xref: /linux/crypto/Kconfig (revision 929d34cac156a55bf9e5a88a1fa5191be1fcdc35)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1172b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1186a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1192b8c19dbSHerbert Xu	help
1202b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1212b8c19dbSHerbert Xu	  cbc(aes).
1222b8c19dbSHerbert Xu
1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1246a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1256a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1266a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1276a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
128946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1294e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1302ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1316a0fcbb4SHerbert Xu
132a38f7907SSteffen Klassertconfig CRYPTO_USER
133a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1345db017aaSHerbert Xu	depends on NET
135a38f7907SSteffen Klassert	select CRYPTO_MANAGER
136a38f7907SSteffen Klassert	help
137d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
138a38f7907SSteffen Klassert	  cbc(aes).
139a38f7907SSteffen Klassert
140*929d34caSEric Biggersif CRYPTO_MANAGER2
141*929d34caSEric Biggers
142326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
143326a6346SHerbert Xu	bool "Disable run-time self tests"
14400ca28a5SHerbert Xu	default y
1450b767f96SAlexander Shishkin	help
146326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
147326a6346SHerbert Xu	  algorithm registration.
1480b767f96SAlexander Shishkin
1495b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1505b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1515b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1525b2706a4SEric Biggers	help
1535b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1545b2706a4SEric Biggers	  including randomized fuzz tests.
1555b2706a4SEric Biggers
1565b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1575b2706a4SEric Biggers	  longer to run than the normal self tests.
1585b2706a4SEric Biggers
159*929d34caSEric Biggersendif	# if CRYPTO_MANAGER2
160*929d34caSEric Biggers
161584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
16208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
163584fffc8SSebastian Siewior	help
164584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
165584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
166584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
167584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
168584fffc8SSebastian Siewior	  an external module that requires these functions.
169584fffc8SSebastian Siewior
170584fffc8SSebastian Siewiorconfig CRYPTO_NULL
171584fffc8SSebastian Siewior	tristate "Null algorithms"
172149a3971SHerbert Xu	select CRYPTO_NULL2
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
175584fffc8SSebastian Siewior
176149a3971SHerbert Xuconfig CRYPTO_NULL2
177dd43c4e9SHerbert Xu	tristate
178149a3971SHerbert Xu	select CRYPTO_ALGAPI2
179149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
180149a3971SHerbert Xu	select CRYPTO_HASH2
181149a3971SHerbert Xu
1825068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1833b4afaf2SKees Cook	tristate "Parallel crypto engine"
1843b4afaf2SKees Cook	depends on SMP
1855068c7a8SSteffen Klassert	select PADATA
1865068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1875068c7a8SSteffen Klassert	select CRYPTO_AEAD
1885068c7a8SSteffen Klassert	help
1895068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1905068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1915068c7a8SSteffen Klassert
19225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
19325c38d3fSHuang Ying       tristate
19425c38d3fSHuang Ying
195584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
196584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
197584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
198b8a28251SLoc Ho	select CRYPTO_HASH
199584fffc8SSebastian Siewior	select CRYPTO_MANAGER
200254eff77SHuang Ying	select CRYPTO_WORKQUEUE
201584fffc8SSebastian Siewior	help
202584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
203584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
204584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
205584fffc8SSebastian Siewior
206584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
207584fffc8SSebastian Siewior	tristate "Authenc support"
208584fffc8SSebastian Siewior	select CRYPTO_AEAD
209584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
210584fffc8SSebastian Siewior	select CRYPTO_MANAGER
211584fffc8SSebastian Siewior	select CRYPTO_HASH
212e94c6a7aSHerbert Xu	select CRYPTO_NULL
213584fffc8SSebastian Siewior	help
214584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
215584fffc8SSebastian Siewior	  This is required for IPSec.
216584fffc8SSebastian Siewior
217584fffc8SSebastian Siewiorconfig CRYPTO_TEST
218584fffc8SSebastian Siewior	tristate "Testing module"
219584fffc8SSebastian Siewior	depends on m
220da7f033dSHerbert Xu	select CRYPTO_MANAGER
221584fffc8SSebastian Siewior	help
222584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
223584fffc8SSebastian Siewior
224266d0516SHerbert Xuconfig CRYPTO_SIMD
225266d0516SHerbert Xu	tristate
226266d0516SHerbert Xu	select CRYPTO_CRYPTD
227266d0516SHerbert Xu
228596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
229596d8750SJussi Kivilinna	tristate
230596d8750SJussi Kivilinna	depends on X86
231065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
232596d8750SJussi Kivilinna
233735d37b5SBaolin Wangconfig CRYPTO_ENGINE
234735d37b5SBaolin Wang	tristate
235735d37b5SBaolin Wang
2363d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2373d6228a5SVitaly Chikunov
2383d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2393d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2403d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2413d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2423d6228a5SVitaly Chikunov	select MPILIB
2433d6228a5SVitaly Chikunov	select ASN1
2443d6228a5SVitaly Chikunov	help
2453d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2463d6228a5SVitaly Chikunov
2473d6228a5SVitaly Chikunovconfig CRYPTO_DH
2483d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2493d6228a5SVitaly Chikunov	select CRYPTO_KPP
2503d6228a5SVitaly Chikunov	select MPILIB
2513d6228a5SVitaly Chikunov	help
2523d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2533d6228a5SVitaly Chikunov
2544a2289daSVitaly Chikunovconfig CRYPTO_ECC
2554a2289daSVitaly Chikunov	tristate
2564a2289daSVitaly Chikunov
2573d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2583d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2594a2289daSVitaly Chikunov	select CRYPTO_ECC
2603d6228a5SVitaly Chikunov	select CRYPTO_KPP
2613d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2623d6228a5SVitaly Chikunov	help
2633d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2643d6228a5SVitaly Chikunov
2650d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2660d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2670d7a7864SVitaly Chikunov	select CRYPTO_ECC
2680d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2690d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2701036633eSVitaly Chikunov	select OID_REGISTRY
2711036633eSVitaly Chikunov	select ASN1
2720d7a7864SVitaly Chikunov	help
2730d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2740d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2750d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2760d7a7864SVitaly Chikunov	  is implemented.
2770d7a7864SVitaly Chikunov
278584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
279584fffc8SSebastian Siewior
280584fffc8SSebastian Siewiorconfig CRYPTO_CCM
281584fffc8SSebastian Siewior	tristate "CCM support"
282584fffc8SSebastian Siewior	select CRYPTO_CTR
283f15f05b0SArd Biesheuvel	select CRYPTO_HASH
284584fffc8SSebastian Siewior	select CRYPTO_AEAD
285584fffc8SSebastian Siewior	help
286584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
287584fffc8SSebastian Siewior
288584fffc8SSebastian Siewiorconfig CRYPTO_GCM
289584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
290584fffc8SSebastian Siewior	select CRYPTO_CTR
291584fffc8SSebastian Siewior	select CRYPTO_AEAD
2929382d97aSHuang Ying	select CRYPTO_GHASH
2939489667dSJussi Kivilinna	select CRYPTO_NULL
294584fffc8SSebastian Siewior	help
295584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
296584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
297584fffc8SSebastian Siewior
29871ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
29971ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
30071ebc4d1SMartin Willi	select CRYPTO_CHACHA20
30171ebc4d1SMartin Willi	select CRYPTO_POLY1305
30271ebc4d1SMartin Willi	select CRYPTO_AEAD
30371ebc4d1SMartin Willi	help
30471ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
30571ebc4d1SMartin Willi
30671ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
30771ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
30871ebc4d1SMartin Willi	  IETF protocols.
