xref: /linux/crypto/Kconfig (revision 91d689337fe8b7703608a2ec39aae700b99f3933)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1088cd579d2SBart Van Assche	select SGL_ALLOC
1092ebda74fSGiovanni Cabiddu
1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1112ebda74fSGiovanni Cabiddu	tristate
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1142ebda74fSGiovanni Cabiddu
1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1162b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1176a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1182b8c19dbSHerbert Xu	help
1192b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1202b8c19dbSHerbert Xu	  cbc(aes).
1212b8c19dbSHerbert Xu
1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1236a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1246a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1256a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1266a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
127946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1284e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1306a0fcbb4SHerbert Xu
131a38f7907SSteffen Klassertconfig CRYPTO_USER
132a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1335db017aaSHerbert Xu	depends on NET
134a38f7907SSteffen Klassert	select CRYPTO_MANAGER
135a38f7907SSteffen Klassert	help
136d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
137a38f7907SSteffen Klassert	  cbc(aes).
138a38f7907SSteffen Klassert
139929d34caSEric Biggersif CRYPTO_MANAGER2
140929d34caSEric Biggers
141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
142326a6346SHerbert Xu	bool "Disable run-time self tests"
14300ca28a5SHerbert Xu	default y
1440b767f96SAlexander Shishkin	help
145326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
146326a6346SHerbert Xu	  algorithm registration.
1470b767f96SAlexander Shishkin
1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1495b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1505b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1515b2706a4SEric Biggers	help
1525b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1535b2706a4SEric Biggers	  including randomized fuzz tests.
1545b2706a4SEric Biggers
1555b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1565b2706a4SEric Biggers	  longer to run than the normal self tests.
1575b2706a4SEric Biggers
158929d34caSEric Biggersendif	# if CRYPTO_MANAGER2
159929d34caSEric Biggers
160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
161e590e132SEric Biggers	tristate
162584fffc8SSebastian Siewior
163584fffc8SSebastian Siewiorconfig CRYPTO_NULL
164584fffc8SSebastian Siewior	tristate "Null algorithms"
165149a3971SHerbert Xu	select CRYPTO_NULL2
166584fffc8SSebastian Siewior	help
167584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
168584fffc8SSebastian Siewior
169149a3971SHerbert Xuconfig CRYPTO_NULL2
170dd43c4e9SHerbert Xu	tristate
171149a3971SHerbert Xu	select CRYPTO_ALGAPI2
172149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
173149a3971SHerbert Xu	select CRYPTO_HASH2
174149a3971SHerbert Xu
1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1763b4afaf2SKees Cook	tristate "Parallel crypto engine"
1773b4afaf2SKees Cook	depends on SMP
1785068c7a8SSteffen Klassert	select PADATA
1795068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1805068c7a8SSteffen Klassert	select CRYPTO_AEAD
1815068c7a8SSteffen Klassert	help
1825068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1835068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1845068c7a8SSteffen Klassert
185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
186584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
187584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
188b8a28251SLoc Ho	select CRYPTO_HASH
189584fffc8SSebastian Siewior	select CRYPTO_MANAGER
190584fffc8SSebastian Siewior	help
191584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
192584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
193584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
194584fffc8SSebastian Siewior
195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
196584fffc8SSebastian Siewior	tristate "Authenc support"
197584fffc8SSebastian Siewior	select CRYPTO_AEAD
198584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
199584fffc8SSebastian Siewior	select CRYPTO_MANAGER
200584fffc8SSebastian Siewior	select CRYPTO_HASH
201e94c6a7aSHerbert Xu	select CRYPTO_NULL
202584fffc8SSebastian Siewior	help
203584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
204584fffc8SSebastian Siewior	  This is required for IPSec.
205584fffc8SSebastian Siewior
206584fffc8SSebastian Siewiorconfig CRYPTO_TEST
207584fffc8SSebastian Siewior	tristate "Testing module"
208584fffc8SSebastian Siewior	depends on m
209da7f033dSHerbert Xu	select CRYPTO_MANAGER
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
212584fffc8SSebastian Siewior
213266d0516SHerbert Xuconfig CRYPTO_SIMD
214266d0516SHerbert Xu	tristate
215266d0516SHerbert Xu	select CRYPTO_CRYPTD
216266d0516SHerbert Xu
217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
218596d8750SJussi Kivilinna	tristate
219596d8750SJussi Kivilinna	depends on X86
220065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
221596d8750SJussi Kivilinna
222735d37b5SBaolin Wangconfig CRYPTO_ENGINE
223735d37b5SBaolin Wang	tristate
224735d37b5SBaolin Wang
2253d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2263d6228a5SVitaly Chikunov
2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2283d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2293d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2303d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2313d6228a5SVitaly Chikunov	select MPILIB
2323d6228a5SVitaly Chikunov	select ASN1
2333d6228a5SVitaly Chikunov	help
2343d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2353d6228a5SVitaly Chikunov
2363d6228a5SVitaly Chikunovconfig CRYPTO_DH
2373d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2383d6228a5SVitaly Chikunov	select CRYPTO_KPP
2393d6228a5SVitaly Chikunov	select MPILIB
2403d6228a5SVitaly Chikunov	help
2413d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2423d6228a5SVitaly Chikunov
2434a2289daSVitaly Chikunovconfig CRYPTO_ECC
2444a2289daSVitaly Chikunov	tristate
2454a2289daSVitaly Chikunov
2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2473d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2484a2289daSVitaly Chikunov	select CRYPTO_ECC
2493d6228a5SVitaly Chikunov	select CRYPTO_KPP
2503d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2513d6228a5SVitaly Chikunov	help
2523d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2533d6228a5SVitaly Chikunov
2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2550d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2560d7a7864SVitaly Chikunov	select CRYPTO_ECC
2570d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2580d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2591036633eSVitaly Chikunov	select OID_REGISTRY
2601036633eSVitaly Chikunov	select ASN1
2610d7a7864SVitaly Chikunov	help
2620d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2630d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2640d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2650d7a7864SVitaly Chikunov	  is implemented.
2660d7a7864SVitaly Chikunov
267584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
268584fffc8SSebastian Siewior
269584fffc8SSebastian Siewiorconfig CRYPTO_CCM
270584fffc8SSebastian Siewior	tristate "CCM support"
271584fffc8SSebastian Siewior	select CRYPTO_CTR
272f15f05b0SArd Biesheuvel	select CRYPTO_HASH
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
274c8a3315aSEric Biggers	select CRYPTO_MANAGER
275584fffc8SSebastian Siewior	help
276584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
277584fffc8SSebastian Siewior
278584fffc8SSebastian Siewiorconfig CRYPTO_GCM
279584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
280584fffc8SSebastian Siewior	select CRYPTO_CTR
281584fffc8SSebastian Siewior	select CRYPTO_AEAD
2829382d97aSHuang Ying	select CRYPTO_GHASH
2839489667dSJussi Kivilinna	select CRYPTO_NULL
284c8a3315aSEric Biggers	select CRYPTO_MANAGER
285584fffc8SSebastian Siewior	help
286584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
287584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
288584fffc8SSebastian Siewior
28971ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
29071ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
29171ebc4d1SMartin Willi	select CRYPTO_CHACHA20
29271ebc4d1SMartin Willi	select CRYPTO_POLY1305
29371ebc4d1SMartin Willi	select CRYPTO_AEAD
294c8a3315aSEric Biggers	select CRYPTO_MANAGER
29571ebc4d1SMartin Willi	help
29671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
29771ebc4d1SMartin Willi
29871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
30071ebc4d1SMartin Willi	  IETF protocols.
