xref: /linux/crypto/Kconfig (revision 830536770f968ab33ece123b317e252c269098db)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1088cd579d2SBart Van Assche	select SGL_ALLOC
1092ebda74fSGiovanni Cabiddu
1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1112ebda74fSGiovanni Cabiddu	tristate
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1142ebda74fSGiovanni Cabiddu
1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1162b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1176a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1182b8c19dbSHerbert Xu	help
1192b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1202b8c19dbSHerbert Xu	  cbc(aes).
1212b8c19dbSHerbert Xu
1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1236a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1246a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1256a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1266a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
127946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1284e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1306a0fcbb4SHerbert Xu
131a38f7907SSteffen Klassertconfig CRYPTO_USER
132a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1335db017aaSHerbert Xu	depends on NET
134a38f7907SSteffen Klassert	select CRYPTO_MANAGER
135a38f7907SSteffen Klassert	help
136d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
137a38f7907SSteffen Klassert	  cbc(aes).
138a38f7907SSteffen Klassert
139929d34caSEric Biggersif CRYPTO_MANAGER2
140929d34caSEric Biggers
141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
142326a6346SHerbert Xu	bool "Disable run-time self tests"
14300ca28a5SHerbert Xu	default y
1440b767f96SAlexander Shishkin	help
145326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
146326a6346SHerbert Xu	  algorithm registration.
1470b767f96SAlexander Shishkin
1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1495b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1505b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1515b2706a4SEric Biggers	help
1525b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1535b2706a4SEric Biggers	  including randomized fuzz tests.
1545b2706a4SEric Biggers
1555b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1565b2706a4SEric Biggers	  longer to run than the normal self tests.
1575b2706a4SEric Biggers
158929d34caSEric Biggersendif	# if CRYPTO_MANAGER2
159929d34caSEric Biggers
160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
161e590e132SEric Biggers	tristate
162584fffc8SSebastian Siewior
163584fffc8SSebastian Siewiorconfig CRYPTO_NULL
164584fffc8SSebastian Siewior	tristate "Null algorithms"
165149a3971SHerbert Xu	select CRYPTO_NULL2
166584fffc8SSebastian Siewior	help
167584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
168584fffc8SSebastian Siewior
169149a3971SHerbert Xuconfig CRYPTO_NULL2
170dd43c4e9SHerbert Xu	tristate
171149a3971SHerbert Xu	select CRYPTO_ALGAPI2
172149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
173149a3971SHerbert Xu	select CRYPTO_HASH2
174149a3971SHerbert Xu
1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1763b4afaf2SKees Cook	tristate "Parallel crypto engine"
1773b4afaf2SKees Cook	depends on SMP
1785068c7a8SSteffen Klassert	select PADATA
1795068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1805068c7a8SSteffen Klassert	select CRYPTO_AEAD
1815068c7a8SSteffen Klassert	help
1825068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1835068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1845068c7a8SSteffen Klassert
185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
186584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
187584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
188b8a28251SLoc Ho	select CRYPTO_HASH
189584fffc8SSebastian Siewior	select CRYPTO_MANAGER
190584fffc8SSebastian Siewior	help
191584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
192584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
193584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
194584fffc8SSebastian Siewior
195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
196584fffc8SSebastian Siewior	tristate "Authenc support"
197584fffc8SSebastian Siewior	select CRYPTO_AEAD
198584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
199584fffc8SSebastian Siewior	select CRYPTO_MANAGER
200584fffc8SSebastian Siewior	select CRYPTO_HASH
201e94c6a7aSHerbert Xu	select CRYPTO_NULL
202584fffc8SSebastian Siewior	help
203584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
204584fffc8SSebastian Siewior	  This is required for IPSec.
205584fffc8SSebastian Siewior
206584fffc8SSebastian Siewiorconfig CRYPTO_TEST
207584fffc8SSebastian Siewior	tristate "Testing module"
208584fffc8SSebastian Siewior	depends on m
209da7f033dSHerbert Xu	select CRYPTO_MANAGER
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
212584fffc8SSebastian Siewior
213266d0516SHerbert Xuconfig CRYPTO_SIMD
214266d0516SHerbert Xu	tristate
215266d0516SHerbert Xu	select CRYPTO_CRYPTD
216266d0516SHerbert Xu
217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
218596d8750SJussi Kivilinna	tristate
219596d8750SJussi Kivilinna	depends on X86
220065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
221596d8750SJussi Kivilinna
222735d37b5SBaolin Wangconfig CRYPTO_ENGINE
223735d37b5SBaolin Wang	tristate
224735d37b5SBaolin Wang
2253d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2263d6228a5SVitaly Chikunov
2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2283d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2293d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2303d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2313d6228a5SVitaly Chikunov	select MPILIB
2323d6228a5SVitaly Chikunov	select ASN1
2333d6228a5SVitaly Chikunov	help
2343d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2353d6228a5SVitaly Chikunov
2363d6228a5SVitaly Chikunovconfig CRYPTO_DH
2373d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2383d6228a5SVitaly Chikunov	select CRYPTO_KPP
2393d6228a5SVitaly Chikunov	select MPILIB
2403d6228a5SVitaly Chikunov	help
2413d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2423d6228a5SVitaly Chikunov
2434a2289daSVitaly Chikunovconfig CRYPTO_ECC
2444a2289daSVitaly Chikunov	tristate
2454a2289daSVitaly Chikunov
2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2473d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2484a2289daSVitaly Chikunov	select CRYPTO_ECC
2493d6228a5SVitaly Chikunov	select CRYPTO_KPP
2503d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2513d6228a5SVitaly Chikunov	help
2523d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2533d6228a5SVitaly Chikunov
2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2550d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2560d7a7864SVitaly Chikunov	select CRYPTO_ECC
2570d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2580d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2591036633eSVitaly Chikunov	select OID_REGISTRY
2601036633eSVitaly Chikunov	select ASN1
2610d7a7864SVitaly Chikunov	help
2620d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2630d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2640d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2650d7a7864SVitaly Chikunov	  is implemented.
2660d7a7864SVitaly Chikunov
267584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
268584fffc8SSebastian Siewior
269584fffc8SSebastian Siewiorconfig CRYPTO_CCM
270584fffc8SSebastian Siewior	tristate "CCM support"
271584fffc8SSebastian Siewior	select CRYPTO_CTR
272f15f05b0SArd Biesheuvel	select CRYPTO_HASH
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
274c8a3315aSEric Biggers	select CRYPTO_MANAGER
275584fffc8SSebastian Siewior	help
276584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
277584fffc8SSebastian Siewior
278584fffc8SSebastian Siewiorconfig CRYPTO_GCM
279584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
280584fffc8SSebastian Siewior	select CRYPTO_CTR
281584fffc8SSebastian Siewior	select CRYPTO_AEAD
2829382d97aSHuang Ying	select CRYPTO_GHASH
2839489667dSJussi Kivilinna	select CRYPTO_NULL
284c8a3315aSEric Biggers	select CRYPTO_MANAGER
285584fffc8SSebastian Siewior	help
286584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
287584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
288584fffc8SSebastian Siewior
28971ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
29071ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
29171ebc4d1SMartin Willi	select CRYPTO_CHACHA20
29271ebc4d1SMartin Willi	select CRYPTO_POLY1305
29371ebc4d1SMartin Willi	select CRYPTO_AEAD
294c8a3315aSEric Biggers	select CRYPTO_MANAGER
29571ebc4d1SMartin Willi	help
29671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
29771ebc4d1SMartin Willi
29871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
30071ebc4d1SMartin Willi	  IETF protocols.