30971ebc4d1SMartin Willi
310f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
311f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
312f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
313f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
314f606a88eSOndrej Mosnacek	help
315f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
316f606a88eSOndrej Mosnacek
317f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
318f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
319f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
320f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
321f606a88eSOndrej Mosnacek	help
322f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
323f606a88eSOndrej Mosnacek
324f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
325f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
326f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
327f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
328f606a88eSOndrej Mosnacek	help
329f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
330f606a88eSOndrej Mosnacek
3311d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3321d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3331d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3341d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
335de272ca7SEric Biggers	select CRYPTO_SIMD
3361d373d4eSOndrej Mosnacek	help
3374e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3381d373d4eSOndrej Mosnacek
3391d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3401d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3411d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3421d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
343d628132aSEric Biggers	select CRYPTO_SIMD
3441d373d4eSOndrej Mosnacek	help
3454e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
3461d373d4eSOndrej Mosnacek
3471d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3481d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3491d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3501d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
351b6708c2dSEric Biggers	select CRYPTO_SIMD
3521d373d4eSOndrej Mosnacek	help
3534e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
3541d373d4eSOndrej Mosnacek
355396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
356396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
357396be41fSOndrej Mosnacek	select CRYPTO_AEAD
358396be41fSOndrej Mosnacek	help
359396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
360396be41fSOndrej Mosnacek
36156e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3622808f173SOndrej Mosnacek	tristate
3632808f173SOndrej Mosnacek	depends on X86
36456e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
36547730958SEric Biggers	select CRYPTO_SIMD
36656e8e57fSOndrej Mosnacek	help
36756e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
36856e8e57fSOndrej Mosnacek	  algorithm.
36956e8e57fSOndrej Mosnacek
3706ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3716ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3726ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3736ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3746ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3756ecc9d9fSOndrej Mosnacek	help
3766ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3776ecc9d9fSOndrej Mosnacek
378396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
379396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
380396be41fSOndrej Mosnacek	select CRYPTO_AEAD
381396be41fSOndrej Mosnacek	help
382396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
383396be41fSOndrej Mosnacek
38456e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3852808f173SOndrej Mosnacek	tristate
3862808f173SOndrej Mosnacek	depends on X86
38756e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
388e151a8d2SEric Biggers	select CRYPTO_SIMD
38956e8e57fSOndrej Mosnacek	help
39056e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
39156e8e57fSOndrej Mosnacek	  algorithm.
39256e8e57fSOndrej Mosnacek
3936ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3946ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3956ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3966ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3976ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3986ecc9d9fSOndrej Mosnacek	help
3996ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
4006ecc9d9fSOndrej Mosnacek	  algorithm.
4016ecc9d9fSOndrej Mosnacek
4026ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
4036ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
4046ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
4056ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
4066ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
4076ecc9d9fSOndrej Mosnacek	help
4086ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
4096ecc9d9fSOndrej Mosnacek	  algorithm.
4106ecc9d9fSOndrej Mosnacek
411584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
412584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
413584fffc8SSebastian Siewior	select CRYPTO_AEAD
414584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
415856e3f40SHerbert Xu	select CRYPTO_NULL
416401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
417584fffc8SSebastian Siewior	help
418584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
419584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
420584fffc8SSebastian Siewior
421a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
422a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
423a10f554fSHerbert Xu	select CRYPTO_AEAD
424a10f554fSHerbert Xu	select CRYPTO_NULL
425401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
4263491244cSHerbert Xu	default m
427a10f554fSHerbert Xu	help
428a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
429a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
430a10f554fSHerbert Xu	  algorithm for CBC.
431a10f554fSHerbert Xu
432584fffc8SSebastian Siewiorcomment "Block modes"
433584fffc8SSebastian Siewior
434584fffc8SSebastian Siewiorconfig CRYPTO_CBC
435584fffc8SSebastian Siewior	tristate "CBC support"
436584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
437584fffc8SSebastian Siewior	select CRYPTO_MANAGER
438584fffc8SSebastian Siewior	help
439584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
440584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
441584fffc8SSebastian Siewior
442a7d85e06SJames Bottomleyconfig CRYPTO_CFB
443a7d85e06SJames Bottomley	tristate "CFB support"
444a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
445a7d85e06SJames Bottomley	select CRYPTO_MANAGER
446a7d85e06SJames Bottomley	help
447a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
448a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
449a7d85e06SJames Bottomley
450584fffc8SSebastian Siewiorconfig CRYPTO_CTR
451584fffc8SSebastian Siewior	tristate "CTR support"
452584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
453584fffc8SSebastian Siewior	select CRYPTO_SEQIV
454584fffc8SSebastian Siewior	select CRYPTO_MANAGER
455584fffc8SSebastian Siewior	help
456584fffc8SSebastian Siewior	  CTR: Counter mode
457584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
458584fffc8SSebastian Siewior
459584fffc8SSebastian Siewiorconfig CRYPTO_CTS
460584fffc8SSebastian Siewior	tristate "CTS support"
461584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
462584fffc8SSebastian Siewior	help
463584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
464584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
465ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
466ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
467ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
468584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
469584fffc8SSebastian Siewior	  for AES encryption.
470584fffc8SSebastian Siewior
471ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
472ecd6d5c9SGilad Ben-Yossef
473584fffc8SSebastian Siewiorconfig CRYPTO_ECB
474584fffc8SSebastian Siewior	tristate "ECB support"
475584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
476584fffc8SSebastian Siewior	select CRYPTO_MANAGER
477584fffc8SSebastian Siewior	help
478584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
479584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
480584fffc8SSebastian Siewior	  the input block by block.
481584fffc8SSebastian Siewior
482584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4832470a2b2SJussi Kivilinna	tristate "LRW support"
484584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
485584fffc8SSebastian Siewior	select CRYPTO_MANAGER
486584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
487584fffc8SSebastian Siewior	help
488584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
489584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
490584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
491584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
492584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
493584fffc8SSebastian Siewior
494e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
495e497c518SGilad Ben-Yossef	tristate "OFB support"
496e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
497e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
498e497c518SGilad Ben-Yossef	help
499e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
500e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
501e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
502e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
503e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
504e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
505e497c518SGilad Ben-Yossef
506584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
507584fffc8SSebastian Siewior	tristate "PCBC support"
508584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
509584fffc8SSebastian Siewior	select CRYPTO_MANAGER
510584fffc8SSebastian Siewior	help
511584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
512584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
513584fffc8SSebastian Siewior
514584fffc8SSebastian Siewiorconfig CRYPTO_XTS
5155bcf8e6dSJussi Kivilinna	tristate "XTS support"
516584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
517584fffc8SSebastian Siewior	select CRYPTO_MANAGER
51812cb3a1cSMilan Broz	select CRYPTO_ECB
519584fffc8SSebastian Siewior	help
520584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
521584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
522584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
523584fffc8SSebastian Siewior
5241c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5251c49678eSStephan Mueller	tristate "Key wrapping support"
5261c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
5271c49678eSStephan Mueller	help
5281c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5291c49678eSStephan Mueller	  padding.
