1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 1266a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139929d34caSEric Biggersif CRYPTO_MANAGER2 140929d34caSEric Biggers 141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 142326a6346SHerbert Xu bool "Disable run-time self tests" 14300ca28a5SHerbert Xu default y 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158929d34caSEric Biggersendif # if CRYPTO_MANAGER2 159929d34caSEric Biggers 160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 161e590e132SEric Biggers tristate 162584fffc8SSebastian Siewior 163584fffc8SSebastian Siewiorconfig CRYPTO_NULL 164584fffc8SSebastian Siewior tristate "Null algorithms" 165149a3971SHerbert Xu select CRYPTO_NULL2 166584fffc8SSebastian Siewior help 167584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 168584fffc8SSebastian Siewior 169149a3971SHerbert Xuconfig CRYPTO_NULL2 170dd43c4e9SHerbert Xu tristate 171149a3971SHerbert Xu select CRYPTO_ALGAPI2 172149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 173149a3971SHerbert Xu select CRYPTO_HASH2 174149a3971SHerbert Xu 1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1763b4afaf2SKees Cook tristate "Parallel crypto engine" 1773b4afaf2SKees Cook depends on SMP 1785068c7a8SSteffen Klassert select PADATA 1795068c7a8SSteffen Klassert select CRYPTO_MANAGER 1805068c7a8SSteffen Klassert select CRYPTO_AEAD 1815068c7a8SSteffen Klassert help 1825068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1835068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1845068c7a8SSteffen Klassert 185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 186584fffc8SSebastian Siewior tristate "Software async crypto daemon" 187584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 188b8a28251SLoc Ho select CRYPTO_HASH 189584fffc8SSebastian Siewior select CRYPTO_MANAGER 190584fffc8SSebastian Siewior help 191584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 192584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 193584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 194584fffc8SSebastian Siewior 195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 196584fffc8SSebastian Siewior tristate "Authenc support" 197584fffc8SSebastian Siewior select CRYPTO_AEAD 198584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 199584fffc8SSebastian Siewior select CRYPTO_MANAGER 200584fffc8SSebastian Siewior select CRYPTO_HASH 201e94c6a7aSHerbert Xu select CRYPTO_NULL 202584fffc8SSebastian Siewior help 203584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 204584fffc8SSebastian Siewior This is required for IPSec. 205584fffc8SSebastian Siewior 206584fffc8SSebastian Siewiorconfig CRYPTO_TEST 207584fffc8SSebastian Siewior tristate "Testing module" 208584fffc8SSebastian Siewior depends on m 209da7f033dSHerbert Xu select CRYPTO_MANAGER 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Quick & dirty crypto test module. 212584fffc8SSebastian Siewior 213266d0516SHerbert Xuconfig CRYPTO_SIMD 214266d0516SHerbert Xu tristate 215266d0516SHerbert Xu select CRYPTO_CRYPTD 216266d0516SHerbert Xu 217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 218596d8750SJussi Kivilinna tristate 219596d8750SJussi Kivilinna depends on X86 220065ce327SHerbert Xu select CRYPTO_BLKCIPHER 221596d8750SJussi Kivilinna 222735d37b5SBaolin Wangconfig CRYPTO_ENGINE 223735d37b5SBaolin Wang tristate 224735d37b5SBaolin Wang 2253d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2283d6228a5SVitaly Chikunov tristate "RSA algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2303d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2313d6228a5SVitaly Chikunov select MPILIB 2323d6228a5SVitaly Chikunov select ASN1 2333d6228a5SVitaly Chikunov help 2343d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2353d6228a5SVitaly Chikunov 2363d6228a5SVitaly Chikunovconfig CRYPTO_DH 2373d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2383d6228a5SVitaly Chikunov select CRYPTO_KPP 2393d6228a5SVitaly Chikunov select MPILIB 2403d6228a5SVitaly Chikunov help 2413d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2423d6228a5SVitaly Chikunov 2434a2289daSVitaly Chikunovconfig CRYPTO_ECC 2444a2289daSVitaly Chikunov tristate 2454a2289daSVitaly Chikunov 2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2473d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2484a2289daSVitaly Chikunov select CRYPTO_ECC 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2513d6228a5SVitaly Chikunov help 2523d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2533d6228a5SVitaly Chikunov 2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2550d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2560d7a7864SVitaly Chikunov select CRYPTO_ECC 2570d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2580d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2591036633eSVitaly Chikunov select OID_REGISTRY 2601036633eSVitaly Chikunov select ASN1 2610d7a7864SVitaly Chikunov help 2620d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2630d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2640d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2650d7a7864SVitaly Chikunov is implemented. 2660d7a7864SVitaly Chikunov 267584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 268584fffc8SSebastian Siewior 269584fffc8SSebastian Siewiorconfig CRYPTO_CCM 270584fffc8SSebastian Siewior tristate "CCM support" 271584fffc8SSebastian Siewior select CRYPTO_CTR 272f15f05b0SArd Biesheuvel select CRYPTO_HASH 273584fffc8SSebastian Siewior select CRYPTO_AEAD 274c8a3315aSEric Biggers select CRYPTO_MANAGER 275584fffc8SSebastian Siewior help 276584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 277584fffc8SSebastian Siewior 278584fffc8SSebastian Siewiorconfig CRYPTO_GCM 279584fffc8SSebastian Siewior tristate "GCM/GMAC support" 280584fffc8SSebastian Siewior select CRYPTO_CTR 281584fffc8SSebastian Siewior select CRYPTO_AEAD 2829382d97aSHuang Ying select CRYPTO_GHASH 2839489667dSJussi Kivilinna select CRYPTO_NULL 284c8a3315aSEric Biggers select CRYPTO_MANAGER 285584fffc8SSebastian Siewior help 286584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 287584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 288584fffc8SSebastian Siewior 28971ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29071ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29171ebc4d1SMartin Willi select CRYPTO_CHACHA20 29271ebc4d1SMartin Willi select CRYPTO_POLY1305 29371ebc4d1SMartin Willi select CRYPTO_AEAD 294c8a3315aSEric Biggers select CRYPTO_MANAGER 29571ebc4d1SMartin Willi help 29671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 29771ebc4d1SMartin Willi 29871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30071ebc4d1SMartin Willi IETF protocols. 30171ebc4d1SMartin Willi 302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 303f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 304f606a88eSOndrej Mosnacek select CRYPTO_AEAD 305f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 306f606a88eSOndrej Mosnacek help 307f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 308f606a88eSOndrej Mosnacek 309a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 310a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 311a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 31283053677SArd Biesheuvel depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800 313a4397635SArd Biesheuvel default y 314a4397635SArd Biesheuvel 3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3161d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3171d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3181d373d4eSOndrej Mosnacek select CRYPTO_AEAD 319de272ca7SEric Biggers select CRYPTO_SIMD 3201d373d4eSOndrej Mosnacek help 3214e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3221d373d4eSOndrej Mosnacek 323584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 324584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 325584fffc8SSebastian Siewior select CRYPTO_AEAD 326584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 327856e3f40SHerbert Xu select CRYPTO_NULL 328401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 329c8a3315aSEric Biggers select CRYPTO_MANAGER 330584fffc8SSebastian Siewior help 331584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 332584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 333584fffc8SSebastian Siewior 334a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 335a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 336a10f554fSHerbert Xu select CRYPTO_AEAD 337a10f554fSHerbert Xu select CRYPTO_NULL 338401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 339c8a3315aSEric Biggers select CRYPTO_MANAGER 340a10f554fSHerbert Xu help 341a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 342a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 343a10f554fSHerbert Xu algorithm for CBC. 344a10f554fSHerbert Xu 345584fffc8SSebastian Siewiorcomment "Block modes" 346584fffc8SSebastian Siewior 347584fffc8SSebastian Siewiorconfig CRYPTO_CBC 348584fffc8SSebastian Siewior tristate "CBC support" 349584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 350584fffc8SSebastian Siewior select CRYPTO_MANAGER 351584fffc8SSebastian Siewior help 352584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 353584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 354584fffc8SSebastian Siewior 355a7d85e06SJames Bottomleyconfig CRYPTO_CFB 356a7d85e06SJames Bottomley tristate "CFB support" 357a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 358a7d85e06SJames Bottomley select CRYPTO_MANAGER 359a7d85e06SJames Bottomley help 360a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 361a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 362a7d85e06SJames Bottomley 363584fffc8SSebastian Siewiorconfig CRYPTO_CTR 364584fffc8SSebastian Siewior tristate "CTR support" 365584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 366584fffc8SSebastian Siewior select CRYPTO_SEQIV 367584fffc8SSebastian Siewior select CRYPTO_MANAGER 368584fffc8SSebastian Siewior help 369584fffc8SSebastian Siewior CTR: Counter mode 370584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 371584fffc8SSebastian Siewior 372584fffc8SSebastian Siewiorconfig CRYPTO_CTS 373584fffc8SSebastian Siewior tristate "CTS support" 374584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 375c8a3315aSEric Biggers select CRYPTO_MANAGER 376584fffc8SSebastian Siewior help 377584fffc8SSebastian Siewior CTS: Cipher Text Stealing 378584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 379ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 380ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 381ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 382584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 383584fffc8SSebastian Siewior for AES encryption. 