xref: /linux/crypto/Kconfig (revision 7f9b0880925f1f9d7d59504ea0892d2ae9cfc233)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER
565cde0af2SHerbert Xu	tristate
57b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1088cd579d2SBart Van Assche	select SGL_ALLOC
1092ebda74fSGiovanni Cabiddu
1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1112ebda74fSGiovanni Cabiddu	tristate
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1142ebda74fSGiovanni Cabiddu
1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1162b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1176a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1182b8c19dbSHerbert Xu	help
1192b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1202b8c19dbSHerbert Xu	  cbc(aes).
1212b8c19dbSHerbert Xu
1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1236a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1246a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1256a0fcbb4SHerbert Xu	select CRYPTO_HASH2
126b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
127946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1284e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1306a0fcbb4SHerbert Xu
131a38f7907SSteffen Klassertconfig CRYPTO_USER
132a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1335db017aaSHerbert Xu	depends on NET
134a38f7907SSteffen Klassert	select CRYPTO_MANAGER
135a38f7907SSteffen Klassert	help
136d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
137a38f7907SSteffen Klassert	  cbc(aes).
138a38f7907SSteffen Klassert
139929d34caSEric Biggersif CRYPTO_MANAGER2
140929d34caSEric Biggers
141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
142326a6346SHerbert Xu	bool "Disable run-time self tests"
14300ca28a5SHerbert Xu	default y
1440b767f96SAlexander Shishkin	help
145326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
146326a6346SHerbert Xu	  algorithm registration.
1470b767f96SAlexander Shishkin
1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1495b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1505b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1515b2706a4SEric Biggers	help
1525b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1535b2706a4SEric Biggers	  including randomized fuzz tests.
1545b2706a4SEric Biggers
1555b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1565b2706a4SEric Biggers	  longer to run than the normal self tests.
1575b2706a4SEric Biggers
158929d34caSEric Biggersendif	# if CRYPTO_MANAGER2
159929d34caSEric Biggers
160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
161e590e132SEric Biggers	tristate
162584fffc8SSebastian Siewior
163584fffc8SSebastian Siewiorconfig CRYPTO_NULL
164584fffc8SSebastian Siewior	tristate "Null algorithms"
165149a3971SHerbert Xu	select CRYPTO_NULL2
166584fffc8SSebastian Siewior	help
167584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
168584fffc8SSebastian Siewior
169149a3971SHerbert Xuconfig CRYPTO_NULL2
170dd43c4e9SHerbert Xu	tristate
171149a3971SHerbert Xu	select CRYPTO_ALGAPI2
172b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
173149a3971SHerbert Xu	select CRYPTO_HASH2
174149a3971SHerbert Xu
1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1763b4afaf2SKees Cook	tristate "Parallel crypto engine"
1773b4afaf2SKees Cook	depends on SMP
1785068c7a8SSteffen Klassert	select PADATA
1795068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1805068c7a8SSteffen Klassert	select CRYPTO_AEAD
1815068c7a8SSteffen Klassert	help
1825068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1835068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1845068c7a8SSteffen Klassert
185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
186584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
187b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
188b8a28251SLoc Ho	select CRYPTO_HASH
189584fffc8SSebastian Siewior	select CRYPTO_MANAGER
190584fffc8SSebastian Siewior	help
191584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
192584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
193584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
194584fffc8SSebastian Siewior
195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
196584fffc8SSebastian Siewior	tristate "Authenc support"
197584fffc8SSebastian Siewior	select CRYPTO_AEAD
198b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
199584fffc8SSebastian Siewior	select CRYPTO_MANAGER
200584fffc8SSebastian Siewior	select CRYPTO_HASH
201e94c6a7aSHerbert Xu	select CRYPTO_NULL
202584fffc8SSebastian Siewior	help
203584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
204584fffc8SSebastian Siewior	  This is required for IPSec.
205584fffc8SSebastian Siewior
206584fffc8SSebastian Siewiorconfig CRYPTO_TEST
207584fffc8SSebastian Siewior	tristate "Testing module"
208584fffc8SSebastian Siewior	depends on m
209da7f033dSHerbert Xu	select CRYPTO_MANAGER
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
212584fffc8SSebastian Siewior
213266d0516SHerbert Xuconfig CRYPTO_SIMD
214266d0516SHerbert Xu	tristate
215266d0516SHerbert Xu	select CRYPTO_CRYPTD
216266d0516SHerbert Xu
217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
218596d8750SJussi Kivilinna	tristate
219596d8750SJussi Kivilinna	depends on X86
220b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
221596d8750SJussi Kivilinna
222735d37b5SBaolin Wangconfig CRYPTO_ENGINE
223735d37b5SBaolin Wang	tristate
224735d37b5SBaolin Wang
2253d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2263d6228a5SVitaly Chikunov
2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2283d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2293d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2303d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2313d6228a5SVitaly Chikunov	select MPILIB
2323d6228a5SVitaly Chikunov	select ASN1
2333d6228a5SVitaly Chikunov	help
2343d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2353d6228a5SVitaly Chikunov
2363d6228a5SVitaly Chikunovconfig CRYPTO_DH
2373d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2383d6228a5SVitaly Chikunov	select CRYPTO_KPP
2393d6228a5SVitaly Chikunov	select MPILIB
2403d6228a5SVitaly Chikunov	help
2413d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2423d6228a5SVitaly Chikunov
2434a2289daSVitaly Chikunovconfig CRYPTO_ECC
2444a2289daSVitaly Chikunov	tristate
2454a2289daSVitaly Chikunov
2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2473d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2484a2289daSVitaly Chikunov	select CRYPTO_ECC
2493d6228a5SVitaly Chikunov	select CRYPTO_KPP
2503d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2513d6228a5SVitaly Chikunov	help
2523d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2533d6228a5SVitaly Chikunov
2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2550d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2560d7a7864SVitaly Chikunov	select CRYPTO_ECC
2570d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2580d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2591036633eSVitaly Chikunov	select OID_REGISTRY
2601036633eSVitaly Chikunov	select ASN1
2610d7a7864SVitaly Chikunov	help
2620d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2630d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2640d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2650d7a7864SVitaly Chikunov	  is implemented.
2660d7a7864SVitaly Chikunov
267584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
268584fffc8SSebastian Siewior
269584fffc8SSebastian Siewiorconfig CRYPTO_CCM
270584fffc8SSebastian Siewior	tristate "CCM support"
271584fffc8SSebastian Siewior	select CRYPTO_CTR
272f15f05b0SArd Biesheuvel	select CRYPTO_HASH
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
274c8a3315aSEric Biggers	select CRYPTO_MANAGER
275584fffc8SSebastian Siewior	help
276584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
277584fffc8SSebastian Siewior
278584fffc8SSebastian Siewiorconfig CRYPTO_GCM
279584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
280584fffc8SSebastian Siewior	select CRYPTO_CTR
281584fffc8SSebastian Siewior	select CRYPTO_AEAD
2829382d97aSHuang Ying	select CRYPTO_GHASH
2839489667dSJussi Kivilinna	select CRYPTO_NULL
284c8a3315aSEric Biggers	select CRYPTO_MANAGER
285584fffc8SSebastian Siewior	help
286584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
287584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
288584fffc8SSebastian Siewior
28971ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
29071ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
29171ebc4d1SMartin Willi	select CRYPTO_CHACHA20
29271ebc4d1SMartin Willi	select CRYPTO_POLY1305
29371ebc4d1SMartin Willi	select CRYPTO_AEAD
294c8a3315aSEric Biggers	select CRYPTO_MANAGER
29571ebc4d1SMartin Willi	help
29671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
29771ebc4d1SMartin Willi
29871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
30071ebc4d1SMartin Willi	  IETF protocols.
