1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 140326a6346SHerbert Xu bool "Disable run-time self tests" 14100ca28a5SHerbert Xu default y 1420b767f96SAlexander Shishkin help 143326a6346SHerbert Xu Disable run-time self tests that normally take place at 144326a6346SHerbert Xu algorithm registration. 1450b767f96SAlexander Shishkin 1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1475b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1485b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1495b2706a4SEric Biggers help 1505b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1515b2706a4SEric Biggers including randomized fuzz tests. 1525b2706a4SEric Biggers 1535b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1545b2706a4SEric Biggers longer to run than the normal self tests. 1555b2706a4SEric Biggers 156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 157e590e132SEric Biggers tristate 158584fffc8SSebastian Siewior 159584fffc8SSebastian Siewiorconfig CRYPTO_NULL 160584fffc8SSebastian Siewior tristate "Null algorithms" 161149a3971SHerbert Xu select CRYPTO_NULL2 162584fffc8SSebastian Siewior help 163584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 164584fffc8SSebastian Siewior 165149a3971SHerbert Xuconfig CRYPTO_NULL2 166dd43c4e9SHerbert Xu tristate 167149a3971SHerbert Xu select CRYPTO_ALGAPI2 168b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 169149a3971SHerbert Xu select CRYPTO_HASH2 170149a3971SHerbert Xu 1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1723b4afaf2SKees Cook tristate "Parallel crypto engine" 1733b4afaf2SKees Cook depends on SMP 1745068c7a8SSteffen Klassert select PADATA 1755068c7a8SSteffen Klassert select CRYPTO_MANAGER 1765068c7a8SSteffen Klassert select CRYPTO_AEAD 1775068c7a8SSteffen Klassert help 1785068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1795068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1805068c7a8SSteffen Klassert 181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 182584fffc8SSebastian Siewior tristate "Software async crypto daemon" 183b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184b8a28251SLoc Ho select CRYPTO_HASH 185584fffc8SSebastian Siewior select CRYPTO_MANAGER 186584fffc8SSebastian Siewior help 187584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 188584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 189584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 190584fffc8SSebastian Siewior 191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 192584fffc8SSebastian Siewior tristate "Authenc support" 193584fffc8SSebastian Siewior select CRYPTO_AEAD 194b95bba5dSEric Biggers select CRYPTO_SKCIPHER 195584fffc8SSebastian Siewior select CRYPTO_MANAGER 196584fffc8SSebastian Siewior select CRYPTO_HASH 197e94c6a7aSHerbert Xu select CRYPTO_NULL 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 200584fffc8SSebastian Siewior This is required for IPSec. 201584fffc8SSebastian Siewior 202584fffc8SSebastian Siewiorconfig CRYPTO_TEST 203584fffc8SSebastian Siewior tristate "Testing module" 204584fffc8SSebastian Siewior depends on m 205da7f033dSHerbert Xu select CRYPTO_MANAGER 206584fffc8SSebastian Siewior help 207584fffc8SSebastian Siewior Quick & dirty crypto test module. 208584fffc8SSebastian Siewior 209266d0516SHerbert Xuconfig CRYPTO_SIMD 210266d0516SHerbert Xu tristate 211266d0516SHerbert Xu select CRYPTO_CRYPTD 212266d0516SHerbert Xu 213596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 214596d8750SJussi Kivilinna tristate 215596d8750SJussi Kivilinna depends on X86 216b95bba5dSEric Biggers select CRYPTO_SKCIPHER 217596d8750SJussi Kivilinna 218735d37b5SBaolin Wangconfig CRYPTO_ENGINE 219735d37b5SBaolin Wang tristate 220735d37b5SBaolin Wang 2213d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2223d6228a5SVitaly Chikunov 2233d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2243d6228a5SVitaly Chikunov tristate "RSA algorithm" 2253d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2263d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2273d6228a5SVitaly Chikunov select MPILIB 2283d6228a5SVitaly Chikunov select ASN1 2293d6228a5SVitaly Chikunov help 2303d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2313d6228a5SVitaly Chikunov 2323d6228a5SVitaly Chikunovconfig CRYPTO_DH 2333d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2343d6228a5SVitaly Chikunov select CRYPTO_KPP 2353d6228a5SVitaly Chikunov select MPILIB 2363d6228a5SVitaly Chikunov help 2373d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2383d6228a5SVitaly Chikunov 2394a2289daSVitaly Chikunovconfig CRYPTO_ECC 2404a2289daSVitaly Chikunov tristate 2414a2289daSVitaly Chikunov 2423d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2433d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2444a2289daSVitaly Chikunov select CRYPTO_ECC 2453d6228a5SVitaly Chikunov select CRYPTO_KPP 2463d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2473d6228a5SVitaly Chikunov help 2483d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2493d6228a5SVitaly Chikunov 2500d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2510d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2520d7a7864SVitaly Chikunov select CRYPTO_ECC 2530d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2540d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2551036633eSVitaly Chikunov select OID_REGISTRY 2561036633eSVitaly Chikunov select ASN1 2570d7a7864SVitaly Chikunov help 2580d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2590d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2600d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2610d7a7864SVitaly Chikunov is implemented. 2620d7a7864SVitaly Chikunov 263ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 264ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 265ee772cb6SArd Biesheuvel select CRYPTO_KPP 266ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 267ee772cb6SArd Biesheuvel 268bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 269bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 270bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 271bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 272bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 273bb611bdfSJason A. Donenfeld 274584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 275584fffc8SSebastian Siewior 276584fffc8SSebastian Siewiorconfig CRYPTO_CCM 277584fffc8SSebastian Siewior tristate "CCM support" 278584fffc8SSebastian Siewior select CRYPTO_CTR 279f15f05b0SArd Biesheuvel select CRYPTO_HASH 280584fffc8SSebastian Siewior select CRYPTO_AEAD 281c8a3315aSEric Biggers select CRYPTO_MANAGER 282584fffc8SSebastian Siewior help 283584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 284584fffc8SSebastian Siewior 285584fffc8SSebastian Siewiorconfig CRYPTO_GCM 286584fffc8SSebastian Siewior tristate "GCM/GMAC support" 287584fffc8SSebastian Siewior select CRYPTO_CTR 288584fffc8SSebastian Siewior select CRYPTO_AEAD 2899382d97aSHuang Ying select CRYPTO_GHASH 2909489667dSJussi Kivilinna select CRYPTO_NULL 291c8a3315aSEric Biggers select CRYPTO_MANAGER 292584fffc8SSebastian Siewior help 293584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 294584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 295584fffc8SSebastian Siewior 29671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29771ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29871ebc4d1SMartin Willi select CRYPTO_CHACHA20 29971ebc4d1SMartin Willi select CRYPTO_POLY1305 30071ebc4d1SMartin Willi select CRYPTO_AEAD 301c8a3315aSEric Biggers select CRYPTO_MANAGER 30271ebc4d1SMartin Willi help 30371ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 30471ebc4d1SMartin Willi 30571ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 30671ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30771ebc4d1SMartin Willi IETF protocols. 30871ebc4d1SMartin Willi 309f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 310f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 311f606a88eSOndrej Mosnacek select CRYPTO_AEAD 312f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 313f606a88eSOndrej Mosnacek help 314f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 315f606a88eSOndrej Mosnacek 316a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 317a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 318a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 319a4397635SArd Biesheuvel default y 320a4397635SArd Biesheuvel 3211d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3221d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3231d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3241d373d4eSOndrej Mosnacek select CRYPTO_AEAD 325de272ca7SEric Biggers select CRYPTO_SIMD 3261d373d4eSOndrej Mosnacek help 3274e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3281d373d4eSOndrej Mosnacek 329584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 330584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 331584fffc8SSebastian Siewior select CRYPTO_AEAD 332b95bba5dSEric Biggers select CRYPTO_SKCIPHER 333856e3f40SHerbert Xu select CRYPTO_NULL 334401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 335c8a3315aSEric Biggers select CRYPTO_MANAGER 336584fffc8SSebastian Siewior help 337584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 338584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 339584fffc8SSebastian Siewior 340a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 341a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 342a10f554fSHerbert Xu select CRYPTO_AEAD 343a10f554fSHerbert Xu select CRYPTO_NULL 344401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 345c8a3315aSEric Biggers select CRYPTO_MANAGER 346a10f554fSHerbert Xu help 347a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 348a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 349a10f554fSHerbert Xu algorithm for CBC. 350a10f554fSHerbert Xu 351584fffc8SSebastian Siewiorcomment "Block modes" 352584fffc8SSebastian Siewior 353584fffc8SSebastian Siewiorconfig CRYPTO_CBC 354584fffc8SSebastian Siewior tristate "CBC support" 355b95bba5dSEric Biggers select CRYPTO_SKCIPHER 356584fffc8SSebastian Siewior select CRYPTO_MANAGER 357584fffc8SSebastian Siewior help 358584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 359584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 360584fffc8SSebastian Siewior 361a7d85e06SJames Bottomleyconfig CRYPTO_CFB 362a7d85e06SJames Bottomley tristate "CFB support" 363b95bba5dSEric Biggers select CRYPTO_SKCIPHER 364a7d85e06SJames Bottomley select CRYPTO_MANAGER 365a7d85e06SJames Bottomley help 366a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 367a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 368a7d85e06SJames Bottomley 369584fffc8SSebastian Siewiorconfig CRYPTO_CTR 370584fffc8SSebastian Siewior tristate "CTR support" 371b95bba5dSEric Biggers select CRYPTO_SKCIPHER 372584fffc8SSebastian Siewior select CRYPTO_MANAGER 373584fffc8SSebastian Siewior help 374584fffc8SSebastian Siewior CTR: Counter mode 375584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 376584fffc8SSebastian Siewior 377584fffc8SSebastian Siewiorconfig CRYPTO_CTS 378584fffc8SSebastian Siewior tristate "CTS support" 379b95bba5dSEric Biggers select CRYPTO_SKCIPHER 380c8a3315aSEric Biggers select CRYPTO_MANAGER 381584fffc8SSebastian Siewior help 382584fffc8SSebastian Siewior CTS: Cipher Text Stealing 383584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 384ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 385ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 386ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 387584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 388584fffc8SSebastian Siewior for AES encryption. 