275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 806e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 807e38b6b7fStim Instructions) when available. 8088275d1aaSTim Chen 80987de4579STim Chenconfig CRYPTO_SHA512_SSSE3 81087de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 81187de4579STim Chen depends on X86 && 64BIT 81287de4579STim Chen select CRYPTO_SHA512 81387de4579STim Chen select CRYPTO_HASH 81487de4579STim Chen help 81587de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 81687de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 81787de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 81887de4579STim Chen version 2 (AVX2) instructions, when available. 81987de4579STim Chen 820efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 821efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 822efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 823efdb6f6eSAaro Koskinen select CRYPTO_SHA1 824efdb6f6eSAaro Koskinen select CRYPTO_HASH 825efdb6f6eSAaro Koskinen help 826efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 827efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 828efdb6f6eSAaro Koskinen 8294ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8304ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8314ff28d4cSDavid S. Miller depends on SPARC64 8324ff28d4cSDavid S. Miller select CRYPTO_SHA1 8334ff28d4cSDavid S. Miller select CRYPTO_HASH 8344ff28d4cSDavid S. Miller help 8354ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8364ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 8374ff28d4cSDavid S. Miller 838323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 839323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 840323a6bf1SMichael Ellerman depends on PPC 841323a6bf1SMichael Ellerman help 842323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 843323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 844323a6bf1SMichael Ellerman 845d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 846d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 847d9850fc5SMarkus Stockhausen depends on PPC && SPE 848d9850fc5SMarkus Stockhausen help 849d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 850d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 851d9850fc5SMarkus Stockhausen 8521da177e4SLinus Torvaldsconfig CRYPTO_SHA256 853cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 85450e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 8551da177e4SLinus Torvalds help 8561da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 8571da177e4SLinus Torvalds 8581da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 8591da177e4SLinus Torvalds security against collision attacks. 8601da177e4SLinus Torvalds 861cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 862cd12fb90SJonathan Lynch of security against collision attacks. 863cd12fb90SJonathan Lynch 8642ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 8652ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 8662ecc1e95SMarkus Stockhausen depends on PPC && SPE 8672ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 8682ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8692ecc1e95SMarkus Stockhausen help 8702ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8712ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 8722ecc1e95SMarkus Stockhausen 873efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 874efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 875efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 876efdb6f6eSAaro Koskinen select CRYPTO_SHA256 877efdb6f6eSAaro Koskinen select CRYPTO_HASH 878efdb6f6eSAaro Koskinen help 879efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 880efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 881efdb6f6eSAaro Koskinen 88286c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 88386c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 88486c93b24SDavid S. Miller depends on SPARC64 88586c93b24SDavid S. Miller select CRYPTO_SHA256 88686c93b24SDavid S. Miller select CRYPTO_HASH 88786c93b24SDavid S. Miller help 88886c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 88986c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 89086c93b24SDavid S. Miller 8911da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8921da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 893bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8941da177e4SLinus Torvalds help 8951da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8961da177e4SLinus Torvalds 8971da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8981da177e4SLinus Torvalds security against collision attacks. 8991da177e4SLinus Torvalds 9001da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9011da177e4SLinus Torvalds of security against collision attacks. 9021da177e4SLinus Torvalds 903efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 904efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 905efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 906efdb6f6eSAaro Koskinen select CRYPTO_SHA512 907efdb6f6eSAaro Koskinen select CRYPTO_HASH 908efdb6f6eSAaro Koskinen help 909efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 910efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 911efdb6f6eSAaro Koskinen 912775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 913775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 914775e0c69SDavid S. Miller depends on SPARC64 915775e0c69SDavid S. Miller select CRYPTO_SHA512 916775e0c69SDavid S. Miller select CRYPTO_HASH 917775e0c69SDavid S. Miller help 918775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 919775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 920775e0c69SDavid S. Miller 92153964b9eSJeff Garzikconfig CRYPTO_SHA3 92253964b9eSJeff Garzik tristate "SHA3 digest algorithm" 92353964b9eSJeff Garzik select CRYPTO_HASH 92453964b9eSJeff Garzik help 92553964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 92653964b9eSJeff Garzik cryptographic sponge function family called Keccak. 