xref: /linux/crypto/Kconfig (revision 7ff554ced7c7d7cf77586e07474e8633e011e2d0)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER
565cde0af2SHerbert Xu	tristate
57b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1088cd579d2SBart Van Assche	select SGL_ALLOC
1092ebda74fSGiovanni Cabiddu
1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1112ebda74fSGiovanni Cabiddu	tristate
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1142ebda74fSGiovanni Cabiddu
1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1162b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1176a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1182b8c19dbSHerbert Xu	help
1192b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1202b8c19dbSHerbert Xu	  cbc(aes).
1212b8c19dbSHerbert Xu
1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1236a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1246a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1256a0fcbb4SHerbert Xu	select CRYPTO_HASH2
126b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
127946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1284e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1306a0fcbb4SHerbert Xu
131a38f7907SSteffen Klassertconfig CRYPTO_USER
132a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1335db017aaSHerbert Xu	depends on NET
134a38f7907SSteffen Klassert	select CRYPTO_MANAGER
135a38f7907SSteffen Klassert	help
136d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
137a38f7907SSteffen Klassert	  cbc(aes).
138a38f7907SSteffen Klassert
139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
140326a6346SHerbert Xu	bool "Disable run-time self tests"
14100ca28a5SHerbert Xu	default y
1420b767f96SAlexander Shishkin	help
143326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
144326a6346SHerbert Xu	  algorithm registration.
1450b767f96SAlexander Shishkin
1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1475b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1486569e309SJason A. Donenfeld	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
1495b2706a4SEric Biggers	help
1505b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1515b2706a4SEric Biggers	  including randomized fuzz tests.
1525b2706a4SEric Biggers
1535b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1545b2706a4SEric Biggers	  longer to run than the normal self tests.
1555b2706a4SEric Biggers
156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
157e590e132SEric Biggers	tristate
158584fffc8SSebastian Siewior
159584fffc8SSebastian Siewiorconfig CRYPTO_NULL
160584fffc8SSebastian Siewior	tristate "Null algorithms"
161149a3971SHerbert Xu	select CRYPTO_NULL2
162584fffc8SSebastian Siewior	help
163584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
164584fffc8SSebastian Siewior
165149a3971SHerbert Xuconfig CRYPTO_NULL2
166dd43c4e9SHerbert Xu	tristate
167149a3971SHerbert Xu	select CRYPTO_ALGAPI2
168b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
169149a3971SHerbert Xu	select CRYPTO_HASH2
170149a3971SHerbert Xu
1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1723b4afaf2SKees Cook	tristate "Parallel crypto engine"
1733b4afaf2SKees Cook	depends on SMP
1745068c7a8SSteffen Klassert	select PADATA
1755068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1765068c7a8SSteffen Klassert	select CRYPTO_AEAD
1775068c7a8SSteffen Klassert	help
1785068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1795068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1805068c7a8SSteffen Klassert
181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
182584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
183b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
184b8a28251SLoc Ho	select CRYPTO_HASH
185584fffc8SSebastian Siewior	select CRYPTO_MANAGER
186584fffc8SSebastian Siewior	help
187584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
188584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
189584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
190584fffc8SSebastian Siewior
191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
192584fffc8SSebastian Siewior	tristate "Authenc support"
193584fffc8SSebastian Siewior	select CRYPTO_AEAD
194b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
195584fffc8SSebastian Siewior	select CRYPTO_MANAGER
196584fffc8SSebastian Siewior	select CRYPTO_HASH
197e94c6a7aSHerbert Xu	select CRYPTO_NULL
198584fffc8SSebastian Siewior	help
199584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
200584fffc8SSebastian Siewior	  This is required for IPSec.
201584fffc8SSebastian Siewior
202584fffc8SSebastian Siewiorconfig CRYPTO_TEST
203584fffc8SSebastian Siewior	tristate "Testing module"
20400ea27f1SArd Biesheuvel	depends on m || EXPERT
205da7f033dSHerbert Xu	select CRYPTO_MANAGER
206584fffc8SSebastian Siewior	help
207584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
208584fffc8SSebastian Siewior
209266d0516SHerbert Xuconfig CRYPTO_SIMD
210266d0516SHerbert Xu	tristate
211266d0516SHerbert Xu	select CRYPTO_CRYPTD
212266d0516SHerbert Xu
213735d37b5SBaolin Wangconfig CRYPTO_ENGINE
214735d37b5SBaolin Wang	tristate
215735d37b5SBaolin Wang
2163d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2173d6228a5SVitaly Chikunov
2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2193d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2203d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2213d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2223d6228a5SVitaly Chikunov	select MPILIB
2233d6228a5SVitaly Chikunov	select ASN1
2243d6228a5SVitaly Chikunov	help
2253d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2263d6228a5SVitaly Chikunov
2273d6228a5SVitaly Chikunovconfig CRYPTO_DH
2283d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2293d6228a5SVitaly Chikunov	select CRYPTO_KPP
2303d6228a5SVitaly Chikunov	select MPILIB
2313d6228a5SVitaly Chikunov	help
2323d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2333d6228a5SVitaly Chikunov
2347dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS
2357dce5981SNicolai Stange	bool "Support for RFC 7919 FFDHE group parameters"
2367dce5981SNicolai Stange	depends on CRYPTO_DH
2371e207964SNicolai Stange	select CRYPTO_RNG_DEFAULT
2387dce5981SNicolai Stange	help
2397dce5981SNicolai Stange	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
2407dce5981SNicolai Stange
2414a2289daSVitaly Chikunovconfig CRYPTO_ECC
2424a2289daSVitaly Chikunov	tristate
24338aa192aSArnd Bergmann	select CRYPTO_RNG_DEFAULT
2444a2289daSVitaly Chikunov
2453d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2463d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2474a2289daSVitaly Chikunov	select CRYPTO_ECC
2483d6228a5SVitaly Chikunov	select CRYPTO_KPP
2493d6228a5SVitaly Chikunov	help
2503d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2513d6228a5SVitaly Chikunov
2524e660291SStefan Bergerconfig CRYPTO_ECDSA
2534e660291SStefan Berger	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
2544e660291SStefan Berger	select CRYPTO_ECC
2554e660291SStefan Berger	select CRYPTO_AKCIPHER
2564e660291SStefan Berger	select ASN1
2574e660291SStefan Berger	help
2584e660291SStefan Berger	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
2594e660291SStefan Berger	  is A NIST cryptographic standard algorithm. Only signature verification
2604e660291SStefan Berger	  is implemented.
2614e660291SStefan Berger
2620d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2630d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2640d7a7864SVitaly Chikunov	select CRYPTO_ECC
2650d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2660d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2671036633eSVitaly Chikunov	select OID_REGISTRY
2681036633eSVitaly Chikunov	select ASN1
2690d7a7864SVitaly Chikunov	help
2700d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2710d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2720d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2730d7a7864SVitaly Chikunov	  is implemented.
2740d7a7864SVitaly Chikunov
275ea7ecb66STianjia Zhangconfig CRYPTO_SM2
276ea7ecb66STianjia Zhang	tristate "SM2 algorithm"
277d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
278ea7ecb66STianjia Zhang	select CRYPTO_AKCIPHER
279ea7ecb66STianjia Zhang	select CRYPTO_MANAGER
280ea7ecb66STianjia Zhang	select MPILIB
281ea7ecb66STianjia Zhang	select ASN1
282ea7ecb66STianjia Zhang	help
283ea7ecb66STianjia Zhang	  Generic implementation of the SM2 public key algorithm. It was
284ea7ecb66STianjia Zhang	  published by State Encryption Management Bureau, China.