384584fffc8SSebastian Siewior 385ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 386ecd6d5c9SGilad Ben-Yossef 387584fffc8SSebastian Siewiorconfig CRYPTO_ECB 388584fffc8SSebastian Siewior tristate "ECB support" 389584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 390584fffc8SSebastian Siewior select CRYPTO_MANAGER 391584fffc8SSebastian Siewior help 392584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 393584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 394584fffc8SSebastian Siewior the input block by block. 395584fffc8SSebastian Siewior 396584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3972470a2b2SJussi Kivilinna tristate "LRW support" 398584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 399584fffc8SSebastian Siewior select CRYPTO_MANAGER 400584fffc8SSebastian Siewior select CRYPTO_GF128MUL 401584fffc8SSebastian Siewior help 402584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 403584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 404584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 405584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 406584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 407584fffc8SSebastian Siewior 408e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 409e497c518SGilad Ben-Yossef tristate "OFB support" 410e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 411e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 412e497c518SGilad Ben-Yossef help 413e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 414e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 415e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 416e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 417e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 418e497c518SGilad Ben-Yossef normally even when applied before encryption. 419e497c518SGilad Ben-Yossef 420584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 421584fffc8SSebastian Siewior tristate "PCBC support" 422584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 423584fffc8SSebastian Siewior select CRYPTO_MANAGER 424584fffc8SSebastian Siewior help 425584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 426584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 427584fffc8SSebastian Siewior 428584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4295bcf8e6dSJussi Kivilinna tristate "XTS support" 430584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 431584fffc8SSebastian Siewior select CRYPTO_MANAGER 43212cb3a1cSMilan Broz select CRYPTO_ECB 433584fffc8SSebastian Siewior help 434584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 435584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 436584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 437584fffc8SSebastian Siewior 4381c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4391c49678eSStephan Mueller tristate "Key wrapping support" 4401c49678eSStephan Mueller select CRYPTO_BLKCIPHER 441c8a3315aSEric Biggers select CRYPTO_MANAGER 4421c49678eSStephan Mueller help 4431c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4441c49678eSStephan Mueller padding. 4451c49678eSStephan Mueller 44626609a21SEric Biggersconfig CRYPTO_NHPOLY1305 44726609a21SEric Biggers tristate 44826609a21SEric Biggers select CRYPTO_HASH 44926609a21SEric Biggers select CRYPTO_POLY1305 45026609a21SEric Biggers 451012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 452012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 453012c8238SEric Biggers depends on X86 && 64BIT 454012c8238SEric Biggers select CRYPTO_NHPOLY1305 455012c8238SEric Biggers help 456012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 457012c8238SEric Biggers Adiantum encryption mode. 458012c8238SEric Biggers 4590f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4600f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4610f961f9fSEric Biggers depends on X86 && 64BIT 4620f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4630f961f9fSEric Biggers help 4640f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4650f961f9fSEric Biggers Adiantum encryption mode. 4660f961f9fSEric Biggers 467059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 468059c2a4dSEric Biggers tristate "Adiantum support" 469059c2a4dSEric Biggers select CRYPTO_CHACHA20 470059c2a4dSEric Biggers select CRYPTO_POLY1305 471059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 472c8a3315aSEric Biggers select CRYPTO_MANAGER 473059c2a4dSEric Biggers help 474059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 475059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 476059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 477059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 478059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 479059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 480059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 481059c2a4dSEric Biggers AES-XTS. 482059c2a4dSEric Biggers 483059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 484059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 485059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 486059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 487059c2a4dSEric Biggers security than XTS, subject to the security bound. 488059c2a4dSEric Biggers 489059c2a4dSEric Biggers If unsure, say N. 490059c2a4dSEric Biggers 491be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 492be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 493be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 494be1eb7f7SArd Biesheuvel help 495be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 496be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 497be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 498be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 499be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 500be1eb7f7SArd Biesheuvel encryption. 501be1eb7f7SArd Biesheuvel 502be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 503be1eb7f7SArd Biesheuvel instantiated either as a skcipher or as a aead (depending on the 504be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 505be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 506be1eb7f7SArd Biesheuvel ESSIV to the input IV. Note that in the aead case, it is assumed 507be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 508be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 509be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 510be1eb7f7SArd Biesheuvel 511be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 512be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 513be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 514be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 515be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 516be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 517be1eb7f7SArd Biesheuvel block encryption) 518be1eb7f7SArd Biesheuvel 519584fffc8SSebastian Siewiorcomment "Hash modes" 520584fffc8SSebastian Siewior 52193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 52293b5e86aSJussi Kivilinna tristate "CMAC support" 52393b5e86aSJussi Kivilinna select CRYPTO_HASH 52493b5e86aSJussi Kivilinna select CRYPTO_MANAGER 52593b5e86aSJussi Kivilinna help 52693b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 52793b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 52893b5e86aSJussi Kivilinna 52993b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 53093b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 53193b5e86aSJussi Kivilinna 5321da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5338425165dSHerbert Xu tristate "HMAC support" 5340796ae06SHerbert Xu select CRYPTO_HASH 53543518407SHerbert Xu select CRYPTO_MANAGER 5361da177e4SLinus Torvalds help 5371da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5381da177e4SLinus Torvalds This is required for IPSec. 5391da177e4SLinus Torvalds 540333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 541333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 542333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 543333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 544333b0d7eSKazunori MIYAZAWA help 545333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 546333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 547333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 548333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 549333b0d7eSKazunori MIYAZAWA 550f1939f7cSShane Wangconfig CRYPTO_VMAC 551f1939f7cSShane Wang tristate "VMAC support" 552f1939f7cSShane Wang select CRYPTO_HASH 553f1939f7cSShane Wang select CRYPTO_MANAGER 554f1939f7cSShane Wang help 555f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 556f1939f7cSShane Wang very high speed on 64-bit architectures. 557f1939f7cSShane Wang 558f1939f7cSShane Wang See also: 559f1939f7cSShane Wang <http://fastcrypto.org/vmac> 560f1939f7cSShane Wang 561584fffc8SSebastian Siewiorcomment "Digest" 562584fffc8SSebastian Siewior 563584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 564584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5655773a3e6SHerbert Xu select CRYPTO_HASH 5666a0962b2SDarrick J. Wong select CRC32 5671da177e4SLinus Torvalds help 568584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 569584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 57069c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5711da177e4SLinus Torvalds 5728cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5738cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5748cb51ba8SAustin Zhang depends on X86 5758cb51ba8SAustin Zhang select CRYPTO_HASH 5768cb51ba8SAustin Zhang help 5778cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5788cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5798cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5808cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5818cb51ba8SAustin Zhang gain performance compared with software implementation. 5828cb51ba8SAustin Zhang Module will be crc32c-intel. 