92753964b9eSJeff Garzik 92853964b9eSJeff Garzik References: 92953964b9eSJeff Garzik http://keccak.noekeon.org/ 93053964b9eSJeff Garzik 9314f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9324f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9334f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9344f0fc160SGilad Ben-Yossef help 9354f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9364f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9374f0fc160SGilad Ben-Yossef 9384f0fc160SGilad Ben-Yossef References: 9394f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9404f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9414f0fc160SGilad Ben-Yossef 942fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 943fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 944fe18957eSVitaly Chikunov select CRYPTO_HASH 945fe18957eSVitaly Chikunov help 946fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 947fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 948fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 949fe18957eSVitaly Chikunov 950fe18957eSVitaly Chikunov References: 951fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 952fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 953fe18957eSVitaly Chikunov 9541da177e4SLinus Torvaldsconfig CRYPTO_TGR192 9551da177e4SLinus Torvalds tristate "Tiger digest algorithms" 956f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 9571da177e4SLinus Torvalds help 9581da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 9591da177e4SLinus Torvalds 9601da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 9611da177e4SLinus Torvalds still having decent performance on 32-bit processors. 9621da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 9631da177e4SLinus Torvalds 9641da177e4SLinus Torvalds See also: 9651da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 9661da177e4SLinus Torvalds 967584fffc8SSebastian Siewiorconfig CRYPTO_WP512 968584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 9694946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 9701da177e4SLinus Torvalds help 971584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 9721da177e4SLinus Torvalds 973584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 974584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 9751da177e4SLinus Torvalds 9761da177e4SLinus Torvalds See also: 9776d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 9781da177e4SLinus Torvalds 9790e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 9808dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 9818af00860SRichard Weinberger depends on X86 && 64BIT 9820e1227d3SHuang Ying select CRYPTO_CRYPTD 9830e1227d3SHuang Ying help 9848dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 9858dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 9860e1227d3SHuang Ying 987584fffc8SSebastian Siewiorcomment "Ciphers" 9881da177e4SLinus Torvalds 989e59c1c98SArd Biesheuvelconfig CRYPTO_LIB_AES 990e59c1c98SArd Biesheuvel tristate 991e59c1c98SArd Biesheuvel 9921da177e4SLinus Torvaldsconfig CRYPTO_AES 9931da177e4SLinus Torvalds tristate "AES cipher algorithms" 994cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9955bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 9961da177e4SLinus Torvalds help 9971da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9981da177e4SLinus Torvalds algorithm. 9991da177e4SLinus Torvalds 10001da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10011da177e4SLinus Torvalds both hardware and software across a wide range of computing 10021da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10031da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10041da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10051da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10061da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10071da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10081da177e4SLinus Torvalds 10091da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10101da177e4SLinus Torvalds 10111da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10121da177e4SLinus Torvalds 1013b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1014b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1015b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1016e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1017b5e0b032SArd Biesheuvel help 1018b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1019b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1020b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1021b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1022b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1023b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1024b5e0b032SArd Biesheuvel 1025b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1026b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1027b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1028b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10290a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10300a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1031b5e0b032SArd Biesheuvel 103254b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 103354b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 10348af00860SRichard Weinberger depends on X86 103585671860SHerbert Xu select CRYPTO_AEAD 10362c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 103754b6a1bdSHuang Ying select CRYPTO_ALGAPI 103885671860SHerbert Xu select CRYPTO_BLKCIPHER 10397643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 104085671860SHerbert Xu select CRYPTO_SIMD 104154b6a1bdSHuang Ying help 104254b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 104354b6a1bdSHuang Ying 104454b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 104554b6a1bdSHuang Ying algorithm. 