30171ebc4d1SMartin Willi
302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
303f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
304f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
305f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
306f606a88eSOndrej Mosnacek	help
307f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
308f606a88eSOndrej Mosnacek
309a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
310a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
311a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
31283053677SArd Biesheuvel	depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800
313a4397635SArd Biesheuvel	default y
314a4397635SArd Biesheuvel
3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3161d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3171d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3181d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
319de272ca7SEric Biggers	select CRYPTO_SIMD
3201d373d4eSOndrej Mosnacek	help
3214e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3221d373d4eSOndrej Mosnacek
323584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
324584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
325584fffc8SSebastian Siewior	select CRYPTO_AEAD
326b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
327856e3f40SHerbert Xu	select CRYPTO_NULL
328401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
329c8a3315aSEric Biggers	select CRYPTO_MANAGER
330584fffc8SSebastian Siewior	help
331584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
332584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
333584fffc8SSebastian Siewior
334a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
335a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
336a10f554fSHerbert Xu	select CRYPTO_AEAD
337a10f554fSHerbert Xu	select CRYPTO_NULL
338401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
339c8a3315aSEric Biggers	select CRYPTO_MANAGER
340a10f554fSHerbert Xu	help
341a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
342a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
343a10f554fSHerbert Xu	  algorithm for CBC.
344a10f554fSHerbert Xu
345584fffc8SSebastian Siewiorcomment "Block modes"
346584fffc8SSebastian Siewior
347584fffc8SSebastian Siewiorconfig CRYPTO_CBC
348584fffc8SSebastian Siewior	tristate "CBC support"
349b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
350584fffc8SSebastian Siewior	select CRYPTO_MANAGER
351584fffc8SSebastian Siewior	help
352584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
353584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
354584fffc8SSebastian Siewior
355a7d85e06SJames Bottomleyconfig CRYPTO_CFB
356a7d85e06SJames Bottomley	tristate "CFB support"
357b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
358a7d85e06SJames Bottomley	select CRYPTO_MANAGER
359a7d85e06SJames Bottomley	help
360a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
361a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
362a7d85e06SJames Bottomley
363584fffc8SSebastian Siewiorconfig CRYPTO_CTR
364584fffc8SSebastian Siewior	tristate "CTR support"
365b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
366584fffc8SSebastian Siewior	select CRYPTO_SEQIV
367584fffc8SSebastian Siewior	select CRYPTO_MANAGER
368584fffc8SSebastian Siewior	help
369584fffc8SSebastian Siewior	  CTR: Counter mode
370584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
371584fffc8SSebastian Siewior
372584fffc8SSebastian Siewiorconfig CRYPTO_CTS
373584fffc8SSebastian Siewior	tristate "CTS support"
374b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
375c8a3315aSEric Biggers	select CRYPTO_MANAGER
376584fffc8SSebastian Siewior	help
377584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
378584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
379ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
380ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
381ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
382584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
383584fffc8SSebastian Siewior	  for AES encryption.
384584fffc8SSebastian Siewior
385ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
386ecd6d5c9SGilad Ben-Yossef
387584fffc8SSebastian Siewiorconfig CRYPTO_ECB
388584fffc8SSebastian Siewior	tristate "ECB support"
389b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
390584fffc8SSebastian Siewior	select CRYPTO_MANAGER
391584fffc8SSebastian Siewior	help
392584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
393584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
394584fffc8SSebastian Siewior	  the input block by block.
395584fffc8SSebastian Siewior
396584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3972470a2b2SJussi Kivilinna	tristate "LRW support"
398b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
399584fffc8SSebastian Siewior	select CRYPTO_MANAGER
400584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
401584fffc8SSebastian Siewior	help
402584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
403584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
404584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
405584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
406584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
407584fffc8SSebastian Siewior
408e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
409e497c518SGilad Ben-Yossef	tristate "OFB support"
410b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
411e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
412e497c518SGilad Ben-Yossef	help
413e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
414e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
415e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
416e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
417e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
418e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
419e497c518SGilad Ben-Yossef
420584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
421584fffc8SSebastian Siewior	tristate "PCBC support"
422b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
423584fffc8SSebastian Siewior	select CRYPTO_MANAGER
424584fffc8SSebastian Siewior	help
425584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
426584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
427584fffc8SSebastian Siewior
428584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4295bcf8e6dSJussi Kivilinna	tristate "XTS support"
430b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
431584fffc8SSebastian Siewior	select CRYPTO_MANAGER
43212cb3a1cSMilan Broz	select CRYPTO_ECB
433584fffc8SSebastian Siewior	help
434584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
435584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
436584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
437584fffc8SSebastian Siewior
4381c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4391c49678eSStephan Mueller	tristate "Key wrapping support"
440b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
441c8a3315aSEric Biggers	select CRYPTO_MANAGER
4421c49678eSStephan Mueller	help
4431c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4441c49678eSStephan Mueller	  padding.
4451c49678eSStephan Mueller
44626609a21SEric Biggersconfig CRYPTO_NHPOLY1305
44726609a21SEric Biggers	tristate
44826609a21SEric Biggers	select CRYPTO_HASH
44948ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
45026609a21SEric Biggers
451012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
452012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
453012c8238SEric Biggers	depends on X86 && 64BIT
454012c8238SEric Biggers	select CRYPTO_NHPOLY1305
455012c8238SEric Biggers	help
456012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
457012c8238SEric Biggers	  Adiantum encryption mode.
458012c8238SEric Biggers
4590f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
4600f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
4610f961f9fSEric Biggers	depends on X86 && 64BIT
4620f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
4630f961f9fSEric Biggers	help
4640f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
4650f961f9fSEric Biggers	  Adiantum encryption mode.
4660f961f9fSEric Biggers
467059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
468059c2a4dSEric Biggers	tristate "Adiantum support"
469059c2a4dSEric Biggers	select CRYPTO_CHACHA20
47048ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
471059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
472c8a3315aSEric Biggers	select CRYPTO_MANAGER
473059c2a4dSEric Biggers	help
474059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
475059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
476059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
477059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
478059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
479059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
480059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
481059c2a4dSEric Biggers	  AES-XTS.
482059c2a4dSEric Biggers
483059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
484059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
485059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
486059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
487059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
488059c2a4dSEric Biggers
489059c2a4dSEric Biggers	  If unsure, say N.
490059c2a4dSEric Biggers
491be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
492be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
493be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
494be1eb7f7SArd Biesheuvel	help
495be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
496be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
497be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
498be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
499be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
500be1eb7f7SArd Biesheuvel	  encryption.