5838cb51ba8SAustin Zhang 5847cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5856dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 586c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5876dd7a82cSAnton Blanchard select CRYPTO_HASH 5886dd7a82cSAnton Blanchard select CRC32 5896dd7a82cSAnton Blanchard help 5906dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 5916dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 5926dd7a82cSAnton Blanchard and newer processors for improved performance. 5936dd7a82cSAnton Blanchard 5946dd7a82cSAnton Blanchard 595442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 596442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 597442a7c40SDavid S. Miller depends on SPARC64 598442a7c40SDavid S. Miller select CRYPTO_HASH 599442a7c40SDavid S. Miller select CRC32 600442a7c40SDavid S. Miller help 601442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 602442a7c40SDavid S. Miller when available. 603442a7c40SDavid S. Miller 60478c37d19SAlexander Boykoconfig CRYPTO_CRC32 60578c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 60678c37d19SAlexander Boyko select CRYPTO_HASH 60778c37d19SAlexander Boyko select CRC32 60878c37d19SAlexander Boyko help 60978c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 61078c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 61178c37d19SAlexander Boyko 61278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 61378c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 61478c37d19SAlexander Boyko depends on X86 61578c37d19SAlexander Boyko select CRYPTO_HASH 61678c37d19SAlexander Boyko select CRC32 61778c37d19SAlexander Boyko help 61878c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 61978c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 62078c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 621af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 62278c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 62378c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 62478c37d19SAlexander Boyko 6254a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6264a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6274a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6284a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6294a5dc51eSMarcin Nowakowski help 6304a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6314a5dc51eSMarcin Nowakowski instructions, when available. 6324a5dc51eSMarcin Nowakowski 6334a5dc51eSMarcin Nowakowski 63467882e76SNikolay Borisovconfig CRYPTO_XXHASH 63567882e76SNikolay Borisov tristate "xxHash hash algorithm" 63667882e76SNikolay Borisov select CRYPTO_HASH 63767882e76SNikolay Borisov select XXHASH 63867882e76SNikolay Borisov help 63967882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 64067882e76SNikolay Borisov speeds close to RAM limits. 64167882e76SNikolay Borisov 642*91d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 643*91d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 644*91d68933SDavid Sterba select CRYPTO_HASH 645*91d68933SDavid Sterba help 646*91d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 647*91d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 648*91d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 649*91d68933SDavid Sterba 650*91d68933SDavid Sterba This module provides the following algorithms: 651*91d68933SDavid Sterba 652*91d68933SDavid Sterba - blake2b-160 653*91d68933SDavid Sterba - blake2b-256 654*91d68933SDavid Sterba - blake2b-384 655*91d68933SDavid Sterba - blake2b-512 656*91d68933SDavid Sterba 657*91d68933SDavid Sterba See https://blake2.net for further information. 658*91d68933SDavid Sterba 65968411521SHerbert Xuconfig CRYPTO_CRCT10DIF 66068411521SHerbert Xu tristate "CRCT10DIF algorithm" 66168411521SHerbert Xu select CRYPTO_HASH 66268411521SHerbert Xu help 66368411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 66468411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 66568411521SHerbert Xu transforms to be used if they are available. 66668411521SHerbert Xu 66768411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 66868411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 66968411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 67068411521SHerbert Xu select CRYPTO_HASH 67168411521SHerbert Xu help 67268411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 67368411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 67468411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 675af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 67668411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 67768411521SHerbert Xu 678b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 679b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 680b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 681b01df1c1SDaniel Axtens select CRYPTO_HASH 682b01df1c1SDaniel Axtens help 683b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 684b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 685b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 686b01df1c1SDaniel Axtens 687146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 688146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 689146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 690146c8688SDaniel Axtens help 691146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 692146c8688SDaniel Axtens POWER8 vpmsum instructions. 693146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 694146c8688SDaniel Axtens 6952cdc6899SHuang Yingconfig CRYPTO_GHASH 6968dfa20fcSEric Biggers tristate "GHASH hash function" 6972cdc6899SHuang Ying select CRYPTO_GF128MUL 698578c60fbSArnd Bergmann select CRYPTO_HASH 6992cdc6899SHuang Ying help 7008dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7018dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7022cdc6899SHuang Ying 703f979e014SMartin Williconfig CRYPTO_POLY1305 704f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 705578c60fbSArnd Bergmann select CRYPTO_HASH 706f979e014SMartin Willi help 707f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 708f979e014SMartin Willi 709f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 710f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 711f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 712f979e014SMartin Willi 713c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 714b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 715c70f4abeSMartin Willi depends on X86 && 64BIT 716c70f4abeSMartin Willi select CRYPTO_POLY1305 717c70f4abeSMartin Willi help 718c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 719c70f4abeSMartin Willi 720c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 721c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 722c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 723c70f4abeSMartin Willi instructions. 724c70f4abeSMartin Willi 7251da177e4SLinus Torvaldsconfig CRYPTO_MD4 7261da177e4SLinus Torvalds tristate "MD4 digest algorithm" 727808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7281da177e4SLinus Torvalds help 7291da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7301da177e4SLinus Torvalds 7311da177e4SLinus Torvaldsconfig CRYPTO_MD5 7321da177e4SLinus Torvalds tristate "MD5 digest algorithm" 73314b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7341da177e4SLinus Torvalds help 7351da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7361da177e4SLinus Torvalds 737d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 738d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 739d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 740d69e75deSAaro Koskinen select CRYPTO_MD5 741d69e75deSAaro Koskinen select CRYPTO_HASH 742d69e75deSAaro Koskinen help 743d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 744d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 745d69e75deSAaro Koskinen 746e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 747e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 748e8e59953SMarkus Stockhausen depends on PPC 749e8e59953SMarkus Stockhausen select CRYPTO_HASH 750e8e59953SMarkus Stockhausen help 751e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 752e8e59953SMarkus Stockhausen in PPC assembler. 753e8e59953SMarkus Stockhausen 754fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 755fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 756fa4dfedcSDavid S. Miller depends on SPARC64 757fa4dfedcSDavid S. Miller select CRYPTO_MD5 758fa4dfedcSDavid S. Miller select CRYPTO_HASH 759fa4dfedcSDavid S. Miller help 760fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 761fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 762fa4dfedcSDavid S. Miller 763584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 764584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 76519e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 766584fffc8SSebastian Siewior help 767584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 768584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 769584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 770584fffc8SSebastian Siewior of the algorithm. 771584fffc8SSebastian Siewior 77282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 77382798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7747c4468bcSHerbert Xu select CRYPTO_HASH 77582798f90SAdrian-Ken Rueegsegger help 77682798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 77782798f90SAdrian-Ken Rueegsegger 77882798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 77935ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 78082798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 78182798f90SAdrian-Ken Rueegsegger 78282798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7836d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 78482798f90SAdrian-Ken Rueegsegger 78582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 78682798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 787e5835fbaSHerbert Xu select CRYPTO_HASH 78882798f90SAdrian-Ken Rueegsegger help 78982798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 79082798f90SAdrian-Ken Rueegsegger 79182798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 79282798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 793b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 794b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 79582798f90SAdrian-Ken Rueegsegger 796b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 797b6d44341SAdrian Bunk against RIPEMD-160. 