104654b6a1bdSHuang Ying 104754b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 104854b6a1bdSHuang Ying both hardware and software across a wide range of computing 104954b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 105054b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 105154b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 105254b6a1bdSHuang Ying suited for restricted-space environments, in which it also 105354b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 105454b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 105554b6a1bdSHuang Ying 105654b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 105754b6a1bdSHuang Ying 105854b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 105954b6a1bdSHuang Ying 10600d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10610d258efbSMathias Krause for some popular block cipher mode is supported too, including 1062944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 10630d258efbSMathias Krause acceleration for CTR. 10642cf4ac8bSHuang Ying 10659bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10669bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10679bf4852dSDavid S. Miller depends on SPARC64 10689bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10699bf4852dSDavid S. Miller select CRYPTO_ALGAPI 10709bf4852dSDavid S. Miller help 10719bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10729bf4852dSDavid S. Miller 10739bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10749bf4852dSDavid S. Miller algorithm. 10759bf4852dSDavid S. Miller 10769bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10779bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10789bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10799bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10809bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10819bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10829bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10839bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10849bf4852dSDavid S. Miller 10859bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10869bf4852dSDavid S. Miller 10879bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10889bf4852dSDavid S. Miller 10899bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10909bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10919bf4852dSDavid S. Miller ECB and CBC. 10929bf4852dSDavid S. Miller 1093504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1094504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1095504c6143SMarkus Stockhausen depends on PPC && SPE 1096504c6143SMarkus Stockhausen help 1097504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1098504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1099504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1100504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1101504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1102504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1103504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1104504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1105504c6143SMarkus Stockhausen 11061da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11071da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1108cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11091da177e4SLinus Torvalds help 11101da177e4SLinus Torvalds Anubis cipher algorithm. 11111da177e4SLinus Torvalds 11121da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11131da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11141da177e4SLinus Torvalds in the NESSIE competition. 11151da177e4SLinus Torvalds 11161da177e4SLinus Torvalds See also: 11176d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11186d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11191da177e4SLinus Torvalds 1120dc51f257SArd Biesheuvelconfig CRYPTO_LIB_ARC4 1121dc51f257SArd Biesheuvel tristate 1122dc51f257SArd Biesheuvel 1123584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1124584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1125b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1126dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1127e2ee95b8SHye-Shik Chang help 1128584fffc8SSebastian Siewior ARC4 cipher algorithm. 1129e2ee95b8SHye-Shik Chang 1130584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1131584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1132584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1133584fffc8SSebastian Siewior weakness of the algorithm. 1134584fffc8SSebastian Siewior 1135584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1136584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1137584fffc8SSebastian Siewior select CRYPTO_ALGAPI 113852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1139584fffc8SSebastian Siewior help 1140584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1141584fffc8SSebastian Siewior 1142584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1143584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1144584fffc8SSebastian Siewior designed for use on "large microprocessors". 1145e2ee95b8SHye-Shik Chang 1146e2ee95b8SHye-Shik Chang See also: 1147584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1148584fffc8SSebastian Siewior 114952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 115052ba867cSJussi Kivilinna tristate 115152ba867cSJussi Kivilinna help 115252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 115352ba867cSJussi Kivilinna generic c and the assembler implementations. 115452ba867cSJussi Kivilinna 115552ba867cSJussi Kivilinna See also: 115652ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 115752ba867cSJussi Kivilinna 115864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 115964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1160f21a7c19SAl Viro depends on X86 && 64BIT 1161c1679171SEric Biggers select CRYPTO_BLKCIPHER 116264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 116364b94ceaSJussi Kivilinna help 116464b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 116564b94ceaSJussi Kivilinna 116664b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 116764b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 116864b94ceaSJussi Kivilinna designed for use on "large microprocessors". 116964b94ceaSJussi Kivilinna 117064b94ceaSJussi Kivilinna See also: 117164b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 117264b94ceaSJussi Kivilinna 1173584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1174584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1175584fffc8SSebastian Siewior depends on CRYPTO 1176584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1177584fffc8SSebastian Siewior help 1178584fffc8SSebastian Siewior Camellia cipher algorithms module. 