30171ebc4d1SMartin Willi
302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
303f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
304f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
305f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
306f606a88eSOndrej Mosnacek	help
307f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
308f606a88eSOndrej Mosnacek
309a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
310a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
311a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
312*83053677SArd Biesheuvel	depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800
313a4397635SArd Biesheuvel	default y
314a4397635SArd Biesheuvel
3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3161d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3171d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3181d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
319de272ca7SEric Biggers	select CRYPTO_SIMD
3201d373d4eSOndrej Mosnacek	help
3214e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3221d373d4eSOndrej Mosnacek
323584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
324584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
325584fffc8SSebastian Siewior	select CRYPTO_AEAD
326584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
327856e3f40SHerbert Xu	select CRYPTO_NULL
328401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
329c8a3315aSEric Biggers	select CRYPTO_MANAGER
330584fffc8SSebastian Siewior	help
331584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
332584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
333584fffc8SSebastian Siewior
334a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
335a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
336a10f554fSHerbert Xu	select CRYPTO_AEAD
337a10f554fSHerbert Xu	select CRYPTO_NULL
338401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
339c8a3315aSEric Biggers	select CRYPTO_MANAGER
340a10f554fSHerbert Xu	help
341a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
342a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
343a10f554fSHerbert Xu	  algorithm for CBC.
344a10f554fSHerbert Xu
345584fffc8SSebastian Siewiorcomment "Block modes"
346584fffc8SSebastian Siewior
347584fffc8SSebastian Siewiorconfig CRYPTO_CBC
348584fffc8SSebastian Siewior	tristate "CBC support"
349584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
350584fffc8SSebastian Siewior	select CRYPTO_MANAGER
351584fffc8SSebastian Siewior	help
352584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
353584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
354584fffc8SSebastian Siewior
355a7d85e06SJames Bottomleyconfig CRYPTO_CFB
356a7d85e06SJames Bottomley	tristate "CFB support"
357a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
358a7d85e06SJames Bottomley	select CRYPTO_MANAGER
359a7d85e06SJames Bottomley	help
360a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
361a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
362a7d85e06SJames Bottomley
363584fffc8SSebastian Siewiorconfig CRYPTO_CTR
364584fffc8SSebastian Siewior	tristate "CTR support"
365584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
366584fffc8SSebastian Siewior	select CRYPTO_SEQIV
367584fffc8SSebastian Siewior	select CRYPTO_MANAGER
368584fffc8SSebastian Siewior	help
369584fffc8SSebastian Siewior	  CTR: Counter mode
370584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
371584fffc8SSebastian Siewior
372584fffc8SSebastian Siewiorconfig CRYPTO_CTS
373584fffc8SSebastian Siewior	tristate "CTS support"
374584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
375c8a3315aSEric Biggers	select CRYPTO_MANAGER
376584fffc8SSebastian Siewior	help
377584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
378584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
379ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
380ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
381ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
382584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
383584fffc8SSebastian Siewior	  for AES encryption.
384584fffc8SSebastian Siewior
385ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
386ecd6d5c9SGilad Ben-Yossef
387584fffc8SSebastian Siewiorconfig CRYPTO_ECB
388584fffc8SSebastian Siewior	tristate "ECB support"
389584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
390584fffc8SSebastian Siewior	select CRYPTO_MANAGER
391584fffc8SSebastian Siewior	help
392584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
393584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
394584fffc8SSebastian Siewior	  the input block by block.
395584fffc8SSebastian Siewior
396584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3972470a2b2SJussi Kivilinna	tristate "LRW support"
398584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
399584fffc8SSebastian Siewior	select CRYPTO_MANAGER
400584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
401584fffc8SSebastian Siewior	help
402584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
403584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
404584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
405584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
406584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
407584fffc8SSebastian Siewior
408e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
409e497c518SGilad Ben-Yossef	tristate "OFB support"
410e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
411e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
412e497c518SGilad Ben-Yossef	help
413e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
414e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
415e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
416e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
417e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
418e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
419e497c518SGilad Ben-Yossef
420584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
421584fffc8SSebastian Siewior	tristate "PCBC support"
422584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
423584fffc8SSebastian Siewior	select CRYPTO_MANAGER
424584fffc8SSebastian Siewior	help
425584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
426584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
427584fffc8SSebastian Siewior
428584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4295bcf8e6dSJussi Kivilinna	tristate "XTS support"
430584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
431584fffc8SSebastian Siewior	select CRYPTO_MANAGER
43212cb3a1cSMilan Broz	select CRYPTO_ECB
433584fffc8SSebastian Siewior	help
434584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
435584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
436584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
437584fffc8SSebastian Siewior
4381c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4391c49678eSStephan Mueller	tristate "Key wrapping support"
4401c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
441c8a3315aSEric Biggers	select CRYPTO_MANAGER
4421c49678eSStephan Mueller	help
4431c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4441c49678eSStephan Mueller	  padding.
4451c49678eSStephan Mueller
44626609a21SEric Biggersconfig CRYPTO_NHPOLY1305
44726609a21SEric Biggers	tristate
44826609a21SEric Biggers	select CRYPTO_HASH
44926609a21SEric Biggers	select CRYPTO_POLY1305
45026609a21SEric Biggers
451012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
452012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
453012c8238SEric Biggers	depends on X86 && 64BIT
454012c8238SEric Biggers	select CRYPTO_NHPOLY1305
455012c8238SEric Biggers	help
456012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
457012c8238SEric Biggers	  Adiantum encryption mode.
458012c8238SEric Biggers
4590f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
4600f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
4610f961f9fSEric Biggers	depends on X86 && 64BIT
4620f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
4630f961f9fSEric Biggers	help
4640f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
4650f961f9fSEric Biggers	  Adiantum encryption mode.
4660f961f9fSEric Biggers
467059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
468059c2a4dSEric Biggers	tristate "Adiantum support"
469059c2a4dSEric Biggers	select CRYPTO_CHACHA20
470059c2a4dSEric Biggers	select CRYPTO_POLY1305
471059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
472c8a3315aSEric Biggers	select CRYPTO_MANAGER
473059c2a4dSEric Biggers	help
474059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
475059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
476059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
477059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
478059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
479059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
480059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
481059c2a4dSEric Biggers	  AES-XTS.