5301c49678eSStephan Mueller
53126609a21SEric Biggersconfig CRYPTO_NHPOLY1305
53226609a21SEric Biggers	tristate
53326609a21SEric Biggers	select CRYPTO_HASH
53426609a21SEric Biggers	select CRYPTO_POLY1305
53526609a21SEric Biggers
536012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
537012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
538012c8238SEric Biggers	depends on X86 && 64BIT
539012c8238SEric Biggers	select CRYPTO_NHPOLY1305
540012c8238SEric Biggers	help
541012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
542012c8238SEric Biggers	  Adiantum encryption mode.
543012c8238SEric Biggers
5440f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5450f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5460f961f9fSEric Biggers	depends on X86 && 64BIT
5470f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5480f961f9fSEric Biggers	help
5490f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5500f961f9fSEric Biggers	  Adiantum encryption mode.
5510f961f9fSEric Biggers
552059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
553059c2a4dSEric Biggers	tristate "Adiantum support"
554059c2a4dSEric Biggers	select CRYPTO_CHACHA20
555059c2a4dSEric Biggers	select CRYPTO_POLY1305
556059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
557059c2a4dSEric Biggers	help
558059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
559059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
560059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
561059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
562059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
563059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
564059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
565059c2a4dSEric Biggers	  AES-XTS.
566059c2a4dSEric Biggers
567059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
568059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
569059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
570059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
571059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
572059c2a4dSEric Biggers
573059c2a4dSEric Biggers	  If unsure, say N.
574059c2a4dSEric Biggers
575584fffc8SSebastian Siewiorcomment "Hash modes"
576584fffc8SSebastian Siewior
57793b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
57893b5e86aSJussi Kivilinna	tristate "CMAC support"
57993b5e86aSJussi Kivilinna	select CRYPTO_HASH
58093b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
58193b5e86aSJussi Kivilinna	help
58293b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
58393b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
58493b5e86aSJussi Kivilinna
58593b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
58693b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
58793b5e86aSJussi Kivilinna
5881da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5898425165dSHerbert Xu	tristate "HMAC support"
5900796ae06SHerbert Xu	select CRYPTO_HASH
59143518407SHerbert Xu	select CRYPTO_MANAGER
5921da177e4SLinus Torvalds	help
5931da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5941da177e4SLinus Torvalds	  This is required for IPSec.
5951da177e4SLinus Torvalds
596333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
597333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
598333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
599333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
600333b0d7eSKazunori MIYAZAWA	help
601333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
602333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
603333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
604333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
605333b0d7eSKazunori MIYAZAWA
606f1939f7cSShane Wangconfig CRYPTO_VMAC
607f1939f7cSShane Wang	tristate "VMAC support"
608f1939f7cSShane Wang	select CRYPTO_HASH
609f1939f7cSShane Wang	select CRYPTO_MANAGER
610f1939f7cSShane Wang	help
611f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
612f1939f7cSShane Wang	  very high speed on 64-bit architectures.
613f1939f7cSShane Wang
614f1939f7cSShane Wang	  See also:
615f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
616f1939f7cSShane Wang
617584fffc8SSebastian Siewiorcomment "Digest"
618584fffc8SSebastian Siewior
619584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
620584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6215773a3e6SHerbert Xu	select CRYPTO_HASH
6226a0962b2SDarrick J. Wong	select CRC32
6231da177e4SLinus Torvalds	help
624584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
625584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
62669c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6271da177e4SLinus Torvalds
6288cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6298cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6308cb51ba8SAustin Zhang	depends on X86
6318cb51ba8SAustin Zhang	select CRYPTO_HASH
6328cb51ba8SAustin Zhang	help
6338cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6348cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6358cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6368cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6378cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6388cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6398cb51ba8SAustin Zhang
6407cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6416dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
642c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6436dd7a82cSAnton Blanchard	select CRYPTO_HASH
6446dd7a82cSAnton Blanchard	select CRC32
6456dd7a82cSAnton Blanchard	help
6466dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6476dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6486dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6496dd7a82cSAnton Blanchard
6506dd7a82cSAnton Blanchard
651442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
652442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
653442a7c40SDavid S. Miller	depends on SPARC64
654442a7c40SDavid S. Miller	select CRYPTO_HASH
655442a7c40SDavid S. Miller	select CRC32
656442a7c40SDavid S. Miller	help
657442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
658442a7c40SDavid S. Miller	  when available.
659442a7c40SDavid S. Miller
66078c37d19SAlexander Boykoconfig CRYPTO_CRC32
66178c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
66278c37d19SAlexander Boyko	select CRYPTO_HASH
66378c37d19SAlexander Boyko	select CRC32
66478c37d19SAlexander Boyko	help
66578c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
66678c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
66778c37d19SAlexander Boyko
66878c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
66978c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
67078c37d19SAlexander Boyko	depends on X86
67178c37d19SAlexander Boyko	select CRYPTO_HASH
67278c37d19SAlexander Boyko	select CRC32
67378c37d19SAlexander Boyko	help
67478c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
67578c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
67678c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
677af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
67878c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
67978c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
68078c37d19SAlexander Boyko
6814a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6824a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6834a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6844a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6854a5dc51eSMarcin Nowakowski	help
6864a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6874a5dc51eSMarcin Nowakowski	  instructions, when available.
6884a5dc51eSMarcin Nowakowski
6894a5dc51eSMarcin Nowakowski
69068411521SHerbert Xuconfig CRYPTO_CRCT10DIF
69168411521SHerbert Xu	tristate "CRCT10DIF algorithm"
69268411521SHerbert Xu	select CRYPTO_HASH
69368411521SHerbert Xu	help
69468411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
69568411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
69668411521SHerbert Xu	  transforms to be used if they are available.
69768411521SHerbert Xu
69868411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
69968411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
70068411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
70168411521SHerbert Xu	select CRYPTO_HASH
70268411521SHerbert Xu	help
70368411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
70468411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
70568411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
706af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
70768411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
70868411521SHerbert Xu
709b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
710b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
711b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
712b01df1c1SDaniel Axtens	select CRYPTO_HASH
713b01df1c1SDaniel Axtens	help
714b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
715b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
716b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
717b01df1c1SDaniel Axtens
718146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
719146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
720146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
721146c8688SDaniel Axtens	help
722146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
723146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
724146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
725146c8688SDaniel Axtens
7262cdc6899SHuang Yingconfig CRYPTO_GHASH
7272cdc6899SHuang Ying	tristate "GHASH digest algorithm"
7282cdc6899SHuang Ying	select CRYPTO_GF128MUL
729578c60fbSArnd Bergmann	select CRYPTO_HASH
7302cdc6899SHuang Ying	help
7312cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
7322cdc6899SHuang Ying
733f979e014SMartin Williconfig CRYPTO_POLY1305
734f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
735578c60fbSArnd Bergmann	select CRYPTO_HASH
736f979e014SMartin Willi	help
737f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
738f979e014SMartin Willi
739f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
740f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
741f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
742f979e014SMartin Willi
743c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
744b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
745c70f4abeSMartin Willi	depends on X86 && 64BIT
746c70f4abeSMartin Willi	select CRYPTO_POLY1305
747c70f4abeSMartin Willi	help
748c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
749c70f4abeSMartin Willi
750c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
751c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
752c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
753c70f4abeSMartin Willi	  instructions.