285ea7ecb66STianjia Zhang	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
286ea7ecb66STianjia Zhang
287ea7ecb66STianjia Zhang	  References:
288ea7ecb66STianjia Zhang	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
289ea7ecb66STianjia Zhang	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
290ea7ecb66STianjia Zhang	  http://www.gmbz.org.cn/main/bzlb.html
291ea7ecb66STianjia Zhang
292ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519
293ee772cb6SArd Biesheuvel	tristate "Curve25519 algorithm"
294ee772cb6SArd Biesheuvel	select CRYPTO_KPP
295ee772cb6SArd Biesheuvel	select CRYPTO_LIB_CURVE25519_GENERIC
296ee772cb6SArd Biesheuvel
297bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86
298bb611bdfSJason A. Donenfeld	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
299bb611bdfSJason A. Donenfeld	depends on X86 && 64BIT
300bb611bdfSJason A. Donenfeld	select CRYPTO_LIB_CURVE25519_GENERIC
301bb611bdfSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
302bb611bdfSJason A. Donenfeld
303584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
304584fffc8SSebastian Siewior
305584fffc8SSebastian Siewiorconfig CRYPTO_CCM
306584fffc8SSebastian Siewior	tristate "CCM support"
307584fffc8SSebastian Siewior	select CRYPTO_CTR
308f15f05b0SArd Biesheuvel	select CRYPTO_HASH
309584fffc8SSebastian Siewior	select CRYPTO_AEAD
310c8a3315aSEric Biggers	select CRYPTO_MANAGER
311584fffc8SSebastian Siewior	help
312584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
313584fffc8SSebastian Siewior
314584fffc8SSebastian Siewiorconfig CRYPTO_GCM
315584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
316584fffc8SSebastian Siewior	select CRYPTO_CTR
317584fffc8SSebastian Siewior	select CRYPTO_AEAD
3189382d97aSHuang Ying	select CRYPTO_GHASH
3199489667dSJussi Kivilinna	select CRYPTO_NULL
320c8a3315aSEric Biggers	select CRYPTO_MANAGER
321584fffc8SSebastian Siewior	help
322584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
323584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
324584fffc8SSebastian Siewior
32571ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
32671ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
32771ebc4d1SMartin Willi	select CRYPTO_CHACHA20
32871ebc4d1SMartin Willi	select CRYPTO_POLY1305
32971ebc4d1SMartin Willi	select CRYPTO_AEAD
330c8a3315aSEric Biggers	select CRYPTO_MANAGER
33171ebc4d1SMartin Willi	help
33271ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
33371ebc4d1SMartin Willi
33471ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
33571ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
33671ebc4d1SMartin Willi	  IETF protocols.
33771ebc4d1SMartin Willi
338f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
339f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
340f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
341f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
342f606a88eSOndrej Mosnacek	help
343f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
344f606a88eSOndrej Mosnacek
345a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
346a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
347a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
348a4397635SArd Biesheuvel	default y
349a4397635SArd Biesheuvel
3501d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3511d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3521d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3531d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
354de272ca7SEric Biggers	select CRYPTO_SIMD
3551d373d4eSOndrej Mosnacek	help
3564e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3571d373d4eSOndrej Mosnacek
358584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
359584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
360584fffc8SSebastian Siewior	select CRYPTO_AEAD
361b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
362856e3f40SHerbert Xu	select CRYPTO_NULL
363401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
364c8a3315aSEric Biggers	select CRYPTO_MANAGER
365584fffc8SSebastian Siewior	help
366584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
367584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
368584fffc8SSebastian Siewior
369a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
370a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
371a10f554fSHerbert Xu	select CRYPTO_AEAD
372a10f554fSHerbert Xu	select CRYPTO_NULL
373401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
374c8a3315aSEric Biggers	select CRYPTO_MANAGER
375a10f554fSHerbert Xu	help
376a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
377a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
378a10f554fSHerbert Xu	  algorithm for CBC.
379a10f554fSHerbert Xu
380584fffc8SSebastian Siewiorcomment "Block modes"
381584fffc8SSebastian Siewior
382584fffc8SSebastian Siewiorconfig CRYPTO_CBC
383584fffc8SSebastian Siewior	tristate "CBC support"
384b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
385584fffc8SSebastian Siewior	select CRYPTO_MANAGER
386584fffc8SSebastian Siewior	help
387584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
388584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
389584fffc8SSebastian Siewior
390a7d85e06SJames Bottomleyconfig CRYPTO_CFB
391a7d85e06SJames Bottomley	tristate "CFB support"
392b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
393a7d85e06SJames Bottomley	select CRYPTO_MANAGER
394a7d85e06SJames Bottomley	help
395a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
396a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
397a7d85e06SJames Bottomley
398584fffc8SSebastian Siewiorconfig CRYPTO_CTR
399584fffc8SSebastian Siewior	tristate "CTR support"
400b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
401584fffc8SSebastian Siewior	select CRYPTO_MANAGER
402584fffc8SSebastian Siewior	help
403584fffc8SSebastian Siewior	  CTR: Counter mode
404584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
405584fffc8SSebastian Siewior
406584fffc8SSebastian Siewiorconfig CRYPTO_CTS
407584fffc8SSebastian Siewior	tristate "CTS support"
408b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
409c8a3315aSEric Biggers	select CRYPTO_MANAGER
410584fffc8SSebastian Siewior	help
411584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
412584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
413ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
414ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
415ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
416584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
417584fffc8SSebastian Siewior	  for AES encryption.
418584fffc8SSebastian Siewior
419ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
420ecd6d5c9SGilad Ben-Yossef
421584fffc8SSebastian Siewiorconfig CRYPTO_ECB
422584fffc8SSebastian Siewior	tristate "ECB support"
423b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
424584fffc8SSebastian Siewior	select CRYPTO_MANAGER
425584fffc8SSebastian Siewior	help
426584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
427584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
428584fffc8SSebastian Siewior	  the input block by block.
429584fffc8SSebastian Siewior
430584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4312470a2b2SJussi Kivilinna	tristate "LRW support"
432b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
433584fffc8SSebastian Siewior	select CRYPTO_MANAGER
434584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
435f60bbbbeSHerbert Xu	select CRYPTO_ECB
436584fffc8SSebastian Siewior	help
437584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
438584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
439584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
440584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
441584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
442584fffc8SSebastian Siewior
443e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
444e497c518SGilad Ben-Yossef	tristate "OFB support"
445b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
446e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
447e497c518SGilad Ben-Yossef	help
448e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
449e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
450e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
451e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
452e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
453e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
454e497c518SGilad Ben-Yossef
455584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
456584fffc8SSebastian Siewior	tristate "PCBC support"
457b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
458584fffc8SSebastian Siewior	select CRYPTO_MANAGER
459584fffc8SSebastian Siewior	help
460584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
461584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
462584fffc8SSebastian Siewior
46317fee07aSNathan Huckleberryconfig CRYPTO_XCTR
46417fee07aSNathan Huckleberry	tristate
46517fee07aSNathan Huckleberry	select CRYPTO_SKCIPHER
46617fee07aSNathan Huckleberry	select CRYPTO_MANAGER
46717fee07aSNathan Huckleberry	help
46817fee07aSNathan Huckleberry	  XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode
46917fee07aSNathan Huckleberry	  using XORs and little-endian addition rather than big-endian arithmetic.
47017fee07aSNathan Huckleberry	  XCTR mode is used to implement HCTR2.
47117fee07aSNathan Huckleberry
472584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4735bcf8e6dSJussi Kivilinna	tristate "XTS support"
474b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
475584fffc8SSebastian Siewior	select CRYPTO_MANAGER
47612cb3a1cSMilan Broz	select CRYPTO_ECB
477584fffc8SSebastian Siewior	help
478584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
479584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
480584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
481584fffc8SSebastian Siewior
4821c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4831c49678eSStephan Mueller	tristate "Key wrapping support"
484b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
485c8a3315aSEric Biggers	select CRYPTO_MANAGER
4861c49678eSStephan Mueller	help
4871c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4881c49678eSStephan Mueller	  padding.
4891c49678eSStephan Mueller
49026609a21SEric Biggersconfig CRYPTO_NHPOLY1305
49126609a21SEric Biggers	tristate
49226609a21SEric Biggers	select CRYPTO_HASH
49348ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
49426609a21SEric Biggers
495012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
496012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
497012c8238SEric Biggers	depends on X86 && 64BIT
498012c8238SEric Biggers	select CRYPTO_NHPOLY1305
499012c8238SEric Biggers	help
500012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
501012c8238SEric Biggers	  Adiantum encryption mode.
502012c8238SEric Biggers
5030f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5040f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5050f961f9fSEric Biggers	depends on X86 && 64BIT
5060f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5070f961f9fSEric Biggers	help
5080f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5090f961f9fSEric Biggers	  Adiantum encryption mode.