30171ebc4d1SMartin Willi
302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
303f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
304f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
305f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
306f606a88eSOndrej Mosnacek	help
307f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
308f606a88eSOndrej Mosnacek
309a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
310a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
311a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
31283053677SArd Biesheuvel	depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800
313a4397635SArd Biesheuvel	default y
314a4397635SArd Biesheuvel
3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3161d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3171d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3181d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
319de272ca7SEric Biggers	select CRYPTO_SIMD
3201d373d4eSOndrej Mosnacek	help
3214e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3221d373d4eSOndrej Mosnacek
323584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
324584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
325584fffc8SSebastian Siewior	select CRYPTO_AEAD
326584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
327856e3f40SHerbert Xu	select CRYPTO_NULL
328401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
329c8a3315aSEric Biggers	select CRYPTO_MANAGER
330584fffc8SSebastian Siewior	help
331584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
332584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
333584fffc8SSebastian Siewior
334a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
335a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
336a10f554fSHerbert Xu	select CRYPTO_AEAD
337a10f554fSHerbert Xu	select CRYPTO_NULL
338401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
339c8a3315aSEric Biggers	select CRYPTO_MANAGER
340a10f554fSHerbert Xu	help
341a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
342a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
343a10f554fSHerbert Xu	  algorithm for CBC.
344a10f554fSHerbert Xu
345584fffc8SSebastian Siewiorcomment "Block modes"
346584fffc8SSebastian Siewior
347584fffc8SSebastian Siewiorconfig CRYPTO_CBC
348584fffc8SSebastian Siewior	tristate "CBC support"
349584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
350584fffc8SSebastian Siewior	select CRYPTO_MANAGER
351584fffc8SSebastian Siewior	help
352584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
353584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
354584fffc8SSebastian Siewior
355a7d85e06SJames Bottomleyconfig CRYPTO_CFB
356a7d85e06SJames Bottomley	tristate "CFB support"
357a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
358a7d85e06SJames Bottomley	select CRYPTO_MANAGER
359a7d85e06SJames Bottomley	help
360a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
361a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
362a7d85e06SJames Bottomley
363584fffc8SSebastian Siewiorconfig CRYPTO_CTR
364584fffc8SSebastian Siewior	tristate "CTR support"
365584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
366584fffc8SSebastian Siewior	select CRYPTO_SEQIV
367584fffc8SSebastian Siewior	select CRYPTO_MANAGER
368584fffc8SSebastian Siewior	help
369584fffc8SSebastian Siewior	  CTR: Counter mode
370584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
371584fffc8SSebastian Siewior
372584fffc8SSebastian Siewiorconfig CRYPTO_CTS
373584fffc8SSebastian Siewior	tristate "CTS support"
374584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
375c8a3315aSEric Biggers	select CRYPTO_MANAGER
376584fffc8SSebastian Siewior	help
377584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
378584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
379ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
380ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
381ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
382584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
383584fffc8SSebastian Siewior	  for AES encryption.
384584fffc8SSebastian Siewior
385ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
386ecd6d5c9SGilad Ben-Yossef
387584fffc8SSebastian Siewiorconfig CRYPTO_ECB
388584fffc8SSebastian Siewior	tristate "ECB support"
389584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
390584fffc8SSebastian Siewior	select CRYPTO_MANAGER
391584fffc8SSebastian Siewior	help
392584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
393584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
394584fffc8SSebastian Siewior	  the input block by block.
395584fffc8SSebastian Siewior
396584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3972470a2b2SJussi Kivilinna	tristate "LRW support"
398584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
399584fffc8SSebastian Siewior	select CRYPTO_MANAGER
400584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
401584fffc8SSebastian Siewior	help
402584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
403584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
404584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
405584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
406584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
407584fffc8SSebastian Siewior
408e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
409e497c518SGilad Ben-Yossef	tristate "OFB support"
410e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
411e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
412e497c518SGilad Ben-Yossef	help
413e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
414e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
415e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
416e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
417e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
418e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
419e497c518SGilad Ben-Yossef
420584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
421584fffc8SSebastian Siewior	tristate "PCBC support"
422584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
423584fffc8SSebastian Siewior	select CRYPTO_MANAGER
424584fffc8SSebastian Siewior	help
425584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
426584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
427584fffc8SSebastian Siewior
428584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4295bcf8e6dSJussi Kivilinna	tristate "XTS support"
430584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
431584fffc8SSebastian Siewior	select CRYPTO_MANAGER
43212cb3a1cSMilan Broz	select CRYPTO_ECB
433584fffc8SSebastian Siewior	help
434584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
435584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
436584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
437584fffc8SSebastian Siewior
4381c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4391c49678eSStephan Mueller	tristate "Key wrapping support"
4401c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
441c8a3315aSEric Biggers	select CRYPTO_MANAGER
4421c49678eSStephan Mueller	help
4431c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4441c49678eSStephan Mueller	  padding.
4451c49678eSStephan Mueller
44626609a21SEric Biggersconfig CRYPTO_NHPOLY1305
44726609a21SEric Biggers	tristate
44826609a21SEric Biggers	select CRYPTO_HASH
44926609a21SEric Biggers	select CRYPTO_POLY1305
45026609a21SEric Biggers
451012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
452012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
453012c8238SEric Biggers	depends on X86 && 64BIT
454012c8238SEric Biggers	select CRYPTO_NHPOLY1305
455012c8238SEric Biggers	help
456012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
457012c8238SEric Biggers	  Adiantum encryption mode.
458012c8238SEric Biggers
4590f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
4600f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
4610f961f9fSEric Biggers	depends on X86 && 64BIT
4620f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
4630f961f9fSEric Biggers	help
4640f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
4650f961f9fSEric Biggers	  Adiantum encryption mode.
4660f961f9fSEric Biggers
467059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
468059c2a4dSEric Biggers	tristate "Adiantum support"
469059c2a4dSEric Biggers	select CRYPTO_CHACHA20
470059c2a4dSEric Biggers	select CRYPTO_POLY1305
471059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
472c8a3315aSEric Biggers	select CRYPTO_MANAGER
473059c2a4dSEric Biggers	help
474059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
475059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
476059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
477059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
478059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
479059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
480059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
481059c2a4dSEric Biggers	  AES-XTS.
482059c2a4dSEric Biggers
483059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
484059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
485059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
486059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
487059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
488059c2a4dSEric Biggers
489059c2a4dSEric Biggers	  If unsure, say N.