798534fe2c1SAdrian-Ken Rueegsegger 799534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8006d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 801534fe2c1SAdrian-Ken Rueegsegger 802534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 803534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 804d8a5e2e9SHerbert Xu select CRYPTO_HASH 805534fe2c1SAdrian-Ken Rueegsegger help 806b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 807b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 808b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 809b6d44341SAdrian Bunk (than RIPEMD-128). 810534fe2c1SAdrian-Ken Rueegsegger 811534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8126d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 813534fe2c1SAdrian-Ken Rueegsegger 814534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 815534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8163b8efb4cSHerbert Xu select CRYPTO_HASH 817534fe2c1SAdrian-Ken Rueegsegger help 818b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 819b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 820b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 821b6d44341SAdrian Bunk (than RIPEMD-160). 822534fe2c1SAdrian-Ken Rueegsegger 82382798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8246d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 82582798f90SAdrian-Ken Rueegsegger 8261da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8271da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 82854ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8291da177e4SLinus Torvalds help 8301da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8311da177e4SLinus Torvalds 83266be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 833e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 83466be8951SMathias Krause depends on X86 && 64BIT 83566be8951SMathias Krause select CRYPTO_SHA1 83666be8951SMathias Krause select CRYPTO_HASH 83766be8951SMathias Krause help 83866be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 83966be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 840e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 841e38b6b7fStim when available. 84266be8951SMathias Krause 8438275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 844e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8458275d1aaSTim Chen depends on X86 && 64BIT 8468275d1aaSTim Chen select CRYPTO_SHA256 8478275d1aaSTim Chen select CRYPTO_HASH 8488275d1aaSTim Chen help 8498275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8508275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8518275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 852e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 853e38b6b7fStim Instructions) when available. 8548275d1aaSTim Chen 85587de4579STim Chenconfig CRYPTO_SHA512_SSSE3 85687de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 85787de4579STim Chen depends on X86 && 64BIT 85887de4579STim Chen select CRYPTO_SHA512 85987de4579STim Chen select CRYPTO_HASH 86087de4579STim Chen help 86187de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 86287de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 86387de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 86487de4579STim Chen version 2 (AVX2) instructions, when available. 86587de4579STim Chen 866efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 867efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 868efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 869efdb6f6eSAaro Koskinen select CRYPTO_SHA1 870efdb6f6eSAaro Koskinen select CRYPTO_HASH 871efdb6f6eSAaro Koskinen help 872efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 873efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 874efdb6f6eSAaro Koskinen 8754ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8764ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8774ff28d4cSDavid S. Miller depends on SPARC64 8784ff28d4cSDavid S. Miller select CRYPTO_SHA1 8794ff28d4cSDavid S. Miller select CRYPTO_HASH 8804ff28d4cSDavid S. Miller help 8814ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8824ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 8834ff28d4cSDavid S. Miller 884323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 885323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 886323a6bf1SMichael Ellerman depends on PPC 887323a6bf1SMichael Ellerman help 888323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 889323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 890323a6bf1SMichael Ellerman 891d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 892d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 893d9850fc5SMarkus Stockhausen depends on PPC && SPE 894d9850fc5SMarkus Stockhausen help 895d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 896d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 897d9850fc5SMarkus Stockhausen 89801d3aee8SHans de Goedeconfig CRYPTO_LIB_SHA256 89901d3aee8SHans de Goede tristate 90001d3aee8SHans de Goede 9011da177e4SLinus Torvaldsconfig CRYPTO_SHA256 902cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 90350e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 90408c327f6SHans de Goede select CRYPTO_LIB_SHA256 9051da177e4SLinus Torvalds help 9061da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9071da177e4SLinus Torvalds 9081da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9091da177e4SLinus Torvalds security against collision attacks. 9101da177e4SLinus Torvalds 911cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 912cd12fb90SJonathan Lynch of security against collision attacks. 913cd12fb90SJonathan Lynch 9142ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9152ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9162ecc1e95SMarkus Stockhausen depends on PPC && SPE 9172ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9182ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9192ecc1e95SMarkus Stockhausen help 9202ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9212ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9222ecc1e95SMarkus Stockhausen 923efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 924efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 925efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 926efdb6f6eSAaro Koskinen select CRYPTO_SHA256 927efdb6f6eSAaro Koskinen select CRYPTO_HASH 928efdb6f6eSAaro Koskinen help 929efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 930efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 931efdb6f6eSAaro Koskinen 93286c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 93386c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 93486c93b24SDavid S. Miller depends on SPARC64 93586c93b24SDavid S. Miller select CRYPTO_SHA256 93686c93b24SDavid S. Miller select CRYPTO_HASH 93786c93b24SDavid S. Miller help 93886c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 93986c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 94086c93b24SDavid S. Miller 9411da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9421da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 943bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9441da177e4SLinus Torvalds help 9451da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9461da177e4SLinus Torvalds 9471da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9481da177e4SLinus Torvalds security against collision attacks. 9491da177e4SLinus Torvalds 9501da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9511da177e4SLinus Torvalds of security against collision attacks. 9521da177e4SLinus Torvalds 953efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 954efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 955efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 956efdb6f6eSAaro Koskinen select CRYPTO_SHA512 957efdb6f6eSAaro Koskinen select CRYPTO_HASH 958efdb6f6eSAaro Koskinen help 959efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 960efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 961efdb6f6eSAaro Koskinen 962775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 963775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 964775e0c69SDavid S. Miller depends on SPARC64 965775e0c69SDavid S. Miller select CRYPTO_SHA512 966775e0c69SDavid S. Miller select CRYPTO_HASH 967775e0c69SDavid S. Miller help 968775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 969775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 970775e0c69SDavid S. Miller 97153964b9eSJeff Garzikconfig CRYPTO_SHA3 97253964b9eSJeff Garzik tristate "SHA3 digest algorithm" 97353964b9eSJeff Garzik select CRYPTO_HASH 97453964b9eSJeff Garzik help 97553964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 97653964b9eSJeff Garzik cryptographic sponge function family called Keccak. 97753964b9eSJeff Garzik 97853964b9eSJeff Garzik References: 97953964b9eSJeff Garzik http://keccak.noekeon.org/ 98053964b9eSJeff Garzik 9814f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9824f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9834f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9844f0fc160SGilad Ben-Yossef help 9854f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9864f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9874f0fc160SGilad Ben-Yossef 9884f0fc160SGilad Ben-Yossef References: 9894f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9904f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9914f0fc160SGilad Ben-Yossef 992fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 993fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 994fe18957eSVitaly Chikunov select CRYPTO_HASH 995fe18957eSVitaly Chikunov help 996fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 997fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 998fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 999fe18957eSVitaly Chikunov 1000fe18957eSVitaly Chikunov References: 1001fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1002fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1003fe18957eSVitaly Chikunov 10041da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10051da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1006f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10071da177e4SLinus Torvalds help 10081da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10091da177e4SLinus Torvalds 10101da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10111da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10121da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10131da177e4SLinus Torvalds 10141da177e4SLinus Torvalds See also: 10151da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10161da177e4SLinus Torvalds 1017584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1018584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10194946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10201da177e4SLinus Torvalds help 1021584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10221da177e4SLinus Torvalds 1023584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1024584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10251da177e4SLinus Torvalds 10261da177e4SLinus Torvalds See also: 10276d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10281da177e4SLinus Torvalds 10290e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10308dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10318af00860SRichard Weinberger depends on X86 && 64BIT 10320e1227d3SHuang Ying select CRYPTO_CRYPTD 10330e1227d3SHuang Ying help 10348dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10358dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10360e1227d3SHuang Ying 1037584fffc8SSebastian Siewiorcomment "Ciphers" 10381da177e4SLinus Torvalds 1039e59c1c98SArd Biesheuvelconfig CRYPTO_LIB_AES 1040e59c1c98SArd Biesheuvel tristate 1041e59c1c98SArd Biesheuvel 10421da177e4SLinus Torvaldsconfig CRYPTO_AES 10431da177e4SLinus Torvalds tristate "AES cipher algorithms" 1044cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10455bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10461da177e4SLinus Torvalds help 10471da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10481da177e4SLinus Torvalds algorithm. 