1179584fffc8SSebastian Siewior 1180584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1181584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1182584fffc8SSebastian Siewior 1183584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1184584fffc8SSebastian Siewior 1185584fffc8SSebastian Siewior See also: 1186584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1187584fffc8SSebastian Siewior 11880b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11890b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1190f21a7c19SAl Viro depends on X86 && 64BIT 11910b95ec56SJussi Kivilinna depends on CRYPTO 11921af6d037SEric Biggers select CRYPTO_BLKCIPHER 1193964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11940b95ec56SJussi Kivilinna help 11950b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11960b95ec56SJussi Kivilinna 11970b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11980b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11990b95ec56SJussi Kivilinna 12000b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12010b95ec56SJussi Kivilinna 12020b95ec56SJussi Kivilinna See also: 12030b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12040b95ec56SJussi Kivilinna 1205d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1206d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1207d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1208d9b1d2e7SJussi Kivilinna depends on CRYPTO 120944893bc2SEric Biggers select CRYPTO_BLKCIPHER 1210d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 121144893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 121244893bc2SEric Biggers select CRYPTO_SIMD 1213d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1214d9b1d2e7SJussi Kivilinna help 1215d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1216d9b1d2e7SJussi Kivilinna 1217d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1218d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1219d9b1d2e7SJussi Kivilinna 1220d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1221d9b1d2e7SJussi Kivilinna 1222d9b1d2e7SJussi Kivilinna See also: 1223d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1224d9b1d2e7SJussi Kivilinna 1225f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1226f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1227f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1228f3f935a7SJussi Kivilinna depends on CRYPTO 1229f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1230f3f935a7SJussi Kivilinna help 1231f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1232f3f935a7SJussi Kivilinna 1233f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1234f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1235f3f935a7SJussi Kivilinna 1236f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1237f3f935a7SJussi Kivilinna 1238f3f935a7SJussi Kivilinna See also: 1239f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1240f3f935a7SJussi Kivilinna 124181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 124281658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 124381658ad0SDavid S. Miller depends on SPARC64 124481658ad0SDavid S. Miller depends on CRYPTO 124581658ad0SDavid S. Miller select CRYPTO_ALGAPI 124681658ad0SDavid S. Miller help 124781658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 124881658ad0SDavid S. Miller 124981658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 125081658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 125181658ad0SDavid S. Miller 125281658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 125381658ad0SDavid S. Miller 125481658ad0SDavid S. Miller See also: 125581658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 125681658ad0SDavid S. Miller 1257044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1258044ab525SJussi Kivilinna tristate 1259044ab525SJussi Kivilinna help 1260044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1261044ab525SJussi Kivilinna generic c and the assembler implementations. 1262044ab525SJussi Kivilinna 1263584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1264584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1265584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1266044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1267584fffc8SSebastian Siewior help 1268584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1269584fffc8SSebastian Siewior described in RFC2144. 1270584fffc8SSebastian Siewior 12714d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12724d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12734d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12741e63183aSEric Biggers select CRYPTO_BLKCIPHER 12754d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12761e63183aSEric Biggers select CRYPTO_CAST_COMMON 12771e63183aSEric Biggers select CRYPTO_SIMD 12784d6d6a2cSJohannes Goetzfried help 12794d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12804d6d6a2cSJohannes Goetzfried described in RFC2144. 12814d6d6a2cSJohannes Goetzfried 12824d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12834d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12844d6d6a2cSJohannes Goetzfried 1285584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1286584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1287584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1288044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1289584fffc8SSebastian Siewior help 1290584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1291584fffc8SSebastian Siewior described in RFC2612. 1292584fffc8SSebastian Siewior 12934ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12944ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12954ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12964bd96924SEric Biggers select CRYPTO_BLKCIPHER 12974ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12984bd96924SEric Biggers select CRYPTO_CAST_COMMON 12994bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13004bd96924SEric Biggers select CRYPTO_SIMD 13014ea1277dSJohannes Goetzfried select CRYPTO_XTS 13024ea1277dSJohannes Goetzfried help 13034ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13044ea1277dSJohannes Goetzfried described in RFC2612. 