490059c2a4dSEric Biggers
491be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
492be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
493be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
494be1eb7f7SArd Biesheuvel	help
495be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
496be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
497be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
498be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
499be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
500be1eb7f7SArd Biesheuvel	  encryption.
501be1eb7f7SArd Biesheuvel
502be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
503be1eb7f7SArd Biesheuvel	  instantiated either as a skcipher or as a aead (depending on the
504be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
505be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
506be1eb7f7SArd Biesheuvel	  ESSIV to the input IV. Note that in the aead case, it is assumed
507be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
508be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
509be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
510be1eb7f7SArd Biesheuvel
511be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
512be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
513be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
514be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
515be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
516be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
517be1eb7f7SArd Biesheuvel	  block encryption)
518be1eb7f7SArd Biesheuvel
519584fffc8SSebastian Siewiorcomment "Hash modes"
520584fffc8SSebastian Siewior
52193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
52293b5e86aSJussi Kivilinna	tristate "CMAC support"
52393b5e86aSJussi Kivilinna	select CRYPTO_HASH
52493b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
52593b5e86aSJussi Kivilinna	help
52693b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
52793b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
52893b5e86aSJussi Kivilinna
52993b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
53093b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
53193b5e86aSJussi Kivilinna
5321da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5338425165dSHerbert Xu	tristate "HMAC support"
5340796ae06SHerbert Xu	select CRYPTO_HASH
53543518407SHerbert Xu	select CRYPTO_MANAGER
5361da177e4SLinus Torvalds	help
5371da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5381da177e4SLinus Torvalds	  This is required for IPSec.
5391da177e4SLinus Torvalds
540333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
541333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
542333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
543333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
544333b0d7eSKazunori MIYAZAWA	help
545333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
546333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
547333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
548333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
549333b0d7eSKazunori MIYAZAWA
550f1939f7cSShane Wangconfig CRYPTO_VMAC
551f1939f7cSShane Wang	tristate "VMAC support"
552f1939f7cSShane Wang	select CRYPTO_HASH
553f1939f7cSShane Wang	select CRYPTO_MANAGER
554f1939f7cSShane Wang	help
555f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
556f1939f7cSShane Wang	  very high speed on 64-bit architectures.
557f1939f7cSShane Wang
558f1939f7cSShane Wang	  See also:
559f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
560f1939f7cSShane Wang
561584fffc8SSebastian Siewiorcomment "Digest"
562584fffc8SSebastian Siewior
563584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
564584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5655773a3e6SHerbert Xu	select CRYPTO_HASH
5666a0962b2SDarrick J. Wong	select CRC32
5671da177e4SLinus Torvalds	help
568584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
569584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
57069c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5711da177e4SLinus Torvalds
5728cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5738cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5748cb51ba8SAustin Zhang	depends on X86
5758cb51ba8SAustin Zhang	select CRYPTO_HASH
5768cb51ba8SAustin Zhang	help
5778cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5788cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5798cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5808cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5818cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5828cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5838cb51ba8SAustin Zhang
5847cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5856dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
586c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5876dd7a82cSAnton Blanchard	select CRYPTO_HASH
5886dd7a82cSAnton Blanchard	select CRC32
5896dd7a82cSAnton Blanchard	help
5906dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5916dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5926dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5936dd7a82cSAnton Blanchard
5946dd7a82cSAnton Blanchard
595442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
596442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
597442a7c40SDavid S. Miller	depends on SPARC64
598442a7c40SDavid S. Miller	select CRYPTO_HASH
599442a7c40SDavid S. Miller	select CRC32
600442a7c40SDavid S. Miller	help
601442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
602442a7c40SDavid S. Miller	  when available.
603442a7c40SDavid S. Miller
60478c37d19SAlexander Boykoconfig CRYPTO_CRC32
60578c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
60678c37d19SAlexander Boyko	select CRYPTO_HASH
60778c37d19SAlexander Boyko	select CRC32
60878c37d19SAlexander Boyko	help
60978c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
61078c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
61178c37d19SAlexander Boyko
61278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
61378c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
61478c37d19SAlexander Boyko	depends on X86
61578c37d19SAlexander Boyko	select CRYPTO_HASH
61678c37d19SAlexander Boyko	select CRC32
61778c37d19SAlexander Boyko	help
61878c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
61978c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
62078c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
621af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
62278c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
62378c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
62478c37d19SAlexander Boyko
6254a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6264a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6274a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6284a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6294a5dc51eSMarcin Nowakowski	help
6304a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6314a5dc51eSMarcin Nowakowski	  instructions, when available.
6324a5dc51eSMarcin Nowakowski
6334a5dc51eSMarcin Nowakowski
63467882e76SNikolay Borisovconfig CRYPTO_XXHASH
63567882e76SNikolay Borisov	tristate "xxHash hash algorithm"
63667882e76SNikolay Borisov	select CRYPTO_HASH
63767882e76SNikolay Borisov	select XXHASH
63867882e76SNikolay Borisov	help
63967882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
64067882e76SNikolay Borisov	  speeds close to RAM limits.
64167882e76SNikolay Borisov
642*91d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
643*91d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
644*91d68933SDavid Sterba	select CRYPTO_HASH
645*91d68933SDavid Sterba	help
646*91d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
647*91d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
648*91d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
649*91d68933SDavid Sterba
650*91d68933SDavid Sterba	  This module provides the following algorithms:
651*91d68933SDavid Sterba
652*91d68933SDavid Sterba	  - blake2b-160
653*91d68933SDavid Sterba	  - blake2b-256
654*91d68933SDavid Sterba	  - blake2b-384
655*91d68933SDavid Sterba	  - blake2b-512
656*91d68933SDavid Sterba
657*91d68933SDavid Sterba	  See https://blake2.net for further information.
658*91d68933SDavid Sterba
65968411521SHerbert Xuconfig CRYPTO_CRCT10DIF
66068411521SHerbert Xu	tristate "CRCT10DIF algorithm"
66168411521SHerbert Xu	select CRYPTO_HASH
66268411521SHerbert Xu	help
66368411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
66468411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
66568411521SHerbert Xu	  transforms to be used if they are available.
66668411521SHerbert Xu
66768411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
66868411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
66968411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
67068411521SHerbert Xu	select CRYPTO_HASH
67168411521SHerbert Xu	help
67268411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
67368411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
67468411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
675af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
67668411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
67768411521SHerbert Xu
678b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
679b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
680b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
681b01df1c1SDaniel Axtens	select CRYPTO_HASH
682b01df1c1SDaniel Axtens	help
683b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
684b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
685b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
686b01df1c1SDaniel Axtens
687146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
688146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
689146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
690146c8688SDaniel Axtens	help
691146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
692146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
693146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
694146c8688SDaniel Axtens
6952cdc6899SHuang Yingconfig CRYPTO_GHASH
6968dfa20fcSEric Biggers	tristate "GHASH hash function"
6972cdc6899SHuang Ying	select CRYPTO_GF128MUL
698578c60fbSArnd Bergmann	select CRYPTO_HASH
6992cdc6899SHuang Ying	help
7008dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
7018dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
7022cdc6899SHuang Ying
703f979e014SMartin Williconfig CRYPTO_POLY1305
704f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
705578c60fbSArnd Bergmann	select CRYPTO_HASH
706f979e014SMartin Willi	help
707f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
708f979e014SMartin Willi
709f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
710f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
711f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
712f979e014SMartin Willi
713c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
714b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
715c70f4abeSMartin Willi	depends on X86 && 64BIT
716c70f4abeSMartin Willi	select CRYPTO_POLY1305
717c70f4abeSMartin Willi	help
718c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
719c70f4abeSMartin Willi
720c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
721c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
722c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
723c70f4abeSMartin Willi	  instructions.