754c70f4abeSMartin Willi
7551da177e4SLinus Torvaldsconfig CRYPTO_MD4
7561da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
757808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7581da177e4SLinus Torvalds	help
7591da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7601da177e4SLinus Torvalds
7611da177e4SLinus Torvaldsconfig CRYPTO_MD5
7621da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
76314b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7641da177e4SLinus Torvalds	help
7651da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7661da177e4SLinus Torvalds
767d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
768d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
769d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
770d69e75deSAaro Koskinen	select CRYPTO_MD5
771d69e75deSAaro Koskinen	select CRYPTO_HASH
772d69e75deSAaro Koskinen	help
773d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
774d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
775d69e75deSAaro Koskinen
776e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
777e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
778e8e59953SMarkus Stockhausen	depends on PPC
779e8e59953SMarkus Stockhausen	select CRYPTO_HASH
780e8e59953SMarkus Stockhausen	help
781e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
782e8e59953SMarkus Stockhausen	  in PPC assembler.
783e8e59953SMarkus Stockhausen
784fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
785fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
786fa4dfedcSDavid S. Miller	depends on SPARC64
787fa4dfedcSDavid S. Miller	select CRYPTO_MD5
788fa4dfedcSDavid S. Miller	select CRYPTO_HASH
789fa4dfedcSDavid S. Miller	help
790fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
791fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
792fa4dfedcSDavid S. Miller
793584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
794584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
79519e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
796584fffc8SSebastian Siewior	help
797584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
798584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
799584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
800584fffc8SSebastian Siewior	  of the algorithm.
801584fffc8SSebastian Siewior
80282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
80382798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
8047c4468bcSHerbert Xu	select CRYPTO_HASH
80582798f90SAdrian-Ken Rueegsegger	help
80682798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
80782798f90SAdrian-Ken Rueegsegger
80882798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
80935ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
81082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
81182798f90SAdrian-Ken Rueegsegger
81282798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8136d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
81482798f90SAdrian-Ken Rueegsegger
81582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
81682798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
817e5835fbaSHerbert Xu	select CRYPTO_HASH
81882798f90SAdrian-Ken Rueegsegger	help
81982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
82082798f90SAdrian-Ken Rueegsegger
82182798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
82282798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
823b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
824b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
82582798f90SAdrian-Ken Rueegsegger
826b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
827b6d44341SAdrian Bunk	  against RIPEMD-160.
828534fe2c1SAdrian-Ken Rueegsegger
829534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8306d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
831534fe2c1SAdrian-Ken Rueegsegger
832534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
833534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
834d8a5e2e9SHerbert Xu	select CRYPTO_HASH
835534fe2c1SAdrian-Ken Rueegsegger	help
836b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
837b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
838b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
839b6d44341SAdrian Bunk	  (than RIPEMD-128).
840534fe2c1SAdrian-Ken Rueegsegger
841534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8426d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
843534fe2c1SAdrian-Ken Rueegsegger
844534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
845534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8463b8efb4cSHerbert Xu	select CRYPTO_HASH
847534fe2c1SAdrian-Ken Rueegsegger	help
848b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
849b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
850b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
851b6d44341SAdrian Bunk	  (than RIPEMD-160).
852534fe2c1SAdrian-Ken Rueegsegger
85382798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8546d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
85582798f90SAdrian-Ken Rueegsegger
8561da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8571da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
85854ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8591da177e4SLinus Torvalds	help
8601da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8611da177e4SLinus Torvalds
86266be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
863e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
86466be8951SMathias Krause	depends on X86 && 64BIT
86566be8951SMathias Krause	select CRYPTO_SHA1
86666be8951SMathias Krause	select CRYPTO_HASH
86766be8951SMathias Krause	help
86866be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
86966be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
870e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
871e38b6b7fStim	  when available.
87266be8951SMathias Krause
8738275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
874e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8758275d1aaSTim Chen	depends on X86 && 64BIT
8768275d1aaSTim Chen	select CRYPTO_SHA256
8778275d1aaSTim Chen	select CRYPTO_HASH
8788275d1aaSTim Chen	help
8798275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8808275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8818275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
882e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
883e38b6b7fStim	  Instructions) when available.
8848275d1aaSTim Chen
88587de4579STim Chenconfig CRYPTO_SHA512_SSSE3
88687de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
88787de4579STim Chen	depends on X86 && 64BIT
88887de4579STim Chen	select CRYPTO_SHA512
88987de4579STim Chen	select CRYPTO_HASH
89087de4579STim Chen	help
89187de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
89287de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
89387de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
89487de4579STim Chen	  version 2 (AVX2) instructions, when available.
89587de4579STim Chen
896efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
897efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
898efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
899efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
900efdb6f6eSAaro Koskinen	select CRYPTO_HASH
901efdb6f6eSAaro Koskinen	help
902efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
903efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
904efdb6f6eSAaro Koskinen
9054ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9064ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9074ff28d4cSDavid S. Miller	depends on SPARC64
9084ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9094ff28d4cSDavid S. Miller	select CRYPTO_HASH
9104ff28d4cSDavid S. Miller	help
9114ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9124ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9134ff28d4cSDavid S. Miller
914323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
915323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
916323a6bf1SMichael Ellerman	depends on PPC
917323a6bf1SMichael Ellerman	help
918323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
919323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
920323a6bf1SMichael Ellerman
921d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
922d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
923d9850fc5SMarkus Stockhausen	depends on PPC && SPE
924d9850fc5SMarkus Stockhausen	help
925d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
926d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
927d9850fc5SMarkus Stockhausen
9281da177e4SLinus Torvaldsconfig CRYPTO_SHA256
929cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
93050e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9311da177e4SLinus Torvalds	help
9321da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9331da177e4SLinus Torvalds
9341da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9351da177e4SLinus Torvalds	  security against collision attacks.
9361da177e4SLinus Torvalds
937cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
938cd12fb90SJonathan Lynch	  of security against collision attacks.
939cd12fb90SJonathan Lynch
9402ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9412ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9422ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9432ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9442ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9452ecc1e95SMarkus Stockhausen	help
9462ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9472ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9482ecc1e95SMarkus Stockhausen
949efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
950efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
951efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
952efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
953efdb6f6eSAaro Koskinen	select CRYPTO_HASH
954efdb6f6eSAaro Koskinen	help
955efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
956efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
957efdb6f6eSAaro Koskinen
95886c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
95986c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
96086c93b24SDavid S. Miller	depends on SPARC64
96186c93b24SDavid S. Miller	select CRYPTO_SHA256
96286c93b24SDavid S. Miller	select CRYPTO_HASH
96386c93b24SDavid S. Miller	help
96486c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
96586c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
96686c93b24SDavid S. Miller
9671da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9681da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
969bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9701da177e4SLinus Torvalds	help
9711da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9721da177e4SLinus Torvalds
9731da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9741da177e4SLinus Torvalds	  security against collision attacks.