5100f961f9fSEric Biggers
511059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
512059c2a4dSEric Biggers	tristate "Adiantum support"
513059c2a4dSEric Biggers	select CRYPTO_CHACHA20
51448ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
515059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
516c8a3315aSEric Biggers	select CRYPTO_MANAGER
517059c2a4dSEric Biggers	help
518059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
519059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
520059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
521059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
522059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
523059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
524059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
525059c2a4dSEric Biggers	  AES-XTS.
526059c2a4dSEric Biggers
527059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
528059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
529059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
530059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
531059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
532059c2a4dSEric Biggers
533059c2a4dSEric Biggers	  If unsure, say N.
534059c2a4dSEric Biggers
535*7ff554ceSNathan Huckleberryconfig CRYPTO_HCTR2
536*7ff554ceSNathan Huckleberry	tristate "HCTR2 support"
537*7ff554ceSNathan Huckleberry	select CRYPTO_XCTR
538*7ff554ceSNathan Huckleberry	select CRYPTO_POLYVAL
539*7ff554ceSNathan Huckleberry	select CRYPTO_MANAGER
540*7ff554ceSNathan Huckleberry	help
541*7ff554ceSNathan Huckleberry	  HCTR2 is a length-preserving encryption mode for storage encryption that
542*7ff554ceSNathan Huckleberry	  is efficient on processors with instructions to accelerate AES and
543*7ff554ceSNathan Huckleberry	  carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and
544*7ff554ceSNathan Huckleberry	  ARM processors with the ARMv8 crypto extensions.
545*7ff554ceSNathan Huckleberry
546be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
547be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
548be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
549be1eb7f7SArd Biesheuvel	help
550be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
551be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
552be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
553be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
554be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
555be1eb7f7SArd Biesheuvel	  encryption.
556be1eb7f7SArd Biesheuvel
557be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
558ab3d436bSGeert Uytterhoeven	  instantiated either as an skcipher or as an AEAD (depending on the
559be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
560be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
561ab3d436bSGeert Uytterhoeven	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
562be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
563be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
564be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
565be1eb7f7SArd Biesheuvel
566be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
567be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
568be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
569be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
570be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
571be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
572be1eb7f7SArd Biesheuvel	  block encryption)
573be1eb7f7SArd Biesheuvel
574584fffc8SSebastian Siewiorcomment "Hash modes"
575584fffc8SSebastian Siewior
57693b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
57793b5e86aSJussi Kivilinna	tristate "CMAC support"
57893b5e86aSJussi Kivilinna	select CRYPTO_HASH
57993b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
58093b5e86aSJussi Kivilinna	help
58193b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
58293b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
58393b5e86aSJussi Kivilinna
58493b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
58593b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
58693b5e86aSJussi Kivilinna
5871da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5888425165dSHerbert Xu	tristate "HMAC support"
5890796ae06SHerbert Xu	select CRYPTO_HASH
59043518407SHerbert Xu	select CRYPTO_MANAGER
5911da177e4SLinus Torvalds	help
5921da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5931da177e4SLinus Torvalds	  This is required for IPSec.
5941da177e4SLinus Torvalds
595333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
596333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
597333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
598333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
599333b0d7eSKazunori MIYAZAWA	help
600333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
6019332a9e7SAlexander A. Klimov		https://www.ietf.org/rfc/rfc3566.txt
602333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
603333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
604333b0d7eSKazunori MIYAZAWA
605f1939f7cSShane Wangconfig CRYPTO_VMAC
606f1939f7cSShane Wang	tristate "VMAC support"
607f1939f7cSShane Wang	select CRYPTO_HASH
608f1939f7cSShane Wang	select CRYPTO_MANAGER
609f1939f7cSShane Wang	help
610f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
611f1939f7cSShane Wang	  very high speed on 64-bit architectures.
612f1939f7cSShane Wang
613f1939f7cSShane Wang	  See also:
6149332a9e7SAlexander A. Klimov	  <https://fastcrypto.org/vmac>
615f1939f7cSShane Wang
616584fffc8SSebastian Siewiorcomment "Digest"
617584fffc8SSebastian Siewior
618584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
619584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6205773a3e6SHerbert Xu	select CRYPTO_HASH
6216a0962b2SDarrick J. Wong	select CRC32
6221da177e4SLinus Torvalds	help
623584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
624584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
62569c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6261da177e4SLinus Torvalds
6278cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6288cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6298cb51ba8SAustin Zhang	depends on X86
6308cb51ba8SAustin Zhang	select CRYPTO_HASH
6318cb51ba8SAustin Zhang	help
6328cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6338cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6348cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6358cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6368cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6378cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6388cb51ba8SAustin Zhang
6397cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6406dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
641c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6426dd7a82cSAnton Blanchard	select CRYPTO_HASH
6436dd7a82cSAnton Blanchard	select CRC32
6446dd7a82cSAnton Blanchard	help
6456dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6466dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6476dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6486dd7a82cSAnton Blanchard
6496dd7a82cSAnton Blanchard
650442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
651442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
652442a7c40SDavid S. Miller	depends on SPARC64
653442a7c40SDavid S. Miller	select CRYPTO_HASH
654442a7c40SDavid S. Miller	select CRC32
655442a7c40SDavid S. Miller	help
656442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
657442a7c40SDavid S. Miller	  when available.
658442a7c40SDavid S. Miller
65978c37d19SAlexander Boykoconfig CRYPTO_CRC32
66078c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
66178c37d19SAlexander Boyko	select CRYPTO_HASH
66278c37d19SAlexander Boyko	select CRC32
66378c37d19SAlexander Boyko	help
66478c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
66578c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
66678c37d19SAlexander Boyko
66778c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
66878c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
66978c37d19SAlexander Boyko	depends on X86
67078c37d19SAlexander Boyko	select CRYPTO_HASH
67178c37d19SAlexander Boyko	select CRC32
67278c37d19SAlexander Boyko	help
67378c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
67478c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
67578c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
676af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
67778c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
67878c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
67978c37d19SAlexander Boyko
6804a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6814a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6824a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6834a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6844a5dc51eSMarcin Nowakowski	help
6854a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6864a5dc51eSMarcin Nowakowski	  instructions, when available.
6874a5dc51eSMarcin Nowakowski
6884a5dc51eSMarcin Nowakowski
68967882e76SNikolay Borisovconfig CRYPTO_XXHASH
69067882e76SNikolay Borisov	tristate "xxHash hash algorithm"
69167882e76SNikolay Borisov	select CRYPTO_HASH
69267882e76SNikolay Borisov	select XXHASH
69367882e76SNikolay Borisov	help
69467882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
69567882e76SNikolay Borisov	  speeds close to RAM limits.
69667882e76SNikolay Borisov
69791d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
69891d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
69991d68933SDavid Sterba	select CRYPTO_HASH
70091d68933SDavid Sterba	help
70191d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
70291d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
70391d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
70491d68933SDavid Sterba
70591d68933SDavid Sterba	  This module provides the following algorithms:
70691d68933SDavid Sterba
70791d68933SDavid Sterba	  - blake2b-160
70891d68933SDavid Sterba	  - blake2b-256
70991d68933SDavid Sterba	  - blake2b-384
71091d68933SDavid Sterba	  - blake2b-512
71191d68933SDavid Sterba
71291d68933SDavid Sterba	  See https://blake2.net for further information.
71391d68933SDavid Sterba
7147f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S
7157f9b0880SArd Biesheuvel	tristate "BLAKE2s digest algorithm"
7167f9b0880SArd Biesheuvel	select CRYPTO_LIB_BLAKE2S_GENERIC
7177f9b0880SArd Biesheuvel	select CRYPTO_HASH
7187f9b0880SArd Biesheuvel	help
7197f9b0880SArd Biesheuvel	  Implementation of cryptographic hash function BLAKE2s
7207f9b0880SArd Biesheuvel	  optimized for 8-32bit platforms and can produce digests of any size
7217f9b0880SArd Biesheuvel	  between 1 to 32.  The keyed hash is also implemented.