13054ea1277dSJohannes Goetzfried 13064ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13074ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13084ea1277dSJohannes Goetzfried 1309584fffc8SSebastian Siewiorconfig CRYPTO_DES 1310584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1311584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1312584fffc8SSebastian Siewior help 1313584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1314584fffc8SSebastian Siewior 1315c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1316c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 131797da37b3SDave Jones depends on SPARC64 1318c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1319c5aac2dfSDavid S. Miller select CRYPTO_DES 1320c5aac2dfSDavid S. Miller help 1321c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1322c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1323c5aac2dfSDavid S. Miller 13246574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13256574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13266574e6c6SJussi Kivilinna depends on X86 && 64BIT 132709c0f03bSEric Biggers select CRYPTO_BLKCIPHER 13286574e6c6SJussi Kivilinna select CRYPTO_DES 13296574e6c6SJussi Kivilinna help 13306574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13316574e6c6SJussi Kivilinna 13326574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13336574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13346574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13356574e6c6SJussi Kivilinna one that processes three blocks parallel. 13366574e6c6SJussi Kivilinna 1337584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1338584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1339584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1340584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1341584fffc8SSebastian Siewior help 1342584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1343584fffc8SSebastian Siewior 1344584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1345584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1346584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1347584fffc8SSebastian Siewior help 1348584fffc8SSebastian Siewior Khazad cipher algorithm. 1349584fffc8SSebastian Siewior 1350584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1351584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1352584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1353584fffc8SSebastian Siewior 1354584fffc8SSebastian Siewior See also: 13556d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1356e2ee95b8SHye-Shik Chang 13572407d608STan Swee Hengconfig CRYPTO_SALSA20 13583b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13592407d608STan Swee Heng select CRYPTO_BLKCIPHER 13602407d608STan Swee Heng help 13612407d608STan Swee Heng Salsa20 stream cipher algorithm. 13622407d608STan Swee Heng 13632407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13642407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13652407d608STan Swee Heng 13662407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13672407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13681da177e4SLinus Torvalds 1369c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1370aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1371c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1372c08d0e64SMartin Willi help 1373aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1374c08d0e64SMartin Willi 1375c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1376c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1377de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1378c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1379c08d0e64SMartin Willi 1380de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1381de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1382de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1383de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1384de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1385de61d7aeSEric Biggers 1386aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1387aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1388aa762409SEric Biggers in some performance-sensitive scenarios. 1389aa762409SEric Biggers 1390c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13914af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1392c9320b6dSMartin Willi depends on X86 && 64BIT 1393c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1394c9320b6dSMartin Willi select CRYPTO_CHACHA20 1395c9320b6dSMartin Willi help 13967a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 13977a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1398c9320b6dSMartin Willi 1399584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1400584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1401584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1402584fffc8SSebastian Siewior help 1403584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1404584fffc8SSebastian Siewior 1405584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1406584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1407584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1408584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1409584fffc8SSebastian Siewior 1410584fffc8SSebastian Siewior See also: 1411584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1412584fffc8SSebastian Siewior 1413584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1414584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1415584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1416584fffc8SSebastian Siewior help 1417584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1418584fffc8SSebastian Siewior 1419584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1420584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1421584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1422584fffc8SSebastian Siewior 1423584fffc8SSebastian Siewior See also: 1424584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1425584fffc8SSebastian Siewior 1426937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1427937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1428937c30d7SJussi Kivilinna depends on X86 && 64BIT 1429e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1430596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1431937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1432e0f409dcSEric