10491da177e4SLinus Torvalds 10501da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10511da177e4SLinus Torvalds both hardware and software across a wide range of computing 10521da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10531da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10541da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10551da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10561da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10571da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10581da177e4SLinus Torvalds 10591da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10601da177e4SLinus Torvalds 10611da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10621da177e4SLinus Torvalds 1063b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1064b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1065b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1066e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1067b5e0b032SArd Biesheuvel help 1068b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1069b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1070b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1071b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1072b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1073b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1074b5e0b032SArd Biesheuvel 1075b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1076b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1077b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1078b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10790a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10800a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1081b5e0b032SArd Biesheuvel 108254b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 108354b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 10848af00860SRichard Weinberger depends on X86 108585671860SHerbert Xu select CRYPTO_AEAD 10862c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 108754b6a1bdSHuang Ying select CRYPTO_ALGAPI 108885671860SHerbert Xu select CRYPTO_BLKCIPHER 10897643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 109085671860SHerbert Xu select CRYPTO_SIMD 109154b6a1bdSHuang Ying help 109254b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 109354b6a1bdSHuang Ying 109454b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 109554b6a1bdSHuang Ying algorithm. 109654b6a1bdSHuang Ying 109754b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 109854b6a1bdSHuang Ying both hardware and software across a wide range of computing 109954b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 110054b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 110154b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 110254b6a1bdSHuang Ying suited for restricted-space environments, in which it also 110354b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 110454b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 110554b6a1bdSHuang Ying 110654b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 110754b6a1bdSHuang Ying 110854b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 110954b6a1bdSHuang Ying 11100d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11110d258efbSMathias Krause for some popular block cipher mode is supported too, including 1112944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11130d258efbSMathias Krause acceleration for CTR. 11142cf4ac8bSHuang Ying 11159bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11169bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11179bf4852dSDavid S. Miller depends on SPARC64 111864db5e74SEric Biggers select CRYPTO_BLKCIPHER 11199bf4852dSDavid S. Miller help 11209bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11219bf4852dSDavid S. Miller 11229bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11239bf4852dSDavid S. Miller algorithm. 11249bf4852dSDavid S. Miller 11259bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11269bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11279bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11289bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11299bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11309bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11319bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11329bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11339bf4852dSDavid S. Miller 11349bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11359bf4852dSDavid S. Miller 11369bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11379bf4852dSDavid S. Miller 11389bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11399bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11409bf4852dSDavid S. Miller ECB and CBC. 11419bf4852dSDavid S. Miller 1142504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1143504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1144504c6143SMarkus Stockhausen depends on PPC && SPE 11457f725f41SEric Biggers select CRYPTO_BLKCIPHER 1146504c6143SMarkus Stockhausen help 1147504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1148504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1149504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1150504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1151504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1152504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1153504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1154504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1155504c6143SMarkus Stockhausen 11561da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11571da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1158cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11591da177e4SLinus Torvalds help 11601da177e4SLinus Torvalds Anubis cipher algorithm. 11611da177e4SLinus Torvalds 11621da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11631da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11641da177e4SLinus Torvalds in the NESSIE competition. 11651da177e4SLinus Torvalds 11661da177e4SLinus Torvalds See also: 11676d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11686d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11691da177e4SLinus Torvalds 1170dc51f257SArd Biesheuvelconfig CRYPTO_LIB_ARC4 1171dc51f257SArd Biesheuvel tristate 1172dc51f257SArd Biesheuvel 1173584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1174584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1175b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1176dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1177e2ee95b8SHye-Shik Chang help 1178584fffc8SSebastian Siewior ARC4 cipher algorithm. 1179e2ee95b8SHye-Shik Chang 1180584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1181584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1182584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1183584fffc8SSebastian Siewior weakness of the algorithm. 1184584fffc8SSebastian Siewior 1185584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1186584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1187584fffc8SSebastian Siewior select CRYPTO_ALGAPI 118852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1189584fffc8SSebastian Siewior help 1190584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1191584fffc8SSebastian Siewior 1192584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1193584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1194584fffc8SSebastian Siewior designed for use on "large microprocessors". 1195e2ee95b8SHye-Shik Chang 1196e2ee95b8SHye-Shik Chang See also: 1197584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1198584fffc8SSebastian Siewior 119952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 120052ba867cSJussi Kivilinna tristate 120152ba867cSJussi Kivilinna help 120252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 120352ba867cSJussi Kivilinna generic c and the assembler implementations. 120452ba867cSJussi Kivilinna 120552ba867cSJussi Kivilinna See also: 120652ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 120752ba867cSJussi Kivilinna 120864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 120964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1210f21a7c19SAl Viro depends on X86 && 64BIT 1211c1679171SEric Biggers select CRYPTO_BLKCIPHER 121264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 121364b94ceaSJussi Kivilinna help 121464b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 121564b94ceaSJussi Kivilinna 121664b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 121764b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 121864b94ceaSJussi Kivilinna designed for use on "large microprocessors". 121964b94ceaSJussi Kivilinna 122064b94ceaSJussi Kivilinna See also: 122164b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 122264b94ceaSJussi Kivilinna 1223584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1224584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1225584fffc8SSebastian Siewior depends on CRYPTO 1226584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1227584fffc8SSebastian Siewior help 1228584fffc8SSebastian Siewior Camellia cipher algorithms module. 