389584fffc8SSebastian Siewior 390ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 391ecd6d5c9SGilad Ben-Yossef 392584fffc8SSebastian Siewiorconfig CRYPTO_ECB 393584fffc8SSebastian Siewior tristate "ECB support" 394b95bba5dSEric Biggers select CRYPTO_SKCIPHER 395584fffc8SSebastian Siewior select CRYPTO_MANAGER 396584fffc8SSebastian Siewior help 397584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 398584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 399584fffc8SSebastian Siewior the input block by block. 400584fffc8SSebastian Siewior 401584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4022470a2b2SJussi Kivilinna tristate "LRW support" 403b95bba5dSEric Biggers select CRYPTO_SKCIPHER 404584fffc8SSebastian Siewior select CRYPTO_MANAGER 405584fffc8SSebastian Siewior select CRYPTO_GF128MUL 406584fffc8SSebastian Siewior help 407584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 408584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 409584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 410584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 411584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 412584fffc8SSebastian Siewior 413e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 414e497c518SGilad Ben-Yossef tristate "OFB support" 415b95bba5dSEric Biggers select CRYPTO_SKCIPHER 416e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 417e497c518SGilad Ben-Yossef help 418e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 419e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 420e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 421e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 422e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 423e497c518SGilad Ben-Yossef normally even when applied before encryption. 424e497c518SGilad Ben-Yossef 425584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 426584fffc8SSebastian Siewior tristate "PCBC support" 427b95bba5dSEric Biggers select CRYPTO_SKCIPHER 428584fffc8SSebastian Siewior select CRYPTO_MANAGER 429584fffc8SSebastian Siewior help 430584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 431584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 432584fffc8SSebastian Siewior 433584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4345bcf8e6dSJussi Kivilinna tristate "XTS support" 435b95bba5dSEric Biggers select CRYPTO_SKCIPHER 436584fffc8SSebastian Siewior select CRYPTO_MANAGER 43712cb3a1cSMilan Broz select CRYPTO_ECB 438584fffc8SSebastian Siewior help 439584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 440584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 441584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 442584fffc8SSebastian Siewior 4431c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4441c49678eSStephan Mueller tristate "Key wrapping support" 445b95bba5dSEric Biggers select CRYPTO_SKCIPHER 446c8a3315aSEric Biggers select CRYPTO_MANAGER 4471c49678eSStephan Mueller help 4481c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4491c49678eSStephan Mueller padding. 4501c49678eSStephan Mueller 45126609a21SEric Biggersconfig CRYPTO_NHPOLY1305 45226609a21SEric Biggers tristate 45326609a21SEric Biggers select CRYPTO_HASH 45448ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 45526609a21SEric Biggers 456012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 457012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 458012c8238SEric Biggers depends on X86 && 64BIT 459012c8238SEric Biggers select CRYPTO_NHPOLY1305 460012c8238SEric Biggers help 461012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 462012c8238SEric Biggers Adiantum encryption mode. 463012c8238SEric Biggers 4640f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4650f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4660f961f9fSEric Biggers depends on X86 && 64BIT 4670f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4680f961f9fSEric Biggers help 4690f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4700f961f9fSEric Biggers Adiantum encryption mode. 4710f961f9fSEric Biggers 472059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 473059c2a4dSEric Biggers tristate "Adiantum support" 474059c2a4dSEric Biggers select CRYPTO_CHACHA20 47548ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 476059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 477c8a3315aSEric Biggers select CRYPTO_MANAGER 478059c2a4dSEric Biggers help 479059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 480059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 481059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 482059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 483059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 484059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 485059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 486059c2a4dSEric Biggers AES-XTS. 487059c2a4dSEric Biggers 488059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 489059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 490059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 491059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 492059c2a4dSEric Biggers security than XTS, subject to the security bound. 493059c2a4dSEric Biggers 494059c2a4dSEric Biggers If unsure, say N. 495059c2a4dSEric Biggers 496be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 497be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 498be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 499be1eb7f7SArd Biesheuvel help 500be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 501be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 502be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 503be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 504be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 505be1eb7f7SArd Biesheuvel encryption. 506be1eb7f7SArd Biesheuvel 507be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 508ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 509be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 510be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 511ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 512be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 513be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 514be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 515be1eb7f7SArd Biesheuvel 516be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 517be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 518be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 519be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 520be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 521be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 522be1eb7f7SArd Biesheuvel block encryption) 523be1eb7f7SArd Biesheuvel 524584fffc8SSebastian Siewiorcomment "Hash modes" 525584fffc8SSebastian Siewior 52693b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 52793b5e86aSJussi Kivilinna tristate "CMAC support" 52893b5e86aSJussi Kivilinna select CRYPTO_HASH 52993b5e86aSJussi Kivilinna select CRYPTO_MANAGER 53093b5e86aSJussi Kivilinna help 53193b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 53293b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 53393b5e86aSJussi Kivilinna 53493b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 53593b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 53693b5e86aSJussi Kivilinna 5371da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5388425165dSHerbert Xu tristate "HMAC support" 5390796ae06SHerbert Xu select CRYPTO_HASH 54043518407SHerbert Xu select CRYPTO_MANAGER 5411da177e4SLinus Torvalds help 5421da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5431da177e4SLinus Torvalds This is required for IPSec. 5441da177e4SLinus Torvalds 545333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 546333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 547333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 548333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 549333b0d7eSKazunori MIYAZAWA help 550333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 551*9332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 552333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 553333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 554333b0d7eSKazunori MIYAZAWA 555f1939f7cSShane Wangconfig CRYPTO_VMAC 556f1939f7cSShane Wang tristate "VMAC support" 557f1939f7cSShane Wang select CRYPTO_HASH 558f1939f7cSShane Wang select CRYPTO_MANAGER 559f1939f7cSShane Wang help 560f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 561f1939f7cSShane Wang very high speed on 64-bit architectures. 562f1939f7cSShane Wang 563f1939f7cSShane Wang See also: 564*9332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 565f1939f7cSShane Wang 566584fffc8SSebastian Siewiorcomment "Digest" 567584fffc8SSebastian Siewior 568584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 569584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5705773a3e6SHerbert Xu select CRYPTO_HASH 5716a0962b2SDarrick J. Wong select CRC32 5721da177e4SLinus Torvalds help 573584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 574584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 57569c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5761da177e4SLinus Torvalds 5778cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5788cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5798cb51ba8SAustin Zhang depends on X86 5808cb51ba8SAustin Zhang select CRYPTO_HASH 5818cb51ba8SAustin Zhang help 5828cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5838cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5848cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5858cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5868cb51ba8SAustin Zhang gain performance compared with software implementation. 5878cb51ba8SAustin Zhang Module will be crc32c-intel. 