482059c2a4dSEric Biggers
483059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
484059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
485059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
486059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
487059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
488059c2a4dSEric Biggers
489059c2a4dSEric Biggers	  If unsure, say N.
490059c2a4dSEric Biggers
491be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
492be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
493be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
494be1eb7f7SArd Biesheuvel	help
495be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
496be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
497be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
498be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
499be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
500be1eb7f7SArd Biesheuvel	  encryption.
501be1eb7f7SArd Biesheuvel
502be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
503be1eb7f7SArd Biesheuvel	  instantiated either as a skcipher or as a aead (depending on the
504be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
505be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
506be1eb7f7SArd Biesheuvel	  ESSIV to the input IV. Note that in the aead case, it is assumed
507be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
508be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
509be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
510be1eb7f7SArd Biesheuvel
511be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
512be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
513be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
514be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
515be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
516be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
517be1eb7f7SArd Biesheuvel	  block encryption)
518be1eb7f7SArd Biesheuvel
519584fffc8SSebastian Siewiorcomment "Hash modes"
520584fffc8SSebastian Siewior
52193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
52293b5e86aSJussi Kivilinna	tristate "CMAC support"
52393b5e86aSJussi Kivilinna	select CRYPTO_HASH
52493b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
52593b5e86aSJussi Kivilinna	help
52693b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
52793b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
52893b5e86aSJussi Kivilinna
52993b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
53093b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
53193b5e86aSJussi Kivilinna
5321da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5338425165dSHerbert Xu	tristate "HMAC support"
5340796ae06SHerbert Xu	select CRYPTO_HASH
53543518407SHerbert Xu	select CRYPTO_MANAGER
5361da177e4SLinus Torvalds	help
5371da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5381da177e4SLinus Torvalds	  This is required for IPSec.
5391da177e4SLinus Torvalds
540333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
541333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
542333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
543333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
544333b0d7eSKazunori MIYAZAWA	help
545333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
546333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
547333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
548333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
549333b0d7eSKazunori MIYAZAWA
550f1939f7cSShane Wangconfig CRYPTO_VMAC
551f1939f7cSShane Wang	tristate "VMAC support"
552f1939f7cSShane Wang	select CRYPTO_HASH
553f1939f7cSShane Wang	select CRYPTO_MANAGER
554f1939f7cSShane Wang	help
555f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
556f1939f7cSShane Wang	  very high speed on 64-bit architectures.
557f1939f7cSShane Wang
558f1939f7cSShane Wang	  See also:
559f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
560f1939f7cSShane Wang
561584fffc8SSebastian Siewiorcomment "Digest"
562584fffc8SSebastian Siewior
563584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
564584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5655773a3e6SHerbert Xu	select CRYPTO_HASH
5666a0962b2SDarrick J. Wong	select CRC32
5671da177e4SLinus Torvalds	help
568584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
569584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
57069c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5711da177e4SLinus Torvalds
5728cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5738cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5748cb51ba8SAustin Zhang	depends on X86
5758cb51ba8SAustin Zhang	select CRYPTO_HASH
5768cb51ba8SAustin Zhang	help
5778cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5788cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5798cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5808cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5818cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5828cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5838cb51ba8SAustin Zhang
5847cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5856dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
586c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5876dd7a82cSAnton Blanchard	select CRYPTO_HASH
5886dd7a82cSAnton Blanchard	select CRC32
5896dd7a82cSAnton Blanchard	help
5906dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5916dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5926dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5936dd7a82cSAnton Blanchard
5946dd7a82cSAnton Blanchard
595442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
596442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
597442a7c40SDavid S. Miller	depends on SPARC64
598442a7c40SDavid S. Miller	select CRYPTO_HASH
599442a7c40SDavid S. Miller	select CRC32
600442a7c40SDavid S. Miller	help
601442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
602442a7c40SDavid S. Miller	  when available.
603442a7c40SDavid S. Miller
60478c37d19SAlexander Boykoconfig CRYPTO_CRC32
60578c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
60678c37d19SAlexander Boyko	select CRYPTO_HASH
60778c37d19SAlexander Boyko	select CRC32
60878c37d19SAlexander Boyko	help
60978c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
61078c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
61178c37d19SAlexander Boyko
61278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
61378c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
61478c37d19SAlexander Boyko	depends on X86
61578c37d19SAlexander Boyko	select CRYPTO_HASH
61678c37d19SAlexander Boyko	select CRC32
61778c37d19SAlexander Boyko	help
61878c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
61978c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
62078c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
621af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
62278c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
62378c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
62478c37d19SAlexander Boyko
6254a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6264a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6274a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6284a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6294a5dc51eSMarcin Nowakowski	help
6304a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6314a5dc51eSMarcin Nowakowski	  instructions, when available.
6324a5dc51eSMarcin Nowakowski
6334a5dc51eSMarcin Nowakowski
63467882e76SNikolay Borisovconfig CRYPTO_XXHASH
63567882e76SNikolay Borisov	tristate "xxHash hash algorithm"
63667882e76SNikolay Borisov	select CRYPTO_HASH
63767882e76SNikolay Borisov	select XXHASH
63867882e76SNikolay Borisov	help
63967882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
64067882e76SNikolay Borisov	  speeds close to RAM limits.
64167882e76SNikolay Borisov
64268411521SHerbert Xuconfig CRYPTO_CRCT10DIF
64368411521SHerbert Xu	tristate "CRCT10DIF algorithm"
64468411521SHerbert Xu	select CRYPTO_HASH
64568411521SHerbert Xu	help
64668411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
64768411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
64868411521SHerbert Xu	  transforms to be used if they are available.
64968411521SHerbert Xu
65068411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
65168411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
65268411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
65368411521SHerbert Xu	select CRYPTO_HASH
65468411521SHerbert Xu	help
65568411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
65668411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
65768411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
658af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
65968411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
66068411521SHerbert Xu
661b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
662b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
663b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
664b01df1c1SDaniel Axtens	select CRYPTO_HASH
665b01df1c1SDaniel Axtens	help
666b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
667b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
668b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
669b01df1c1SDaniel Axtens
670146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
671146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
672146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
673146c8688SDaniel Axtens	help
674146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
675146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
676146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
677146c8688SDaniel Axtens
6782cdc6899SHuang Yingconfig CRYPTO_GHASH
6798dfa20fcSEric Biggers	tristate "GHASH hash function"
6802cdc6899SHuang Ying	select CRYPTO_GF128MUL
681578c60fbSArnd Bergmann	select CRYPTO_HASH
6822cdc6899SHuang Ying	help
6838dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
6848dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
6852cdc6899SHuang Ying
686f979e014SMartin Williconfig CRYPTO_POLY1305
687f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
688578c60fbSArnd Bergmann	select CRYPTO_HASH
689f979e014SMartin Willi	help
690f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
691f979e014SMartin Willi
692f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
693f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
694f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
695f979e014SMartin Willi
696c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
697b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
698c70f4abeSMartin Willi	depends on X86 && 64BIT
699c70f4abeSMartin Willi	select CRYPTO_POLY1305
700c70f4abeSMartin Willi	help
701c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
702c70f4abeSMartin Willi
703c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
704c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
705c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
706c70f4abeSMartin Willi	  instructions.