7227f9b0880SArd Biesheuvel
7237f9b0880SArd Biesheuvel	  This module provides the following algorithms:
7247f9b0880SArd Biesheuvel
7257f9b0880SArd Biesheuvel	  - blake2s-128
7267f9b0880SArd Biesheuvel	  - blake2s-160
7277f9b0880SArd Biesheuvel	  - blake2s-224
7287f9b0880SArd Biesheuvel	  - blake2s-256
7297f9b0880SArd Biesheuvel
7307f9b0880SArd Biesheuvel	  See https://blake2.net for further information.
7317f9b0880SArd Biesheuvel
732ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86
733ed0356edSJason A. Donenfeld	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
734ed0356edSJason A. Donenfeld	depends on X86 && 64BIT
735ed0356edSJason A. Donenfeld	select CRYPTO_LIB_BLAKE2S_GENERIC
736ed0356edSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
737ed0356edSJason A. Donenfeld
73868411521SHerbert Xuconfig CRYPTO_CRCT10DIF
73968411521SHerbert Xu	tristate "CRCT10DIF algorithm"
74068411521SHerbert Xu	select CRYPTO_HASH
74168411521SHerbert Xu	help
74268411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
74368411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
74468411521SHerbert Xu	  transforms to be used if they are available.
74568411521SHerbert Xu
74668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
74768411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
74868411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
74968411521SHerbert Xu	select CRYPTO_HASH
75068411521SHerbert Xu	help
75168411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
75268411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
75368411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
754af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
75568411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
75668411521SHerbert Xu
757b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
758b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
759b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
760b01df1c1SDaniel Axtens	select CRYPTO_HASH
761b01df1c1SDaniel Axtens	help
762b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
763b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
764b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
765b01df1c1SDaniel Axtens
766f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT
767f3813f4bSKeith Busch	tristate "Rocksoft Model CRC64 algorithm"
768f3813f4bSKeith Busch	depends on CRC64
769f3813f4bSKeith Busch	select CRYPTO_HASH
770f3813f4bSKeith Busch
771146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
772146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
773146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
774146c8688SDaniel Axtens	help
775146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
776146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
777146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
778146c8688SDaniel Axtens
7792cdc6899SHuang Yingconfig CRYPTO_GHASH
7808dfa20fcSEric Biggers	tristate "GHASH hash function"
7812cdc6899SHuang Ying	select CRYPTO_GF128MUL
782578c60fbSArnd Bergmann	select CRYPTO_HASH
7832cdc6899SHuang Ying	help
7848dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
7858dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
7862cdc6899SHuang Ying
787f3c923a0SNathan Huckleberryconfig CRYPTO_POLYVAL
788f3c923a0SNathan Huckleberry	tristate
789f3c923a0SNathan Huckleberry	select CRYPTO_GF128MUL
790f3c923a0SNathan Huckleberry	select CRYPTO_HASH
791f3c923a0SNathan Huckleberry	help
792f3c923a0SNathan Huckleberry	  POLYVAL is the hash function used in HCTR2.  It is not a general-purpose
793f3c923a0SNathan Huckleberry	  cryptographic hash function.
794f3c923a0SNathan Huckleberry
795f979e014SMartin Williconfig CRYPTO_POLY1305
796f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
797578c60fbSArnd Bergmann	select CRYPTO_HASH
79848ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
799f979e014SMartin Willi	help
800f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
801f979e014SMartin Willi
802f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
803f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
804f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
805f979e014SMartin Willi
806c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
807b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
808c70f4abeSMartin Willi	depends on X86 && 64BIT
8091b2c6a51SArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
810f0e89bcfSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
811c70f4abeSMartin Willi	help
812c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
813c70f4abeSMartin Willi
814c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
815c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
816c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
817c70f4abeSMartin Willi	  instructions.
818c70f4abeSMartin Willi
819a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS
820a11d055eSArd Biesheuvel	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
8216c810cf2SMaciej W. Rozycki	depends on MIPS
822a11d055eSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
823a11d055eSArd Biesheuvel
8241da177e4SLinus Torvaldsconfig CRYPTO_MD4
8251da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
826808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8271da177e4SLinus Torvalds	help
8281da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
8291da177e4SLinus Torvalds
8301da177e4SLinus Torvaldsconfig CRYPTO_MD5
8311da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
83214b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8331da177e4SLinus Torvalds	help
8341da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
8351da177e4SLinus Torvalds
836d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
837d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
838d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
839d69e75deSAaro Koskinen	select CRYPTO_MD5
840d69e75deSAaro Koskinen	select CRYPTO_HASH
841d69e75deSAaro Koskinen	help
842d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
843d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
844d69e75deSAaro Koskinen
845e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
846e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
847e8e59953SMarkus Stockhausen	depends on PPC
848e8e59953SMarkus Stockhausen	select CRYPTO_HASH
849e8e59953SMarkus Stockhausen	help
850e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
851e8e59953SMarkus Stockhausen	  in PPC assembler.
852e8e59953SMarkus Stockhausen
853fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
854fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
855fa4dfedcSDavid S. Miller	depends on SPARC64
856fa4dfedcSDavid S. Miller	select CRYPTO_MD5
857fa4dfedcSDavid S. Miller	select CRYPTO_HASH
858fa4dfedcSDavid S. Miller	help
859fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
860fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
861fa4dfedcSDavid S. Miller
862584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
863584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
86419e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
865584fffc8SSebastian Siewior	help
866584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
867584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
868584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
869584fffc8SSebastian Siewior	  of the algorithm.
870584fffc8SSebastian Siewior
87182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
87282798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
873e5835fbaSHerbert Xu	select CRYPTO_HASH
87482798f90SAdrian-Ken Rueegsegger	help
87582798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
87682798f90SAdrian-Ken Rueegsegger
87782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
87882798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
879b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
880b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
88182798f90SAdrian-Ken Rueegsegger
882b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
883b6d44341SAdrian Bunk	  against RIPEMD-160.
884534fe2c1SAdrian-Ken Rueegsegger
885534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8869332a9e7SAlexander A. Klimov	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
887534fe2c1SAdrian-Ken Rueegsegger
8881da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8891da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
89054ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8911da177e4SLinus Torvalds	help
8921da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8931da177e4SLinus Torvalds
89466be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
895e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
89666be8951SMathias Krause	depends on X86 && 64BIT
89766be8951SMathias Krause	select CRYPTO_SHA1
89866be8951SMathias Krause	select CRYPTO_HASH
89966be8951SMathias Krause	help
90066be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
90166be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
902e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
903e38b6b7fStim	  when available.
90466be8951SMathias Krause
9058275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
906e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
9078275d1aaSTim Chen	depends on X86 && 64BIT
9088275d1aaSTim Chen	select CRYPTO_SHA256
9098275d1aaSTim Chen	select CRYPTO_HASH
9108275d1aaSTim Chen	help
9118275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
9128275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
9138275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
914e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
915e38b6b7fStim	  Instructions) when available.
9168275d1aaSTim Chen
91787de4579STim Chenconfig CRYPTO_SHA512_SSSE3
91887de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
91987de4579STim Chen	depends on X86 && 64BIT
92087de4579STim Chen	select CRYPTO_SHA512
92187de4579STim Chen	select CRYPTO_HASH
92287de4579STim Chen	help
92387de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
92487de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
92587de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
92687de4579STim Chen	  version 2 (AVX2) instructions, when available.
92787de4579STim Chen
928efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
929efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
930efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
931efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
932efdb6f6eSAaro Koskinen	select CRYPTO_HASH
933efdb6f6eSAaro Koskinen	help
934efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
935efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
936efdb6f6eSAaro Koskinen
9374ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9384ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9394ff28d4cSDavid S. Miller	depends on SPARC64
9404ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9414ff28d4cSDavid S. Miller	select CRYPTO_HASH
9424ff28d4cSDavid S. Miller	help
9434ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9444ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9454ff28d4cSDavid S. Miller
946323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
947323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
948323a6bf1SMichael Ellerman	depends on PPC
949323a6bf1SMichael Ellerman	help
950323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
951323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
952323a6bf1SMichael Ellerman
953d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
954d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
955d9850fc5SMarkus Stockhausen	depends on PPC && SPE
956d9850fc5SMarkus Stockhausen	help
957d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
958d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
959d9850fc5SMarkus Stockhausen
9601da177e4SLinus Torvaldsconfig CRYPTO_SHA256
961cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
96250e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
96308c327f6SHans de Goede	select CRYPTO_LIB_SHA256
9641da177e4SLinus Torvalds	help
9651da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9661da177e4SLinus Torvalds
9671da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9681da177e4SLinus Torvalds	  security against collision attacks.