501be1eb7f7SArd Biesheuvel
502be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
503be1eb7f7SArd Biesheuvel	  instantiated either as a skcipher or as a aead (depending on the
504be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
505be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
506be1eb7f7SArd Biesheuvel	  ESSIV to the input IV. Note that in the aead case, it is assumed
507be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
508be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
509be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
510be1eb7f7SArd Biesheuvel
511be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
512be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
513be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
514be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
515be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
516be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
517be1eb7f7SArd Biesheuvel	  block encryption)
518be1eb7f7SArd Biesheuvel
519584fffc8SSebastian Siewiorcomment "Hash modes"
520584fffc8SSebastian Siewior
52193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
52293b5e86aSJussi Kivilinna	tristate "CMAC support"
52393b5e86aSJussi Kivilinna	select CRYPTO_HASH
52493b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
52593b5e86aSJussi Kivilinna	help
52693b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
52793b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
52893b5e86aSJussi Kivilinna
52993b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
53093b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
53193b5e86aSJussi Kivilinna
5321da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5338425165dSHerbert Xu	tristate "HMAC support"
5340796ae06SHerbert Xu	select CRYPTO_HASH
53543518407SHerbert Xu	select CRYPTO_MANAGER
5361da177e4SLinus Torvalds	help
5371da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5381da177e4SLinus Torvalds	  This is required for IPSec.
5391da177e4SLinus Torvalds
540333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
541333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
542333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
543333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
544333b0d7eSKazunori MIYAZAWA	help
545333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
546333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
547333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
548333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
549333b0d7eSKazunori MIYAZAWA
550f1939f7cSShane Wangconfig CRYPTO_VMAC
551f1939f7cSShane Wang	tristate "VMAC support"
552f1939f7cSShane Wang	select CRYPTO_HASH
553f1939f7cSShane Wang	select CRYPTO_MANAGER
554f1939f7cSShane Wang	help
555f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
556f1939f7cSShane Wang	  very high speed on 64-bit architectures.
557f1939f7cSShane Wang
558f1939f7cSShane Wang	  See also:
559f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
560f1939f7cSShane Wang
561584fffc8SSebastian Siewiorcomment "Digest"
562584fffc8SSebastian Siewior
563584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
564584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5655773a3e6SHerbert Xu	select CRYPTO_HASH
5666a0962b2SDarrick J. Wong	select CRC32
5671da177e4SLinus Torvalds	help
568584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
569584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
57069c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5711da177e4SLinus Torvalds
5728cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5738cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5748cb51ba8SAustin Zhang	depends on X86
5758cb51ba8SAustin Zhang	select CRYPTO_HASH
5768cb51ba8SAustin Zhang	help
5778cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5788cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5798cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5808cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5818cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5828cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5838cb51ba8SAustin Zhang
5847cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5856dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
586c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5876dd7a82cSAnton Blanchard	select CRYPTO_HASH
5886dd7a82cSAnton Blanchard	select CRC32
5896dd7a82cSAnton Blanchard	help
5906dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5916dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5926dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5936dd7a82cSAnton Blanchard
5946dd7a82cSAnton Blanchard
595442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
596442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
597442a7c40SDavid S. Miller	depends on SPARC64
598442a7c40SDavid S. Miller	select CRYPTO_HASH
599442a7c40SDavid S. Miller	select CRC32
600442a7c40SDavid S. Miller	help
601442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
602442a7c40SDavid S. Miller	  when available.
603442a7c40SDavid S. Miller
60478c37d19SAlexander Boykoconfig CRYPTO_CRC32
60578c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
60678c37d19SAlexander Boyko	select CRYPTO_HASH
60778c37d19SAlexander Boyko	select CRC32
60878c37d19SAlexander Boyko	help
60978c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
61078c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
61178c37d19SAlexander Boyko
61278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
61378c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
61478c37d19SAlexander Boyko	depends on X86
61578c37d19SAlexander Boyko	select CRYPTO_HASH
61678c37d19SAlexander Boyko	select CRC32
61778c37d19SAlexander Boyko	help
61878c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
61978c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
62078c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
621af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
62278c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
62378c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
62478c37d19SAlexander Boyko
6254a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6264a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6274a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6284a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6294a5dc51eSMarcin Nowakowski	help
6304a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6314a5dc51eSMarcin Nowakowski	  instructions, when available.
6324a5dc51eSMarcin Nowakowski
6334a5dc51eSMarcin Nowakowski
63467882e76SNikolay Borisovconfig CRYPTO_XXHASH
63567882e76SNikolay Borisov	tristate "xxHash hash algorithm"
63667882e76SNikolay Borisov	select CRYPTO_HASH
63767882e76SNikolay Borisov	select XXHASH
63867882e76SNikolay Borisov	help
63967882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
64067882e76SNikolay Borisov	  speeds close to RAM limits.
64167882e76SNikolay Borisov
64291d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
64391d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
64491d68933SDavid Sterba	select CRYPTO_HASH
64591d68933SDavid Sterba	help
64691d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
64791d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
64891d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
64991d68933SDavid Sterba
65091d68933SDavid Sterba	  This module provides the following algorithms:
65191d68933SDavid Sterba
65291d68933SDavid Sterba	  - blake2b-160
65391d68933SDavid Sterba	  - blake2b-256
65491d68933SDavid Sterba	  - blake2b-384
65591d68933SDavid Sterba	  - blake2b-512
65691d68933SDavid Sterba
65791d68933SDavid Sterba	  See https://blake2.net for further information.
65891d68933SDavid Sterba
659*7f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S
660*7f9b0880SArd Biesheuvel	tristate "BLAKE2s digest algorithm"
661*7f9b0880SArd Biesheuvel	select CRYPTO_LIB_BLAKE2S_GENERIC
662*7f9b0880SArd Biesheuvel	select CRYPTO_HASH
663*7f9b0880SArd Biesheuvel	help
664*7f9b0880SArd Biesheuvel	  Implementation of cryptographic hash function BLAKE2s
665*7f9b0880SArd Biesheuvel	  optimized for 8-32bit platforms and can produce digests of any size
666*7f9b0880SArd Biesheuvel	  between 1 to 32.  The keyed hash is also implemented.
667*7f9b0880SArd Biesheuvel
668*7f9b0880SArd Biesheuvel	  This module provides the following algorithms:
669*7f9b0880SArd Biesheuvel
670*7f9b0880SArd Biesheuvel	  - blake2s-128
671*7f9b0880SArd Biesheuvel	  - blake2s-160
672*7f9b0880SArd Biesheuvel	  - blake2s-224
673*7f9b0880SArd Biesheuvel	  - blake2s-256
674*7f9b0880SArd Biesheuvel
675*7f9b0880SArd Biesheuvel	  See https://blake2.net for further information.
676*7f9b0880SArd Biesheuvel
67768411521SHerbert Xuconfig CRYPTO_CRCT10DIF
67868411521SHerbert Xu	tristate "CRCT10DIF algorithm"
67968411521SHerbert Xu	select CRYPTO_HASH
68068411521SHerbert Xu	help
68168411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
68268411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
68368411521SHerbert Xu	  transforms to be used if they are available.