1229584fffc8SSebastian Siewior 1230584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1231584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1232584fffc8SSebastian Siewior 1233584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1234584fffc8SSebastian Siewior 1235584fffc8SSebastian Siewior See also: 1236584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1237584fffc8SSebastian Siewior 12380b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12390b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1240f21a7c19SAl Viro depends on X86 && 64BIT 12410b95ec56SJussi Kivilinna depends on CRYPTO 12421af6d037SEric Biggers select CRYPTO_BLKCIPHER 1243964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12440b95ec56SJussi Kivilinna help 12450b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12460b95ec56SJussi Kivilinna 12470b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12480b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12490b95ec56SJussi Kivilinna 12500b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12510b95ec56SJussi Kivilinna 12520b95ec56SJussi Kivilinna See also: 12530b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12540b95ec56SJussi Kivilinna 1255d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1256d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1257d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1258d9b1d2e7SJussi Kivilinna depends on CRYPTO 125944893bc2SEric Biggers select CRYPTO_BLKCIPHER 1260d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 126144893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 126244893bc2SEric Biggers select CRYPTO_SIMD 1263d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1264d9b1d2e7SJussi Kivilinna help 1265d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1266d9b1d2e7SJussi Kivilinna 1267d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1268d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1269d9b1d2e7SJussi Kivilinna 1270d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1271d9b1d2e7SJussi Kivilinna 1272d9b1d2e7SJussi Kivilinna See also: 1273d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1274d9b1d2e7SJussi Kivilinna 1275f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1276f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1277f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1278f3f935a7SJussi Kivilinna depends on CRYPTO 1279f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1280f3f935a7SJussi Kivilinna help 1281f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1282f3f935a7SJussi Kivilinna 1283f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1284f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1285f3f935a7SJussi Kivilinna 1286f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1287f3f935a7SJussi Kivilinna 1288f3f935a7SJussi Kivilinna See also: 1289f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1290f3f935a7SJussi Kivilinna 129181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 129281658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 129381658ad0SDavid S. Miller depends on SPARC64 129481658ad0SDavid S. Miller depends on CRYPTO 129581658ad0SDavid S. Miller select CRYPTO_ALGAPI 1296c72a26efSEric Biggers select CRYPTO_BLKCIPHER 129781658ad0SDavid S. Miller help 129881658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 129981658ad0SDavid S. Miller 130081658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 130181658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 130281658ad0SDavid S. Miller 130381658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 130481658ad0SDavid S. Miller 130581658ad0SDavid S. Miller See also: 130681658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 130781658ad0SDavid S. Miller 1308044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1309044ab525SJussi Kivilinna tristate 1310044ab525SJussi Kivilinna help 1311044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1312044ab525SJussi Kivilinna generic c and the assembler implementations. 1313044ab525SJussi Kivilinna 1314584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1315584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1316584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1317044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1318584fffc8SSebastian Siewior help 1319584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1320584fffc8SSebastian Siewior described in RFC2144. 1321584fffc8SSebastian Siewior 13224d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13234d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13244d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13251e63183aSEric Biggers select CRYPTO_BLKCIPHER 13264d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13271e63183aSEric Biggers select CRYPTO_CAST_COMMON 13281e63183aSEric Biggers select CRYPTO_SIMD 13294d6d6a2cSJohannes Goetzfried help 13304d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13314d6d6a2cSJohannes Goetzfried described in RFC2144. 13324d6d6a2cSJohannes Goetzfried 13334d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13344d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13354d6d6a2cSJohannes Goetzfried 1336584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1337584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1338584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1339044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1340584fffc8SSebastian Siewior help 1341584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1342584fffc8SSebastian Siewior described in RFC2612. 1343584fffc8SSebastian Siewior 13444ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13454ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13464ea1277dSJohannes Goetzfried depends on X86 && 64BIT 13474bd96924SEric Biggers select CRYPTO_BLKCIPHER 13484ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13494bd96924SEric Biggers select CRYPTO_CAST_COMMON 13504bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13514bd96924SEric Biggers select CRYPTO_SIMD 13524ea1277dSJohannes Goetzfried select CRYPTO_XTS 13534ea1277dSJohannes Goetzfried help 13544ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13554ea1277dSJohannes Goetzfried described in RFC2612. 13564ea1277dSJohannes Goetzfried 13574ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13584ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13594ea1277dSJohannes Goetzfried 136004007b0eSArd Biesheuvelconfig CRYPTO_LIB_DES 136104007b0eSArd Biesheuvel tristate 136204007b0eSArd Biesheuvel 1363584fffc8SSebastian Siewiorconfig CRYPTO_DES 1364584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1365584fffc8SSebastian Siewior select CRYPTO_ALGAPI 136604007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1367584fffc8SSebastian Siewior help 1368584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1369584fffc8SSebastian Siewior 1370c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1371c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 137297da37b3SDave Jones depends on SPARC64 1373c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 137404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1375cd5d2f84SEric Biggers select CRYPTO_BLKCIPHER 1376c5aac2dfSDavid S. Miller help 1377c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1378c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1379c5aac2dfSDavid S. Miller 13806574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13816574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13826574e6c6SJussi Kivilinna depends on X86 && 64BIT 138309c0f03bSEric Biggers select CRYPTO_BLKCIPHER 138404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 13856574e6c6SJussi Kivilinna help 13866574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13876574e6c6SJussi Kivilinna 13886574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13896574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13906574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13916574e6c6SJussi Kivilinna one that processes three blocks parallel. 13926574e6c6SJussi Kivilinna 1393584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1394584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1395584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1396584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1397584fffc8SSebastian Siewior help 1398584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1399584fffc8SSebastian Siewior 1400584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1401584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1402584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1403584fffc8SSebastian Siewior help 1404584fffc8SSebastian Siewior Khazad cipher algorithm. 1405584fffc8SSebastian Siewior 1406584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1407584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1408584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1409584fffc8SSebastian Siewior 1410584fffc8SSebastian Siewior See also: 14116d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1412e2ee95b8SHye-Shik Chang 14132407d608STan Swee Hengconfig CRYPTO_SALSA20 14143b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14152407d608STan Swee Heng select CRYPTO_BLKCIPHER 14162407d608STan Swee Heng help 14172407d608STan Swee Heng Salsa20 stream cipher algorithm. 14182407d608STan Swee Heng 14192407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14202407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14212407d608STan Swee Heng 14222407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14232407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14241da177e4SLinus Torvalds 1425c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1426aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1427c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1428c08d0e64SMartin Willi help 1429aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1430c08d0e64SMartin Willi 1431c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1432c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1433de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1434c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1435c08d0e64SMartin Willi 1436de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1437de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1438de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1439de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1440de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1441de61d7aeSEric Biggers 1442aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1443aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1444aa762409SEric Biggers in some performance-sensitive scenarios. 