9751da177e4SLinus Torvalds
9761da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9771da177e4SLinus Torvalds	  of security against collision attacks.
9781da177e4SLinus Torvalds
979efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
980efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
981efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
982efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
983efdb6f6eSAaro Koskinen	select CRYPTO_HASH
984efdb6f6eSAaro Koskinen	help
985efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
986efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
987efdb6f6eSAaro Koskinen
988775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
989775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
990775e0c69SDavid S. Miller	depends on SPARC64
991775e0c69SDavid S. Miller	select CRYPTO_SHA512
992775e0c69SDavid S. Miller	select CRYPTO_HASH
993775e0c69SDavid S. Miller	help
994775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
995775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
996775e0c69SDavid S. Miller
99753964b9eSJeff Garzikconfig CRYPTO_SHA3
99853964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
99953964b9eSJeff Garzik	select CRYPTO_HASH
100053964b9eSJeff Garzik	help
100153964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
100253964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
100353964b9eSJeff Garzik
100453964b9eSJeff Garzik	  References:
100553964b9eSJeff Garzik	  http://keccak.noekeon.org/
100653964b9eSJeff Garzik
10074f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
10084f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10094f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
10104f0fc160SGilad Ben-Yossef	help
10114f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10124f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10134f0fc160SGilad Ben-Yossef
10144f0fc160SGilad Ben-Yossef	  References:
10154f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10164f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10174f0fc160SGilad Ben-Yossef
1018fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1019fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1020fe18957eSVitaly Chikunov	select CRYPTO_HASH
1021fe18957eSVitaly Chikunov	help
1022fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1023fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1024fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1025fe18957eSVitaly Chikunov
1026fe18957eSVitaly Chikunov	  References:
1027fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1028fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1029fe18957eSVitaly Chikunov
10301da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10311da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1032f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10331da177e4SLinus Torvalds	help
10341da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10351da177e4SLinus Torvalds
10361da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10371da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10381da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10391da177e4SLinus Torvalds
10401da177e4SLinus Torvalds	  See also:
10411da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10421da177e4SLinus Torvalds
1043584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1044584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10454946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10461da177e4SLinus Torvalds	help
1047584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10481da177e4SLinus Torvalds
1049584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1050584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10511da177e4SLinus Torvalds
10521da177e4SLinus Torvalds	  See also:
10536d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10541da177e4SLinus Torvalds
10550e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10560e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10578af00860SRichard Weinberger	depends on X86 && 64BIT
10580e1227d3SHuang Ying	select CRYPTO_CRYPTD
10590e1227d3SHuang Ying	help
10600e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10610e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10620e1227d3SHuang Ying
1063584fffc8SSebastian Siewiorcomment "Ciphers"
10641da177e4SLinus Torvalds
10651da177e4SLinus Torvaldsconfig CRYPTO_AES
10661da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1067cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10681da177e4SLinus Torvalds	help
10691da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10701da177e4SLinus Torvalds	  algorithm.
10711da177e4SLinus Torvalds
10721da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10731da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10741da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10751da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10761da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10771da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10781da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10791da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10801da177e4SLinus Torvalds
10811da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10821da177e4SLinus Torvalds
10831da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10841da177e4SLinus Torvalds
1085b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1086b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1087b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1088b5e0b032SArd Biesheuvel	help
1089b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1090b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1091b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1092b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1093b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1094b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1095b5e0b032SArd Biesheuvel
1096b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1097b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1098b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1099b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
11000a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
11010a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1102b5e0b032SArd Biesheuvel
11031da177e4SLinus Torvaldsconfig CRYPTO_AES_586
11041da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1105cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1106cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11075157dea8SSebastian Siewior	select CRYPTO_AES
11081da177e4SLinus Torvalds	help
11091da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11101da177e4SLinus Torvalds	  algorithm.
11111da177e4SLinus Torvalds
11121da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
11131da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
11141da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
11151da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
11161da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
11171da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
11181da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
11191da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11201da177e4SLinus Torvalds
11211da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11221da177e4SLinus Torvalds
11231da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11241da177e4SLinus Torvalds
1125a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1126a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1127cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1128cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
112981190b32SSebastian Siewior	select CRYPTO_AES
1130a2a892a2SAndreas Steinmetz	help
1131a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1132a2a892a2SAndreas Steinmetz	  algorithm.
1133a2a892a2SAndreas Steinmetz
1134a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1135a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1136a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1137a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1138a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1139a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1140a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1141a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1142a2a892a2SAndreas Steinmetz
1143a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1144a2a892a2SAndreas Steinmetz
1145a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1146a2a892a2SAndreas Steinmetz
114754b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
114854b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11498af00860SRichard Weinberger	depends on X86
115085671860SHerbert Xu	select CRYPTO_AEAD
11510d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11520d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
115354b6a1bdSHuang Ying	select CRYPTO_ALGAPI
115485671860SHerbert Xu	select CRYPTO_BLKCIPHER
11557643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
115685671860SHerbert Xu	select CRYPTO_SIMD
115754b6a1bdSHuang Ying	help
115854b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
115954b6a1bdSHuang Ying
116054b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
116154b6a1bdSHuang Ying	  algorithm.
116254b6a1bdSHuang Ying
116354b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
116454b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
116554b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
116654b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
116754b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
116854b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
116954b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
117054b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
117154b6a1bdSHuang Ying
117254b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
117354b6a1bdSHuang Ying
117454b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
117554b6a1bdSHuang Ying
11760d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11770d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1178944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11790d258efbSMathias Krause	  acceleration for CTR.
11802cf4ac8bSHuang Ying
11819bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11829bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11839bf4852dSDavid S. Miller	depends on SPARC64
11849bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11859bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11869bf4852dSDavid S. Miller	help
11879bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11889bf4852dSDavid S. Miller
11899bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11909bf4852dSDavid S. Miller	  algorithm.
11919bf4852dSDavid S. Miller
11929bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11939bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11949bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11959bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11969bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11979bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11989bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11999bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
12009bf4852dSDavid S. Miller
12019bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
12029bf4852dSDavid S. Miller
12039bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
12049bf4852dSDavid S. Miller
12059bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
12069bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
12079bf4852dSDavid S. Miller	  ECB and CBC.
12089bf4852dSDavid S. Miller
1209504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1210504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1211504c6143SMarkus Stockhausen	depends on PPC && SPE
1212504c6143SMarkus Stockhausen	help
1213504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1214504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1215504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1216504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1217504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1218504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1219504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1220504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1221504c6143SMarkus Stockhausen
12221da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12231da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1224cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12251da177e4SLinus Torvalds	help
12261da177e4SLinus Torvalds	  Anubis cipher algorithm.