5888cb51ba8SAustin Zhang 5897cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5906dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 591c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5926dd7a82cSAnton Blanchard select CRYPTO_HASH 5936dd7a82cSAnton Blanchard select CRC32 5946dd7a82cSAnton Blanchard help 5956dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 5966dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 5976dd7a82cSAnton Blanchard and newer processors for improved performance. 5986dd7a82cSAnton Blanchard 5996dd7a82cSAnton Blanchard 600442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 601442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 602442a7c40SDavid S. Miller depends on SPARC64 603442a7c40SDavid S. Miller select CRYPTO_HASH 604442a7c40SDavid S. Miller select CRC32 605442a7c40SDavid S. Miller help 606442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 607442a7c40SDavid S. Miller when available. 608442a7c40SDavid S. Miller 60978c37d19SAlexander Boykoconfig CRYPTO_CRC32 61078c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 61178c37d19SAlexander Boyko select CRYPTO_HASH 61278c37d19SAlexander Boyko select CRC32 61378c37d19SAlexander Boyko help 61478c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 61578c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 61678c37d19SAlexander Boyko 61778c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 61878c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 61978c37d19SAlexander Boyko depends on X86 62078c37d19SAlexander Boyko select CRYPTO_HASH 62178c37d19SAlexander Boyko select CRC32 62278c37d19SAlexander Boyko help 62378c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 62478c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 62578c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 626af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 62778c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 62878c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 62978c37d19SAlexander Boyko 6304a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6314a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6324a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6334a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6344a5dc51eSMarcin Nowakowski help 6354a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6364a5dc51eSMarcin Nowakowski instructions, when available. 6374a5dc51eSMarcin Nowakowski 6384a5dc51eSMarcin Nowakowski 63967882e76SNikolay Borisovconfig CRYPTO_XXHASH 64067882e76SNikolay Borisov tristate "xxHash hash algorithm" 64167882e76SNikolay Borisov select CRYPTO_HASH 64267882e76SNikolay Borisov select XXHASH 64367882e76SNikolay Borisov help 64467882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 64567882e76SNikolay Borisov speeds close to RAM limits. 64667882e76SNikolay Borisov 64791d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 64891d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 64991d68933SDavid Sterba select CRYPTO_HASH 65091d68933SDavid Sterba help 65191d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 65291d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 65391d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 65491d68933SDavid Sterba 65591d68933SDavid Sterba This module provides the following algorithms: 65691d68933SDavid Sterba 65791d68933SDavid Sterba - blake2b-160 65891d68933SDavid Sterba - blake2b-256 65991d68933SDavid Sterba - blake2b-384 66091d68933SDavid Sterba - blake2b-512 66191d68933SDavid Sterba 66291d68933SDavid Sterba See https://blake2.net for further information. 66391d68933SDavid Sterba 6647f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 6657f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 6667f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 6677f9b0880SArd Biesheuvel select CRYPTO_HASH 6687f9b0880SArd Biesheuvel help 6697f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 6707f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 6717f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 6727f9b0880SArd Biesheuvel 6737f9b0880SArd Biesheuvel This module provides the following algorithms: 6747f9b0880SArd Biesheuvel 6757f9b0880SArd Biesheuvel - blake2s-128 6767f9b0880SArd Biesheuvel - blake2s-160 6777f9b0880SArd Biesheuvel - blake2s-224 6787f9b0880SArd Biesheuvel - blake2s-256 6797f9b0880SArd Biesheuvel 6807f9b0880SArd Biesheuvel See https://blake2.net for further information. 6817f9b0880SArd Biesheuvel 682ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 683ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 684ed0356edSJason A. Donenfeld depends on X86 && 64BIT 685ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 686ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 687ed0356edSJason A. Donenfeld 68868411521SHerbert Xuconfig CRYPTO_CRCT10DIF 68968411521SHerbert Xu tristate "CRCT10DIF algorithm" 69068411521SHerbert Xu select CRYPTO_HASH 69168411521SHerbert Xu help 69268411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 69368411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 69468411521SHerbert Xu transforms to be used if they are available. 69568411521SHerbert Xu 69668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 69768411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 69868411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 69968411521SHerbert Xu select CRYPTO_HASH 70068411521SHerbert Xu help 70168411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 70268411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 70368411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 704af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 70568411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 70668411521SHerbert Xu 707b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 708b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 709b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 710b01df1c1SDaniel Axtens select CRYPTO_HASH 711b01df1c1SDaniel Axtens help 712b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 713b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 714b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 715b01df1c1SDaniel Axtens 716146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 717146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 718146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 719146c8688SDaniel Axtens help 720146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 721146c8688SDaniel Axtens POWER8 vpmsum instructions. 722146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 723146c8688SDaniel Axtens 7242cdc6899SHuang Yingconfig CRYPTO_GHASH 7258dfa20fcSEric Biggers tristate "GHASH hash function" 7262cdc6899SHuang Ying select CRYPTO_GF128MUL 727578c60fbSArnd Bergmann select CRYPTO_HASH 7282cdc6899SHuang Ying help 7298dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7308dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7312cdc6899SHuang Ying 732f979e014SMartin Williconfig CRYPTO_POLY1305 733f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 734578c60fbSArnd Bergmann select CRYPTO_HASH 73548ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 736f979e014SMartin Willi help 737f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 738f979e014SMartin Willi 739f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 740f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 741f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 742f979e014SMartin Willi 743c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 744b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 745c70f4abeSMartin Willi depends on X86 && 64BIT 7461b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 747f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 748c70f4abeSMartin Willi help 749c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 750c70f4abeSMartin Willi 751c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 752c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 753c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 754c70f4abeSMartin Willi instructions. 755c70f4abeSMartin Willi 756a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 757a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 758a11d055eSArd Biesheuvel depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT) 759a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 760a11d055eSArd Biesheuvel 7611da177e4SLinus Torvaldsconfig CRYPTO_MD4 7621da177e4SLinus Torvalds tristate "MD4 digest algorithm" 763808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7641da177e4SLinus Torvalds help 7651da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7661da177e4SLinus Torvalds 7671da177e4SLinus Torvaldsconfig CRYPTO_MD5 7681da177e4SLinus Torvalds tristate "MD5 digest algorithm" 76914b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7701da177e4SLinus Torvalds help 7711da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7721da177e4SLinus Torvalds 773d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 774d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 775d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 776d69e75deSAaro Koskinen select CRYPTO_MD5 777d69e75deSAaro Koskinen select CRYPTO_HASH 778d69e75deSAaro Koskinen help 779d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 780d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 781d69e75deSAaro Koskinen 782e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 783e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 784e8e59953SMarkus Stockhausen depends on PPC 785e8e59953SMarkus Stockhausen select CRYPTO_HASH 786e8e59953SMarkus Stockhausen help 787e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 788e8e59953SMarkus Stockhausen in PPC assembler. 789e8e59953SMarkus Stockhausen 790fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 791fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 792fa4dfedcSDavid S. Miller depends on SPARC64 793fa4dfedcSDavid S. Miller select CRYPTO_MD5 794fa4dfedcSDavid S. Miller select CRYPTO_HASH 795fa4dfedcSDavid S. Miller help 796fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 797fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 798fa4dfedcSDavid S. Miller 799584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 800584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 80119e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 802584fffc8SSebastian Siewior help 803584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 804584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 805584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 806584fffc8SSebastian Siewior of the algorithm. 