707c70f4abeSMartin Willi
7081da177e4SLinus Torvaldsconfig CRYPTO_MD4
7091da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
710808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7111da177e4SLinus Torvalds	help
7121da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7131da177e4SLinus Torvalds
7141da177e4SLinus Torvaldsconfig CRYPTO_MD5
7151da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
71614b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7171da177e4SLinus Torvalds	help
7181da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7191da177e4SLinus Torvalds
720d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
721d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
722d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
723d69e75deSAaro Koskinen	select CRYPTO_MD5
724d69e75deSAaro Koskinen	select CRYPTO_HASH
725d69e75deSAaro Koskinen	help
726d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
727d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
728d69e75deSAaro Koskinen
729e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
730e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
731e8e59953SMarkus Stockhausen	depends on PPC
732e8e59953SMarkus Stockhausen	select CRYPTO_HASH
733e8e59953SMarkus Stockhausen	help
734e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
735e8e59953SMarkus Stockhausen	  in PPC assembler.
736e8e59953SMarkus Stockhausen
737fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
738fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
739fa4dfedcSDavid S. Miller	depends on SPARC64
740fa4dfedcSDavid S. Miller	select CRYPTO_MD5
741fa4dfedcSDavid S. Miller	select CRYPTO_HASH
742fa4dfedcSDavid S. Miller	help
743fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
744fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
745fa4dfedcSDavid S. Miller
746584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
747584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
74819e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
749584fffc8SSebastian Siewior	help
750584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
751584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
752584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
753584fffc8SSebastian Siewior	  of the algorithm.
754584fffc8SSebastian Siewior
75582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
75682798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7577c4468bcSHerbert Xu	select CRYPTO_HASH
75882798f90SAdrian-Ken Rueegsegger	help
75982798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
76082798f90SAdrian-Ken Rueegsegger
76182798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
76235ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
76382798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
76482798f90SAdrian-Ken Rueegsegger
76582798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7666d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
76782798f90SAdrian-Ken Rueegsegger
76882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
76982798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
770e5835fbaSHerbert Xu	select CRYPTO_HASH
77182798f90SAdrian-Ken Rueegsegger	help
77282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
77382798f90SAdrian-Ken Rueegsegger
77482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
77582798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
776b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
777b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
77882798f90SAdrian-Ken Rueegsegger
779b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
780b6d44341SAdrian Bunk	  against RIPEMD-160.
781534fe2c1SAdrian-Ken Rueegsegger
782534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7836d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
784534fe2c1SAdrian-Ken Rueegsegger
785534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
786534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
787d8a5e2e9SHerbert Xu	select CRYPTO_HASH
788534fe2c1SAdrian-Ken Rueegsegger	help
789b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
790b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
791b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
792b6d44341SAdrian Bunk	  (than RIPEMD-128).
793534fe2c1SAdrian-Ken Rueegsegger
794534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7956d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
796534fe2c1SAdrian-Ken Rueegsegger
797534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
798534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
7993b8efb4cSHerbert Xu	select CRYPTO_HASH
800534fe2c1SAdrian-Ken Rueegsegger	help
801b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
802b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
803b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
804b6d44341SAdrian Bunk	  (than RIPEMD-160).
805534fe2c1SAdrian-Ken Rueegsegger
80682798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8076d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
80882798f90SAdrian-Ken Rueegsegger
8091da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8101da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
81154ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8121da177e4SLinus Torvalds	help
8131da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8141da177e4SLinus Torvalds
81566be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
816e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
81766be8951SMathias Krause	depends on X86 && 64BIT
81866be8951SMathias Krause	select CRYPTO_SHA1
81966be8951SMathias Krause	select CRYPTO_HASH
82066be8951SMathias Krause	help
82166be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
82266be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
823e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
824e38b6b7fStim	  when available.
82566be8951SMathias Krause
8268275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
827e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8288275d1aaSTim Chen	depends on X86 && 64BIT
8298275d1aaSTim Chen	select CRYPTO_SHA256
8308275d1aaSTim Chen	select CRYPTO_HASH
8318275d1aaSTim Chen	help
8328275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8338275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8348275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
835e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
836e38b6b7fStim	  Instructions) when available.
8378275d1aaSTim Chen
83887de4579STim Chenconfig CRYPTO_SHA512_SSSE3
83987de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
84087de4579STim Chen	depends on X86 && 64BIT
84187de4579STim Chen	select CRYPTO_SHA512
84287de4579STim Chen	select CRYPTO_HASH
84387de4579STim Chen	help
84487de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
84587de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
84687de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
84787de4579STim Chen	  version 2 (AVX2) instructions, when available.
84887de4579STim Chen
849efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
850efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
851efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
852efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
853efdb6f6eSAaro Koskinen	select CRYPTO_HASH
854efdb6f6eSAaro Koskinen	help
855efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
856efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
857efdb6f6eSAaro Koskinen
8584ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8594ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8604ff28d4cSDavid S. Miller	depends on SPARC64
8614ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8624ff28d4cSDavid S. Miller	select CRYPTO_HASH
8634ff28d4cSDavid S. Miller	help
8644ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8654ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8664ff28d4cSDavid S. Miller
867323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
868323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
869323a6bf1SMichael Ellerman	depends on PPC
870323a6bf1SMichael Ellerman	help
871323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
872323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
873323a6bf1SMichael Ellerman
874d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
875d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
876d9850fc5SMarkus Stockhausen	depends on PPC && SPE
877d9850fc5SMarkus Stockhausen	help
878d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
879d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
880d9850fc5SMarkus Stockhausen
88101d3aee8SHans de Goedeconfig CRYPTO_LIB_SHA256
88201d3aee8SHans de Goede	tristate
88301d3aee8SHans de Goede
8841da177e4SLinus Torvaldsconfig CRYPTO_SHA256
885cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
88650e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
88708c327f6SHans de Goede	select CRYPTO_LIB_SHA256
8881da177e4SLinus Torvalds	help
8891da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
8901da177e4SLinus Torvalds
8911da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
8921da177e4SLinus Torvalds	  security against collision attacks.
8931da177e4SLinus Torvalds
894cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
895cd12fb90SJonathan Lynch	  of security against collision attacks.