68468411521SHerbert Xu
68568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
68668411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
68768411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
68868411521SHerbert Xu	select CRYPTO_HASH
68968411521SHerbert Xu	help
69068411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
69168411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
69268411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
693af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
69468411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
69568411521SHerbert Xu
696b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
697b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
698b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
699b01df1c1SDaniel Axtens	select CRYPTO_HASH
700b01df1c1SDaniel Axtens	help
701b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
702b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
703b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
704b01df1c1SDaniel Axtens
705146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
706146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
707146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
708146c8688SDaniel Axtens	help
709146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
710146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
711146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
712146c8688SDaniel Axtens
7132cdc6899SHuang Yingconfig CRYPTO_GHASH
7148dfa20fcSEric Biggers	tristate "GHASH hash function"
7152cdc6899SHuang Ying	select CRYPTO_GF128MUL
716578c60fbSArnd Bergmann	select CRYPTO_HASH
7172cdc6899SHuang Ying	help
7188dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
7198dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
7202cdc6899SHuang Ying
721f979e014SMartin Williconfig CRYPTO_POLY1305
722f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
723578c60fbSArnd Bergmann	select CRYPTO_HASH
72448ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
725f979e014SMartin Willi	help
726f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
727f979e014SMartin Willi
728f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
729f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
730f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
731f979e014SMartin Willi
732c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
733b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
734c70f4abeSMartin Willi	depends on X86 && 64BIT
7351b2c6a51SArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
736f0e89bcfSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
737c70f4abeSMartin Willi	help
738c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
739c70f4abeSMartin Willi
740c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
741c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
742c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
743c70f4abeSMartin Willi	  instructions.
744c70f4abeSMartin Willi
745a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS
746a11d055eSArd Biesheuvel	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
747a11d055eSArd Biesheuvel	depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
748a11d055eSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
749a11d055eSArd Biesheuvel
7501da177e4SLinus Torvaldsconfig CRYPTO_MD4
7511da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
752808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7531da177e4SLinus Torvalds	help
7541da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7551da177e4SLinus Torvalds
7561da177e4SLinus Torvaldsconfig CRYPTO_MD5
7571da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
75814b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7591da177e4SLinus Torvalds	help
7601da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7611da177e4SLinus Torvalds
762d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
763d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
764d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
765d69e75deSAaro Koskinen	select CRYPTO_MD5
766d69e75deSAaro Koskinen	select CRYPTO_HASH
767d69e75deSAaro Koskinen	help
768d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
769d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
770d69e75deSAaro Koskinen
771e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
772e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
773e8e59953SMarkus Stockhausen	depends on PPC
774e8e59953SMarkus Stockhausen	select CRYPTO_HASH
775e8e59953SMarkus Stockhausen	help
776e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
777e8e59953SMarkus Stockhausen	  in PPC assembler.
778e8e59953SMarkus Stockhausen
779fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
780fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
781fa4dfedcSDavid S. Miller	depends on SPARC64
782fa4dfedcSDavid S. Miller	select CRYPTO_MD5
783fa4dfedcSDavid S. Miller	select CRYPTO_HASH
784fa4dfedcSDavid S. Miller	help
785fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
786fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
787fa4dfedcSDavid S. Miller
788584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
789584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
79019e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
791584fffc8SSebastian Siewior	help
792584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
793584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
794584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
795584fffc8SSebastian Siewior	  of the algorithm.
796584fffc8SSebastian Siewior
79782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
79882798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7997c4468bcSHerbert Xu	select CRYPTO_HASH
80082798f90SAdrian-Ken Rueegsegger	help
80182798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
80282798f90SAdrian-Ken Rueegsegger
80382798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
80435ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
80582798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
80682798f90SAdrian-Ken Rueegsegger
80782798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8086d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
80982798f90SAdrian-Ken Rueegsegger
81082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
81182798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
812e5835fbaSHerbert Xu	select CRYPTO_HASH
81382798f90SAdrian-Ken Rueegsegger	help
81482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
81582798f90SAdrian-Ken Rueegsegger
81682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
81782798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
818b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
819b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
82082798f90SAdrian-Ken Rueegsegger
821b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
822b6d44341SAdrian Bunk	  against RIPEMD-160.
823534fe2c1SAdrian-Ken Rueegsegger
824534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8256d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
826534fe2c1SAdrian-Ken Rueegsegger
827534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
828534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
829d8a5e2e9SHerbert Xu	select CRYPTO_HASH
830534fe2c1SAdrian-Ken Rueegsegger	help
831b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
832b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
833b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
834b6d44341SAdrian Bunk	  (than RIPEMD-128).
835534fe2c1SAdrian-Ken Rueegsegger
836534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8376d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
838534fe2c1SAdrian-Ken Rueegsegger
839534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
840534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8413b8efb4cSHerbert Xu	select CRYPTO_HASH
842534fe2c1SAdrian-Ken Rueegsegger	help
843b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
844b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
845b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
846b6d44341SAdrian Bunk	  (than RIPEMD-160).
847534fe2c1SAdrian-Ken Rueegsegger
84882798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8496d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
85082798f90SAdrian-Ken Rueegsegger
8511da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8521da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
85354ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8541da177e4SLinus Torvalds	help
8551da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8561da177e4SLinus Torvalds
85766be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
858e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
85966be8951SMathias Krause	depends on X86 && 64BIT
86066be8951SMathias Krause	select CRYPTO_SHA1
86166be8951SMathias Krause	select CRYPTO_HASH
86266be8951SMathias Krause	help
86366be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
86466be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
865e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
866e38b6b7fStim	  when available.
86766be8951SMathias Krause
8688275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
869e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8708275d1aaSTim Chen	depends on X86 && 64BIT
8718275d1aaSTim Chen	select CRYPTO_SHA256
8728275d1aaSTim Chen	select CRYPTO_HASH
8738275d1aaSTim Chen	help
8748275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8758275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8768275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
877e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
878e38b6b7fStim	  Instructions) when available.
8798275d1aaSTim Chen
88087de4579STim Chenconfig CRYPTO_SHA512_SSSE3
88187de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
88287de4579STim Chen	depends on X86 && 64BIT
88387de4579STim Chen	select CRYPTO_SHA512
88487de4579STim Chen	select CRYPTO_HASH
88587de4579STim Chen	help
88687de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
88787de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
88887de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
88987de4579STim Chen	  version 2 (AVX2) instructions, when available.
89087de4579STim Chen
891efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
892efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
893efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
894efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
895efdb6f6eSAaro Koskinen	select CRYPTO_HASH
896efdb6f6eSAaro Koskinen	help
897efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
898efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
899efdb6f6eSAaro Koskinen
9004ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9014ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9024ff28d4cSDavid S. Miller	depends on SPARC64
9034ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9044ff28d4cSDavid S. Miller	select CRYPTO_HASH
9054ff28d4cSDavid S. Miller	help
9064ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9074ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9084ff28d4cSDavid S. Miller
909323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
910323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
911323a6bf1SMichael Ellerman	depends on PPC
912323a6bf1SMichael Ellerman	help
913323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
914323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
915323a6bf1SMichael Ellerman
916d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
917d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
918d9850fc5SMarkus Stockhausen	depends on PPC && SPE
919d9850fc5SMarkus Stockhausen	help
920d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
921d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
922d9850fc5SMarkus Stockhausen
9231da177e4SLinus Torvaldsconfig CRYPTO_SHA256
924cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
92550e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
92608c327f6SHans de Goede	select CRYPTO_LIB_SHA256
9271da177e4SLinus Torvalds	help
9281da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9291da177e4SLinus Torvalds
9301da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9311da177e4SLinus Torvalds	  security against collision attacks.