9691da177e4SLinus Torvalds
970cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
971cd12fb90SJonathan Lynch	  of security against collision attacks.
972cd12fb90SJonathan Lynch
9732ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9742ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9752ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9762ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9772ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9782ecc1e95SMarkus Stockhausen	help
9792ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9802ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9812ecc1e95SMarkus Stockhausen
982efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
983efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
984efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
985efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
986efdb6f6eSAaro Koskinen	select CRYPTO_HASH
987efdb6f6eSAaro Koskinen	help
988efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
989efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
990efdb6f6eSAaro Koskinen
99186c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
99286c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
99386c93b24SDavid S. Miller	depends on SPARC64
99486c93b24SDavid S. Miller	select CRYPTO_SHA256
99586c93b24SDavid S. Miller	select CRYPTO_HASH
99686c93b24SDavid S. Miller	help
99786c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
99886c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
99986c93b24SDavid S. Miller
10001da177e4SLinus Torvaldsconfig CRYPTO_SHA512
10011da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
1002bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10031da177e4SLinus Torvalds	help
10041da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
10051da177e4SLinus Torvalds
10061da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
10071da177e4SLinus Torvalds	  security against collision attacks.
10081da177e4SLinus Torvalds
10091da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
10101da177e4SLinus Torvalds	  of security against collision attacks.
10111da177e4SLinus Torvalds
1012efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
1013efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
1014efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
1015efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
1016efdb6f6eSAaro Koskinen	select CRYPTO_HASH
1017efdb6f6eSAaro Koskinen	help
1018efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1019efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
1020efdb6f6eSAaro Koskinen
1021775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
1022775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
1023775e0c69SDavid S. Miller	depends on SPARC64
1024775e0c69SDavid S. Miller	select CRYPTO_SHA512
1025775e0c69SDavid S. Miller	select CRYPTO_HASH
1026775e0c69SDavid S. Miller	help
1027775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1028775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
1029775e0c69SDavid S. Miller
103053964b9eSJeff Garzikconfig CRYPTO_SHA3
103153964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
103253964b9eSJeff Garzik	select CRYPTO_HASH
103353964b9eSJeff Garzik	help
103453964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
103553964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
103653964b9eSJeff Garzik
103753964b9eSJeff Garzik	  References:
103853964b9eSJeff Garzik	  http://keccak.noekeon.org/
103953964b9eSJeff Garzik
10404f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
1041d2825fa9SJason A. Donenfeld	tristate
1042d2825fa9SJason A. Donenfeld
1043d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC
10444f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10454f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
1046d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
10474f0fc160SGilad Ben-Yossef	help
10484f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10494f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10504f0fc160SGilad Ben-Yossef
10514f0fc160SGilad Ben-Yossef	  References:
10524f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10534f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10544f0fc160SGilad Ben-Yossef
1055930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64
1056930ab34dSTianjia Zhang	tristate "SM3 digest algorithm (x86_64/AVX)"
1057930ab34dSTianjia Zhang	depends on X86 && 64BIT
1058930ab34dSTianjia Zhang	select CRYPTO_HASH
1059d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
1060930ab34dSTianjia Zhang	help
1061930ab34dSTianjia Zhang	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1062930ab34dSTianjia Zhang	  It is part of the Chinese Commercial Cryptography suite. This is
1063930ab34dSTianjia Zhang	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1064930ab34dSTianjia Zhang	  when available.
1065930ab34dSTianjia Zhang
1066930ab34dSTianjia Zhang	  If unsure, say N.
1067930ab34dSTianjia Zhang
1068fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1069fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1070fe18957eSVitaly Chikunov	select CRYPTO_HASH
1071fe18957eSVitaly Chikunov	help
1072fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1073fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1074fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1075fe18957eSVitaly Chikunov
1076fe18957eSVitaly Chikunov	  References:
1077fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1078fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1079fe18957eSVitaly Chikunov
1080584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1081584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10824946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10831da177e4SLinus Torvalds	help
1084584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10851da177e4SLinus Torvalds
1086584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1087584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10881da177e4SLinus Torvalds
10891da177e4SLinus Torvalds	  See also:
10906d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10911da177e4SLinus Torvalds
10920e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10938dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
10948af00860SRichard Weinberger	depends on X86 && 64BIT
10950e1227d3SHuang Ying	select CRYPTO_CRYPTD
10960e1227d3SHuang Ying	help
10978dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
10988dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
10990e1227d3SHuang Ying
1100584fffc8SSebastian Siewiorcomment "Ciphers"
11011da177e4SLinus Torvalds
11021da177e4SLinus Torvaldsconfig CRYPTO_AES
11031da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1104cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11055bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
11061da177e4SLinus Torvalds	help
11071da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11081da177e4SLinus Torvalds	  algorithm.
11091da177e4SLinus Torvalds
11101da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
11111da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
11121da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
11131da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
11141da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
11151da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
11161da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
11171da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11181da177e4SLinus Torvalds
11191da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11201da177e4SLinus Torvalds
11211da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
11221da177e4SLinus Torvalds
1123b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1124b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1125b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1126e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1127b5e0b032SArd Biesheuvel	help
1128b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1129b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1130b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1131b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1132b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1133b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1134b5e0b032SArd Biesheuvel
1135b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1136b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1137b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1138b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
11390a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
11400a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1141b5e0b032SArd Biesheuvel
114254b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
114354b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11448af00860SRichard Weinberger	depends on X86
114585671860SHerbert Xu	select CRYPTO_AEAD
11462c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
114754b6a1bdSHuang Ying	select CRYPTO_ALGAPI
1148b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
114985671860SHerbert Xu	select CRYPTO_SIMD
115054b6a1bdSHuang Ying	help
115154b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
115254b6a1bdSHuang Ying
115354b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
115454b6a1bdSHuang Ying	  algorithm.
115554b6a1bdSHuang Ying
115654b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
115754b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
115854b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
115954b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
116054b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
116154b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
116254b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
116354b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
116454b6a1bdSHuang Ying
116554b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
116654b6a1bdSHuang Ying
116754b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
116854b6a1bdSHuang Ying
11690d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11700d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1171944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11720d258efbSMathias Krause	  acceleration for CTR.
11732cf4ac8bSHuang Ying
11749bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11759bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11769bf4852dSDavid S. Miller	depends on SPARC64
1177b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
11789bf4852dSDavid S. Miller	help
11799bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11809bf4852dSDavid S. Miller
11819bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11829bf4852dSDavid S. Miller	  algorithm.
11839bf4852dSDavid S. Miller
11849bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11859bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11869bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11879bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11889bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11899bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11909bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11919bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11929bf4852dSDavid S. Miller
11939bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11949bf4852dSDavid S. Miller
11959bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11969bf4852dSDavid S. Miller
11979bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11989bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11999bf4852dSDavid S. Miller	  ECB and CBC.
12009bf4852dSDavid S. Miller
1201504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1202504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1203504c6143SMarkus Stockhausen	depends on PPC && SPE
1204b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1205504c6143SMarkus Stockhausen	help
1206504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1207504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1208504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1209504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1210504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1211504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1212504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1213504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1214504c6143SMarkus Stockhausen
12151da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12161da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
12171674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1218cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12191da177e4SLinus Torvalds	help
12201da177e4SLinus Torvalds	  Anubis cipher algorithm.
12211da177e4SLinus Torvalds
12221da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12231da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12241da177e4SLinus Torvalds	  in the NESSIE competition.
12251da177e4SLinus Torvalds
12261da177e4SLinus Torvalds	  See also:
12276d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12286d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12291da177e4SLinus Torvalds
1230584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1231584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
12329ace6771SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1233b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1234dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1235e2ee95b8SHye-Shik Chang	help
1236584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1237e2ee95b8SHye-Shik Chang
1238584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1239584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1240584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1241584fffc8SSebastian Siewior	  weakness of the algorithm.