896cd12fb90SJonathan Lynch
8972ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
8982ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
8992ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9002ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9012ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9022ecc1e95SMarkus Stockhausen	help
9032ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9042ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9052ecc1e95SMarkus Stockhausen
906efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
907efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
908efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
909efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
910efdb6f6eSAaro Koskinen	select CRYPTO_HASH
911efdb6f6eSAaro Koskinen	help
912efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
913efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
914efdb6f6eSAaro Koskinen
91586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
91686c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
91786c93b24SDavid S. Miller	depends on SPARC64
91886c93b24SDavid S. Miller	select CRYPTO_SHA256
91986c93b24SDavid S. Miller	select CRYPTO_HASH
92086c93b24SDavid S. Miller	help
92186c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
92286c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
92386c93b24SDavid S. Miller
9241da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9251da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
926bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9271da177e4SLinus Torvalds	help
9281da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9291da177e4SLinus Torvalds
9301da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9311da177e4SLinus Torvalds	  security against collision attacks.
9321da177e4SLinus Torvalds
9331da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9341da177e4SLinus Torvalds	  of security against collision attacks.
9351da177e4SLinus Torvalds
936efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
937efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
938efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
939efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
940efdb6f6eSAaro Koskinen	select CRYPTO_HASH
941efdb6f6eSAaro Koskinen	help
942efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
943efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
944efdb6f6eSAaro Koskinen
945775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
946775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
947775e0c69SDavid S. Miller	depends on SPARC64
948775e0c69SDavid S. Miller	select CRYPTO_SHA512
949775e0c69SDavid S. Miller	select CRYPTO_HASH
950775e0c69SDavid S. Miller	help
951775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
952775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
953775e0c69SDavid S. Miller
95453964b9eSJeff Garzikconfig CRYPTO_SHA3
95553964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
95653964b9eSJeff Garzik	select CRYPTO_HASH
95753964b9eSJeff Garzik	help
95853964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
95953964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
96053964b9eSJeff Garzik
96153964b9eSJeff Garzik	  References:
96253964b9eSJeff Garzik	  http://keccak.noekeon.org/
96353964b9eSJeff Garzik
9644f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9654f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9664f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9674f0fc160SGilad Ben-Yossef	help
9684f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9694f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9704f0fc160SGilad Ben-Yossef
9714f0fc160SGilad Ben-Yossef	  References:
9724f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9734f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9744f0fc160SGilad Ben-Yossef
975fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
976fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
977fe18957eSVitaly Chikunov	select CRYPTO_HASH
978fe18957eSVitaly Chikunov	help
979fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
980fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
981fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
982fe18957eSVitaly Chikunov
983fe18957eSVitaly Chikunov	  References:
984fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
985fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
986fe18957eSVitaly Chikunov
9871da177e4SLinus Torvaldsconfig CRYPTO_TGR192
9881da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
989f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9901da177e4SLinus Torvalds	help
9911da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
9921da177e4SLinus Torvalds
9931da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
9941da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
9951da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
9961da177e4SLinus Torvalds
9971da177e4SLinus Torvalds	  See also:
9981da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
9991da177e4SLinus Torvalds
1000584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1001584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10024946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10031da177e4SLinus Torvalds	help
1004584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10051da177e4SLinus Torvalds
1006584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1007584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10081da177e4SLinus Torvalds
10091da177e4SLinus Torvalds	  See also:
10106d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10111da177e4SLinus Torvalds
10120e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10138dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
10148af00860SRichard Weinberger	depends on X86 && 64BIT
10150e1227d3SHuang Ying	select CRYPTO_CRYPTD
10160e1227d3SHuang Ying	help
10178dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
10188dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
10190e1227d3SHuang Ying
1020584fffc8SSebastian Siewiorcomment "Ciphers"
10211da177e4SLinus Torvalds
1022e59c1c98SArd Biesheuvelconfig CRYPTO_LIB_AES
1023e59c1c98SArd Biesheuvel	tristate
1024e59c1c98SArd Biesheuvel
10251da177e4SLinus Torvaldsconfig CRYPTO_AES
10261da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1027cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10285bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
10291da177e4SLinus Torvalds	help
10301da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10311da177e4SLinus Torvalds	  algorithm.
10321da177e4SLinus Torvalds
10331da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10341da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10351da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10361da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10371da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10381da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10391da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10401da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10411da177e4SLinus Torvalds
10421da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10431da177e4SLinus Torvalds
10441da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10451da177e4SLinus Torvalds
1046b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1047b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1048b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1049e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1050b5e0b032SArd Biesheuvel	help
1051b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1052b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1053b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1054b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1055b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1056b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1057b5e0b032SArd Biesheuvel
1058b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1059b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1060b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1061b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10620a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10630a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1064b5e0b032SArd Biesheuvel
106554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
106654b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
10678af00860SRichard Weinberger	depends on X86
106885671860SHerbert Xu	select CRYPTO_AEAD
10692c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
107054b6a1bdSHuang Ying	select CRYPTO_ALGAPI
107185671860SHerbert Xu	select CRYPTO_BLKCIPHER
10727643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
107385671860SHerbert Xu	select CRYPTO_SIMD
107454b6a1bdSHuang Ying	help
107554b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
107654b6a1bdSHuang Ying
107754b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
107854b6a1bdSHuang Ying	  algorithm.
107954b6a1bdSHuang Ying
108054b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
108154b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
108254b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
108354b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
108454b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
108554b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
108654b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
108754b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
108854b6a1bdSHuang Ying
108954b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
109054b6a1bdSHuang Ying
109154b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
109254b6a1bdSHuang Ying
10930d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
10940d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1095944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
10960d258efbSMathias Krause	  acceleration for CTR.
10972cf4ac8bSHuang Ying
10989bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
10999bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11009bf4852dSDavid S. Miller	depends on SPARC64
11019bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11029bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11039bf4852dSDavid S. Miller	help
11049bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11059bf4852dSDavid S. Miller
11069bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11079bf4852dSDavid S. Miller	  algorithm.
11089bf4852dSDavid S. Miller
11099bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11109bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11119bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11129bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11139bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11149bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11159bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11169bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11179bf4852dSDavid S. Miller
11189bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11199bf4852dSDavid S. Miller
11209bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11219bf4852dSDavid S. Miller
11229bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11239bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11249bf4852dSDavid S. Miller	  ECB and CBC.
11259bf4852dSDavid S. Miller
1126504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1127504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1128504c6143SMarkus Stockhausen	depends on PPC && SPE
1129504c6143SMarkus Stockhausen	help
1130504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1131504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1132504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1133504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1134504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1135504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1136504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1137504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1138504c6143SMarkus Stockhausen
11391da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11401da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1141cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11421da177e4SLinus Torvalds	help
11431da177e4SLinus Torvalds	  Anubis cipher algorithm.
11441da177e4SLinus Torvalds
11451da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11461da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11471da177e4SLinus Torvalds	  in the NESSIE competition.
11481da177e4SLinus Torvalds
11491da177e4SLinus Torvalds	  See also:
11506d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11516d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11521da177e4SLinus Torvalds
1153dc51f257SArd Biesheuvelconfig CRYPTO_LIB_ARC4
1154dc51f257SArd Biesheuvel	tristate
1155dc51f257SArd Biesheuvel
1156584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1157584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1158b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1159dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1160e2ee95b8SHye-Shik Chang	help
1161584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1162e2ee95b8SHye-Shik Chang
1163584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1164584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1165584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1166584fffc8SSebastian Siewior	  weakness of the algorithm.