Biggers select CRYPTO_SIMD 1433937c30d7SJussi Kivilinna help 1434937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1435937c30d7SJussi Kivilinna 1436937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1437937c30d7SJussi Kivilinna of 8 bits. 1438937c30d7SJussi Kivilinna 14391e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1440937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1441937c30d7SJussi Kivilinna 1442937c30d7SJussi Kivilinna See also: 1443937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1444937c30d7SJussi Kivilinna 1445251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1446251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1447251496dbSJussi Kivilinna depends on X86 && !64BIT 1448e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1449596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1450251496dbSJussi Kivilinna select CRYPTO_SERPENT 1451e0f409dcSEric Biggers select CRYPTO_SIMD 1452251496dbSJussi Kivilinna help 1453251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1454251496dbSJussi Kivilinna 1455251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1456251496dbSJussi Kivilinna of 8 bits. 1457251496dbSJussi Kivilinna 1458251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1459251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1460251496dbSJussi Kivilinna 1461251496dbSJussi Kivilinna See also: 1462251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1463251496dbSJussi Kivilinna 14647efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14657efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14667efe4076SJohannes Goetzfried depends on X86 && 64BIT 1467e16bf974SEric Biggers select CRYPTO_BLKCIPHER 14681d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14697efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1470e16bf974SEric Biggers select CRYPTO_SIMD 14717efe4076SJohannes Goetzfried select CRYPTO_XTS 14727efe4076SJohannes Goetzfried help 14737efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14747efe4076SJohannes Goetzfried 14757efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14767efe4076SJohannes Goetzfried of 8 bits. 14777efe4076SJohannes Goetzfried 14787efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14797efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14807efe4076SJohannes Goetzfried 14817efe4076SJohannes Goetzfried See also: 14827efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14837efe4076SJohannes Goetzfried 148456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 148556d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 148656d76c96SJussi Kivilinna depends on X86 && 64BIT 148756d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 148856d76c96SJussi Kivilinna help 148956d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 149056d76c96SJussi Kivilinna 149156d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 149256d76c96SJussi Kivilinna of 8 bits. 149356d76c96SJussi Kivilinna 149456d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 149556d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 149656d76c96SJussi Kivilinna 149756d76c96SJussi Kivilinna See also: 149856d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 149956d76c96SJussi Kivilinna 1500747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1501747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1502747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1503747c8ce4SGilad Ben-Yossef help 1504747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1505747c8ce4SGilad Ben-Yossef 1506747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1507747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1508747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1509747c8ce4SGilad Ben-Yossef 1510747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1511747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1512747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1513747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1514747c8ce4SGilad Ben-Yossef 1515747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1516747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1517747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1518747c8ce4SGilad Ben-Yossef 1519747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1520747c8ce4SGilad Ben-Yossef 1521747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1522747c8ce4SGilad Ben-Yossef 1523747c8ce4SGilad Ben-Yossef If unsure, say N. 1524747c8ce4SGilad Ben-Yossef 1525584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1526584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1527584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1528584fffc8SSebastian Siewior help 1529584fffc8SSebastian Siewior TEA cipher algorithm. 1530584fffc8SSebastian Siewior 1531584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1532584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1533584fffc8SSebastian Siewior little memory. 1534584fffc8SSebastian Siewior 1535584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1536584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1537584fffc8SSebastian Siewior in the TEA algorithm. 1538584fffc8SSebastian Siewior 1539584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1540584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1541584fffc8SSebastian Siewior 1542584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1543584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1544584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1545584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1546584fffc8SSebastian Siewior help 1547584fffc8SSebastian Siewior Twofish cipher algorithm. 1548584fffc8SSebastian Siewior 1549584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1550584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1551584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1552584fffc8SSebastian Siewior bits. 1553584fffc8SSebastian Siewior 1554584fffc8SSebastian Siewior See also: 1555584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1556584fffc8SSebastian Siewior 1557584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1558584fffc8SSebastian Siewior tristate 1559584fffc8SSebastian Siewior help 1560584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1561584fffc8SSebastian Siewior generic c and the assembler implementations. 