724c70f4abeSMartin Willi
7251da177e4SLinus Torvaldsconfig CRYPTO_MD4
7261da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
727808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7281da177e4SLinus Torvalds	help
7291da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7301da177e4SLinus Torvalds
7311da177e4SLinus Torvaldsconfig CRYPTO_MD5
7321da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
73314b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7341da177e4SLinus Torvalds	help
7351da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7361da177e4SLinus Torvalds
737d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
738d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
739d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
740d69e75deSAaro Koskinen	select CRYPTO_MD5
741d69e75deSAaro Koskinen	select CRYPTO_HASH
742d69e75deSAaro Koskinen	help
743d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
744d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
745d69e75deSAaro Koskinen
746e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
747e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
748e8e59953SMarkus Stockhausen	depends on PPC
749e8e59953SMarkus Stockhausen	select CRYPTO_HASH
750e8e59953SMarkus Stockhausen	help
751e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
752e8e59953SMarkus Stockhausen	  in PPC assembler.
753e8e59953SMarkus Stockhausen
754fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
755fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
756fa4dfedcSDavid S. Miller	depends on SPARC64
757fa4dfedcSDavid S. Miller	select CRYPTO_MD5
758fa4dfedcSDavid S. Miller	select CRYPTO_HASH
759fa4dfedcSDavid S. Miller	help
760fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
761fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
762fa4dfedcSDavid S. Miller
763584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
764584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
76519e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
766584fffc8SSebastian Siewior	help
767584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
768584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
769584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
770584fffc8SSebastian Siewior	  of the algorithm.
771584fffc8SSebastian Siewior
77282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
77382798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7747c4468bcSHerbert Xu	select CRYPTO_HASH
77582798f90SAdrian-Ken Rueegsegger	help
77682798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
77782798f90SAdrian-Ken Rueegsegger
77882798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
77935ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
78082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
78182798f90SAdrian-Ken Rueegsegger
78282798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7836d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
78482798f90SAdrian-Ken Rueegsegger
78582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
78682798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
787e5835fbaSHerbert Xu	select CRYPTO_HASH
78882798f90SAdrian-Ken Rueegsegger	help
78982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
79082798f90SAdrian-Ken Rueegsegger
79182798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
79282798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
793b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
794b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
79582798f90SAdrian-Ken Rueegsegger
796b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
797b6d44341SAdrian Bunk	  against RIPEMD-160.
798534fe2c1SAdrian-Ken Rueegsegger
799534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8006d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
801534fe2c1SAdrian-Ken Rueegsegger
802534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
803534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
804d8a5e2e9SHerbert Xu	select CRYPTO_HASH
805534fe2c1SAdrian-Ken Rueegsegger	help
806b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
807b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
808b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
809b6d44341SAdrian Bunk	  (than RIPEMD-128).
810534fe2c1SAdrian-Ken Rueegsegger
811534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8126d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
813534fe2c1SAdrian-Ken Rueegsegger
814534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
815534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8163b8efb4cSHerbert Xu	select CRYPTO_HASH
817534fe2c1SAdrian-Ken Rueegsegger	help
818b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
819b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
820b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
821b6d44341SAdrian Bunk	  (than RIPEMD-160).
822534fe2c1SAdrian-Ken Rueegsegger
82382798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8246d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
82582798f90SAdrian-Ken Rueegsegger
8261da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8271da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
82854ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8291da177e4SLinus Torvalds	help
8301da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8311da177e4SLinus Torvalds
83266be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
833e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
83466be8951SMathias Krause	depends on X86 && 64BIT
83566be8951SMathias Krause	select CRYPTO_SHA1
83666be8951SMathias Krause	select CRYPTO_HASH
83766be8951SMathias Krause	help
83866be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
83966be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
840e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
841e38b6b7fStim	  when available.
84266be8951SMathias Krause
8438275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
844e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8458275d1aaSTim Chen	depends on X86 && 64BIT
8468275d1aaSTim Chen	select CRYPTO_SHA256
8478275d1aaSTim Chen	select CRYPTO_HASH
8488275d1aaSTim Chen	help
8498275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8508275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8518275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
852e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
853e38b6b7fStim	  Instructions) when available.
8548275d1aaSTim Chen
85587de4579STim Chenconfig CRYPTO_SHA512_SSSE3
85687de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
85787de4579STim Chen	depends on X86 && 64BIT
85887de4579STim Chen	select CRYPTO_SHA512
85987de4579STim Chen	select CRYPTO_HASH
86087de4579STim Chen	help
86187de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
86287de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
86387de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
86487de4579STim Chen	  version 2 (AVX2) instructions, when available.
86587de4579STim Chen
866efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
867efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
868efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
869efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
870efdb6f6eSAaro Koskinen	select CRYPTO_HASH
871efdb6f6eSAaro Koskinen	help
872efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
873efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
874efdb6f6eSAaro Koskinen
8754ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8764ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8774ff28d4cSDavid S. Miller	depends on SPARC64
8784ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8794ff28d4cSDavid S. Miller	select CRYPTO_HASH
8804ff28d4cSDavid S. Miller	help
8814ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8824ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8834ff28d4cSDavid S. Miller
884323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
885323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
886323a6bf1SMichael Ellerman	depends on PPC
887323a6bf1SMichael Ellerman	help
888323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
889323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
890323a6bf1SMichael Ellerman
891d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
892d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
893d9850fc5SMarkus Stockhausen	depends on PPC && SPE
894d9850fc5SMarkus Stockhausen	help
895d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
896d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
897d9850fc5SMarkus Stockhausen
89801d3aee8SHans de Goedeconfig CRYPTO_LIB_SHA256
89901d3aee8SHans de Goede	tristate
90001d3aee8SHans de Goede
9011da177e4SLinus Torvaldsconfig CRYPTO_SHA256
902cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
90350e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
90408c327f6SHans de Goede	select CRYPTO_LIB_SHA256
9051da177e4SLinus Torvalds	help
9061da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9071da177e4SLinus Torvalds
9081da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9091da177e4SLinus Torvalds	  security against collision attacks.
9101da177e4SLinus Torvalds
911cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
912cd12fb90SJonathan Lynch	  of security against collision attacks.