1167584fffc8SSebastian Siewior
1168584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1169584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1170584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
117152ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1172584fffc8SSebastian Siewior	help
1173584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1174584fffc8SSebastian Siewior
1175584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1176584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1177584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1178e2ee95b8SHye-Shik Chang
1179e2ee95b8SHye-Shik Chang	  See also:
1180584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1181584fffc8SSebastian Siewior
118252ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
118352ba867cSJussi Kivilinna	tristate
118452ba867cSJussi Kivilinna	help
118552ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
118652ba867cSJussi Kivilinna	  generic c and the assembler implementations.
118752ba867cSJussi Kivilinna
118852ba867cSJussi Kivilinna	  See also:
118952ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
119052ba867cSJussi Kivilinna
119164b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
119264b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1193f21a7c19SAl Viro	depends on X86 && 64BIT
1194c1679171SEric Biggers	select CRYPTO_BLKCIPHER
119564b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
119664b94ceaSJussi Kivilinna	help
119764b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
119864b94ceaSJussi Kivilinna
119964b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
120064b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
120164b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
120264b94ceaSJussi Kivilinna
120364b94ceaSJussi Kivilinna	  See also:
120464b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
120564b94ceaSJussi Kivilinna
1206584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1207584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1208584fffc8SSebastian Siewior	depends on CRYPTO
1209584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1210584fffc8SSebastian Siewior	help
1211584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1212584fffc8SSebastian Siewior
1213584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1214584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1215584fffc8SSebastian Siewior
1216584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1217584fffc8SSebastian Siewior
1218584fffc8SSebastian Siewior	  See also:
1219584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1220584fffc8SSebastian Siewior
12210b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12220b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1223f21a7c19SAl Viro	depends on X86 && 64BIT
12240b95ec56SJussi Kivilinna	depends on CRYPTO
12251af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1226964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12270b95ec56SJussi Kivilinna	help
12280b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12290b95ec56SJussi Kivilinna
12300b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12310b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12320b95ec56SJussi Kivilinna
12330b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12340b95ec56SJussi Kivilinna
12350b95ec56SJussi Kivilinna	  See also:
12360b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12370b95ec56SJussi Kivilinna
1238d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1239d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1240d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1241d9b1d2e7SJussi Kivilinna	depends on CRYPTO
124244893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1243d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
124444893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
124544893bc2SEric Biggers	select CRYPTO_SIMD
1246d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1247d9b1d2e7SJussi Kivilinna	help
1248d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1249d9b1d2e7SJussi Kivilinna
1250d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1251d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1252d9b1d2e7SJussi Kivilinna
1253d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1254d9b1d2e7SJussi Kivilinna
1255d9b1d2e7SJussi Kivilinna	  See also:
1256d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1257d9b1d2e7SJussi Kivilinna
1258f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1259f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1260f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1261f3f935a7SJussi Kivilinna	depends on CRYPTO
1262f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1263f3f935a7SJussi Kivilinna	help
1264f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1265f3f935a7SJussi Kivilinna
1266f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1267f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1268f3f935a7SJussi Kivilinna
1269f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1270f3f935a7SJussi Kivilinna
1271f3f935a7SJussi Kivilinna	  See also:
1272f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1273f3f935a7SJussi Kivilinna
127481658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
127581658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
127681658ad0SDavid S. Miller	depends on SPARC64
127781658ad0SDavid S. Miller	depends on CRYPTO
127881658ad0SDavid S. Miller	select CRYPTO_ALGAPI
127981658ad0SDavid S. Miller	help
128081658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
128181658ad0SDavid S. Miller
128281658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
128381658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
128481658ad0SDavid S. Miller
128581658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
128681658ad0SDavid S. Miller
128781658ad0SDavid S. Miller	  See also:
128881658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
128981658ad0SDavid S. Miller
1290044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1291044ab525SJussi Kivilinna	tristate
1292044ab525SJussi Kivilinna	help
1293044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1294044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1295044ab525SJussi Kivilinna
1296584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1297584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1298584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1299044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1300584fffc8SSebastian Siewior	help
1301584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1302584fffc8SSebastian Siewior	  described in RFC2144.
1303584fffc8SSebastian Siewior
13044d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13054d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13064d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13071e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13084d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13091e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13101e63183aSEric Biggers	select CRYPTO_SIMD
13114d6d6a2cSJohannes Goetzfried	help
13124d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13134d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13144d6d6a2cSJohannes Goetzfried
13154d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13164d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13174d6d6a2cSJohannes Goetzfried
1318584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1319584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1320584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1321044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1322584fffc8SSebastian Siewior	help
1323584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1324584fffc8SSebastian Siewior	  described in RFC2612.
1325584fffc8SSebastian Siewior
13264ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13274ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13284ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13294bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13304ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13314bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13324bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13334bd96924SEric Biggers	select CRYPTO_SIMD
13344ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13354ea1277dSJohannes Goetzfried	help
13364ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13374ea1277dSJohannes Goetzfried	  described in RFC2612.
13384ea1277dSJohannes Goetzfried
13394ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13404ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13414ea1277dSJohannes Goetzfried
134204007b0eSArd Biesheuvelconfig CRYPTO_LIB_DES
134304007b0eSArd Biesheuvel	tristate
134404007b0eSArd Biesheuvel
1345584fffc8SSebastian Siewiorconfig CRYPTO_DES
1346584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1347584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
134804007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1349584fffc8SSebastian Siewior	help
1350584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1351584fffc8SSebastian Siewior
1352c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1353c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
135497da37b3SDave Jones	depends on SPARC64
1355c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
135604007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1357c5aac2dfSDavid S. Miller	help
1358c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1359c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1360c5aac2dfSDavid S. Miller
13616574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13626574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13636574e6c6SJussi Kivilinna	depends on X86 && 64BIT
136409c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
136504007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
13666574e6c6SJussi Kivilinna	help
13676574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13686574e6c6SJussi Kivilinna
13696574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13706574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13716574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13726574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13736574e6c6SJussi Kivilinna
1374584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1375584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1376584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1377584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1378584fffc8SSebastian Siewior	help
1379584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1380584fffc8SSebastian Siewior
1381584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1382584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1383584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1384584fffc8SSebastian Siewior	help
1385584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1386584fffc8SSebastian Siewior
1387584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1388584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1389584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1390584fffc8SSebastian Siewior
1391584fffc8SSebastian Siewior	  See also:
13926d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1393e2ee95b8SHye-Shik Chang
13942407d608STan Swee Hengconfig CRYPTO_SALSA20
13953b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
13962407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13972407d608STan Swee Heng	help
13982407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13992407d608STan Swee Heng
14002407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14012407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14022407d608STan Swee Heng
14032407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14042407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14051da177e4SLinus Torvalds
1406c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1407aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1408c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1409c08d0e64SMartin Willi	help
1410aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1411c08d0e64SMartin Willi
1412c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1413c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1414de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1415c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1416c08d0e64SMartin Willi
1417de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1418de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1419de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1420de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1421de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1422de61d7aeSEric Biggers
1423aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1424aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1425aa762409SEric Biggers	  in some performance-sensitive scenarios.