1562584fffc8SSebastian Siewior 1563584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1564584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1565584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1566584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1567584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1568584fffc8SSebastian Siewior help 1569584fffc8SSebastian Siewior Twofish cipher algorithm. 1570584fffc8SSebastian Siewior 1571584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1572584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1573584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1574584fffc8SSebastian Siewior bits. 1575584fffc8SSebastian Siewior 1576584fffc8SSebastian Siewior See also: 1577584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1578584fffc8SSebastian Siewior 1579584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1580584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1581584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1582584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1583584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1584584fffc8SSebastian Siewior help 1585584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1586584fffc8SSebastian Siewior 1587584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1588584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1589584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1590584fffc8SSebastian Siewior bits. 1591584fffc8SSebastian Siewior 1592584fffc8SSebastian Siewior See also: 1593584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1594584fffc8SSebastian Siewior 15958280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 15968280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1597f21a7c19SAl Viro depends on X86 && 64BIT 159837992fa4SEric Biggers select CRYPTO_BLKCIPHER 15998280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16008280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1601414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16028280daadSJussi Kivilinna help 16038280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16048280daadSJussi Kivilinna 16058280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16068280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16078280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16088280daadSJussi Kivilinna bits. 16098280daadSJussi Kivilinna 16108280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16118280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16128280daadSJussi Kivilinna 16138280daadSJussi Kivilinna See also: 16148280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16158280daadSJussi Kivilinna 1616107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1617107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1618107778b5SJohannes Goetzfried depends on X86 && 64BIT 16190e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1620a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16210e6ab46dSEric Biggers select CRYPTO_SIMD 1622107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1623107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1624107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1625107778b5SJohannes Goetzfried help 1626107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1627107778b5SJohannes Goetzfried 1628107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1629107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1630107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1631107778b5SJohannes Goetzfried bits. 1632107778b5SJohannes Goetzfried 1633107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1634107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1635107778b5SJohannes Goetzfried 1636107778b5SJohannes Goetzfried See also: 1637107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1638107778b5SJohannes Goetzfried 1639584fffc8SSebastian Siewiorcomment "Compression" 1640584fffc8SSebastian Siewior 16411da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16421da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1643cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1644f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16451da177e4SLinus Torvalds select ZLIB_INFLATE 16461da177e4SLinus Torvalds select ZLIB_DEFLATE 16471da177e4SLinus Torvalds help 16481da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16491da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16501da177e4SLinus Torvalds 16511da177e4SLinus Torvalds You will most probably want this if using IPSec. 16521da177e4SLinus Torvalds 16530b77abb3SZoltan Sogorconfig CRYPTO_LZO 16540b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16550b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1656ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16570b77abb3SZoltan Sogor select LZO_COMPRESS 16580b77abb3SZoltan Sogor select LZO_DECOMPRESS 16590b77abb3SZoltan Sogor help 16600b77abb3SZoltan Sogor This is the LZO algorithm. 16610b77abb3SZoltan Sogor 166235a1fc18SSeth Jenningsconfig CRYPTO_842 166335a1fc18SSeth Jennings tristate "842 compression algorithm" 16642062c5b6SDan Streetman select CRYPTO_ALGAPI 16656a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16662062c5b6SDan Streetman select 842_COMPRESS 16672062c5b6SDan Streetman select 842_DECOMPRESS 166835a1fc18SSeth Jennings help 166935a1fc18SSeth Jennings This is the 842 algorithm. 167035a1fc18SSeth Jennings 16710ea8530dSChanho Minconfig CRYPTO_LZ4 16720ea8530dSChanho Min tristate "LZ4 compression algorithm" 16730ea8530dSChanho Min select CRYPTO_ALGAPI 16748cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16750ea8530dSChanho Min select LZ4_COMPRESS 16760ea8530dSChanho Min select LZ4_DECOMPRESS 16770ea8530dSChanho Min help 16780ea8530dSChanho Min This is the LZ4 algorithm. 