807584fffc8SSebastian Siewior 80882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 80982798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 8107c4468bcSHerbert Xu select CRYPTO_HASH 81182798f90SAdrian-Ken Rueegsegger help 81282798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 81382798f90SAdrian-Ken Rueegsegger 81482798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 81535ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 81682798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 81782798f90SAdrian-Ken Rueegsegger 81882798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 819*9332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 82082798f90SAdrian-Ken Rueegsegger 82182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 82282798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 823e5835fbaSHerbert Xu select CRYPTO_HASH 82482798f90SAdrian-Ken Rueegsegger help 82582798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 82682798f90SAdrian-Ken Rueegsegger 82782798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 82882798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 829b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 830b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 83182798f90SAdrian-Ken Rueegsegger 832b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 833b6d44341SAdrian Bunk against RIPEMD-160. 834534fe2c1SAdrian-Ken Rueegsegger 835534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 836*9332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 837534fe2c1SAdrian-Ken Rueegsegger 838534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 839534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 840d8a5e2e9SHerbert Xu select CRYPTO_HASH 841534fe2c1SAdrian-Ken Rueegsegger help 842b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 843b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 844b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 845b6d44341SAdrian Bunk (than RIPEMD-128). 846534fe2c1SAdrian-Ken Rueegsegger 847534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 848*9332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 849534fe2c1SAdrian-Ken Rueegsegger 850534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 851534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8523b8efb4cSHerbert Xu select CRYPTO_HASH 853534fe2c1SAdrian-Ken Rueegsegger help 854b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 855b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 856b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 857b6d44341SAdrian Bunk (than RIPEMD-160). 858534fe2c1SAdrian-Ken Rueegsegger 85982798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 860*9332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 86182798f90SAdrian-Ken Rueegsegger 8621da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8631da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 86454ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8651da177e4SLinus Torvalds help 8661da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8671da177e4SLinus Torvalds 86866be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 869e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 87066be8951SMathias Krause depends on X86 && 64BIT 87166be8951SMathias Krause select CRYPTO_SHA1 87266be8951SMathias Krause select CRYPTO_HASH 87366be8951SMathias Krause help 87466be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 87566be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 876e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 877e38b6b7fStim when available. 87866be8951SMathias Krause 8798275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 880e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8818275d1aaSTim Chen depends on X86 && 64BIT 8828275d1aaSTim Chen select CRYPTO_SHA256 8838275d1aaSTim Chen select CRYPTO_HASH 8848275d1aaSTim Chen help 8858275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8868275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8878275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 888e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 889e38b6b7fStim Instructions) when available. 8908275d1aaSTim Chen 89187de4579STim Chenconfig CRYPTO_SHA512_SSSE3 89287de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 89387de4579STim Chen depends on X86 && 64BIT 89487de4579STim Chen select CRYPTO_SHA512 89587de4579STim Chen select CRYPTO_HASH 89687de4579STim Chen help 89787de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 89887de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 89987de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 90087de4579STim Chen version 2 (AVX2) instructions, when available. 90187de4579STim Chen 902efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 903efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 904efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 905efdb6f6eSAaro Koskinen select CRYPTO_SHA1 906efdb6f6eSAaro Koskinen select CRYPTO_HASH 907efdb6f6eSAaro Koskinen help 908efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 909efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 910efdb6f6eSAaro Koskinen 9114ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9124ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9134ff28d4cSDavid S. Miller depends on SPARC64 9144ff28d4cSDavid S. Miller select CRYPTO_SHA1 9154ff28d4cSDavid S. Miller select CRYPTO_HASH 9164ff28d4cSDavid S. Miller help 9174ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9184ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9194ff28d4cSDavid S. Miller 920323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 921323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 922323a6bf1SMichael Ellerman depends on PPC 923323a6bf1SMichael Ellerman help 924323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 925323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 926323a6bf1SMichael Ellerman 927d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 928d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 929d9850fc5SMarkus Stockhausen depends on PPC && SPE 930d9850fc5SMarkus Stockhausen help 931d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 932d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 933d9850fc5SMarkus Stockhausen 9341da177e4SLinus Torvaldsconfig CRYPTO_SHA256 935cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 93650e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 93708c327f6SHans de Goede select CRYPTO_LIB_SHA256 9381da177e4SLinus Torvalds help 9391da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9401da177e4SLinus Torvalds 9411da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9421da177e4SLinus Torvalds security against collision attacks. 9431da177e4SLinus Torvalds 944cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 945cd12fb90SJonathan Lynch of security against collision attacks. 946cd12fb90SJonathan Lynch 9472ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9482ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9492ecc1e95SMarkus Stockhausen depends on PPC && SPE 9502ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9512ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9522ecc1e95SMarkus Stockhausen help 9532ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9542ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9552ecc1e95SMarkus Stockhausen 956efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 957efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 958efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 959efdb6f6eSAaro Koskinen select CRYPTO_SHA256 960efdb6f6eSAaro Koskinen select CRYPTO_HASH 961efdb6f6eSAaro Koskinen help 962efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 963efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 964efdb6f6eSAaro Koskinen 96586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 96686c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 96786c93b24SDavid S. Miller depends on SPARC64 96886c93b24SDavid S. Miller select CRYPTO_SHA256 96986c93b24SDavid S. Miller select CRYPTO_HASH 97086c93b24SDavid S. Miller help 97186c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 97286c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 97386c93b24SDavid S. Miller 9741da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9751da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 976bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9771da177e4SLinus Torvalds help 9781da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9791da177e4SLinus Torvalds 9801da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9811da177e4SLinus Torvalds security against collision attacks. 9821da177e4SLinus Torvalds 9831da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9841da177e4SLinus Torvalds of security against collision attacks. 9851da177e4SLinus Torvalds 986efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 987efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 988efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 989efdb6f6eSAaro Koskinen select CRYPTO_SHA512 990efdb6f6eSAaro Koskinen select CRYPTO_HASH 991efdb6f6eSAaro Koskinen help 992efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 993efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 994efdb6f6eSAaro Koskinen 995775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 996775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 997775e0c69SDavid S. Miller depends on SPARC64 998775e0c69SDavid S. Miller select CRYPTO_SHA512 999775e0c69SDavid S. Miller select CRYPTO_HASH 1000775e0c69SDavid S. Miller help 1001775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 1002775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1003775e0c69SDavid S. Miller 100453964b9eSJeff Garzikconfig CRYPTO_SHA3 100553964b9eSJeff Garzik tristate "SHA3 digest algorithm" 100653964b9eSJeff Garzik select CRYPTO_HASH 100753964b9eSJeff Garzik help 100853964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 100953964b9eSJeff Garzik cryptographic sponge function family called Keccak. 