913cd12fb90SJonathan Lynch
9142ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9152ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9162ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9172ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9182ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9192ecc1e95SMarkus Stockhausen	help
9202ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9212ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9222ecc1e95SMarkus Stockhausen
923efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
924efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
925efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
926efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
927efdb6f6eSAaro Koskinen	select CRYPTO_HASH
928efdb6f6eSAaro Koskinen	help
929efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
930efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
931efdb6f6eSAaro Koskinen
93286c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
93386c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
93486c93b24SDavid S. Miller	depends on SPARC64
93586c93b24SDavid S. Miller	select CRYPTO_SHA256
93686c93b24SDavid S. Miller	select CRYPTO_HASH
93786c93b24SDavid S. Miller	help
93886c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
93986c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
94086c93b24SDavid S. Miller
9411da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9421da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
943bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9441da177e4SLinus Torvalds	help
9451da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9461da177e4SLinus Torvalds
9471da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9481da177e4SLinus Torvalds	  security against collision attacks.
9491da177e4SLinus Torvalds
9501da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9511da177e4SLinus Torvalds	  of security against collision attacks.
9521da177e4SLinus Torvalds
953efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
954efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
955efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
956efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
957efdb6f6eSAaro Koskinen	select CRYPTO_HASH
958efdb6f6eSAaro Koskinen	help
959efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
960efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
961efdb6f6eSAaro Koskinen
962775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
963775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
964775e0c69SDavid S. Miller	depends on SPARC64
965775e0c69SDavid S. Miller	select CRYPTO_SHA512
966775e0c69SDavid S. Miller	select CRYPTO_HASH
967775e0c69SDavid S. Miller	help
968775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
969775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
970775e0c69SDavid S. Miller
97153964b9eSJeff Garzikconfig CRYPTO_SHA3
97253964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
97353964b9eSJeff Garzik	select CRYPTO_HASH
97453964b9eSJeff Garzik	help
97553964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
97653964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
97753964b9eSJeff Garzik
97853964b9eSJeff Garzik	  References:
97953964b9eSJeff Garzik	  http://keccak.noekeon.org/
98053964b9eSJeff Garzik
9814f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9824f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9834f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9844f0fc160SGilad Ben-Yossef	help
9854f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9864f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9874f0fc160SGilad Ben-Yossef
9884f0fc160SGilad Ben-Yossef	  References:
9894f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9904f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9914f0fc160SGilad Ben-Yossef
992fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
993fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
994fe18957eSVitaly Chikunov	select CRYPTO_HASH
995fe18957eSVitaly Chikunov	help
996fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
997fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
998fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
999fe18957eSVitaly Chikunov
1000fe18957eSVitaly Chikunov	  References:
1001fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1002fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1003fe18957eSVitaly Chikunov
10041da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10051da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1006f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10071da177e4SLinus Torvalds	help
10081da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10091da177e4SLinus Torvalds
10101da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10111da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10121da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10131da177e4SLinus Torvalds
10141da177e4SLinus Torvalds	  See also:
10151da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10161da177e4SLinus Torvalds
1017584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1018584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10194946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10201da177e4SLinus Torvalds	help
1021584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10221da177e4SLinus Torvalds
1023584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1024584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10251da177e4SLinus Torvalds
10261da177e4SLinus Torvalds	  See also:
10276d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10281da177e4SLinus Torvalds
10290e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10308dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
10318af00860SRichard Weinberger	depends on X86 && 64BIT
10320e1227d3SHuang Ying	select CRYPTO_CRYPTD
10330e1227d3SHuang Ying	help
10348dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
10358dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
10360e1227d3SHuang Ying
1037584fffc8SSebastian Siewiorcomment "Ciphers"
10381da177e4SLinus Torvalds
1039e59c1c98SArd Biesheuvelconfig CRYPTO_LIB_AES
1040e59c1c98SArd Biesheuvel	tristate
1041e59c1c98SArd Biesheuvel
10421da177e4SLinus Torvaldsconfig CRYPTO_AES
10431da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1044cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10455bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
10461da177e4SLinus Torvalds	help
10471da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10481da177e4SLinus Torvalds	  algorithm.
10491da177e4SLinus Torvalds
10501da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10511da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10521da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10531da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10541da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10551da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10561da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10571da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10581da177e4SLinus Torvalds
10591da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10601da177e4SLinus Torvalds
10611da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10621da177e4SLinus Torvalds
1063b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1064b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1065b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1066e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1067b5e0b032SArd Biesheuvel	help
1068b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1069b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1070b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1071b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1072b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1073b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1074b5e0b032SArd Biesheuvel
1075b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1076b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1077b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1078b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10790a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10800a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1081b5e0b032SArd Biesheuvel
108254b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
108354b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
10848af00860SRichard Weinberger	depends on X86
108585671860SHerbert Xu	select CRYPTO_AEAD
10862c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
108754b6a1bdSHuang Ying	select CRYPTO_ALGAPI
108885671860SHerbert Xu	select CRYPTO_BLKCIPHER
10897643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
109085671860SHerbert Xu	select CRYPTO_SIMD
109154b6a1bdSHuang Ying	help
109254b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
109354b6a1bdSHuang Ying
109454b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
109554b6a1bdSHuang Ying	  algorithm.
109654b6a1bdSHuang Ying
109754b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
109854b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
109954b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
110054b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
110154b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
110254b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
110354b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
110454b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
110554b6a1bdSHuang Ying
110654b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
110754b6a1bdSHuang Ying
110854b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
110954b6a1bdSHuang Ying
11100d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11110d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1112944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11130d258efbSMathias Krause	  acceleration for CTR.
11142cf4ac8bSHuang Ying
11159bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11169bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11179bf4852dSDavid S. Miller	depends on SPARC64
111864db5e74SEric Biggers	select CRYPTO_BLKCIPHER
11199bf4852dSDavid S. Miller	help
11209bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11219bf4852dSDavid S. Miller
11229bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11239bf4852dSDavid S. Miller	  algorithm.
11249bf4852dSDavid S. Miller
11259bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11269bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11279bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11289bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11299bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11309bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11319bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11329bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11339bf4852dSDavid S. Miller
11349bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11359bf4852dSDavid S. Miller
11369bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11379bf4852dSDavid S. Miller
11389bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11399bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11409bf4852dSDavid S. Miller	  ECB and CBC.
11419bf4852dSDavid S. Miller
1142504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1143504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1144504c6143SMarkus Stockhausen	depends on PPC && SPE
11457f725f41SEric Biggers	select CRYPTO_BLKCIPHER
1146504c6143SMarkus Stockhausen	help
1147504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1148504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1149504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1150504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1151504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1152504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1153504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1154504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1155504c6143SMarkus Stockhausen
11561da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11571da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1158cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11591da177e4SLinus Torvalds	help
11601da177e4SLinus Torvalds	  Anubis cipher algorithm.
11611da177e4SLinus Torvalds
11621da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11631da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11641da177e4SLinus Torvalds	  in the NESSIE competition.