12271da177e4SLinus Torvalds
12281da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12291da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12301da177e4SLinus Torvalds	  in the NESSIE competition.
12311da177e4SLinus Torvalds
12321da177e4SLinus Torvalds	  See also:
12336d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12346d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12351da177e4SLinus Torvalds
1236584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1237584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1238b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1239e2ee95b8SHye-Shik Chang	help
1240584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1241e2ee95b8SHye-Shik Chang
1242584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1243584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1244584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1245584fffc8SSebastian Siewior	  weakness of the algorithm.
1246584fffc8SSebastian Siewior
1247584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1248584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1249584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
125052ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1251584fffc8SSebastian Siewior	help
1252584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1253584fffc8SSebastian Siewior
1254584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1255584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1256584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1257e2ee95b8SHye-Shik Chang
1258e2ee95b8SHye-Shik Chang	  See also:
1259584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1260584fffc8SSebastian Siewior
126152ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
126252ba867cSJussi Kivilinna	tristate
126352ba867cSJussi Kivilinna	help
126452ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
126552ba867cSJussi Kivilinna	  generic c and the assembler implementations.
126652ba867cSJussi Kivilinna
126752ba867cSJussi Kivilinna	  See also:
126852ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
126952ba867cSJussi Kivilinna
127064b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
127164b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1272f21a7c19SAl Viro	depends on X86 && 64BIT
1273c1679171SEric Biggers	select CRYPTO_BLKCIPHER
127464b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
127564b94ceaSJussi Kivilinna	help
127664b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
127764b94ceaSJussi Kivilinna
127864b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
127964b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
128064b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
128164b94ceaSJussi Kivilinna
128264b94ceaSJussi Kivilinna	  See also:
128364b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
128464b94ceaSJussi Kivilinna
1285584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1286584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1287584fffc8SSebastian Siewior	depends on CRYPTO
1288584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1289584fffc8SSebastian Siewior	help
1290584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1291584fffc8SSebastian Siewior
1292584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1293584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1294584fffc8SSebastian Siewior
1295584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1296584fffc8SSebastian Siewior
1297584fffc8SSebastian Siewior	  See also:
1298584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1299584fffc8SSebastian Siewior
13000b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
13010b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1302f21a7c19SAl Viro	depends on X86 && 64BIT
13030b95ec56SJussi Kivilinna	depends on CRYPTO
13041af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1305964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
13060b95ec56SJussi Kivilinna	help
13070b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
13080b95ec56SJussi Kivilinna
13090b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
13100b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
13110b95ec56SJussi Kivilinna
13120b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
13130b95ec56SJussi Kivilinna
13140b95ec56SJussi Kivilinna	  See also:
13150b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
13160b95ec56SJussi Kivilinna
1317d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1318d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1319d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1320d9b1d2e7SJussi Kivilinna	depends on CRYPTO
132144893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1322d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
132344893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
132444893bc2SEric Biggers	select CRYPTO_SIMD
1325d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1326d9b1d2e7SJussi Kivilinna	help
1327d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1328d9b1d2e7SJussi Kivilinna
1329d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1330d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1331d9b1d2e7SJussi Kivilinna
1332d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1333d9b1d2e7SJussi Kivilinna
1334d9b1d2e7SJussi Kivilinna	  See also:
1335d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1336d9b1d2e7SJussi Kivilinna
1337f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1338f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1339f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1340f3f935a7SJussi Kivilinna	depends on CRYPTO
1341f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1342f3f935a7SJussi Kivilinna	help
1343f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1344f3f935a7SJussi Kivilinna
1345f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1346f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1347f3f935a7SJussi Kivilinna
1348f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1349f3f935a7SJussi Kivilinna
1350f3f935a7SJussi Kivilinna	  See also:
1351f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1352f3f935a7SJussi Kivilinna
135381658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
135481658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
135581658ad0SDavid S. Miller	depends on SPARC64
135681658ad0SDavid S. Miller	depends on CRYPTO
135781658ad0SDavid S. Miller	select CRYPTO_ALGAPI
135881658ad0SDavid S. Miller	help
135981658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
136081658ad0SDavid S. Miller
136181658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
136281658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
136381658ad0SDavid S. Miller
136481658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
136581658ad0SDavid S. Miller
136681658ad0SDavid S. Miller	  See also:
136781658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
136881658ad0SDavid S. Miller
1369044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1370044ab525SJussi Kivilinna	tristate
1371044ab525SJussi Kivilinna	help
1372044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1373044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1374044ab525SJussi Kivilinna
1375584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1376584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1377584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1378044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1379584fffc8SSebastian Siewior	help
1380584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1381584fffc8SSebastian Siewior	  described in RFC2144.
1382584fffc8SSebastian Siewior
13834d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13844d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13854d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13861e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13874d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13881e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13891e63183aSEric Biggers	select CRYPTO_SIMD
13904d6d6a2cSJohannes Goetzfried	help
13914d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13924d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13934d6d6a2cSJohannes Goetzfried
13944d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13954d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13964d6d6a2cSJohannes Goetzfried
1397584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1398584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1399584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1400044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1401584fffc8SSebastian Siewior	help
1402584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1403584fffc8SSebastian Siewior	  described in RFC2612.
1404584fffc8SSebastian Siewior
14054ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
14064ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
14074ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
14084bd96924SEric Biggers	select CRYPTO_BLKCIPHER
14094ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
14104bd96924SEric Biggers	select CRYPTO_CAST_COMMON
14114bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
14124bd96924SEric Biggers	select CRYPTO_SIMD
14134ea1277dSJohannes Goetzfried	select CRYPTO_XTS
14144ea1277dSJohannes Goetzfried	help
14154ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
14164ea1277dSJohannes Goetzfried	  described in RFC2612.
14174ea1277dSJohannes Goetzfried
14184ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
14194ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14204ea1277dSJohannes Goetzfried
1421584fffc8SSebastian Siewiorconfig CRYPTO_DES
1422584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1423584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1424584fffc8SSebastian Siewior	help
1425584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1426584fffc8SSebastian Siewior
1427c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1428c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
142997da37b3SDave Jones	depends on SPARC64
1430c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1431c5aac2dfSDavid S. Miller	select CRYPTO_DES
1432c5aac2dfSDavid S. Miller	help
1433c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1434c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1435c5aac2dfSDavid S. Miller
14366574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14376574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14386574e6c6SJussi Kivilinna	depends on X86 && 64BIT
143909c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
14406574e6c6SJussi Kivilinna	select CRYPTO_DES
14416574e6c6SJussi Kivilinna	help
14426574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14436574e6c6SJussi Kivilinna
14446574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14456574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14466574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14476574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14486574e6c6SJussi Kivilinna
1449584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1450584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1451584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1452584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1453584fffc8SSebastian Siewior	help
1454584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1455584fffc8SSebastian Siewior
1456584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1457584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1458584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1459584fffc8SSebastian Siewior	help
1460584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1461584fffc8SSebastian Siewior
1462584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1463584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1464584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1465584fffc8SSebastian Siewior
1466584fffc8SSebastian Siewior	  See also:
14676d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1468e2ee95b8SHye-Shik Chang
14692407d608STan Swee Hengconfig CRYPTO_SALSA20
14703b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14712407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14722407d608STan Swee Heng	help
14732407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14742407d608STan Swee Heng
14752407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14762407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14772407d608STan Swee Heng
14782407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14792407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14801da177e4SLinus Torvalds
1481c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1482aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1483c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1484c08d0e64SMartin Willi	help
1485aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1486c08d0e64SMartin Willi
1487c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1488c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1489de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1490c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1491c08d0e64SMartin Willi
1492de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1493de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1494de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1495de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1496de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1497de61d7aeSEric Biggers
1498aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1499aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1500aa762409SEric Biggers	  in some performance-sensitive scenarios.