101053964b9eSJeff Garzik 101153964b9eSJeff Garzik References: 101253964b9eSJeff Garzik http://keccak.noekeon.org/ 101353964b9eSJeff Garzik 10144f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10154f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10164f0fc160SGilad Ben-Yossef select CRYPTO_HASH 10174f0fc160SGilad Ben-Yossef help 10184f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10194f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10204f0fc160SGilad Ben-Yossef 10214f0fc160SGilad Ben-Yossef References: 10224f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10234f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10244f0fc160SGilad Ben-Yossef 1025fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1026fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1027fe18957eSVitaly Chikunov select CRYPTO_HASH 1028fe18957eSVitaly Chikunov help 1029fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1030fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1031fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1032fe18957eSVitaly Chikunov 1033fe18957eSVitaly Chikunov References: 1034fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1035fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1036fe18957eSVitaly Chikunov 10371da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10381da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1039f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10401da177e4SLinus Torvalds help 10411da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10421da177e4SLinus Torvalds 10431da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10441da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10451da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10461da177e4SLinus Torvalds 10471da177e4SLinus Torvalds See also: 1048*9332a9e7SAlexander A. Klimov <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10491da177e4SLinus Torvalds 1050584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1051584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10524946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10531da177e4SLinus Torvalds help 1054584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10551da177e4SLinus Torvalds 1056584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1057584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10581da177e4SLinus Torvalds 10591da177e4SLinus Torvalds See also: 10606d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10611da177e4SLinus Torvalds 10620e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10638dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10648af00860SRichard Weinberger depends on X86 && 64BIT 10650e1227d3SHuang Ying select CRYPTO_CRYPTD 10660e1227d3SHuang Ying help 10678dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10688dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10690e1227d3SHuang Ying 1070584fffc8SSebastian Siewiorcomment "Ciphers" 10711da177e4SLinus Torvalds 10721da177e4SLinus Torvaldsconfig CRYPTO_AES 10731da177e4SLinus Torvalds tristate "AES cipher algorithms" 1074cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10755bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10761da177e4SLinus Torvalds help 10771da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10781da177e4SLinus Torvalds algorithm. 10791da177e4SLinus Torvalds 10801da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10811da177e4SLinus Torvalds both hardware and software across a wide range of computing 10821da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10831da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10841da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10851da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10861da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10871da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10881da177e4SLinus Torvalds 10891da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10901da177e4SLinus Torvalds 10911da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10921da177e4SLinus Torvalds 1093b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1094b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1095b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1096e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1097b5e0b032SArd Biesheuvel help 1098b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1099b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1100b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1101b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1102b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1103b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1104b5e0b032SArd Biesheuvel 1105b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1106b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1107b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1108b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11090a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11100a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1111b5e0b032SArd Biesheuvel 111254b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 111354b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11148af00860SRichard Weinberger depends on X86 111585671860SHerbert Xu select CRYPTO_AEAD 11162c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 111754b6a1bdSHuang Ying select CRYPTO_ALGAPI 1118b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11197643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 112085671860SHerbert Xu select CRYPTO_SIMD 112154b6a1bdSHuang Ying help 112254b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 112354b6a1bdSHuang Ying 112454b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 112554b6a1bdSHuang Ying algorithm. 112654b6a1bdSHuang Ying 112754b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 112854b6a1bdSHuang Ying both hardware and software across a wide range of computing 112954b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 113054b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 113154b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 113254b6a1bdSHuang Ying suited for restricted-space environments, in which it also 113354b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 113454b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 113554b6a1bdSHuang Ying 113654b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 113754b6a1bdSHuang Ying 113854b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 113954b6a1bdSHuang Ying 11400d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11410d258efbSMathias Krause for some popular block cipher mode is supported too, including 1142944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11430d258efbSMathias Krause acceleration for CTR. 11442cf4ac8bSHuang Ying 11459bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11469bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11479bf4852dSDavid S. Miller depends on SPARC64 1148b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11499bf4852dSDavid S. Miller help 11509bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11519bf4852dSDavid S. Miller 11529bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11539bf4852dSDavid S. Miller algorithm. 11549bf4852dSDavid S. Miller 11559bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11569bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11579bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11589bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11599bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11609bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11619bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11629bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11639bf4852dSDavid S. Miller 11649bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11659bf4852dSDavid S. Miller 11669bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11679bf4852dSDavid S. Miller 11689bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11699bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11709bf4852dSDavid S. Miller ECB and CBC. 11719bf4852dSDavid S. Miller 1172504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1173504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1174504c6143SMarkus Stockhausen depends on PPC && SPE 1175b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1176504c6143SMarkus Stockhausen help 1177504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1178504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1179504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1180504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1181504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1182504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1183504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1184504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1185504c6143SMarkus Stockhausen 11861da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11871da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1188cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11891da177e4SLinus Torvalds help 11901da177e4SLinus Torvalds Anubis cipher algorithm. 11911da177e4SLinus Torvalds 11921da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11931da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11941da177e4SLinus Torvalds in the NESSIE competition. 11951da177e4SLinus Torvalds 11961da177e4SLinus Torvalds See also: 11976d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11986d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11991da177e4SLinus Torvalds 1200584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1201584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1202b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1203dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1204e2ee95b8SHye-Shik Chang help 1205584fffc8SSebastian Siewior ARC4 cipher algorithm. 1206e2ee95b8SHye-Shik Chang 1207584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1208584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1209584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1210584fffc8SSebastian Siewior weakness of the algorithm. 1211584fffc8SSebastian Siewior 1212584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1213584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1214584fffc8SSebastian Siewior select CRYPTO_ALGAPI 121552ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1216584fffc8SSebastian Siewior help 1217584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1218584fffc8SSebastian Siewior 1219584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1220584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1221584fffc8SSebastian Siewior designed for use on "large microprocessors". 1222e2ee95b8SHye-Shik Chang 1223e2ee95b8SHye-Shik Chang See also: 1224*9332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1225584fffc8SSebastian Siewior 122652ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 122752ba867cSJussi Kivilinna tristate 122852ba867cSJussi Kivilinna help 122952ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 123052ba867cSJussi Kivilinna generic c and the assembler implementations. 123152ba867cSJussi Kivilinna 123252ba867cSJussi Kivilinna See also: 1233*9332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 123452ba867cSJussi Kivilinna 123564b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 123664b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1237f21a7c19SAl Viro depends on X86 && 64BIT 1238b95bba5dSEric Biggers select CRYPTO_SKCIPHER 123964b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 124064b94ceaSJussi Kivilinna help 124164b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 124264b94ceaSJussi Kivilinna 124364b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 124464b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 124564b94ceaSJussi Kivilinna designed for use on "large microprocessors". 