1242584fffc8SSebastian Siewior
1243584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1244584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1245584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
124652ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1247584fffc8SSebastian Siewior	help
1248584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1249584fffc8SSebastian Siewior
1250584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1251584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1252584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1253e2ee95b8SHye-Shik Chang
1254e2ee95b8SHye-Shik Chang	  See also:
12559332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
1256584fffc8SSebastian Siewior
125752ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
125852ba867cSJussi Kivilinna	tristate
125952ba867cSJussi Kivilinna	help
126052ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
126152ba867cSJussi Kivilinna	  generic c and the assembler implementations.
126252ba867cSJussi Kivilinna
126352ba867cSJussi Kivilinna	  See also:
12649332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
126552ba867cSJussi Kivilinna
126664b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
126764b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1268f21a7c19SAl Viro	depends on X86 && 64BIT
1269b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
127064b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1271c0a64926SArd Biesheuvel	imply CRYPTO_CTR
127264b94ceaSJussi Kivilinna	help
127364b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
127464b94ceaSJussi Kivilinna
127564b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
127664b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
127764b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
127864b94ceaSJussi Kivilinna
127964b94ceaSJussi Kivilinna	  See also:
12809332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
128164b94ceaSJussi Kivilinna
1282584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1283584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1284584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1285584fffc8SSebastian Siewior	help
1286584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1287584fffc8SSebastian Siewior
1288584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1289584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1290584fffc8SSebastian Siewior
1291584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1292584fffc8SSebastian Siewior
1293584fffc8SSebastian Siewior	  See also:
1294584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1295584fffc8SSebastian Siewior
12960b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12970b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1298f21a7c19SAl Viro	depends on X86 && 64BIT
1299b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1300a1f91ecfSArd Biesheuvel	imply CRYPTO_CTR
13010b95ec56SJussi Kivilinna	help
13020b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
13030b95ec56SJussi Kivilinna
13040b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
13050b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
13060b95ec56SJussi Kivilinna
13070b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
13080b95ec56SJussi Kivilinna
13090b95ec56SJussi Kivilinna	  See also:
13100b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
13110b95ec56SJussi Kivilinna
1312d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1313d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1314d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1315b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1316d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
131744893bc2SEric Biggers	select CRYPTO_SIMD
131855a7e88fSArd Biesheuvel	imply CRYPTO_XTS
1319d9b1d2e7SJussi Kivilinna	help
1320d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1321d9b1d2e7SJussi Kivilinna
1322d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1323d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1324d9b1d2e7SJussi Kivilinna
1325d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1326d9b1d2e7SJussi Kivilinna
1327d9b1d2e7SJussi Kivilinna	  See also:
1328d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1329d9b1d2e7SJussi Kivilinna
1330f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1331f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1332f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1333f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1334f3f935a7SJussi Kivilinna	help
1335f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1336f3f935a7SJussi Kivilinna
1337f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1338f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1339f3f935a7SJussi Kivilinna
1340f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1341f3f935a7SJussi Kivilinna
1342f3f935a7SJussi Kivilinna	  See also:
1343f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1344f3f935a7SJussi Kivilinna
134581658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
134681658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
134781658ad0SDavid S. Miller	depends on SPARC64
134881658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1349b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
135081658ad0SDavid S. Miller	help
135181658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
135281658ad0SDavid S. Miller
135381658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
135481658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
135581658ad0SDavid S. Miller
135681658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
135781658ad0SDavid S. Miller
135881658ad0SDavid S. Miller	  See also:
135981658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
136081658ad0SDavid S. Miller
1361044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1362044ab525SJussi Kivilinna	tristate
1363044ab525SJussi Kivilinna	help
1364044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1365044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1366044ab525SJussi Kivilinna
1367584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1368584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1369584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1370044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1371584fffc8SSebastian Siewior	help
1372584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1373584fffc8SSebastian Siewior	  described in RFC2144.
1374584fffc8SSebastian Siewior
13754d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13764d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13774d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
1378b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13794d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13801e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13811e63183aSEric Biggers	select CRYPTO_SIMD
1382e2d60e2fSArd Biesheuvel	imply CRYPTO_CTR
13834d6d6a2cSJohannes Goetzfried	help
13844d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13854d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13864d6d6a2cSJohannes Goetzfried
13874d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13884d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13894d6d6a2cSJohannes Goetzfried
1390584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1391584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1392584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1393044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1394584fffc8SSebastian Siewior	help
1395584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1396584fffc8SSebastian Siewior	  described in RFC2612.
1397584fffc8SSebastian Siewior
13984ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13994ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
14004ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1401b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
14024ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
14034bd96924SEric Biggers	select CRYPTO_CAST_COMMON
14044bd96924SEric Biggers	select CRYPTO_SIMD
14052cc0fedbSArd Biesheuvel	imply CRYPTO_XTS
14067a6623ccSArd Biesheuvel	imply CRYPTO_CTR
14074ea1277dSJohannes Goetzfried	help
14084ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
14094ea1277dSJohannes Goetzfried	  described in RFC2612.
14104ea1277dSJohannes Goetzfried
14114ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
14124ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14134ea1277dSJohannes Goetzfried
1414584fffc8SSebastian Siewiorconfig CRYPTO_DES
1415584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1416584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
141704007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1418584fffc8SSebastian Siewior	help
1419584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1420584fffc8SSebastian Siewior
1421c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1422c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
142397da37b3SDave Jones	depends on SPARC64
1424c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
142504007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1426b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1427c5aac2dfSDavid S. Miller	help
1428c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1429c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1430c5aac2dfSDavid S. Miller
14316574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14326574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14336574e6c6SJussi Kivilinna	depends on X86 && 64BIT
1434b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
143504007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1436768db5feSArd Biesheuvel	imply CRYPTO_CTR
14376574e6c6SJussi Kivilinna	help
14386574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14396574e6c6SJussi Kivilinna
14406574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14416574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14426574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14436574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14446574e6c6SJussi Kivilinna
1445584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1446584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1447584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1448b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1449584fffc8SSebastian Siewior	help
1450584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1451584fffc8SSebastian Siewior
1452584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1453584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
14541674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1455584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1456584fffc8SSebastian Siewior	help
1457584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1458584fffc8SSebastian Siewior
1459584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1460584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1461584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1462584fffc8SSebastian Siewior
1463584fffc8SSebastian Siewior	  See also:
14646d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1465e2ee95b8SHye-Shik Chang
1466c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1467aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
14685fb8ef25SArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
1469b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1470c08d0e64SMartin Willi	help
1471aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1472c08d0e64SMartin Willi
1473c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1474c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1475de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
14769332a9e7SAlexander A. Klimov	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1477c08d0e64SMartin Willi
1478de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1479de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1480de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1481de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1482de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1483de61d7aeSEric Biggers
1484aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1485aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1486aa762409SEric Biggers	  in some performance-sensitive scenarios.
1487aa762409SEric Biggers
1488c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14894af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1490c9320b6dSMartin Willi	depends on X86 && 64BIT
1491b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
149228e8d89bSArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
149384e03fa3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1494c9320b6dSMartin Willi	help
14957a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14967a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1497c9320b6dSMartin Willi
14983a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS
14993a2f58f3SArd Biesheuvel	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
15003a2f58f3SArd Biesheuvel	depends on CPU_MIPS32_R2
1501660eda8dSEric Biggers	select CRYPTO_SKCIPHER
15023a2f58f3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
15033a2f58f3SArd Biesheuvel
1504584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1505584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
15061674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1507584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1508584fffc8SSebastian Siewior	help
1509584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1510584fffc8SSebastian Siewior
1511584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1512584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1513584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1514584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1515584fffc8SSebastian Siewior
1516584fffc8SSebastian Siewior	  See also:
1517584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1518584fffc8SSebastian Siewior
1519584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1520584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1521584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1522584fffc8SSebastian Siewior	help
1523584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1524584fffc8SSebastian Siewior
1525584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1526784506a1SArd Biesheuvel	  of 8 bits.