9321da177e4SLinus Torvalds
933cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
934cd12fb90SJonathan Lynch	  of security against collision attacks.
935cd12fb90SJonathan Lynch
9362ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9372ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9382ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9392ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9402ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9412ecc1e95SMarkus Stockhausen	help
9422ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9432ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9442ecc1e95SMarkus Stockhausen
945efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
946efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
947efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
948efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
949efdb6f6eSAaro Koskinen	select CRYPTO_HASH
950efdb6f6eSAaro Koskinen	help
951efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
952efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
953efdb6f6eSAaro Koskinen
95486c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
95586c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
95686c93b24SDavid S. Miller	depends on SPARC64
95786c93b24SDavid S. Miller	select CRYPTO_SHA256
95886c93b24SDavid S. Miller	select CRYPTO_HASH
95986c93b24SDavid S. Miller	help
96086c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
96186c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
96286c93b24SDavid S. Miller
9631da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9641da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
965bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9661da177e4SLinus Torvalds	help
9671da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9681da177e4SLinus Torvalds
9691da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9701da177e4SLinus Torvalds	  security against collision attacks.
9711da177e4SLinus Torvalds
9721da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9731da177e4SLinus Torvalds	  of security against collision attacks.
9741da177e4SLinus Torvalds
975efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
976efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
977efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
978efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
979efdb6f6eSAaro Koskinen	select CRYPTO_HASH
980efdb6f6eSAaro Koskinen	help
981efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
982efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
983efdb6f6eSAaro Koskinen
984775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
985775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
986775e0c69SDavid S. Miller	depends on SPARC64
987775e0c69SDavid S. Miller	select CRYPTO_SHA512
988775e0c69SDavid S. Miller	select CRYPTO_HASH
989775e0c69SDavid S. Miller	help
990775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
991775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
992775e0c69SDavid S. Miller
99353964b9eSJeff Garzikconfig CRYPTO_SHA3
99453964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
99553964b9eSJeff Garzik	select CRYPTO_HASH
99653964b9eSJeff Garzik	help
99753964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
99853964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
99953964b9eSJeff Garzik
100053964b9eSJeff Garzik	  References:
100153964b9eSJeff Garzik	  http://keccak.noekeon.org/
100253964b9eSJeff Garzik
10034f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
10044f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10054f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
10064f0fc160SGilad Ben-Yossef	help
10074f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10084f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10094f0fc160SGilad Ben-Yossef
10104f0fc160SGilad Ben-Yossef	  References:
10114f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10124f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10134f0fc160SGilad Ben-Yossef
1014fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1015fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1016fe18957eSVitaly Chikunov	select CRYPTO_HASH
1017fe18957eSVitaly Chikunov	help
1018fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1019fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1020fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1021fe18957eSVitaly Chikunov
1022fe18957eSVitaly Chikunov	  References:
1023fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1024fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1025fe18957eSVitaly Chikunov
10261da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10271da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1028f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10291da177e4SLinus Torvalds	help
10301da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10311da177e4SLinus Torvalds
10321da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10331da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10341da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10351da177e4SLinus Torvalds
10361da177e4SLinus Torvalds	  See also:
10371da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10381da177e4SLinus Torvalds
1039584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1040584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10414946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10421da177e4SLinus Torvalds	help
1043584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10441da177e4SLinus Torvalds
1045584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1046584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10471da177e4SLinus Torvalds
10481da177e4SLinus Torvalds	  See also:
10496d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10501da177e4SLinus Torvalds
10510e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10528dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
10538af00860SRichard Weinberger	depends on X86 && 64BIT
10540e1227d3SHuang Ying	select CRYPTO_CRYPTD
10550e1227d3SHuang Ying	help
10568dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
10578dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
10580e1227d3SHuang Ying
1059584fffc8SSebastian Siewiorcomment "Ciphers"
10601da177e4SLinus Torvalds
10611da177e4SLinus Torvaldsconfig CRYPTO_AES
10621da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1063cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10645bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
10651da177e4SLinus Torvalds	help
10661da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10671da177e4SLinus Torvalds	  algorithm.
10681da177e4SLinus Torvalds
10691da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10701da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10711da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10721da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10731da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10741da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10751da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10761da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10771da177e4SLinus Torvalds
10781da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10791da177e4SLinus Torvalds
10801da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10811da177e4SLinus Torvalds
1082b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1083b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1084b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1085e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1086b5e0b032SArd Biesheuvel	help
1087b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1088b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1089b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1090b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1091b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1092b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1093b5e0b032SArd Biesheuvel
1094b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1095b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1096b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1097b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10980a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10990a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1100b5e0b032SArd Biesheuvel
110154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
110254b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11038af00860SRichard Weinberger	depends on X86
110485671860SHerbert Xu	select CRYPTO_AEAD
11052c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
110654b6a1bdSHuang Ying	select CRYPTO_ALGAPI
1107b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
11087643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
110985671860SHerbert Xu	select CRYPTO_SIMD
111054b6a1bdSHuang Ying	help
111154b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
111254b6a1bdSHuang Ying
111354b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
111454b6a1bdSHuang Ying	  algorithm.
111554b6a1bdSHuang Ying
111654b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
111754b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
111854b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
111954b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
112054b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
112154b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
112254b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
112354b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
112454b6a1bdSHuang Ying
112554b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
112654b6a1bdSHuang Ying
112754b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
112854b6a1bdSHuang Ying
11290d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11300d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1131944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11320d258efbSMathias Krause	  acceleration for CTR.
11332cf4ac8bSHuang Ying
11349bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11359bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11369bf4852dSDavid S. Miller	depends on SPARC64
1137b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
11389bf4852dSDavid S. Miller	help
11399bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11409bf4852dSDavid S. Miller
11419bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11429bf4852dSDavid S. Miller	  algorithm.
11439bf4852dSDavid S. Miller
11449bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11459bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11469bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11479bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11489bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11499bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11509bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11519bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11529bf4852dSDavid S. Miller
11539bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11549bf4852dSDavid S. Miller
11559bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11569bf4852dSDavid S. Miller
11579bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11589bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11599bf4852dSDavid S. Miller	  ECB and CBC.
11609bf4852dSDavid S. Miller
1161504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1162504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1163504c6143SMarkus Stockhausen	depends on PPC && SPE
1164b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1165504c6143SMarkus Stockhausen	help
1166504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1167504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1168504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1169504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1170504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1171504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1172504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1173504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1174504c6143SMarkus Stockhausen
11751da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11761da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1177cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11781da177e4SLinus Torvalds	help
11791da177e4SLinus Torvalds	  Anubis cipher algorithm.