11651da177e4SLinus Torvalds
11661da177e4SLinus Torvalds	  See also:
11676d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11686d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11691da177e4SLinus Torvalds
1170dc51f257SArd Biesheuvelconfig CRYPTO_LIB_ARC4
1171dc51f257SArd Biesheuvel	tristate
1172dc51f257SArd Biesheuvel
1173584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1174584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1175b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1176dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1177e2ee95b8SHye-Shik Chang	help
1178584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1179e2ee95b8SHye-Shik Chang
1180584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1181584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1182584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1183584fffc8SSebastian Siewior	  weakness of the algorithm.
1184584fffc8SSebastian Siewior
1185584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1186584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1187584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
118852ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1189584fffc8SSebastian Siewior	help
1190584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1191584fffc8SSebastian Siewior
1192584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1193584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1194584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1195e2ee95b8SHye-Shik Chang
1196e2ee95b8SHye-Shik Chang	  See also:
1197584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1198584fffc8SSebastian Siewior
119952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
120052ba867cSJussi Kivilinna	tristate
120152ba867cSJussi Kivilinna	help
120252ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
120352ba867cSJussi Kivilinna	  generic c and the assembler implementations.
120452ba867cSJussi Kivilinna
120552ba867cSJussi Kivilinna	  See also:
120652ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
120752ba867cSJussi Kivilinna
120864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
120964b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1210f21a7c19SAl Viro	depends on X86 && 64BIT
1211c1679171SEric Biggers	select CRYPTO_BLKCIPHER
121264b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
121364b94ceaSJussi Kivilinna	help
121464b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
121564b94ceaSJussi Kivilinna
121664b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
121764b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
121864b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
121964b94ceaSJussi Kivilinna
122064b94ceaSJussi Kivilinna	  See also:
122164b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
122264b94ceaSJussi Kivilinna
1223584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1224584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1225584fffc8SSebastian Siewior	depends on CRYPTO
1226584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1227584fffc8SSebastian Siewior	help
1228584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1229584fffc8SSebastian Siewior
1230584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1231584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1232584fffc8SSebastian Siewior
1233584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1234584fffc8SSebastian Siewior
1235584fffc8SSebastian Siewior	  See also:
1236584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1237584fffc8SSebastian Siewior
12380b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12390b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1240f21a7c19SAl Viro	depends on X86 && 64BIT
12410b95ec56SJussi Kivilinna	depends on CRYPTO
12421af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1243964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12440b95ec56SJussi Kivilinna	help
12450b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12460b95ec56SJussi Kivilinna
12470b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12480b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12490b95ec56SJussi Kivilinna
12500b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12510b95ec56SJussi Kivilinna
12520b95ec56SJussi Kivilinna	  See also:
12530b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12540b95ec56SJussi Kivilinna
1255d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1256d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1257d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1258d9b1d2e7SJussi Kivilinna	depends on CRYPTO
125944893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1260d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
126144893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
126244893bc2SEric Biggers	select CRYPTO_SIMD
1263d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1264d9b1d2e7SJussi Kivilinna	help
1265d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1266d9b1d2e7SJussi Kivilinna
1267d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1268d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1269d9b1d2e7SJussi Kivilinna
1270d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1271d9b1d2e7SJussi Kivilinna
1272d9b1d2e7SJussi Kivilinna	  See also:
1273d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1274d9b1d2e7SJussi Kivilinna
1275f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1276f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1277f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1278f3f935a7SJussi Kivilinna	depends on CRYPTO
1279f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1280f3f935a7SJussi Kivilinna	help
1281f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1282f3f935a7SJussi Kivilinna
1283f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1284f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1285f3f935a7SJussi Kivilinna
1286f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1287f3f935a7SJussi Kivilinna
1288f3f935a7SJussi Kivilinna	  See also:
1289f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1290f3f935a7SJussi Kivilinna
129181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
129281658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
129381658ad0SDavid S. Miller	depends on SPARC64
129481658ad0SDavid S. Miller	depends on CRYPTO
129581658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1296c72a26efSEric Biggers	select CRYPTO_BLKCIPHER
129781658ad0SDavid S. Miller	help
129881658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
129981658ad0SDavid S. Miller
130081658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
130181658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
130281658ad0SDavid S. Miller
130381658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
130481658ad0SDavid S. Miller
130581658ad0SDavid S. Miller	  See also:
130681658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
130781658ad0SDavid S. Miller
1308044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1309044ab525SJussi Kivilinna	tristate
1310044ab525SJussi Kivilinna	help
1311044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1312044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1313044ab525SJussi Kivilinna
1314584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1315584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1316584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1317044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1318584fffc8SSebastian Siewior	help
1319584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1320584fffc8SSebastian Siewior	  described in RFC2144.
1321584fffc8SSebastian Siewior
13224d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13234d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13244d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13251e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13264d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13271e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13281e63183aSEric Biggers	select CRYPTO_SIMD
13294d6d6a2cSJohannes Goetzfried	help
13304d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13314d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13324d6d6a2cSJohannes Goetzfried
13334d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13344d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13354d6d6a2cSJohannes Goetzfried
1336584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1337584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1338584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1339044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1340584fffc8SSebastian Siewior	help
1341584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1342584fffc8SSebastian Siewior	  described in RFC2612.
1343584fffc8SSebastian Siewior
13444ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13454ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13464ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13474bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13484ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13494bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13504bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13514bd96924SEric Biggers	select CRYPTO_SIMD
13524ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13534ea1277dSJohannes Goetzfried	help
13544ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13554ea1277dSJohannes Goetzfried	  described in RFC2612.
13564ea1277dSJohannes Goetzfried
13574ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13584ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13594ea1277dSJohannes Goetzfried
136004007b0eSArd Biesheuvelconfig CRYPTO_LIB_DES
136104007b0eSArd Biesheuvel	tristate
136204007b0eSArd Biesheuvel
1363584fffc8SSebastian Siewiorconfig CRYPTO_DES
1364584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1365584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
136604007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1367584fffc8SSebastian Siewior	help
1368584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1369584fffc8SSebastian Siewior
1370c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1371c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
137297da37b3SDave Jones	depends on SPARC64
1373c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
137404007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1375cd5d2f84SEric Biggers	select CRYPTO_BLKCIPHER
1376c5aac2dfSDavid S. Miller	help
1377c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1378c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1379c5aac2dfSDavid S. Miller
13806574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13816574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13826574e6c6SJussi Kivilinna	depends on X86 && 64BIT
138309c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
138404007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
13856574e6c6SJussi Kivilinna	help
13866574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13876574e6c6SJussi Kivilinna
13886574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13896574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13906574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13916574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13926574e6c6SJussi Kivilinna
1393584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1394584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1395584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1396584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1397584fffc8SSebastian Siewior	help
1398584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1399584fffc8SSebastian Siewior
1400584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1401584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1402584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1403584fffc8SSebastian Siewior	help
1404584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1405584fffc8SSebastian Siewior
1406584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1407584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1408584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1409584fffc8SSebastian Siewior
1410584fffc8SSebastian Siewior	  See also:
14116d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1412e2ee95b8SHye-Shik Chang
14132407d608STan Swee Hengconfig CRYPTO_SALSA20
14143b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14152407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14162407d608STan Swee Heng	help
14172407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14182407d608STan Swee Heng
14192407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14202407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14212407d608STan Swee Heng
14222407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14232407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14241da177e4SLinus Torvalds
1425c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1426aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1427c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1428c08d0e64SMartin Willi	help
1429aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1430c08d0e64SMartin Willi
1431c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1432c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1433de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1434c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1435c08d0e64SMartin Willi
1436de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1437de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1438de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1439de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1440de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1441de61d7aeSEric Biggers
1442aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1443aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1444aa762409SEric Biggers	  in some performance-sensitive scenarios.