1445aa762409SEric Biggers 1446c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14474af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1448c9320b6dSMartin Willi depends on X86 && 64BIT 1449c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1450c9320b6dSMartin Willi select CRYPTO_CHACHA20 1451c9320b6dSMartin Willi help 14527a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14537a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1454c9320b6dSMartin Willi 1455584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1456584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1457584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1458584fffc8SSebastian Siewior help 1459584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1460584fffc8SSebastian Siewior 1461584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1462584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1463584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1464584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1465584fffc8SSebastian Siewior 1466584fffc8SSebastian Siewior See also: 1467584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1468584fffc8SSebastian Siewior 1469584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1470584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1471584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1472584fffc8SSebastian Siewior help 1473584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1474584fffc8SSebastian Siewior 1475584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1476584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1477584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1478584fffc8SSebastian Siewior 1479584fffc8SSebastian Siewior See also: 1480584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1481584fffc8SSebastian Siewior 1482937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1483937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1484937c30d7SJussi Kivilinna depends on X86 && 64BIT 1485e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1486596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1487937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1488e0f409dcSEric Biggers select CRYPTO_SIMD 1489937c30d7SJussi Kivilinna help 1490937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1491937c30d7SJussi Kivilinna 1492937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1493937c30d7SJussi Kivilinna of 8 bits. 1494937c30d7SJussi Kivilinna 14951e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1496937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1497937c30d7SJussi Kivilinna 1498937c30d7SJussi Kivilinna See also: 1499937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1500937c30d7SJussi Kivilinna 1501251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1502251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1503251496dbSJussi Kivilinna depends on X86 && !64BIT 1504e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1505596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1506251496dbSJussi Kivilinna select CRYPTO_SERPENT 1507e0f409dcSEric Biggers select CRYPTO_SIMD 1508251496dbSJussi Kivilinna help 1509251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1510251496dbSJussi Kivilinna 1511251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1512251496dbSJussi Kivilinna of 8 bits. 1513251496dbSJussi Kivilinna 1514251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1515251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1516251496dbSJussi Kivilinna 1517251496dbSJussi Kivilinna See also: 1518251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1519251496dbSJussi Kivilinna 15207efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15217efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15227efe4076SJohannes Goetzfried depends on X86 && 64BIT 1523e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15241d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15257efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1526e16bf974SEric Biggers select CRYPTO_SIMD 15277efe4076SJohannes Goetzfried select CRYPTO_XTS 15287efe4076SJohannes Goetzfried help 15297efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15307efe4076SJohannes Goetzfried 15317efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15327efe4076SJohannes Goetzfried of 8 bits. 15337efe4076SJohannes Goetzfried 15347efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15357efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15367efe4076SJohannes Goetzfried 15377efe4076SJohannes Goetzfried See also: 15387efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15397efe4076SJohannes Goetzfried 154056d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 154156d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 154256d76c96SJussi Kivilinna depends on X86 && 64BIT 154356d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 154456d76c96SJussi Kivilinna help 154556d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 154656d76c96SJussi Kivilinna 154756d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 154856d76c96SJussi Kivilinna of 8 bits. 154956d76c96SJussi Kivilinna 155056d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 155156d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 155256d76c96SJussi Kivilinna 155356d76c96SJussi Kivilinna See also: 155456d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 155556d76c96SJussi Kivilinna 1556747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1557747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1558747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1559747c8ce4SGilad Ben-Yossef help 1560747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1561747c8ce4SGilad Ben-Yossef 1562747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1563747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1564747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1565747c8ce4SGilad Ben-Yossef 1566747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1567747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1568747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1569747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1570747c8ce4SGilad Ben-Yossef 1571747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1572747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1573747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1574747c8ce4SGilad Ben-Yossef 1575747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1576747c8ce4SGilad Ben-Yossef 1577747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1578747c8ce4SGilad Ben-Yossef 1579747c8ce4SGilad Ben-Yossef If unsure, say N. 1580747c8ce4SGilad Ben-Yossef 1581584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1582584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1583584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1584584fffc8SSebastian Siewior help 1585584fffc8SSebastian Siewior TEA cipher algorithm. 1586584fffc8SSebastian Siewior 1587584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1588584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1589584fffc8SSebastian Siewior little memory. 1590584fffc8SSebastian Siewior 1591584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1592584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1593584fffc8SSebastian Siewior in the TEA algorithm. 1594584fffc8SSebastian Siewior 1595584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1596584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1597584fffc8SSebastian Siewior 1598584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1599584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1600584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1601584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1602584fffc8SSebastian Siewior help 1603584fffc8SSebastian Siewior Twofish cipher algorithm. 1604584fffc8SSebastian Siewior 1605584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1606584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1607584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1608584fffc8SSebastian Siewior bits. 1609584fffc8SSebastian Siewior 1610584fffc8SSebastian Siewior See also: 1611584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1612584fffc8SSebastian Siewior 1613584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1614584fffc8SSebastian Siewior tristate 1615584fffc8SSebastian Siewior help 1616584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1617584fffc8SSebastian Siewior generic c and the assembler implementations. 1618584fffc8SSebastian Siewior 1619584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1620584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1621584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1622584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1623584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1624584fffc8SSebastian Siewior help 1625584fffc8SSebastian Siewior Twofish cipher algorithm. 