11801da177e4SLinus Torvalds
11811da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11821da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11831da177e4SLinus Torvalds	  in the NESSIE competition.
11841da177e4SLinus Torvalds
11851da177e4SLinus Torvalds	  See also:
11866d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11876d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11881da177e4SLinus Torvalds
1189584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1190584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1191b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1192dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1193e2ee95b8SHye-Shik Chang	help
1194584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1195e2ee95b8SHye-Shik Chang
1196584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1197584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1198584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1199584fffc8SSebastian Siewior	  weakness of the algorithm.
1200584fffc8SSebastian Siewior
1201584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1202584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1203584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
120452ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1205584fffc8SSebastian Siewior	help
1206584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1207584fffc8SSebastian Siewior
1208584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1209584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1210584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1211e2ee95b8SHye-Shik Chang
1212e2ee95b8SHye-Shik Chang	  See also:
1213584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1214584fffc8SSebastian Siewior
121552ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
121652ba867cSJussi Kivilinna	tristate
121752ba867cSJussi Kivilinna	help
121852ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
121952ba867cSJussi Kivilinna	  generic c and the assembler implementations.
122052ba867cSJussi Kivilinna
122152ba867cSJussi Kivilinna	  See also:
122252ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
122352ba867cSJussi Kivilinna
122464b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
122564b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1226f21a7c19SAl Viro	depends on X86 && 64BIT
1227b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
122864b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
122964b94ceaSJussi Kivilinna	help
123064b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
123164b94ceaSJussi Kivilinna
123264b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
123364b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
123464b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
123564b94ceaSJussi Kivilinna
123664b94ceaSJussi Kivilinna	  See also:
123764b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
123864b94ceaSJussi Kivilinna
1239584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1240584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1241584fffc8SSebastian Siewior	depends on CRYPTO
1242584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1243584fffc8SSebastian Siewior	help
1244584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1245584fffc8SSebastian Siewior
1246584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1247584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1248584fffc8SSebastian Siewior
1249584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1250584fffc8SSebastian Siewior
1251584fffc8SSebastian Siewior	  See also:
1252584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1253584fffc8SSebastian Siewior
12540b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12550b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1256f21a7c19SAl Viro	depends on X86 && 64BIT
12570b95ec56SJussi Kivilinna	depends on CRYPTO
1258b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1259964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12600b95ec56SJussi Kivilinna	help
12610b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12620b95ec56SJussi Kivilinna
12630b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12640b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12650b95ec56SJussi Kivilinna
12660b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12670b95ec56SJussi Kivilinna
12680b95ec56SJussi Kivilinna	  See also:
12690b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12700b95ec56SJussi Kivilinna
1271d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1272d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1273d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1274d9b1d2e7SJussi Kivilinna	depends on CRYPTO
1275b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1276d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
127744893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
127844893bc2SEric Biggers	select CRYPTO_SIMD
1279d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1280d9b1d2e7SJussi Kivilinna	help
1281d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1282d9b1d2e7SJussi Kivilinna
1283d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1284d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1285d9b1d2e7SJussi Kivilinna
1286d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1287d9b1d2e7SJussi Kivilinna
1288d9b1d2e7SJussi Kivilinna	  See also:
1289d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1290d9b1d2e7SJussi Kivilinna
1291f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1292f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1293f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1294f3f935a7SJussi Kivilinna	depends on CRYPTO
1295f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1296f3f935a7SJussi Kivilinna	help
1297f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1298f3f935a7SJussi Kivilinna
1299f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1300f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1301f3f935a7SJussi Kivilinna
1302f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1303f3f935a7SJussi Kivilinna
1304f3f935a7SJussi Kivilinna	  See also:
1305f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1306f3f935a7SJussi Kivilinna
130781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
130881658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
130981658ad0SDavid S. Miller	depends on SPARC64
131081658ad0SDavid S. Miller	depends on CRYPTO
131181658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1312b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
131381658ad0SDavid S. Miller	help
131481658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
131581658ad0SDavid S. Miller
131681658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
131781658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
131881658ad0SDavid S. Miller
131981658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
132081658ad0SDavid S. Miller
132181658ad0SDavid S. Miller	  See also:
132281658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
132381658ad0SDavid S. Miller
1324044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1325044ab525SJussi Kivilinna	tristate
1326044ab525SJussi Kivilinna	help
1327044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1328044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1329044ab525SJussi Kivilinna
1330584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1331584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1332584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1333044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1334584fffc8SSebastian Siewior	help
1335584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1336584fffc8SSebastian Siewior	  described in RFC2144.
1337584fffc8SSebastian Siewior
13384d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13394d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13404d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
1341b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13424d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13431e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13441e63183aSEric Biggers	select CRYPTO_SIMD
13454d6d6a2cSJohannes Goetzfried	help
13464d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13474d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13484d6d6a2cSJohannes Goetzfried
13494d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13504d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13514d6d6a2cSJohannes Goetzfried
1352584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1353584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1354584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1355044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1356584fffc8SSebastian Siewior	help
1357584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1358584fffc8SSebastian Siewior	  described in RFC2612.
1359584fffc8SSebastian Siewior
13604ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13614ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13624ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1363b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13644ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13654bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13664bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13674bd96924SEric Biggers	select CRYPTO_SIMD
13684ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13694ea1277dSJohannes Goetzfried	help
13704ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13714ea1277dSJohannes Goetzfried	  described in RFC2612.
13724ea1277dSJohannes Goetzfried
13734ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13744ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13754ea1277dSJohannes Goetzfried
1376584fffc8SSebastian Siewiorconfig CRYPTO_DES
1377584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1378584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
137904007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1380584fffc8SSebastian Siewior	help
1381584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1382584fffc8SSebastian Siewior
1383c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1384c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
138597da37b3SDave Jones	depends on SPARC64
1386c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
138704007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1388b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1389c5aac2dfSDavid S. Miller	help
1390c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1391c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1392c5aac2dfSDavid S. Miller
13936574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13946574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13956574e6c6SJussi Kivilinna	depends on X86 && 64BIT
1396b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
139704007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
13986574e6c6SJussi Kivilinna	help
13996574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14006574e6c6SJussi Kivilinna
14016574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14026574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14036574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14046574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14056574e6c6SJussi Kivilinna
1406584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1407584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1408584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1409b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1410584fffc8SSebastian Siewior	help
1411584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1412584fffc8SSebastian Siewior
1413584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1414584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1415584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1416584fffc8SSebastian Siewior	help
1417584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1418584fffc8SSebastian Siewior
1419584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1420584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1421584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1422584fffc8SSebastian Siewior
1423584fffc8SSebastian Siewior	  See also:
14246d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1425e2ee95b8SHye-Shik Chang
14262407d608STan Swee Hengconfig CRYPTO_SALSA20
14273b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
1428b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
14292407d608STan Swee Heng	help
14302407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14312407d608STan Swee Heng
14322407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14332407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14342407d608STan Swee Heng
14352407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14362407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14371da177e4SLinus Torvalds
1438c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1439aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
14405fb8ef25SArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
1441b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1442c08d0e64SMartin Willi	help
1443aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1444c08d0e64SMartin Willi
1445c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1446c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1447de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1448c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1449c08d0e64SMartin Willi
1450de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1451de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1452de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1453de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1454de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1455de61d7aeSEric Biggers
1456aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1457aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1458aa762409SEric Biggers	  in some performance-sensitive scenarios.