1501aa762409SEric Biggers
1502c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
15034af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1504c9320b6dSMartin Willi	depends on X86 && 64BIT
1505c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1506c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1507c9320b6dSMartin Willi	help
15087a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
15097a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1510c9320b6dSMartin Willi
1511584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1512584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1513584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1514584fffc8SSebastian Siewior	help
1515584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1516584fffc8SSebastian Siewior
1517584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1518584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1519584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1520584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1521584fffc8SSebastian Siewior
1522584fffc8SSebastian Siewior	  See also:
1523584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1524584fffc8SSebastian Siewior
1525584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1526584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1527584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1528584fffc8SSebastian Siewior	help
1529584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1530584fffc8SSebastian Siewior
1531584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1532584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1533584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1534584fffc8SSebastian Siewior
1535584fffc8SSebastian Siewior	  See also:
1536584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1537584fffc8SSebastian Siewior
1538937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1539937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1540937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1541e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1542596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1543937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1544e0f409dcSEric Biggers	select CRYPTO_SIMD
1545937c30d7SJussi Kivilinna	help
1546937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1547937c30d7SJussi Kivilinna
1548937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1549937c30d7SJussi Kivilinna	  of 8 bits.
1550937c30d7SJussi Kivilinna
15511e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1552937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1553937c30d7SJussi Kivilinna
1554937c30d7SJussi Kivilinna	  See also:
1555937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1556937c30d7SJussi Kivilinna
1557251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1558251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1559251496dbSJussi Kivilinna	depends on X86 && !64BIT
1560e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1561596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1562251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1563e0f409dcSEric Biggers	select CRYPTO_SIMD
1564251496dbSJussi Kivilinna	help
1565251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1566251496dbSJussi Kivilinna
1567251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1568251496dbSJussi Kivilinna	  of 8 bits.
1569251496dbSJussi Kivilinna
1570251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1571251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1572251496dbSJussi Kivilinna
1573251496dbSJussi Kivilinna	  See also:
1574251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1575251496dbSJussi Kivilinna
15767efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15777efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15787efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1579e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15801d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15817efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1582e16bf974SEric Biggers	select CRYPTO_SIMD
15837efe4076SJohannes Goetzfried	select CRYPTO_XTS
15847efe4076SJohannes Goetzfried	help
15857efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15867efe4076SJohannes Goetzfried
15877efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15887efe4076SJohannes Goetzfried	  of 8 bits.
15897efe4076SJohannes Goetzfried
15907efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15917efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15927efe4076SJohannes Goetzfried
15937efe4076SJohannes Goetzfried	  See also:
15947efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15957efe4076SJohannes Goetzfried
159656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
159756d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
159856d76c96SJussi Kivilinna	depends on X86 && 64BIT
159956d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
160056d76c96SJussi Kivilinna	help
160156d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
160256d76c96SJussi Kivilinna
160356d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
160456d76c96SJussi Kivilinna	  of 8 bits.
160556d76c96SJussi Kivilinna
160656d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
160756d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
160856d76c96SJussi Kivilinna
160956d76c96SJussi Kivilinna	  See also:
161056d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
161156d76c96SJussi Kivilinna
1612747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1613747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1614747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1615747c8ce4SGilad Ben-Yossef	help
1616747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1617747c8ce4SGilad Ben-Yossef
1618747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1619747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1620747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1621747c8ce4SGilad Ben-Yossef
1622747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1623747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1624747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1625747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1626747c8ce4SGilad Ben-Yossef
1627747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1628747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1629747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1630747c8ce4SGilad Ben-Yossef
1631747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1632747c8ce4SGilad Ben-Yossef
1633747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1634747c8ce4SGilad Ben-Yossef
1635747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1636747c8ce4SGilad Ben-Yossef
1637584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1638584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1639584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1640584fffc8SSebastian Siewior	help
1641584fffc8SSebastian Siewior	  TEA cipher algorithm.
1642584fffc8SSebastian Siewior
1643584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1644584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1645584fffc8SSebastian Siewior	  little memory.
1646584fffc8SSebastian Siewior
1647584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1648584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1649584fffc8SSebastian Siewior	  in the TEA algorithm.
1650584fffc8SSebastian Siewior
1651584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1652584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1653584fffc8SSebastian Siewior
1654584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1655584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1656584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1657584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1658584fffc8SSebastian Siewior	help
1659584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1660584fffc8SSebastian Siewior
1661584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1662584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1663584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1664584fffc8SSebastian Siewior	  bits.
1665584fffc8SSebastian Siewior
1666584fffc8SSebastian Siewior	  See also:
1667584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1668584fffc8SSebastian Siewior
1669584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1670584fffc8SSebastian Siewior	tristate
1671584fffc8SSebastian Siewior	help
1672584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1673584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1674584fffc8SSebastian Siewior
1675584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1676584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1677584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1678584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1679584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1680584fffc8SSebastian Siewior	help
1681584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1682584fffc8SSebastian Siewior
1683584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1684584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1685584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1686584fffc8SSebastian Siewior	  bits.
1687584fffc8SSebastian Siewior
1688584fffc8SSebastian Siewior	  See also:
1689584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1690584fffc8SSebastian Siewior
1691584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1692584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1693584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1694584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1695584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1696584fffc8SSebastian Siewior	help
1697584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1698584fffc8SSebastian Siewior
1699584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1700584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1701584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1702584fffc8SSebastian Siewior	  bits.
1703584fffc8SSebastian Siewior
1704584fffc8SSebastian Siewior	  See also:
1705584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1706584fffc8SSebastian Siewior
17078280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17088280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1709f21a7c19SAl Viro	depends on X86 && 64BIT
171037992fa4SEric Biggers	select CRYPTO_BLKCIPHER
17118280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17128280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1713414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17148280daadSJussi Kivilinna	help
17158280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17168280daadSJussi Kivilinna
17178280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17188280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17198280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17208280daadSJussi Kivilinna	  bits.
17218280daadSJussi Kivilinna
17228280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17238280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17248280daadSJussi Kivilinna
17258280daadSJussi Kivilinna	  See also:
17268280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17278280daadSJussi Kivilinna
1728107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1729107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1730107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17310e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1732a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17330e6ab46dSEric Biggers	select CRYPTO_SIMD
1734107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1735107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1736107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1737107778b5SJohannes Goetzfried	help
1738107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1739107778b5SJohannes Goetzfried
1740107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1741107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1742107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1743107778b5SJohannes Goetzfried	  bits.