1426aa762409SEric Biggers
1427c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14284af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1429c9320b6dSMartin Willi	depends on X86 && 64BIT
1430c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1431c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1432c9320b6dSMartin Willi	help
14337a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14347a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1435c9320b6dSMartin Willi
1436584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1437584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1438584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1439584fffc8SSebastian Siewior	help
1440584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1441584fffc8SSebastian Siewior
1442584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1443584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1444584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1445584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1446584fffc8SSebastian Siewior
1447584fffc8SSebastian Siewior	  See also:
1448584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1449584fffc8SSebastian Siewior
1450584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1451584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1452584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1453584fffc8SSebastian Siewior	help
1454584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1455584fffc8SSebastian Siewior
1456584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1457584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1458584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1459584fffc8SSebastian Siewior
1460584fffc8SSebastian Siewior	  See also:
1461584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1462584fffc8SSebastian Siewior
1463937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1464937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1465937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1466e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1467596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1468937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1469e0f409dcSEric Biggers	select CRYPTO_SIMD
1470937c30d7SJussi Kivilinna	help
1471937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1472937c30d7SJussi Kivilinna
1473937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1474937c30d7SJussi Kivilinna	  of 8 bits.
1475937c30d7SJussi Kivilinna
14761e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1477937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1478937c30d7SJussi Kivilinna
1479937c30d7SJussi Kivilinna	  See also:
1480937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1481937c30d7SJussi Kivilinna
1482251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1483251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1484251496dbSJussi Kivilinna	depends on X86 && !64BIT
1485e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1486596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1487251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1488e0f409dcSEric Biggers	select CRYPTO_SIMD
1489251496dbSJussi Kivilinna	help
1490251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1491251496dbSJussi Kivilinna
1492251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1493251496dbSJussi Kivilinna	  of 8 bits.
1494251496dbSJussi Kivilinna
1495251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1496251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1497251496dbSJussi Kivilinna
1498251496dbSJussi Kivilinna	  See also:
1499251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1500251496dbSJussi Kivilinna
15017efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15027efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15037efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1504e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15051d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15067efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1507e16bf974SEric Biggers	select CRYPTO_SIMD
15087efe4076SJohannes Goetzfried	select CRYPTO_XTS
15097efe4076SJohannes Goetzfried	help
15107efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15117efe4076SJohannes Goetzfried
15127efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15137efe4076SJohannes Goetzfried	  of 8 bits.
15147efe4076SJohannes Goetzfried
15157efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15167efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15177efe4076SJohannes Goetzfried
15187efe4076SJohannes Goetzfried	  See also:
15197efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15207efe4076SJohannes Goetzfried
152156d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
152256d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
152356d76c96SJussi Kivilinna	depends on X86 && 64BIT
152456d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
152556d76c96SJussi Kivilinna	help
152656d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
152756d76c96SJussi Kivilinna
152856d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
152956d76c96SJussi Kivilinna	  of 8 bits.
153056d76c96SJussi Kivilinna
153156d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
153256d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
153356d76c96SJussi Kivilinna
153456d76c96SJussi Kivilinna	  See also:
153556d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
153656d76c96SJussi Kivilinna
1537747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1538747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1539747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1540747c8ce4SGilad Ben-Yossef	help
1541747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1542747c8ce4SGilad Ben-Yossef
1543747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1544747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1545747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1546747c8ce4SGilad Ben-Yossef
1547747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1548747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1549747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1550747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1551747c8ce4SGilad Ben-Yossef
1552747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1553747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1554747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1555747c8ce4SGilad Ben-Yossef
1556747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1557747c8ce4SGilad Ben-Yossef
1558747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1559747c8ce4SGilad Ben-Yossef
1560747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1561747c8ce4SGilad Ben-Yossef
1562584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1563584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1564584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1565584fffc8SSebastian Siewior	help
1566584fffc8SSebastian Siewior	  TEA cipher algorithm.
1567584fffc8SSebastian Siewior
1568584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1569584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1570584fffc8SSebastian Siewior	  little memory.
1571584fffc8SSebastian Siewior
1572584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1573584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1574584fffc8SSebastian Siewior	  in the TEA algorithm.
1575584fffc8SSebastian Siewior
1576584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1577584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1578584fffc8SSebastian Siewior
1579584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1580584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1581584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1582584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1583584fffc8SSebastian Siewior	help
1584584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1585584fffc8SSebastian Siewior
1586584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1587584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1588584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1589584fffc8SSebastian Siewior	  bits.
1590584fffc8SSebastian Siewior
1591584fffc8SSebastian Siewior	  See also:
1592584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1593584fffc8SSebastian Siewior
1594584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1595584fffc8SSebastian Siewior	tristate
1596584fffc8SSebastian Siewior	help
1597584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1598584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1599584fffc8SSebastian Siewior
1600584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1601584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1602584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1603584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1604584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1605584fffc8SSebastian Siewior	help
1606584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1607584fffc8SSebastian Siewior
1608584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1609584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1610584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1611584fffc8SSebastian Siewior	  bits.
1612584fffc8SSebastian Siewior
1613584fffc8SSebastian Siewior	  See also:
1614584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1615584fffc8SSebastian Siewior
1616584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1617584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1618584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1619584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1620584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1621584fffc8SSebastian Siewior	help
1622584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1623584fffc8SSebastian Siewior
1624584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1625584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1626584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1627584fffc8SSebastian Siewior	  bits.
1628584fffc8SSebastian Siewior
1629584fffc8SSebastian Siewior	  See also:
1630584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1631584fffc8SSebastian Siewior
16328280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16338280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1634f21a7c19SAl Viro	depends on X86 && 64BIT
163537992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16368280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16378280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1638414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16398280daadSJussi Kivilinna	help
16408280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16418280daadSJussi Kivilinna
16428280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16438280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16448280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16458280daadSJussi Kivilinna	  bits.
16468280daadSJussi Kivilinna
16478280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16488280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16498280daadSJussi Kivilinna
16508280daadSJussi Kivilinna	  See also:
16518280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16528280daadSJussi Kivilinna
1653107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1654107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1655107778b5SJohannes Goetzfried	depends on X86 && 64BIT
16560e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1657a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16580e6ab46dSEric Biggers	select CRYPTO_SIMD
1659107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1660107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1661107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1662107778b5SJohannes Goetzfried	help
1663107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1664107778b5SJohannes Goetzfried
1665107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1666107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1667107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1668107778b5SJohannes Goetzfried	  bits.