124664b94ceaSJussi Kivilinna 124764b94ceaSJussi Kivilinna See also: 1248*9332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 124964b94ceaSJussi Kivilinna 1250584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1251584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1252584fffc8SSebastian Siewior depends on CRYPTO 1253584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1254584fffc8SSebastian Siewior help 1255584fffc8SSebastian Siewior Camellia cipher algorithms module. 1256584fffc8SSebastian Siewior 1257584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1258584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1259584fffc8SSebastian Siewior 1260584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1261584fffc8SSebastian Siewior 1262584fffc8SSebastian Siewior See also: 1263584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1264584fffc8SSebastian Siewior 12650b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12660b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1267f21a7c19SAl Viro depends on X86 && 64BIT 12680b95ec56SJussi Kivilinna depends on CRYPTO 1269b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1270964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12710b95ec56SJussi Kivilinna help 12720b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12730b95ec56SJussi Kivilinna 12740b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12750b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12760b95ec56SJussi Kivilinna 12770b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12780b95ec56SJussi Kivilinna 12790b95ec56SJussi Kivilinna See also: 12800b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12810b95ec56SJussi Kivilinna 1282d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1283d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1284d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1285d9b1d2e7SJussi Kivilinna depends on CRYPTO 1286b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1287d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 128844893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 128944893bc2SEric Biggers select CRYPTO_SIMD 1290d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1291d9b1d2e7SJussi Kivilinna help 1292d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1293d9b1d2e7SJussi Kivilinna 1294d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1295d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1296d9b1d2e7SJussi Kivilinna 1297d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1298d9b1d2e7SJussi Kivilinna 1299d9b1d2e7SJussi Kivilinna See also: 1300d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1301d9b1d2e7SJussi Kivilinna 1302f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1303f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1304f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1305f3f935a7SJussi Kivilinna depends on CRYPTO 1306f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1307f3f935a7SJussi Kivilinna help 1308f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1309f3f935a7SJussi Kivilinna 1310f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1311f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1312f3f935a7SJussi Kivilinna 1313f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1314f3f935a7SJussi Kivilinna 1315f3f935a7SJussi Kivilinna See also: 1316f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1317f3f935a7SJussi Kivilinna 131881658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 131981658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 132081658ad0SDavid S. Miller depends on SPARC64 132181658ad0SDavid S. Miller depends on CRYPTO 132281658ad0SDavid S. Miller select CRYPTO_ALGAPI 1323b95bba5dSEric Biggers select CRYPTO_SKCIPHER 132481658ad0SDavid S. Miller help 132581658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 132681658ad0SDavid S. Miller 132781658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 132881658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 132981658ad0SDavid S. Miller 133081658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 133181658ad0SDavid S. Miller 133281658ad0SDavid S. Miller See also: 133381658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 133481658ad0SDavid S. Miller 1335044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1336044ab525SJussi Kivilinna tristate 1337044ab525SJussi Kivilinna help 1338044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1339044ab525SJussi Kivilinna generic c and the assembler implementations. 1340044ab525SJussi Kivilinna 1341584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1342584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1343584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1344044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1345584fffc8SSebastian Siewior help 1346584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1347584fffc8SSebastian Siewior described in RFC2144. 1348584fffc8SSebastian Siewior 13494d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13504d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13514d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1352b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13534d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13541e63183aSEric Biggers select CRYPTO_CAST_COMMON 13551e63183aSEric Biggers select CRYPTO_SIMD 13564d6d6a2cSJohannes Goetzfried help 13574d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13584d6d6a2cSJohannes Goetzfried described in RFC2144. 13594d6d6a2cSJohannes Goetzfried 13604d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13614d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13624d6d6a2cSJohannes Goetzfried 1363584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1364584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1365584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1366044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1367584fffc8SSebastian Siewior help 1368584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1369584fffc8SSebastian Siewior described in RFC2612. 1370584fffc8SSebastian Siewior 13714ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13724ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13734ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1374b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13754ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13764bd96924SEric Biggers select CRYPTO_CAST_COMMON 13774bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13784bd96924SEric Biggers select CRYPTO_SIMD 13794ea1277dSJohannes Goetzfried select CRYPTO_XTS 13804ea1277dSJohannes Goetzfried help 13814ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13824ea1277dSJohannes Goetzfried described in RFC2612. 13834ea1277dSJohannes Goetzfried 13844ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13854ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13864ea1277dSJohannes Goetzfried 1387584fffc8SSebastian Siewiorconfig CRYPTO_DES 1388584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1389584fffc8SSebastian Siewior select CRYPTO_ALGAPI 139004007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1391584fffc8SSebastian Siewior help 1392584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1393584fffc8SSebastian Siewior 1394c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1395c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 139697da37b3SDave Jones depends on SPARC64 1397c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 139804007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1399b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1400c5aac2dfSDavid S. Miller help 1401c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1402c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1403c5aac2dfSDavid S. Miller 14046574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14056574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14066574e6c6SJussi Kivilinna depends on X86 && 64BIT 1407b95bba5dSEric Biggers select CRYPTO_SKCIPHER 140804007b0eSArd Biesheuvel select CRYPTO_LIB_DES 14096574e6c6SJussi Kivilinna help 14106574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14116574e6c6SJussi Kivilinna 14126574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14136574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14146574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14156574e6c6SJussi Kivilinna one that processes three blocks parallel. 14166574e6c6SJussi Kivilinna 1417584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1418584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1419584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1420b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1421584fffc8SSebastian Siewior help 1422584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1423584fffc8SSebastian Siewior 1424584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1425584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1426584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1427584fffc8SSebastian Siewior help 1428584fffc8SSebastian Siewior Khazad cipher algorithm. 1429584fffc8SSebastian Siewior 1430584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1431584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1432584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1433584fffc8SSebastian Siewior 1434584fffc8SSebastian Siewior See also: 14356d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1436e2ee95b8SHye-Shik Chang 14372407d608STan Swee Hengconfig CRYPTO_SALSA20 14383b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 1439b95bba5dSEric Biggers select CRYPTO_SKCIPHER 14402407d608STan Swee Heng help 14412407d608STan Swee Heng Salsa20 stream cipher algorithm. 14422407d608STan Swee Heng 14432407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1444*9332a9e7SAlexander A. Klimov Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/> 14452407d608STan Swee Heng 14462407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1447*9332a9e7SAlexander A. Klimov Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html> 14481da177e4SLinus Torvalds 1449c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1450aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14515fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1452b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1453c08d0e64SMartin Willi help 1454aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1455c08d0e64SMartin Willi 1456c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1457c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1458de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1459*9332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1460c08d0e64SMartin Willi 1461de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1462de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1463de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1464de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1465de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1466de61d7aeSEric Biggers 1467aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1468aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1469aa762409SEric Biggers in some performance-sensitive scenarios. 