1744107778b5SJohannes Goetzfried
1745107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1746107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1747107778b5SJohannes Goetzfried
1748107778b5SJohannes Goetzfried	  See also:
1749107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1750107778b5SJohannes Goetzfried
1751584fffc8SSebastian Siewiorcomment "Compression"
1752584fffc8SSebastian Siewior
17531da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17541da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1755cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1756f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17571da177e4SLinus Torvalds	select ZLIB_INFLATE
17581da177e4SLinus Torvalds	select ZLIB_DEFLATE
17591da177e4SLinus Torvalds	help
17601da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17611da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17621da177e4SLinus Torvalds
17631da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17641da177e4SLinus Torvalds
17650b77abb3SZoltan Sogorconfig CRYPTO_LZO
17660b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17670b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1768ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17690b77abb3SZoltan Sogor	select LZO_COMPRESS
17700b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17710b77abb3SZoltan Sogor	help
17720b77abb3SZoltan Sogor	  This is the LZO algorithm.
17730b77abb3SZoltan Sogor
177435a1fc18SSeth Jenningsconfig CRYPTO_842
177535a1fc18SSeth Jennings	tristate "842 compression algorithm"
17762062c5b6SDan Streetman	select CRYPTO_ALGAPI
17776a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17782062c5b6SDan Streetman	select 842_COMPRESS
17792062c5b6SDan Streetman	select 842_DECOMPRESS
178035a1fc18SSeth Jennings	help
178135a1fc18SSeth Jennings	  This is the 842 algorithm.
178235a1fc18SSeth Jennings
17830ea8530dSChanho Minconfig CRYPTO_LZ4
17840ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17850ea8530dSChanho Min	select CRYPTO_ALGAPI
17868cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17870ea8530dSChanho Min	select LZ4_COMPRESS
17880ea8530dSChanho Min	select LZ4_DECOMPRESS
17890ea8530dSChanho Min	help
17900ea8530dSChanho Min	  This is the LZ4 algorithm.
17910ea8530dSChanho Min
17920ea8530dSChanho Minconfig CRYPTO_LZ4HC
17930ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17940ea8530dSChanho Min	select CRYPTO_ALGAPI
179591d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17960ea8530dSChanho Min	select LZ4HC_COMPRESS
17970ea8530dSChanho Min	select LZ4_DECOMPRESS
17980ea8530dSChanho Min	help
17990ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
18000ea8530dSChanho Min
1801d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1802d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1803d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1804d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1805d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1806d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1807d28fc3dbSNick Terrell	help
1808d28fc3dbSNick Terrell	  This is the zstd algorithm.
1809d28fc3dbSNick Terrell
181017f0f4a4SNeil Hormancomment "Random Number Generation"
181117f0f4a4SNeil Horman
181217f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
181317f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
181417f0f4a4SNeil Horman	select CRYPTO_AES
181517f0f4a4SNeil Horman	select CRYPTO_RNG
181617f0f4a4SNeil Horman	help
181717f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
181817f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18197dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18207dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
182117f0f4a4SNeil Horman
1822f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1823419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1824419090c6SStephan Mueller	help
1825419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1826419090c6SStephan Mueller	  more of the DRBG types must be selected.
1827419090c6SStephan Mueller
1828f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1829419090c6SStephan Mueller
1830419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1831401e4238SHerbert Xu	bool
1832419090c6SStephan Mueller	default y
1833419090c6SStephan Mueller	select CRYPTO_HMAC
1834826775bbSHerbert Xu	select CRYPTO_SHA256
1835419090c6SStephan Mueller
1836419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1837419090c6SStephan Mueller	bool "Enable Hash DRBG"
1838826775bbSHerbert Xu	select CRYPTO_SHA256
1839419090c6SStephan Mueller	help
1840419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1841419090c6SStephan Mueller
1842419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1843419090c6SStephan Mueller	bool "Enable CTR DRBG"
1844419090c6SStephan Mueller	select CRYPTO_AES
184535591285SStephan Mueller	depends on CRYPTO_CTR
1846419090c6SStephan Mueller	help
1847419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1848419090c6SStephan Mueller
1849f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1850f2c89a10SHerbert Xu	tristate
1851401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1852f2c89a10SHerbert Xu	select CRYPTO_RNG
1853bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1854f2c89a10SHerbert Xu
1855f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1856419090c6SStephan Mueller
1857bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1858bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18592f313e02SArnd Bergmann	select CRYPTO_RNG
1860bb5530e4SStephan Mueller	help
1861bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1862bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1863bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1864bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1865bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1866bb5530e4SStephan Mueller
186703c8efc1SHerbert Xuconfig CRYPTO_USER_API
186803c8efc1SHerbert Xu	tristate
186903c8efc1SHerbert Xu
1870fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1871fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18727451708fSHerbert Xu	depends on NET
1873fe869cdbSHerbert Xu	select CRYPTO_HASH
1874fe869cdbSHerbert Xu	select CRYPTO_USER_API
1875fe869cdbSHerbert Xu	help
1876fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1877fe869cdbSHerbert Xu	  algorithms.
1878fe869cdbSHerbert Xu
18798ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18808ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18817451708fSHerbert Xu	depends on NET
18828ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18838ff59090SHerbert Xu	select CRYPTO_USER_API
18848ff59090SHerbert Xu	help
18858ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18868ff59090SHerbert Xu	  key cipher algorithms.
18878ff59090SHerbert Xu
18882f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18892f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18902f375538SStephan Mueller	depends on NET
18912f375538SStephan Mueller	select CRYPTO_RNG
18922f375538SStephan Mueller	select CRYPTO_USER_API
18932f375538SStephan Mueller	help
18942f375538SStephan Mueller	  This option enables the user-spaces interface for random
18952f375538SStephan Mueller	  number generator algorithms.
18962f375538SStephan Mueller
1897b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1898b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1899b64a2d95SHerbert Xu	depends on NET
1900b64a2d95SHerbert Xu	select CRYPTO_AEAD
190172548b09SStephan Mueller	select CRYPTO_BLKCIPHER
190272548b09SStephan Mueller	select CRYPTO_NULL
1903b64a2d95SHerbert Xu	select CRYPTO_USER_API
1904b64a2d95SHerbert Xu	help
1905b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1906b64a2d95SHerbert Xu	  cipher algorithms.
1907b64a2d95SHerbert Xu
1908cac5818cSCorentin Labbeconfig CRYPTO_STATS
1909cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1910a6a31385SCorentin Labbe	depends on CRYPTO_USER
1911cac5818cSCorentin Labbe	help
1912cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1913cac5818cSCorentin Labbe	  This will collect:
1914cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1915cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1916cac5818cSCorentin Labbe	  - size and numbers of hash operations
1917cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1918cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1919cac5818cSCorentin Labbe
1920ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1921ee08997fSDmitry Kasatkin	bool
1922ee08997fSDmitry Kasatkin
19231da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19248636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19258636a1f9SMasahiro Yamadasource "certs/Kconfig"
19261da177e4SLinus Torvalds
1927cce9e06dSHerbert Xuendif	# if CRYPTO
1928