1527584fffc8SSebastian Siewior
1528584fffc8SSebastian Siewior	  See also:
15299332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1530584fffc8SSebastian Siewior
1531937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1532937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1533937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1534b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1535937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1536e0f409dcSEric Biggers	select CRYPTO_SIMD
15372e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1538937c30d7SJussi Kivilinna	help
1539937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1540937c30d7SJussi Kivilinna
1541937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1542937c30d7SJussi Kivilinna	  of 8 bits.
1543937c30d7SJussi Kivilinna
15441e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1545937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1546937c30d7SJussi Kivilinna
1547937c30d7SJussi Kivilinna	  See also:
15489332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1549937c30d7SJussi Kivilinna
1550251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1551251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1552251496dbSJussi Kivilinna	depends on X86 && !64BIT
1553b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1554251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1555e0f409dcSEric Biggers	select CRYPTO_SIMD
15562e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1557251496dbSJussi Kivilinna	help
1558251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1559251496dbSJussi Kivilinna
1560251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1561251496dbSJussi Kivilinna	  of 8 bits.
1562251496dbSJussi Kivilinna
1563251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1564251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1565251496dbSJussi Kivilinna
1566251496dbSJussi Kivilinna	  See also:
15679332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1568251496dbSJussi Kivilinna
15697efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15707efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15717efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1572b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
15737efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1574e16bf974SEric Biggers	select CRYPTO_SIMD
15759ec0af8aSArd Biesheuvel	imply CRYPTO_XTS
15762e9440aeSArd Biesheuvel	imply CRYPTO_CTR
15777efe4076SJohannes Goetzfried	help
15787efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15797efe4076SJohannes Goetzfried
15807efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15817efe4076SJohannes Goetzfried	  of 8 bits.
15827efe4076SJohannes Goetzfried
15837efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15847efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15857efe4076SJohannes Goetzfried
15867efe4076SJohannes Goetzfried	  See also:
15879332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
15887efe4076SJohannes Goetzfried
158956d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
159056d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
159156d76c96SJussi Kivilinna	depends on X86 && 64BIT
159256d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
159356d76c96SJussi Kivilinna	help
159456d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
159556d76c96SJussi Kivilinna
159656d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
159756d76c96SJussi Kivilinna	  of 8 bits.
159856d76c96SJussi Kivilinna
159956d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
160056d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
160156d76c96SJussi Kivilinna
160256d76c96SJussi Kivilinna	  See also:
16039332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
160456d76c96SJussi Kivilinna
1605747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1606d2825fa9SJason A. Donenfeld	tristate
1607d2825fa9SJason A. Donenfeld
1608d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC
1609747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1610747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1611d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1612747c8ce4SGilad Ben-Yossef	help
1613747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1614747c8ce4SGilad Ben-Yossef
1615747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1616747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1617747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1618747c8ce4SGilad Ben-Yossef
1619747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1620747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1621747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1622747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1623747c8ce4SGilad Ben-Yossef
1624747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1625747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1626747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1627747c8ce4SGilad Ben-Yossef
1628747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1629747c8ce4SGilad Ben-Yossef
1630747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1631747c8ce4SGilad Ben-Yossef
1632747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1633747c8ce4SGilad Ben-Yossef
1634a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64
1635a7ee22eeSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1636a7ee22eeSTianjia Zhang	depends on X86 && 64BIT
1637a7ee22eeSTianjia Zhang	select CRYPTO_SKCIPHER
1638a7ee22eeSTianjia Zhang	select CRYPTO_SIMD
1639a7ee22eeSTianjia Zhang	select CRYPTO_ALGAPI
1640d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1641a7ee22eeSTianjia Zhang	help
1642a7ee22eeSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1643a7ee22eeSTianjia Zhang
1644a7ee22eeSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1645a7ee22eeSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
1646a7ee22eeSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
1647a7ee22eeSTianjia Zhang
1648a7ee22eeSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1649a7ee22eeSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
1650a7ee22eeSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1651a7ee22eeSTianjia Zhang	  effect of instruction acceleration.
1652a7ee22eeSTianjia Zhang
1653a7ee22eeSTianjia Zhang	  If unsure, say N.
1654a7ee22eeSTianjia Zhang
16555b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64
16565b2efa2bSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
16575b2efa2bSTianjia Zhang	depends on X86 && 64BIT
16585b2efa2bSTianjia Zhang	select CRYPTO_SKCIPHER
16595b2efa2bSTianjia Zhang	select CRYPTO_SIMD
16605b2efa2bSTianjia Zhang	select CRYPTO_ALGAPI
1661d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
16625b2efa2bSTianjia Zhang	select CRYPTO_SM4_AESNI_AVX_X86_64
16635b2efa2bSTianjia Zhang	help
16645b2efa2bSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
16655b2efa2bSTianjia Zhang
16665b2efa2bSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
16675b2efa2bSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
16685b2efa2bSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
16695b2efa2bSTianjia Zhang
16705b2efa2bSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
16715b2efa2bSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
16725b2efa2bSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
16735b2efa2bSTianjia Zhang	  effect of instruction acceleration.
16745b2efa2bSTianjia Zhang
16755b2efa2bSTianjia Zhang	  If unsure, say N.
16765b2efa2bSTianjia Zhang
1677584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1678584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
16791674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1680584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1681584fffc8SSebastian Siewior	help
1682584fffc8SSebastian Siewior	  TEA cipher algorithm.
1683584fffc8SSebastian Siewior
1684584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1685584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1686584fffc8SSebastian Siewior	  little memory.
1687584fffc8SSebastian Siewior
1688584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1689584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1690584fffc8SSebastian Siewior	  in the TEA algorithm.
1691584fffc8SSebastian Siewior
1692584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1693584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1694584fffc8SSebastian Siewior
1695584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1696584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1697584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1698584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1699584fffc8SSebastian Siewior	help
1700584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1701584fffc8SSebastian Siewior
1702584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1703584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1704584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1705584fffc8SSebastian Siewior	  bits.
1706584fffc8SSebastian Siewior
1707584fffc8SSebastian Siewior	  See also:
17089332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1709584fffc8SSebastian Siewior
1710584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1711584fffc8SSebastian Siewior	tristate
1712584fffc8SSebastian Siewior	help
1713584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1714584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1715584fffc8SSebastian Siewior
1716584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1717584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1718584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1719584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1720584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1721f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1722584fffc8SSebastian Siewior	help
1723584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1724584fffc8SSebastian Siewior
1725584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1726584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1727584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1728584fffc8SSebastian Siewior	  bits.
1729584fffc8SSebastian Siewior
1730584fffc8SSebastian Siewior	  See also:
17319332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1732584fffc8SSebastian Siewior
1733584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1734584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1735584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1736584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1737584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1738f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1739584fffc8SSebastian Siewior	help
1740584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1741584fffc8SSebastian Siewior
1742584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1743584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1744584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1745584fffc8SSebastian Siewior	  bits.
1746584fffc8SSebastian Siewior
1747584fffc8SSebastian Siewior	  See also:
17489332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1749584fffc8SSebastian Siewior
17508280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17518280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1752f21a7c19SAl Viro	depends on X86 && 64BIT
1753b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17548280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17558280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
17568280daadSJussi Kivilinna	help
17578280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17588280daadSJussi Kivilinna
17598280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17608280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17618280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17628280daadSJussi Kivilinna	  bits.
17638280daadSJussi Kivilinna
17648280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17658280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17668280daadSJussi Kivilinna
17678280daadSJussi Kivilinna	  See also:
17689332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
17698280daadSJussi Kivilinna
1770107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1771107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1772107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1773b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17740e6ab46dSEric Biggers	select CRYPTO_SIMD
1775107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1776107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1777107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1778da4df93aSArd Biesheuvel	imply CRYPTO_XTS
1779107778b5SJohannes Goetzfried	help
1780107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1781107778b5SJohannes Goetzfried
1782107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1783107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1784107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1785107778b5SJohannes Goetzfried	  bits.