1470aa762409SEric Biggers 1471c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14724af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1473c9320b6dSMartin Willi depends on X86 && 64BIT 1474b95bba5dSEric Biggers select CRYPTO_SKCIPHER 147528e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 147684e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1477c9320b6dSMartin Willi help 14787a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14797a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1480c9320b6dSMartin Willi 14813a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14823a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14833a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1484660eda8dSEric Biggers select CRYPTO_SKCIPHER 14853a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14863a2f58f3SArd Biesheuvel 1487584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1488584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1489584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1490584fffc8SSebastian Siewior help 1491584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1492584fffc8SSebastian Siewior 1493584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1494584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1495584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1496584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1497584fffc8SSebastian Siewior 1498584fffc8SSebastian Siewior See also: 1499584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1500584fffc8SSebastian Siewior 1501584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1502584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1503584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1504584fffc8SSebastian Siewior help 1505584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1506584fffc8SSebastian Siewior 1507584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1508584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1509584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1510584fffc8SSebastian Siewior 1511584fffc8SSebastian Siewior See also: 1512*9332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1513584fffc8SSebastian Siewior 1514937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1515937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1516937c30d7SJussi Kivilinna depends on X86 && 64BIT 1517b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1518596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1519937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1520e0f409dcSEric Biggers select CRYPTO_SIMD 1521937c30d7SJussi Kivilinna help 1522937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1523937c30d7SJussi Kivilinna 1524937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1525937c30d7SJussi Kivilinna of 8 bits. 1526937c30d7SJussi Kivilinna 15271e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1528937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1529937c30d7SJussi Kivilinna 1530937c30d7SJussi Kivilinna See also: 1531*9332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1532937c30d7SJussi Kivilinna 1533251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1534251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1535251496dbSJussi Kivilinna depends on X86 && !64BIT 1536b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1537596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1538251496dbSJussi Kivilinna select CRYPTO_SERPENT 1539e0f409dcSEric Biggers select CRYPTO_SIMD 1540251496dbSJussi Kivilinna help 1541251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1542251496dbSJussi Kivilinna 1543251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1544251496dbSJussi Kivilinna of 8 bits. 1545251496dbSJussi Kivilinna 1546251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1547251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1548251496dbSJussi Kivilinna 1549251496dbSJussi Kivilinna See also: 1550*9332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1551251496dbSJussi Kivilinna 15527efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15537efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15547efe4076SJohannes Goetzfried depends on X86 && 64BIT 1555b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15561d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15577efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1558e16bf974SEric Biggers select CRYPTO_SIMD 15597efe4076SJohannes Goetzfried select CRYPTO_XTS 15607efe4076SJohannes Goetzfried help 15617efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15627efe4076SJohannes Goetzfried 15637efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15647efe4076SJohannes Goetzfried of 8 bits. 15657efe4076SJohannes Goetzfried 15667efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15677efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15687efe4076SJohannes Goetzfried 15697efe4076SJohannes Goetzfried See also: 1570*9332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 15717efe4076SJohannes Goetzfried 157256d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 157356d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 157456d76c96SJussi Kivilinna depends on X86 && 64BIT 157556d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 157656d76c96SJussi Kivilinna help 157756d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 157856d76c96SJussi Kivilinna 157956d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 158056d76c96SJussi Kivilinna of 8 bits. 158156d76c96SJussi Kivilinna 158256d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 158356d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 158456d76c96SJussi Kivilinna 158556d76c96SJussi Kivilinna See also: 1586*9332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 158756d76c96SJussi Kivilinna 1588747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1589747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1590747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1591747c8ce4SGilad Ben-Yossef help 1592747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1593747c8ce4SGilad Ben-Yossef 1594747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1595747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1596747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1597747c8ce4SGilad Ben-Yossef 1598747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1599747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1600747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1601747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1602747c8ce4SGilad Ben-Yossef 1603747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1604747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1605747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1606747c8ce4SGilad Ben-Yossef 1607747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1608747c8ce4SGilad Ben-Yossef 1609747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1610747c8ce4SGilad Ben-Yossef 1611747c8ce4SGilad Ben-Yossef If unsure, say N. 1612747c8ce4SGilad Ben-Yossef 1613584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1614584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1615584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1616584fffc8SSebastian Siewior help 1617584fffc8SSebastian Siewior TEA cipher algorithm. 1618584fffc8SSebastian Siewior 1619584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1620584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1621584fffc8SSebastian Siewior little memory. 1622584fffc8SSebastian Siewior 1623584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1624584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1625584fffc8SSebastian Siewior in the TEA algorithm. 1626584fffc8SSebastian Siewior 1627584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1628584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1629584fffc8SSebastian Siewior 1630584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1631584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1632584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1633584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1634584fffc8SSebastian Siewior help 1635584fffc8SSebastian Siewior Twofish cipher algorithm. 1636584fffc8SSebastian Siewior 1637584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1638584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1639584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1640584fffc8SSebastian Siewior bits. 1641584fffc8SSebastian Siewior 1642584fffc8SSebastian Siewior See also: 1643*9332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1644584fffc8SSebastian Siewior 1645584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1646584fffc8SSebastian Siewior tristate 1647584fffc8SSebastian Siewior help 1648584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1649584fffc8SSebastian Siewior generic c and the assembler implementations. 1650584fffc8SSebastian Siewior 1651584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1652584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1653584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1654584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1655584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1656584fffc8SSebastian Siewior help 1657584fffc8SSebastian Siewior Twofish cipher algorithm. 