1459aa762409SEric Biggers
1460c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14614af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1462c9320b6dSMartin Willi	depends on X86 && 64BIT
1463b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
146428e8d89bSArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
146584e03fa3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1466c9320b6dSMartin Willi	help
14677a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14687a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1469c9320b6dSMartin Willi
14703a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS
14713a2f58f3SArd Biesheuvel	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
14723a2f58f3SArd Biesheuvel	depends on CPU_MIPS32_R2
14733a2f58f3SArd Biesheuvel	select CRYPTO_BLKCIPHER
14743a2f58f3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
14753a2f58f3SArd Biesheuvel
1476584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1477584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1478584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1479584fffc8SSebastian Siewior	help
1480584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1481584fffc8SSebastian Siewior
1482584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1483584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1484584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1485584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1486584fffc8SSebastian Siewior
1487584fffc8SSebastian Siewior	  See also:
1488584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1489584fffc8SSebastian Siewior
1490584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1491584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1492584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1493584fffc8SSebastian Siewior	help
1494584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1495584fffc8SSebastian Siewior
1496584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1497584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1498584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1499584fffc8SSebastian Siewior
1500584fffc8SSebastian Siewior	  See also:
1501584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1502584fffc8SSebastian Siewior
1503937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1504937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1505937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1506b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1507596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1508937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1509e0f409dcSEric Biggers	select CRYPTO_SIMD
1510937c30d7SJussi Kivilinna	help
1511937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1512937c30d7SJussi Kivilinna
1513937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1514937c30d7SJussi Kivilinna	  of 8 bits.
1515937c30d7SJussi Kivilinna
15161e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1517937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1518937c30d7SJussi Kivilinna
1519937c30d7SJussi Kivilinna	  See also:
1520937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1521937c30d7SJussi Kivilinna
1522251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1523251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1524251496dbSJussi Kivilinna	depends on X86 && !64BIT
1525b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1526596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1527251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1528e0f409dcSEric Biggers	select CRYPTO_SIMD
1529251496dbSJussi Kivilinna	help
1530251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1531251496dbSJussi Kivilinna
1532251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1533251496dbSJussi Kivilinna	  of 8 bits.
1534251496dbSJussi Kivilinna
1535251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1536251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1537251496dbSJussi Kivilinna
1538251496dbSJussi Kivilinna	  See also:
1539251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1540251496dbSJussi Kivilinna
15417efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15427efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15437efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1544b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
15451d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15467efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1547e16bf974SEric Biggers	select CRYPTO_SIMD
15487efe4076SJohannes Goetzfried	select CRYPTO_XTS
15497efe4076SJohannes Goetzfried	help
15507efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15517efe4076SJohannes Goetzfried
15527efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15537efe4076SJohannes Goetzfried	  of 8 bits.
15547efe4076SJohannes Goetzfried
15557efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15567efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15577efe4076SJohannes Goetzfried
15587efe4076SJohannes Goetzfried	  See also:
15597efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15607efe4076SJohannes Goetzfried
156156d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
156256d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
156356d76c96SJussi Kivilinna	depends on X86 && 64BIT
156456d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
156556d76c96SJussi Kivilinna	help
156656d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
156756d76c96SJussi Kivilinna
156856d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
156956d76c96SJussi Kivilinna	  of 8 bits.
157056d76c96SJussi Kivilinna
157156d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
157256d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
157356d76c96SJussi Kivilinna
157456d76c96SJussi Kivilinna	  See also:
157556d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
157656d76c96SJussi Kivilinna
1577747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1578747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1579747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1580747c8ce4SGilad Ben-Yossef	help
1581747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1582747c8ce4SGilad Ben-Yossef
1583747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1584747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1585747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1586747c8ce4SGilad Ben-Yossef
1587747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1588747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1589747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1590747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1591747c8ce4SGilad Ben-Yossef
1592747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1593747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1594747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1595747c8ce4SGilad Ben-Yossef
1596747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1597747c8ce4SGilad Ben-Yossef
1598747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1599747c8ce4SGilad Ben-Yossef
1600747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1601747c8ce4SGilad Ben-Yossef
1602584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1603584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1604584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1605584fffc8SSebastian Siewior	help
1606584fffc8SSebastian Siewior	  TEA cipher algorithm.
1607584fffc8SSebastian Siewior
1608584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1609584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1610584fffc8SSebastian Siewior	  little memory.
1611584fffc8SSebastian Siewior
1612584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1613584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1614584fffc8SSebastian Siewior	  in the TEA algorithm.
1615584fffc8SSebastian Siewior
1616584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1617584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1618584fffc8SSebastian Siewior
1619584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1620584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1621584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1622584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1623584fffc8SSebastian Siewior	help
1624584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1625584fffc8SSebastian Siewior
1626584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1627584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1628584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1629584fffc8SSebastian Siewior	  bits.
1630584fffc8SSebastian Siewior
1631584fffc8SSebastian Siewior	  See also:
1632584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1633584fffc8SSebastian Siewior
1634584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1635584fffc8SSebastian Siewior	tristate
1636584fffc8SSebastian Siewior	help
1637584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1638584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1639584fffc8SSebastian Siewior
1640584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1641584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1642584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1643584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1644584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1645584fffc8SSebastian Siewior	help
1646584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1647584fffc8SSebastian Siewior
1648584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1649584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1650584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1651584fffc8SSebastian Siewior	  bits.
1652584fffc8SSebastian Siewior
1653584fffc8SSebastian Siewior	  See also:
1654584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1655584fffc8SSebastian Siewior
1656584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1657584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1658584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1659584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1660584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1661584fffc8SSebastian Siewior	help
1662584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1663584fffc8SSebastian Siewior
1664584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1665584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1666584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1667584fffc8SSebastian Siewior	  bits.
1668584fffc8SSebastian Siewior
1669584fffc8SSebastian Siewior	  See also:
1670584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1671584fffc8SSebastian Siewior
16728280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16738280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1674f21a7c19SAl Viro	depends on X86 && 64BIT
1675b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
16768280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16778280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1678414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16798280daadSJussi Kivilinna	help
16808280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16818280daadSJussi Kivilinna
16828280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16838280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16848280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16858280daadSJussi Kivilinna	  bits.
16868280daadSJussi Kivilinna
16878280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16888280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16898280daadSJussi Kivilinna
16908280daadSJussi Kivilinna	  See also:
16918280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16928280daadSJussi Kivilinna
1693107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1694107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1695107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1696b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1697a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16980e6ab46dSEric Biggers	select CRYPTO_SIMD
1699107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1700107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1701107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1702107778b5SJohannes Goetzfried	help
1703107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1704107778b5SJohannes Goetzfried
1705107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1706107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1707107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1708107778b5SJohannes Goetzfried	  bits.