1445aa762409SEric Biggers
1446c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14474af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1448c9320b6dSMartin Willi	depends on X86 && 64BIT
1449c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1450c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1451c9320b6dSMartin Willi	help
14527a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14537a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1454c9320b6dSMartin Willi
1455584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1456584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1457584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1458584fffc8SSebastian Siewior	help
1459584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1460584fffc8SSebastian Siewior
1461584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1462584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1463584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1464584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1465584fffc8SSebastian Siewior
1466584fffc8SSebastian Siewior	  See also:
1467584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1468584fffc8SSebastian Siewior
1469584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1470584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1471584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1472584fffc8SSebastian Siewior	help
1473584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1474584fffc8SSebastian Siewior
1475584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1476584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1477584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1478584fffc8SSebastian Siewior
1479584fffc8SSebastian Siewior	  See also:
1480584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1481584fffc8SSebastian Siewior
1482937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1483937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1484937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1485e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1486596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1487937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1488e0f409dcSEric Biggers	select CRYPTO_SIMD
1489937c30d7SJussi Kivilinna	help
1490937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1491937c30d7SJussi Kivilinna
1492937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1493937c30d7SJussi Kivilinna	  of 8 bits.
1494937c30d7SJussi Kivilinna
14951e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1496937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1497937c30d7SJussi Kivilinna
1498937c30d7SJussi Kivilinna	  See also:
1499937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1500937c30d7SJussi Kivilinna
1501251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1502251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1503251496dbSJussi Kivilinna	depends on X86 && !64BIT
1504e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1505596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1506251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1507e0f409dcSEric Biggers	select CRYPTO_SIMD
1508251496dbSJussi Kivilinna	help
1509251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1510251496dbSJussi Kivilinna
1511251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1512251496dbSJussi Kivilinna	  of 8 bits.
1513251496dbSJussi Kivilinna
1514251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1515251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1516251496dbSJussi Kivilinna
1517251496dbSJussi Kivilinna	  See also:
1518251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1519251496dbSJussi Kivilinna
15207efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15217efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15227efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1523e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15241d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15257efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1526e16bf974SEric Biggers	select CRYPTO_SIMD
15277efe4076SJohannes Goetzfried	select CRYPTO_XTS
15287efe4076SJohannes Goetzfried	help
15297efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15307efe4076SJohannes Goetzfried
15317efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15327efe4076SJohannes Goetzfried	  of 8 bits.
15337efe4076SJohannes Goetzfried
15347efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15357efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15367efe4076SJohannes Goetzfried
15377efe4076SJohannes Goetzfried	  See also:
15387efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15397efe4076SJohannes Goetzfried
154056d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
154156d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
154256d76c96SJussi Kivilinna	depends on X86 && 64BIT
154356d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
154456d76c96SJussi Kivilinna	help
154556d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
154656d76c96SJussi Kivilinna
154756d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
154856d76c96SJussi Kivilinna	  of 8 bits.
154956d76c96SJussi Kivilinna
155056d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
155156d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
155256d76c96SJussi Kivilinna
155356d76c96SJussi Kivilinna	  See also:
155456d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
155556d76c96SJussi Kivilinna
1556747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1557747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1558747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1559747c8ce4SGilad Ben-Yossef	help
1560747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1561747c8ce4SGilad Ben-Yossef
1562747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1563747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1564747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1565747c8ce4SGilad Ben-Yossef
1566747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1567747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1568747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1569747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1570747c8ce4SGilad Ben-Yossef
1571747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1572747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1573747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1574747c8ce4SGilad Ben-Yossef
1575747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1576747c8ce4SGilad Ben-Yossef
1577747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1578747c8ce4SGilad Ben-Yossef
1579747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1580747c8ce4SGilad Ben-Yossef
1581584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1582584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1583584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1584584fffc8SSebastian Siewior	help
1585584fffc8SSebastian Siewior	  TEA cipher algorithm.
1586584fffc8SSebastian Siewior
1587584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1588584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1589584fffc8SSebastian Siewior	  little memory.
1590584fffc8SSebastian Siewior
1591584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1592584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1593584fffc8SSebastian Siewior	  in the TEA algorithm.
1594584fffc8SSebastian Siewior
1595584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1596584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1597584fffc8SSebastian Siewior
1598584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1599584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1600584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1601584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1602584fffc8SSebastian Siewior	help
1603584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1604584fffc8SSebastian Siewior
1605584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1606584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1607584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1608584fffc8SSebastian Siewior	  bits.
1609584fffc8SSebastian Siewior
1610584fffc8SSebastian Siewior	  See also:
1611584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1612584fffc8SSebastian Siewior
1613584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1614584fffc8SSebastian Siewior	tristate
1615584fffc8SSebastian Siewior	help
1616584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1617584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1618584fffc8SSebastian Siewior
1619584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1620584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1621584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1622584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1623584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1624584fffc8SSebastian Siewior	help
1625584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1626584fffc8SSebastian Siewior
1627584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1628584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1629584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1630584fffc8SSebastian Siewior	  bits.
1631584fffc8SSebastian Siewior
1632584fffc8SSebastian Siewior	  See also:
1633584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1634584fffc8SSebastian Siewior
1635584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1636584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1637584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1638584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1639584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1640584fffc8SSebastian Siewior	help
1641584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1642584fffc8SSebastian Siewior
1643584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1644584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1645584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1646584fffc8SSebastian Siewior	  bits.
1647584fffc8SSebastian Siewior
1648584fffc8SSebastian Siewior	  See also:
1649584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1650584fffc8SSebastian Siewior
16518280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16528280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1653f21a7c19SAl Viro	depends on X86 && 64BIT
165437992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16558280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16568280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1657414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16588280daadSJussi Kivilinna	help
16598280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16608280daadSJussi Kivilinna
16618280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16628280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16638280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16648280daadSJussi Kivilinna	  bits.
16658280daadSJussi Kivilinna
16668280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16678280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16688280daadSJussi Kivilinna
16698280daadSJussi Kivilinna	  See also:
16708280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16718280daadSJussi Kivilinna
1672107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1673107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1674107778b5SJohannes Goetzfried	depends on X86 && 64BIT
16750e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1676a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16770e6ab46dSEric Biggers	select CRYPTO_SIMD
1678107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1679107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1680107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1681107778b5SJohannes Goetzfried	help
1682107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1683107778b5SJohannes Goetzfried
1684107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1685107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1686107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1687107778b5SJohannes Goetzfried	  bits.