1658584fffc8SSebastian Siewior 1659584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1660584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1661584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1662584fffc8SSebastian Siewior bits. 1663584fffc8SSebastian Siewior 1664584fffc8SSebastian Siewior See also: 1665*9332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1666584fffc8SSebastian Siewior 1667584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1668584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1669584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1670584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1671584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1672584fffc8SSebastian Siewior help 1673584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1674584fffc8SSebastian Siewior 1675584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1676584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1677584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1678584fffc8SSebastian Siewior bits. 1679584fffc8SSebastian Siewior 1680584fffc8SSebastian Siewior See also: 1681*9332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1682584fffc8SSebastian Siewior 16838280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16848280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1685f21a7c19SAl Viro depends on X86 && 64BIT 1686b95bba5dSEric Biggers select CRYPTO_SKCIPHER 16878280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16888280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1689414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16908280daadSJussi Kivilinna help 16918280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16928280daadSJussi Kivilinna 16938280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16948280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16958280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16968280daadSJussi Kivilinna bits. 16978280daadSJussi Kivilinna 16988280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16998280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17008280daadSJussi Kivilinna 17018280daadSJussi Kivilinna See also: 1702*9332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 17038280daadSJussi Kivilinna 1704107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1705107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1706107778b5SJohannes Goetzfried depends on X86 && 64BIT 1707b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1708a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17090e6ab46dSEric Biggers select CRYPTO_SIMD 1710107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1711107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1712107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1713107778b5SJohannes Goetzfried help 1714107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1715107778b5SJohannes Goetzfried 1716107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1717107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1718107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1719107778b5SJohannes Goetzfried bits. 1720107778b5SJohannes Goetzfried 1721107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1722107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1723107778b5SJohannes Goetzfried 1724107778b5SJohannes Goetzfried See also: 1725*9332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1726107778b5SJohannes Goetzfried 1727584fffc8SSebastian Siewiorcomment "Compression" 1728584fffc8SSebastian Siewior 17291da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17301da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1731cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1732f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17331da177e4SLinus Torvalds select ZLIB_INFLATE 17341da177e4SLinus Torvalds select ZLIB_DEFLATE 17351da177e4SLinus Torvalds help 17361da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17371da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17381da177e4SLinus Torvalds 17391da177e4SLinus Torvalds You will most probably want this if using IPSec. 17401da177e4SLinus Torvalds 17410b77abb3SZoltan Sogorconfig CRYPTO_LZO 17420b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17430b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1744ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17450b77abb3SZoltan Sogor select LZO_COMPRESS 17460b77abb3SZoltan Sogor select LZO_DECOMPRESS 17470b77abb3SZoltan Sogor help 17480b77abb3SZoltan Sogor This is the LZO algorithm. 17490b77abb3SZoltan Sogor 175035a1fc18SSeth Jenningsconfig CRYPTO_842 175135a1fc18SSeth Jennings tristate "842 compression algorithm" 17522062c5b6SDan Streetman select CRYPTO_ALGAPI 17536a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17542062c5b6SDan Streetman select 842_COMPRESS 17552062c5b6SDan Streetman select 842_DECOMPRESS 175635a1fc18SSeth Jennings help 175735a1fc18SSeth Jennings This is the 842 algorithm. 175835a1fc18SSeth Jennings 17590ea8530dSChanho Minconfig CRYPTO_LZ4 17600ea8530dSChanho Min tristate "LZ4 compression algorithm" 17610ea8530dSChanho Min select CRYPTO_ALGAPI 17628cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17630ea8530dSChanho Min select LZ4_COMPRESS 17640ea8530dSChanho Min select LZ4_DECOMPRESS 17650ea8530dSChanho Min help 17660ea8530dSChanho Min This is the LZ4 algorithm. 17670ea8530dSChanho Min 17680ea8530dSChanho Minconfig CRYPTO_LZ4HC 17690ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17700ea8530dSChanho Min select CRYPTO_ALGAPI 177191d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17720ea8530dSChanho Min select LZ4HC_COMPRESS 17730ea8530dSChanho Min select LZ4_DECOMPRESS 17740ea8530dSChanho Min help 17750ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17760ea8530dSChanho Min 1777d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1778d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1779d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1780d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1781d28fc3dbSNick Terrell select ZSTD_COMPRESS 1782d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1783d28fc3dbSNick Terrell help 1784d28fc3dbSNick Terrell This is the zstd algorithm. 1785d28fc3dbSNick Terrell 178617f0f4a4SNeil Hormancomment "Random Number Generation" 178717f0f4a4SNeil Horman 178817f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 178917f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 179017f0f4a4SNeil Horman select CRYPTO_AES 179117f0f4a4SNeil Horman select CRYPTO_RNG 179217f0f4a4SNeil Horman help 179317f0f4a4SNeil Horman This option enables the generic pseudo random number generator 179417f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17957dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17967dd607e8SJiri Kosina CRYPTO_FIPS is selected 179717f0f4a4SNeil Horman 1798f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1799419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1800419090c6SStephan Mueller help 1801419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1802419090c6SStephan Mueller more of the DRBG types must be selected. 1803419090c6SStephan Mueller 1804f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1805419090c6SStephan Mueller 1806419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1807401e4238SHerbert Xu bool 1808419090c6SStephan Mueller default y 1809419090c6SStephan Mueller select CRYPTO_HMAC 1810826775bbSHerbert Xu select CRYPTO_SHA256 1811419090c6SStephan Mueller 1812419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1813419090c6SStephan Mueller bool "Enable Hash DRBG" 1814826775bbSHerbert Xu select CRYPTO_SHA256 1815419090c6SStephan Mueller help 1816419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1817419090c6SStephan Mueller 1818419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1819419090c6SStephan Mueller bool "Enable CTR DRBG" 1820419090c6SStephan Mueller select CRYPTO_AES 1821d6fc1a45SCorentin Labbe select CRYPTO_CTR 1822419090c6SStephan Mueller help 1823419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1824419090c6SStephan Mueller 1825f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1826f2c89a10SHerbert Xu tristate 1827401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1828f2c89a10SHerbert Xu select CRYPTO_RNG 1829bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1830f2c89a10SHerbert Xu 1831f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1832419090c6SStephan Mueller 1833bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1834bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18352f313e02SArnd Bergmann select CRYPTO_RNG 1836bb5530e4SStephan Mueller help 1837bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1838bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1839bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1840bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1841bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1842bb5530e4SStephan Mueller 184303c8efc1SHerbert Xuconfig CRYPTO_USER_API 184403c8efc1SHerbert Xu tristate 184503c8efc1SHerbert Xu 1846fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1847fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18487451708fSHerbert Xu depends on NET 1849fe869cdbSHerbert Xu select CRYPTO_HASH 1850fe869cdbSHerbert Xu select CRYPTO_USER_API 1851fe869cdbSHerbert Xu help 1852fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1853fe869cdbSHerbert Xu algorithms. 1854fe869cdbSHerbert Xu 18558ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18568ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18577451708fSHerbert Xu depends on NET 1858b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18598ff59090SHerbert Xu select CRYPTO_USER_API 18608ff59090SHerbert Xu help 18618ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18628ff59090SHerbert Xu key cipher algorithms. 18638ff59090SHerbert Xu 18642f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18652f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18662f375538SStephan Mueller depends on NET 18672f375538SStephan Mueller select CRYPTO_RNG 18682f375538SStephan Mueller select CRYPTO_USER_API 18692f375538SStephan Mueller help 18702f375538SStephan Mueller This option enables the user-spaces interface for random 18712f375538SStephan Mueller number generator algorithms. 18722f375538SStephan Mueller 1873b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1874b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1875b64a2d95SHerbert Xu depends on NET 1876b64a2d95SHerbert Xu select CRYPTO_AEAD 1877b95bba5dSEric Biggers select CRYPTO_SKCIPHER 187872548b09SStephan Mueller select CRYPTO_NULL 1879b64a2d95SHerbert Xu select CRYPTO_USER_API 1880b64a2d95SHerbert Xu help 1881b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1882b64a2d95SHerbert Xu cipher algorithms. 1883b64a2d95SHerbert Xu 1884cac5818cSCorentin Labbeconfig CRYPTO_STATS 1885cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1886a6a31385SCorentin Labbe depends on CRYPTO_USER 1887cac5818cSCorentin Labbe help 1888cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1889cac5818cSCorentin Labbe This will collect: 1890cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1891cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1892cac5818cSCorentin Labbe - size and numbers of hash operations 1893cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1894cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1895cac5818cSCorentin Labbe 1896ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1897ee08997fSDmitry Kasatkin bool 1898ee08997fSDmitry Kasatkin 1899746b2e02SArd Biesheuvelsource "lib/crypto/Kconfig" 19001da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19018636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19028636a1f9SMasahiro Yamadasource "certs/Kconfig" 19031da177e4SLinus Torvalds 1904cce9e06dSHerbert Xuendif # if CRYPTO 1905