1626584fffc8SSebastian Siewior 1627584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1628584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1629584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1630584fffc8SSebastian Siewior bits. 1631584fffc8SSebastian Siewior 1632584fffc8SSebastian Siewior See also: 1633584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1634584fffc8SSebastian Siewior 1635584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1636584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1637584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1638584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1639584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1640584fffc8SSebastian Siewior help 1641584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1642584fffc8SSebastian Siewior 1643584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1644584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1645584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1646584fffc8SSebastian Siewior bits. 1647584fffc8SSebastian Siewior 1648584fffc8SSebastian Siewior See also: 1649584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1650584fffc8SSebastian Siewior 16518280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16528280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1653f21a7c19SAl Viro depends on X86 && 64BIT 165437992fa4SEric Biggers select CRYPTO_BLKCIPHER 16558280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16568280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1657414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16588280daadSJussi Kivilinna help 16598280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16608280daadSJussi Kivilinna 16618280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16628280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16638280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16648280daadSJussi Kivilinna bits. 16658280daadSJussi Kivilinna 16668280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16678280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16688280daadSJussi Kivilinna 16698280daadSJussi Kivilinna See also: 16708280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16718280daadSJussi Kivilinna 1672107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1673107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1674107778b5SJohannes Goetzfried depends on X86 && 64BIT 16750e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1676a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16770e6ab46dSEric Biggers select CRYPTO_SIMD 1678107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1679107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1680107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1681107778b5SJohannes Goetzfried help 1682107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1683107778b5SJohannes Goetzfried 1684107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1685107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1686107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1687107778b5SJohannes Goetzfried bits. 1688107778b5SJohannes Goetzfried 1689107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1690107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1691107778b5SJohannes Goetzfried 1692107778b5SJohannes Goetzfried See also: 1693107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1694107778b5SJohannes Goetzfried 1695584fffc8SSebastian Siewiorcomment "Compression" 1696584fffc8SSebastian Siewior 16971da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16981da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1699cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1700f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17011da177e4SLinus Torvalds select ZLIB_INFLATE 17021da177e4SLinus Torvalds select ZLIB_DEFLATE 17031da177e4SLinus Torvalds help 17041da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17051da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17061da177e4SLinus Torvalds 17071da177e4SLinus Torvalds You will most probably want this if using IPSec. 17081da177e4SLinus Torvalds 17090b77abb3SZoltan Sogorconfig CRYPTO_LZO 17100b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17110b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1712ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17130b77abb3SZoltan Sogor select LZO_COMPRESS 17140b77abb3SZoltan Sogor select LZO_DECOMPRESS 17150b77abb3SZoltan Sogor help 17160b77abb3SZoltan Sogor This is the LZO algorithm. 17170b77abb3SZoltan Sogor 171835a1fc18SSeth Jenningsconfig CRYPTO_842 171935a1fc18SSeth Jennings tristate "842 compression algorithm" 17202062c5b6SDan Streetman select CRYPTO_ALGAPI 17216a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17222062c5b6SDan Streetman select 842_COMPRESS 17232062c5b6SDan Streetman select 842_DECOMPRESS 172435a1fc18SSeth Jennings help 172535a1fc18SSeth Jennings This is the 842 algorithm. 172635a1fc18SSeth Jennings 17270ea8530dSChanho Minconfig CRYPTO_LZ4 17280ea8530dSChanho Min tristate "LZ4 compression algorithm" 17290ea8530dSChanho Min select CRYPTO_ALGAPI 17308cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17310ea8530dSChanho Min select LZ4_COMPRESS 17320ea8530dSChanho Min select LZ4_DECOMPRESS 17330ea8530dSChanho Min help 17340ea8530dSChanho Min This is the LZ4 algorithm. 17350ea8530dSChanho Min 17360ea8530dSChanho Minconfig CRYPTO_LZ4HC 17370ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17380ea8530dSChanho Min select CRYPTO_ALGAPI 173991d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17400ea8530dSChanho Min select LZ4HC_COMPRESS 17410ea8530dSChanho Min select LZ4_DECOMPRESS 17420ea8530dSChanho Min help 17430ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17440ea8530dSChanho Min 1745d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1746d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1747d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1748d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1749d28fc3dbSNick Terrell select ZSTD_COMPRESS 1750d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1751d28fc3dbSNick Terrell help 1752d28fc3dbSNick Terrell This is the zstd algorithm. 1753d28fc3dbSNick Terrell 175417f0f4a4SNeil Hormancomment "Random Number Generation" 175517f0f4a4SNeil Horman 175617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 175717f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 175817f0f4a4SNeil Horman select CRYPTO_AES 175917f0f4a4SNeil Horman select CRYPTO_RNG 176017f0f4a4SNeil Horman help 176117f0f4a4SNeil Horman This option enables the generic pseudo random number generator 176217f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17637dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17647dd607e8SJiri Kosina CRYPTO_FIPS is selected 176517f0f4a4SNeil Horman 1766f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1767419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1768419090c6SStephan Mueller help 1769419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1770419090c6SStephan Mueller more of the DRBG types must be selected. 1771419090c6SStephan Mueller 1772f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1773419090c6SStephan Mueller 1774419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1775401e4238SHerbert Xu bool 1776419090c6SStephan Mueller default y 1777419090c6SStephan Mueller select CRYPTO_HMAC 1778826775bbSHerbert Xu select CRYPTO_SHA256 1779419090c6SStephan Mueller 1780419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1781419090c6SStephan Mueller bool "Enable Hash DRBG" 1782826775bbSHerbert Xu select CRYPTO_SHA256 1783419090c6SStephan Mueller help 1784419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1785419090c6SStephan Mueller 1786419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1787419090c6SStephan Mueller bool "Enable CTR DRBG" 1788419090c6SStephan Mueller select CRYPTO_AES 178935591285SStephan Mueller depends on CRYPTO_CTR 1790419090c6SStephan Mueller help 1791419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1792419090c6SStephan Mueller 1793f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1794f2c89a10SHerbert Xu tristate 1795401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1796f2c89a10SHerbert Xu select CRYPTO_RNG 1797bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1798f2c89a10SHerbert Xu 1799f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1800419090c6SStephan Mueller 1801bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1802bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18032f313e02SArnd Bergmann select CRYPTO_RNG 1804bb5530e4SStephan Mueller help 1805bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1806bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1807bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1808bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1809bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1810bb5530e4SStephan Mueller 181103c8efc1SHerbert Xuconfig CRYPTO_USER_API 181203c8efc1SHerbert Xu tristate 181303c8efc1SHerbert Xu 1814fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1815fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18167451708fSHerbert Xu depends on NET 1817fe869cdbSHerbert Xu select CRYPTO_HASH 1818fe869cdbSHerbert Xu select CRYPTO_USER_API 1819fe869cdbSHerbert Xu help 1820fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1821fe869cdbSHerbert Xu algorithms. 1822fe869cdbSHerbert Xu 18238ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18248ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18257451708fSHerbert Xu depends on NET 18268ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18278ff59090SHerbert Xu select CRYPTO_USER_API 18288ff59090SHerbert Xu help 18298ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18308ff59090SHerbert Xu key cipher algorithms. 18318ff59090SHerbert Xu 18322f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18332f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18342f375538SStephan Mueller depends on NET 18352f375538SStephan Mueller select CRYPTO_RNG 18362f375538SStephan Mueller select CRYPTO_USER_API 18372f375538SStephan Mueller help 18382f375538SStephan Mueller This option enables the user-spaces interface for random 18392f375538SStephan Mueller number generator algorithms. 18402f375538SStephan Mueller 1841b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1842b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1843b64a2d95SHerbert Xu depends on NET 1844b64a2d95SHerbert Xu select CRYPTO_AEAD 184572548b09SStephan Mueller select CRYPTO_BLKCIPHER 184672548b09SStephan Mueller select CRYPTO_NULL 1847b64a2d95SHerbert Xu select CRYPTO_USER_API 1848b64a2d95SHerbert Xu help 1849b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1850b64a2d95SHerbert Xu cipher algorithms. 1851b64a2d95SHerbert Xu 1852cac5818cSCorentin Labbeconfig CRYPTO_STATS 1853cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1854a6a31385SCorentin Labbe depends on CRYPTO_USER 1855cac5818cSCorentin Labbe help 1856cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1857cac5818cSCorentin Labbe This will collect: 1858cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1859cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1860cac5818cSCorentin Labbe - size and numbers of hash operations 1861cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1862cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1863cac5818cSCorentin Labbe 1864ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1865ee08997fSDmitry Kasatkin bool 1866ee08997fSDmitry Kasatkin 18671da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 18688636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 18698636a1f9SMasahiro Yamadasource "certs/Kconfig" 18701da177e4SLinus Torvalds 1871cce9e06dSHerbert Xuendif # if CRYPTO 1872