1786107778b5SJohannes Goetzfried
1787107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1788107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1789107778b5SJohannes Goetzfried
1790107778b5SJohannes Goetzfried	  See also:
17919332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1792107778b5SJohannes Goetzfried
1793584fffc8SSebastian Siewiorcomment "Compression"
1794584fffc8SSebastian Siewior
17951da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17961da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1797cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1798f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17991da177e4SLinus Torvalds	select ZLIB_INFLATE
18001da177e4SLinus Torvalds	select ZLIB_DEFLATE
18011da177e4SLinus Torvalds	help
18021da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
18031da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
18041da177e4SLinus Torvalds
18051da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
18061da177e4SLinus Torvalds
18070b77abb3SZoltan Sogorconfig CRYPTO_LZO
18080b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
18090b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1810ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
18110b77abb3SZoltan Sogor	select LZO_COMPRESS
18120b77abb3SZoltan Sogor	select LZO_DECOMPRESS
18130b77abb3SZoltan Sogor	help
18140b77abb3SZoltan Sogor	  This is the LZO algorithm.
18150b77abb3SZoltan Sogor
181635a1fc18SSeth Jenningsconfig CRYPTO_842
181735a1fc18SSeth Jennings	tristate "842 compression algorithm"
18182062c5b6SDan Streetman	select CRYPTO_ALGAPI
18196a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
18202062c5b6SDan Streetman	select 842_COMPRESS
18212062c5b6SDan Streetman	select 842_DECOMPRESS
182235a1fc18SSeth Jennings	help
182335a1fc18SSeth Jennings	  This is the 842 algorithm.
182435a1fc18SSeth Jennings
18250ea8530dSChanho Minconfig CRYPTO_LZ4
18260ea8530dSChanho Min	tristate "LZ4 compression algorithm"
18270ea8530dSChanho Min	select CRYPTO_ALGAPI
18288cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
18290ea8530dSChanho Min	select LZ4_COMPRESS
18300ea8530dSChanho Min	select LZ4_DECOMPRESS
18310ea8530dSChanho Min	help
18320ea8530dSChanho Min	  This is the LZ4 algorithm.
18330ea8530dSChanho Min
18340ea8530dSChanho Minconfig CRYPTO_LZ4HC
18350ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
18360ea8530dSChanho Min	select CRYPTO_ALGAPI
183791d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
18380ea8530dSChanho Min	select LZ4HC_COMPRESS
18390ea8530dSChanho Min	select LZ4_DECOMPRESS
18400ea8530dSChanho Min	help
18410ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
18420ea8530dSChanho Min
1843d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1844d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1845d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1846d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1847d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1848d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1849d28fc3dbSNick Terrell	help
1850d28fc3dbSNick Terrell	  This is the zstd algorithm.
1851d28fc3dbSNick Terrell
185217f0f4a4SNeil Hormancomment "Random Number Generation"
185317f0f4a4SNeil Horman
185417f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
185517f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
185617f0f4a4SNeil Horman	select CRYPTO_AES
185717f0f4a4SNeil Horman	select CRYPTO_RNG
185817f0f4a4SNeil Horman	help
185917f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
186017f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18617dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18627dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
186317f0f4a4SNeil Horman
1864f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1865419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1866419090c6SStephan Mueller	help
1867419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1868419090c6SStephan Mueller	  more of the DRBG types must be selected.
1869419090c6SStephan Mueller
1870f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1871419090c6SStephan Mueller
1872419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1873401e4238SHerbert Xu	bool
1874419090c6SStephan Mueller	default y
1875419090c6SStephan Mueller	select CRYPTO_HMAC
18765261cdf4SStephan Mueller	select CRYPTO_SHA512
1877419090c6SStephan Mueller
1878419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1879419090c6SStephan Mueller	bool "Enable Hash DRBG"
1880826775bbSHerbert Xu	select CRYPTO_SHA256
1881419090c6SStephan Mueller	help
1882419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1883419090c6SStephan Mueller
1884419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1885419090c6SStephan Mueller	bool "Enable CTR DRBG"
1886419090c6SStephan Mueller	select CRYPTO_AES
1887d6fc1a45SCorentin Labbe	select CRYPTO_CTR
1888419090c6SStephan Mueller	help
1889419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1890419090c6SStephan Mueller
1891f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1892f2c89a10SHerbert Xu	tristate
1893401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1894f2c89a10SHerbert Xu	select CRYPTO_RNG
1895bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1896f2c89a10SHerbert Xu
1897f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1898419090c6SStephan Mueller
1899bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1900bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
19012f313e02SArnd Bergmann	select CRYPTO_RNG
1902bb5530e4SStephan Mueller	help
1903bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1904bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1905bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1906bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1907bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1908bb5530e4SStephan Mueller
1909026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR
1910026a733eSStephan Müller	tristate
1911a88592ccSHerbert Xu	select CRYPTO_HMAC
1912304b4aceSStephan Müller	select CRYPTO_SHA256
1913026a733eSStephan Müller
191403c8efc1SHerbert Xuconfig CRYPTO_USER_API
191503c8efc1SHerbert Xu	tristate
191603c8efc1SHerbert Xu
1917fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1918fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
19197451708fSHerbert Xu	depends on NET
1920fe869cdbSHerbert Xu	select CRYPTO_HASH
1921fe869cdbSHerbert Xu	select CRYPTO_USER_API
1922fe869cdbSHerbert Xu	help
1923fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1924fe869cdbSHerbert Xu	  algorithms.
1925fe869cdbSHerbert Xu
19268ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
19278ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
19287451708fSHerbert Xu	depends on NET
1929b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
19308ff59090SHerbert Xu	select CRYPTO_USER_API
19318ff59090SHerbert Xu	help
19328ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
19338ff59090SHerbert Xu	  key cipher algorithms.
19348ff59090SHerbert Xu
19352f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
19362f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
19372f375538SStephan Mueller	depends on NET
19382f375538SStephan Mueller	select CRYPTO_RNG
19392f375538SStephan Mueller	select CRYPTO_USER_API
19402f375538SStephan Mueller	help
19412f375538SStephan Mueller	  This option enables the user-spaces interface for random
19422f375538SStephan Mueller	  number generator algorithms.
19432f375538SStephan Mueller
194477ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP
194577ebdabeSElena Petrova	bool "Enable CAVP testing of DRBG"
194677ebdabeSElena Petrova	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
194777ebdabeSElena Petrova	help
194877ebdabeSElena Petrova	  This option enables extra API for CAVP testing via the user-space
194977ebdabeSElena Petrova	  interface: resetting of DRBG entropy, and providing Additional Data.
195077ebdabeSElena Petrova	  This should only be enabled for CAVP testing. You should say
195177ebdabeSElena Petrova	  no unless you know what this is.
195277ebdabeSElena Petrova
1953b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1954b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1955b64a2d95SHerbert Xu	depends on NET
1956b64a2d95SHerbert Xu	select CRYPTO_AEAD
1957b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
195872548b09SStephan Mueller	select CRYPTO_NULL
1959b64a2d95SHerbert Xu	select CRYPTO_USER_API
1960b64a2d95SHerbert Xu	help
1961b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1962b64a2d95SHerbert Xu	  cipher algorithms.
1963b64a2d95SHerbert Xu
19649ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE
19659ace6771SArd Biesheuvel	bool "Enable obsolete cryptographic algorithms for userspace"
19669ace6771SArd Biesheuvel	depends on CRYPTO_USER_API
19679ace6771SArd Biesheuvel	default y
19689ace6771SArd Biesheuvel	help
19699ace6771SArd Biesheuvel	  Allow obsolete cryptographic algorithms to be selected that have
19709ace6771SArd Biesheuvel	  already been phased out from internal use by the kernel, and are
19719ace6771SArd Biesheuvel	  only useful for userspace clients that still rely on them.
19729ace6771SArd Biesheuvel
1973cac5818cSCorentin Labbeconfig CRYPTO_STATS
1974cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1975a6a31385SCorentin Labbe	depends on CRYPTO_USER
1976cac5818cSCorentin Labbe	help
1977cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1978cac5818cSCorentin Labbe	  This will collect:
1979cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1980cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1981cac5818cSCorentin Labbe	  - size and numbers of hash operations
1982cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1983cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1984cac5818cSCorentin Labbe
1985ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1986ee08997fSDmitry Kasatkin	bool
1987ee08997fSDmitry Kasatkin
19881da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19898636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19908636a1f9SMasahiro Yamadasource "certs/Kconfig"
19911da177e4SLinus Torvalds
1992cce9e06dSHerbert Xuendif	# if CRYPTO
1993