16790ea8530dSChanho Min 16800ea8530dSChanho Minconfig CRYPTO_LZ4HC 16810ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16820ea8530dSChanho Min select CRYPTO_ALGAPI 168391d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16840ea8530dSChanho Min select LZ4HC_COMPRESS 16850ea8530dSChanho Min select LZ4_DECOMPRESS 16860ea8530dSChanho Min help 16870ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16880ea8530dSChanho Min 1689d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1690d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1691d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1692d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1693d28fc3dbSNick Terrell select ZSTD_COMPRESS 1694d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1695d28fc3dbSNick Terrell help 1696d28fc3dbSNick Terrell This is the zstd algorithm. 1697d28fc3dbSNick Terrell 169817f0f4a4SNeil Hormancomment "Random Number Generation" 169917f0f4a4SNeil Horman 170017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 170117f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 170217f0f4a4SNeil Horman select CRYPTO_AES 170317f0f4a4SNeil Horman select CRYPTO_RNG 170417f0f4a4SNeil Horman help 170517f0f4a4SNeil Horman This option enables the generic pseudo random number generator 170617f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17077dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17087dd607e8SJiri Kosina CRYPTO_FIPS is selected 170917f0f4a4SNeil Horman 1710f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1711419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1712419090c6SStephan Mueller help 1713419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1714419090c6SStephan Mueller more of the DRBG types must be selected. 1715419090c6SStephan Mueller 1716f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1717419090c6SStephan Mueller 1718419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1719401e4238SHerbert Xu bool 1720419090c6SStephan Mueller default y 1721419090c6SStephan Mueller select CRYPTO_HMAC 1722826775bbSHerbert Xu select CRYPTO_SHA256 1723419090c6SStephan Mueller 1724419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1725419090c6SStephan Mueller bool "Enable Hash DRBG" 1726826775bbSHerbert Xu select CRYPTO_SHA256 1727419090c6SStephan Mueller help 1728419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1729419090c6SStephan Mueller 1730419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1731419090c6SStephan Mueller bool "Enable CTR DRBG" 1732419090c6SStephan Mueller select CRYPTO_AES 173335591285SStephan Mueller depends on CRYPTO_CTR 1734419090c6SStephan Mueller help 1735419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1736419090c6SStephan Mueller 1737f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1738f2c89a10SHerbert Xu tristate 1739401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1740f2c89a10SHerbert Xu select CRYPTO_RNG 1741bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1742f2c89a10SHerbert Xu 1743f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1744419090c6SStephan Mueller 1745bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1746bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17472f313e02SArnd Bergmann select CRYPTO_RNG 1748bb5530e4SStephan Mueller help 1749bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1750bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1751bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1752bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1753bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1754bb5530e4SStephan Mueller 175503c8efc1SHerbert Xuconfig CRYPTO_USER_API 175603c8efc1SHerbert Xu tristate 175703c8efc1SHerbert Xu 1758fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1759fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17607451708fSHerbert Xu depends on NET 1761fe869cdbSHerbert Xu select CRYPTO_HASH 1762fe869cdbSHerbert Xu select CRYPTO_USER_API 1763fe869cdbSHerbert Xu help 1764fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1765fe869cdbSHerbert Xu algorithms. 1766fe869cdbSHerbert Xu 17678ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17688ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17697451708fSHerbert Xu depends on NET 17708ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17718ff59090SHerbert Xu select CRYPTO_USER_API 17728ff59090SHerbert Xu help 17738ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17748ff59090SHerbert Xu key cipher algorithms. 17758ff59090SHerbert Xu 17762f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17772f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17782f375538SStephan Mueller depends on NET 17792f375538SStephan Mueller select CRYPTO_RNG 17802f375538SStephan Mueller select CRYPTO_USER_API 17812f375538SStephan Mueller help 17822f375538SStephan Mueller This option enables the user-spaces interface for random 17832f375538SStephan Mueller number generator algorithms. 17842f375538SStephan Mueller 1785b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1786b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1787b64a2d95SHerbert Xu depends on NET 1788b64a2d95SHerbert Xu select CRYPTO_AEAD 178972548b09SStephan Mueller select CRYPTO_BLKCIPHER 179072548b09SStephan Mueller select CRYPTO_NULL 1791b64a2d95SHerbert Xu select CRYPTO_USER_API 1792b64a2d95SHerbert Xu help 1793b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1794b64a2d95SHerbert Xu cipher algorithms. 1795b64a2d95SHerbert Xu 1796cac5818cSCorentin Labbeconfig CRYPTO_STATS 1797cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1798a6a31385SCorentin Labbe depends on CRYPTO_USER 1799cac5818cSCorentin Labbe help 1800cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1801cac5818cSCorentin Labbe This will collect: 1802cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1803cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1804cac5818cSCorentin Labbe - size and numbers of hash operations 1805cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1806cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1807cac5818cSCorentin Labbe 1808ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1809ee08997fSDmitry Kasatkin bool 1810ee08997fSDmitry Kasatkin 18111da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 18128636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 18138636a1f9SMasahiro Yamadasource "certs/Kconfig" 18141da177e4SLinus Torvalds 1815cce9e06dSHerbert Xuendif # if CRYPTO 1816