1688107778b5SJohannes Goetzfried
1689107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1690107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1691107778b5SJohannes Goetzfried
1692107778b5SJohannes Goetzfried	  See also:
1693107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1694107778b5SJohannes Goetzfried
1695584fffc8SSebastian Siewiorcomment "Compression"
1696584fffc8SSebastian Siewior
16971da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16981da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1699cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1700f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17011da177e4SLinus Torvalds	select ZLIB_INFLATE
17021da177e4SLinus Torvalds	select ZLIB_DEFLATE
17031da177e4SLinus Torvalds	help
17041da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17051da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17061da177e4SLinus Torvalds
17071da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17081da177e4SLinus Torvalds
17090b77abb3SZoltan Sogorconfig CRYPTO_LZO
17100b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17110b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1712ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17130b77abb3SZoltan Sogor	select LZO_COMPRESS
17140b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17150b77abb3SZoltan Sogor	help
17160b77abb3SZoltan Sogor	  This is the LZO algorithm.
17170b77abb3SZoltan Sogor
171835a1fc18SSeth Jenningsconfig CRYPTO_842
171935a1fc18SSeth Jennings	tristate "842 compression algorithm"
17202062c5b6SDan Streetman	select CRYPTO_ALGAPI
17216a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17222062c5b6SDan Streetman	select 842_COMPRESS
17232062c5b6SDan Streetman	select 842_DECOMPRESS
172435a1fc18SSeth Jennings	help
172535a1fc18SSeth Jennings	  This is the 842 algorithm.
172635a1fc18SSeth Jennings
17270ea8530dSChanho Minconfig CRYPTO_LZ4
17280ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17290ea8530dSChanho Min	select CRYPTO_ALGAPI
17308cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17310ea8530dSChanho Min	select LZ4_COMPRESS
17320ea8530dSChanho Min	select LZ4_DECOMPRESS
17330ea8530dSChanho Min	help
17340ea8530dSChanho Min	  This is the LZ4 algorithm.
17350ea8530dSChanho Min
17360ea8530dSChanho Minconfig CRYPTO_LZ4HC
17370ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17380ea8530dSChanho Min	select CRYPTO_ALGAPI
173991d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17400ea8530dSChanho Min	select LZ4HC_COMPRESS
17410ea8530dSChanho Min	select LZ4_DECOMPRESS
17420ea8530dSChanho Min	help
17430ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17440ea8530dSChanho Min
1745d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1746d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1747d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1748d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1749d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1750d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1751d28fc3dbSNick Terrell	help
1752d28fc3dbSNick Terrell	  This is the zstd algorithm.
1753d28fc3dbSNick Terrell
175417f0f4a4SNeil Hormancomment "Random Number Generation"
175517f0f4a4SNeil Horman
175617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
175717f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
175817f0f4a4SNeil Horman	select CRYPTO_AES
175917f0f4a4SNeil Horman	select CRYPTO_RNG
176017f0f4a4SNeil Horman	help
176117f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
176217f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17637dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17647dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
176517f0f4a4SNeil Horman
1766f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1767419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1768419090c6SStephan Mueller	help
1769419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1770419090c6SStephan Mueller	  more of the DRBG types must be selected.
1771419090c6SStephan Mueller
1772f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1773419090c6SStephan Mueller
1774419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1775401e4238SHerbert Xu	bool
1776419090c6SStephan Mueller	default y
1777419090c6SStephan Mueller	select CRYPTO_HMAC
1778826775bbSHerbert Xu	select CRYPTO_SHA256
1779419090c6SStephan Mueller
1780419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1781419090c6SStephan Mueller	bool "Enable Hash DRBG"
1782826775bbSHerbert Xu	select CRYPTO_SHA256
1783419090c6SStephan Mueller	help
1784419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1785419090c6SStephan Mueller
1786419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1787419090c6SStephan Mueller	bool "Enable CTR DRBG"
1788419090c6SStephan Mueller	select CRYPTO_AES
178935591285SStephan Mueller	depends on CRYPTO_CTR
1790419090c6SStephan Mueller	help
1791419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1792419090c6SStephan Mueller
1793f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1794f2c89a10SHerbert Xu	tristate
1795401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1796f2c89a10SHerbert Xu	select CRYPTO_RNG
1797bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1798f2c89a10SHerbert Xu
1799f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1800419090c6SStephan Mueller
1801bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1802bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18032f313e02SArnd Bergmann	select CRYPTO_RNG
1804bb5530e4SStephan Mueller	help
1805bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1806bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1807bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1808bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1809bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1810bb5530e4SStephan Mueller
181103c8efc1SHerbert Xuconfig CRYPTO_USER_API
181203c8efc1SHerbert Xu	tristate
181303c8efc1SHerbert Xu
1814fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1815fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18167451708fSHerbert Xu	depends on NET
1817fe869cdbSHerbert Xu	select CRYPTO_HASH
1818fe869cdbSHerbert Xu	select CRYPTO_USER_API
1819fe869cdbSHerbert Xu	help
1820fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1821fe869cdbSHerbert Xu	  algorithms.
1822fe869cdbSHerbert Xu
18238ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18248ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18257451708fSHerbert Xu	depends on NET
18268ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18278ff59090SHerbert Xu	select CRYPTO_USER_API
18288ff59090SHerbert Xu	help
18298ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18308ff59090SHerbert Xu	  key cipher algorithms.
18318ff59090SHerbert Xu
18322f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18332f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18342f375538SStephan Mueller	depends on NET
18352f375538SStephan Mueller	select CRYPTO_RNG
18362f375538SStephan Mueller	select CRYPTO_USER_API
18372f375538SStephan Mueller	help
18382f375538SStephan Mueller	  This option enables the user-spaces interface for random
18392f375538SStephan Mueller	  number generator algorithms.
18402f375538SStephan Mueller
1841b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1842b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1843b64a2d95SHerbert Xu	depends on NET
1844b64a2d95SHerbert Xu	select CRYPTO_AEAD
184572548b09SStephan Mueller	select CRYPTO_BLKCIPHER
184672548b09SStephan Mueller	select CRYPTO_NULL
1847b64a2d95SHerbert Xu	select CRYPTO_USER_API
1848b64a2d95SHerbert Xu	help
1849b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1850b64a2d95SHerbert Xu	  cipher algorithms.
1851b64a2d95SHerbert Xu
1852cac5818cSCorentin Labbeconfig CRYPTO_STATS
1853cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1854a6a31385SCorentin Labbe	depends on CRYPTO_USER
1855cac5818cSCorentin Labbe	help
1856cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1857cac5818cSCorentin Labbe	  This will collect:
1858cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1859cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1860cac5818cSCorentin Labbe	  - size and numbers of hash operations
1861cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1862cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1863cac5818cSCorentin Labbe
1864ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1865ee08997fSDmitry Kasatkin	bool
1866ee08997fSDmitry Kasatkin
18671da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
18688636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
18698636a1f9SMasahiro Yamadasource "certs/Kconfig"
18701da177e4SLinus Torvalds
1871cce9e06dSHerbert Xuendif	# if CRYPTO
1872