1709107778b5SJohannes Goetzfried
1710107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1711107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1712107778b5SJohannes Goetzfried
1713107778b5SJohannes Goetzfried	  See also:
1714107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1715107778b5SJohannes Goetzfried
1716584fffc8SSebastian Siewiorcomment "Compression"
1717584fffc8SSebastian Siewior
17181da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17191da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1720cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1721f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17221da177e4SLinus Torvalds	select ZLIB_INFLATE
17231da177e4SLinus Torvalds	select ZLIB_DEFLATE
17241da177e4SLinus Torvalds	help
17251da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17261da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17271da177e4SLinus Torvalds
17281da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17291da177e4SLinus Torvalds
17300b77abb3SZoltan Sogorconfig CRYPTO_LZO
17310b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17320b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1733ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17340b77abb3SZoltan Sogor	select LZO_COMPRESS
17350b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17360b77abb3SZoltan Sogor	help
17370b77abb3SZoltan Sogor	  This is the LZO algorithm.
17380b77abb3SZoltan Sogor
173935a1fc18SSeth Jenningsconfig CRYPTO_842
174035a1fc18SSeth Jennings	tristate "842 compression algorithm"
17412062c5b6SDan Streetman	select CRYPTO_ALGAPI
17426a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17432062c5b6SDan Streetman	select 842_COMPRESS
17442062c5b6SDan Streetman	select 842_DECOMPRESS
174535a1fc18SSeth Jennings	help
174635a1fc18SSeth Jennings	  This is the 842 algorithm.
174735a1fc18SSeth Jennings
17480ea8530dSChanho Minconfig CRYPTO_LZ4
17490ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17500ea8530dSChanho Min	select CRYPTO_ALGAPI
17518cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17520ea8530dSChanho Min	select LZ4_COMPRESS
17530ea8530dSChanho Min	select LZ4_DECOMPRESS
17540ea8530dSChanho Min	help
17550ea8530dSChanho Min	  This is the LZ4 algorithm.
17560ea8530dSChanho Min
17570ea8530dSChanho Minconfig CRYPTO_LZ4HC
17580ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17590ea8530dSChanho Min	select CRYPTO_ALGAPI
176091d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17610ea8530dSChanho Min	select LZ4HC_COMPRESS
17620ea8530dSChanho Min	select LZ4_DECOMPRESS
17630ea8530dSChanho Min	help
17640ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17650ea8530dSChanho Min
1766d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1767d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1768d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1769d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1770d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1771d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1772d28fc3dbSNick Terrell	help
1773d28fc3dbSNick Terrell	  This is the zstd algorithm.
1774d28fc3dbSNick Terrell
177517f0f4a4SNeil Hormancomment "Random Number Generation"
177617f0f4a4SNeil Horman
177717f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
177817f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
177917f0f4a4SNeil Horman	select CRYPTO_AES
178017f0f4a4SNeil Horman	select CRYPTO_RNG
178117f0f4a4SNeil Horman	help
178217f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
178317f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17847dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17857dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
178617f0f4a4SNeil Horman
1787f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1788419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1789419090c6SStephan Mueller	help
1790419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1791419090c6SStephan Mueller	  more of the DRBG types must be selected.
1792419090c6SStephan Mueller
1793f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1794419090c6SStephan Mueller
1795419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1796401e4238SHerbert Xu	bool
1797419090c6SStephan Mueller	default y
1798419090c6SStephan Mueller	select CRYPTO_HMAC
1799826775bbSHerbert Xu	select CRYPTO_SHA256
1800419090c6SStephan Mueller
1801419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1802419090c6SStephan Mueller	bool "Enable Hash DRBG"
1803826775bbSHerbert Xu	select CRYPTO_SHA256
1804419090c6SStephan Mueller	help
1805419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1806419090c6SStephan Mueller
1807419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1808419090c6SStephan Mueller	bool "Enable CTR DRBG"
1809419090c6SStephan Mueller	select CRYPTO_AES
181035591285SStephan Mueller	depends on CRYPTO_CTR
1811419090c6SStephan Mueller	help
1812419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1813419090c6SStephan Mueller
1814f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1815f2c89a10SHerbert Xu	tristate
1816401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1817f2c89a10SHerbert Xu	select CRYPTO_RNG
1818bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1819f2c89a10SHerbert Xu
1820f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1821419090c6SStephan Mueller
1822bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1823bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18242f313e02SArnd Bergmann	select CRYPTO_RNG
1825bb5530e4SStephan Mueller	help
1826bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1827bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1828bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1829bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1830bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1831bb5530e4SStephan Mueller
183203c8efc1SHerbert Xuconfig CRYPTO_USER_API
183303c8efc1SHerbert Xu	tristate
183403c8efc1SHerbert Xu
1835fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1836fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18377451708fSHerbert Xu	depends on NET
1838fe869cdbSHerbert Xu	select CRYPTO_HASH
1839fe869cdbSHerbert Xu	select CRYPTO_USER_API
1840fe869cdbSHerbert Xu	help
1841fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1842fe869cdbSHerbert Xu	  algorithms.
1843fe869cdbSHerbert Xu
18448ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18458ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18467451708fSHerbert Xu	depends on NET
1847b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
18488ff59090SHerbert Xu	select CRYPTO_USER_API
18498ff59090SHerbert Xu	help
18508ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18518ff59090SHerbert Xu	  key cipher algorithms.
18528ff59090SHerbert Xu
18532f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18542f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18552f375538SStephan Mueller	depends on NET
18562f375538SStephan Mueller	select CRYPTO_RNG
18572f375538SStephan Mueller	select CRYPTO_USER_API
18582f375538SStephan Mueller	help
18592f375538SStephan Mueller	  This option enables the user-spaces interface for random
18602f375538SStephan Mueller	  number generator algorithms.
18612f375538SStephan Mueller
1862b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1863b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1864b64a2d95SHerbert Xu	depends on NET
1865b64a2d95SHerbert Xu	select CRYPTO_AEAD
1866b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
186772548b09SStephan Mueller	select CRYPTO_NULL
1868b64a2d95SHerbert Xu	select CRYPTO_USER_API
1869b64a2d95SHerbert Xu	help
1870b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1871b64a2d95SHerbert Xu	  cipher algorithms.
1872b64a2d95SHerbert Xu
1873cac5818cSCorentin Labbeconfig CRYPTO_STATS
1874cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1875a6a31385SCorentin Labbe	depends on CRYPTO_USER
1876cac5818cSCorentin Labbe	help
1877cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1878cac5818cSCorentin Labbe	  This will collect:
1879cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1880cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1881cac5818cSCorentin Labbe	  - size and numbers of hash operations
1882cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1883cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1884cac5818cSCorentin Labbe
1885ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1886ee08997fSDmitry Kasatkin	bool
1887ee08997fSDmitry Kasatkin
1888746b2e02SArd Biesheuvelsource "lib/crypto/Kconfig"
18891da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
18908636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
18918636a1f9SMasahiro Yamadasource "certs/Kconfig"
18921da177e4SLinus Torvalds
1893cce9e06dSHerbert Xuendif	# if CRYPTO
1894