1669107778b5SJohannes Goetzfried
1670107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1671107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1672107778b5SJohannes Goetzfried
1673107778b5SJohannes Goetzfried	  See also:
1674107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1675107778b5SJohannes Goetzfried
1676584fffc8SSebastian Siewiorcomment "Compression"
1677584fffc8SSebastian Siewior
16781da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16791da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1680cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1681f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16821da177e4SLinus Torvalds	select ZLIB_INFLATE
16831da177e4SLinus Torvalds	select ZLIB_DEFLATE
16841da177e4SLinus Torvalds	help
16851da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16861da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16871da177e4SLinus Torvalds
16881da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16891da177e4SLinus Torvalds
16900b77abb3SZoltan Sogorconfig CRYPTO_LZO
16910b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16920b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1693ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16940b77abb3SZoltan Sogor	select LZO_COMPRESS
16950b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16960b77abb3SZoltan Sogor	help
16970b77abb3SZoltan Sogor	  This is the LZO algorithm.
16980b77abb3SZoltan Sogor
169935a1fc18SSeth Jenningsconfig CRYPTO_842
170035a1fc18SSeth Jennings	tristate "842 compression algorithm"
17012062c5b6SDan Streetman	select CRYPTO_ALGAPI
17026a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17032062c5b6SDan Streetman	select 842_COMPRESS
17042062c5b6SDan Streetman	select 842_DECOMPRESS
170535a1fc18SSeth Jennings	help
170635a1fc18SSeth Jennings	  This is the 842 algorithm.
170735a1fc18SSeth Jennings
17080ea8530dSChanho Minconfig CRYPTO_LZ4
17090ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17100ea8530dSChanho Min	select CRYPTO_ALGAPI
17118cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17120ea8530dSChanho Min	select LZ4_COMPRESS
17130ea8530dSChanho Min	select LZ4_DECOMPRESS
17140ea8530dSChanho Min	help
17150ea8530dSChanho Min	  This is the LZ4 algorithm.
17160ea8530dSChanho Min
17170ea8530dSChanho Minconfig CRYPTO_LZ4HC
17180ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17190ea8530dSChanho Min	select CRYPTO_ALGAPI
172091d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17210ea8530dSChanho Min	select LZ4HC_COMPRESS
17220ea8530dSChanho Min	select LZ4_DECOMPRESS
17230ea8530dSChanho Min	help
17240ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17250ea8530dSChanho Min
1726d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1727d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1728d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1729d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1730d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1731d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1732d28fc3dbSNick Terrell	help
1733d28fc3dbSNick Terrell	  This is the zstd algorithm.
1734d28fc3dbSNick Terrell
173517f0f4a4SNeil Hormancomment "Random Number Generation"
173617f0f4a4SNeil Horman
173717f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
173817f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
173917f0f4a4SNeil Horman	select CRYPTO_AES
174017f0f4a4SNeil Horman	select CRYPTO_RNG
174117f0f4a4SNeil Horman	help
174217f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
174317f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17447dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17457dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
174617f0f4a4SNeil Horman
1747f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1748419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1749419090c6SStephan Mueller	help
1750419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1751419090c6SStephan Mueller	  more of the DRBG types must be selected.
1752419090c6SStephan Mueller
1753f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1754419090c6SStephan Mueller
1755419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1756401e4238SHerbert Xu	bool
1757419090c6SStephan Mueller	default y
1758419090c6SStephan Mueller	select CRYPTO_HMAC
1759826775bbSHerbert Xu	select CRYPTO_SHA256
1760419090c6SStephan Mueller
1761419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1762419090c6SStephan Mueller	bool "Enable Hash DRBG"
1763826775bbSHerbert Xu	select CRYPTO_SHA256
1764419090c6SStephan Mueller	help
1765419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1766419090c6SStephan Mueller
1767419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1768419090c6SStephan Mueller	bool "Enable CTR DRBG"
1769419090c6SStephan Mueller	select CRYPTO_AES
177035591285SStephan Mueller	depends on CRYPTO_CTR
1771419090c6SStephan Mueller	help
1772419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1773419090c6SStephan Mueller
1774f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1775f2c89a10SHerbert Xu	tristate
1776401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1777f2c89a10SHerbert Xu	select CRYPTO_RNG
1778bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1779f2c89a10SHerbert Xu
1780f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1781419090c6SStephan Mueller
1782bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1783bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
17842f313e02SArnd Bergmann	select CRYPTO_RNG
1785bb5530e4SStephan Mueller	help
1786bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1787bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1788bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1789bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1790bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1791bb5530e4SStephan Mueller
179203c8efc1SHerbert Xuconfig CRYPTO_USER_API
179303c8efc1SHerbert Xu	tristate
179403c8efc1SHerbert Xu
1795fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1796fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17977451708fSHerbert Xu	depends on NET
1798fe869cdbSHerbert Xu	select CRYPTO_HASH
1799fe869cdbSHerbert Xu	select CRYPTO_USER_API
1800fe869cdbSHerbert Xu	help
1801fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1802fe869cdbSHerbert Xu	  algorithms.
1803fe869cdbSHerbert Xu
18048ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18058ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18067451708fSHerbert Xu	depends on NET
18078ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18088ff59090SHerbert Xu	select CRYPTO_USER_API
18098ff59090SHerbert Xu	help
18108ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18118ff59090SHerbert Xu	  key cipher algorithms.
18128ff59090SHerbert Xu
18132f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18142f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18152f375538SStephan Mueller	depends on NET
18162f375538SStephan Mueller	select CRYPTO_RNG
18172f375538SStephan Mueller	select CRYPTO_USER_API
18182f375538SStephan Mueller	help
18192f375538SStephan Mueller	  This option enables the user-spaces interface for random
18202f375538SStephan Mueller	  number generator algorithms.
18212f375538SStephan Mueller
1822b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1823b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1824b64a2d95SHerbert Xu	depends on NET
1825b64a2d95SHerbert Xu	select CRYPTO_AEAD
182672548b09SStephan Mueller	select CRYPTO_BLKCIPHER
182772548b09SStephan Mueller	select CRYPTO_NULL
1828b64a2d95SHerbert Xu	select CRYPTO_USER_API
1829b64a2d95SHerbert Xu	help
1830b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1831b64a2d95SHerbert Xu	  cipher algorithms.
1832b64a2d95SHerbert Xu
1833cac5818cSCorentin Labbeconfig CRYPTO_STATS
1834cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1835a6a31385SCorentin Labbe	depends on CRYPTO_USER
1836cac5818cSCorentin Labbe	help
1837cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1838cac5818cSCorentin Labbe	  This will collect:
1839cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1840cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1841cac5818cSCorentin Labbe	  - size and numbers of hash operations
1842cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1843cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1844cac5818cSCorentin Labbe
1845ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1846ee08997fSDmitry Kasatkin	bool
1847ee08997fSDmitry Kasatkin
18481da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
18498636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
18508636a1f9SMasahiro Yamadasource "certs/Kconfig"
18511da177e4SLinus Torvalds
1852cce9e06dSHerbert Xuendif	# if CRYPTO
1853