1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139929d34caSEric Biggersif CRYPTO_MANAGER2 140929d34caSEric Biggers 141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 142326a6346SHerbert Xu bool "Disable run-time self tests" 14300ca28a5SHerbert Xu default y 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158929d34caSEric Biggersendif # if CRYPTO_MANAGER2 159929d34caSEric Biggers 160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 161e590e132SEric Biggers tristate 162584fffc8SSebastian Siewior 163584fffc8SSebastian Siewiorconfig CRYPTO_NULL 164584fffc8SSebastian Siewior tristate "Null algorithms" 165149a3971SHerbert Xu select CRYPTO_NULL2 166584fffc8SSebastian Siewior help 167584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 168584fffc8SSebastian Siewior 169149a3971SHerbert Xuconfig CRYPTO_NULL2 170dd43c4e9SHerbert Xu tristate 171149a3971SHerbert Xu select CRYPTO_ALGAPI2 172b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 173149a3971SHerbert Xu select CRYPTO_HASH2 174149a3971SHerbert Xu 1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1763b4afaf2SKees Cook tristate "Parallel crypto engine" 1773b4afaf2SKees Cook depends on SMP 1785068c7a8SSteffen Klassert select PADATA 1795068c7a8SSteffen Klassert select CRYPTO_MANAGER 1805068c7a8SSteffen Klassert select CRYPTO_AEAD 1815068c7a8SSteffen Klassert help 1825068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1835068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1845068c7a8SSteffen Klassert 185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 186584fffc8SSebastian Siewior tristate "Software async crypto daemon" 187b95bba5dSEric Biggers select CRYPTO_SKCIPHER 188b8a28251SLoc Ho select CRYPTO_HASH 189584fffc8SSebastian Siewior select CRYPTO_MANAGER 190584fffc8SSebastian Siewior help 191584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 192584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 193584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 194584fffc8SSebastian Siewior 195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 196584fffc8SSebastian Siewior tristate "Authenc support" 197584fffc8SSebastian Siewior select CRYPTO_AEAD 198b95bba5dSEric Biggers select CRYPTO_SKCIPHER 199584fffc8SSebastian Siewior select CRYPTO_MANAGER 200584fffc8SSebastian Siewior select CRYPTO_HASH 201e94c6a7aSHerbert Xu select CRYPTO_NULL 202584fffc8SSebastian Siewior help 203584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 204584fffc8SSebastian Siewior This is required for IPSec. 205584fffc8SSebastian Siewior 206584fffc8SSebastian Siewiorconfig CRYPTO_TEST 207584fffc8SSebastian Siewior tristate "Testing module" 208584fffc8SSebastian Siewior depends on m 209da7f033dSHerbert Xu select CRYPTO_MANAGER 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Quick & dirty crypto test module. 212584fffc8SSebastian Siewior 213266d0516SHerbert Xuconfig CRYPTO_SIMD 214266d0516SHerbert Xu tristate 215266d0516SHerbert Xu select CRYPTO_CRYPTD 216266d0516SHerbert Xu 217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 218596d8750SJussi Kivilinna tristate 219596d8750SJussi Kivilinna depends on X86 220b95bba5dSEric Biggers select CRYPTO_SKCIPHER 221596d8750SJussi Kivilinna 222735d37b5SBaolin Wangconfig CRYPTO_ENGINE 223735d37b5SBaolin Wang tristate 224735d37b5SBaolin Wang 2253d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2283d6228a5SVitaly Chikunov tristate "RSA algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2303d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2313d6228a5SVitaly Chikunov select MPILIB 2323d6228a5SVitaly Chikunov select ASN1 2333d6228a5SVitaly Chikunov help 2343d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2353d6228a5SVitaly Chikunov 2363d6228a5SVitaly Chikunovconfig CRYPTO_DH 2373d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2383d6228a5SVitaly Chikunov select CRYPTO_KPP 2393d6228a5SVitaly Chikunov select MPILIB 2403d6228a5SVitaly Chikunov help 2413d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2423d6228a5SVitaly Chikunov 2434a2289daSVitaly Chikunovconfig CRYPTO_ECC 2444a2289daSVitaly Chikunov tristate 2454a2289daSVitaly Chikunov 2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2473d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2484a2289daSVitaly Chikunov select CRYPTO_ECC 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2513d6228a5SVitaly Chikunov help 2523d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2533d6228a5SVitaly Chikunov 2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2550d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2560d7a7864SVitaly Chikunov select CRYPTO_ECC 2570d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2580d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2591036633eSVitaly Chikunov select OID_REGISTRY 2601036633eSVitaly Chikunov select ASN1 2610d7a7864SVitaly Chikunov help 2620d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2630d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2640d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2650d7a7864SVitaly Chikunov is implemented. 2660d7a7864SVitaly Chikunov 267584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 268584fffc8SSebastian Siewior 269584fffc8SSebastian Siewiorconfig CRYPTO_CCM 270584fffc8SSebastian Siewior tristate "CCM support" 271584fffc8SSebastian Siewior select CRYPTO_CTR 272f15f05b0SArd Biesheuvel select CRYPTO_HASH 273584fffc8SSebastian Siewior select CRYPTO_AEAD 274c8a3315aSEric Biggers select CRYPTO_MANAGER 275584fffc8SSebastian Siewior help 276584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 277584fffc8SSebastian Siewior 278584fffc8SSebastian Siewiorconfig CRYPTO_GCM 279584fffc8SSebastian Siewior tristate "GCM/GMAC support" 280584fffc8SSebastian Siewior select CRYPTO_CTR 281584fffc8SSebastian Siewior select CRYPTO_AEAD 2829382d97aSHuang Ying select CRYPTO_GHASH 2839489667dSJussi Kivilinna select CRYPTO_NULL 284c8a3315aSEric Biggers select CRYPTO_MANAGER 285584fffc8SSebastian Siewior help 286584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 287584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 288584fffc8SSebastian Siewior 28971ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 29071ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 29171ebc4d1SMartin Willi select CRYPTO_CHACHA20 29271ebc4d1SMartin Willi select CRYPTO_POLY1305 29371ebc4d1SMartin Willi select CRYPTO_AEAD 294c8a3315aSEric Biggers select CRYPTO_MANAGER 29571ebc4d1SMartin Willi help 29671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 29771ebc4d1SMartin Willi 29871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 30071ebc4d1SMartin Willi IETF protocols. 30171ebc4d1SMartin Willi 302f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 303f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 304f606a88eSOndrej Mosnacek select CRYPTO_AEAD 305f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 306f606a88eSOndrej Mosnacek help 307f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 308f606a88eSOndrej Mosnacek 309a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 310a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 311a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 31283053677SArd Biesheuvel depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800 313a4397635SArd Biesheuvel default y 314a4397635SArd Biesheuvel 3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3161d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3171d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3181d373d4eSOndrej Mosnacek select CRYPTO_AEAD 319de272ca7SEric Biggers select CRYPTO_SIMD 3201d373d4eSOndrej Mosnacek help 3214e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3221d373d4eSOndrej Mosnacek 323584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 324584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 325584fffc8SSebastian Siewior select CRYPTO_AEAD 326b95bba5dSEric Biggers select CRYPTO_SKCIPHER 327856e3f40SHerbert Xu select CRYPTO_NULL 328401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 329c8a3315aSEric Biggers select CRYPTO_MANAGER 330584fffc8SSebastian Siewior help 331584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 332584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 333584fffc8SSebastian Siewior 334a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 335a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 336a10f554fSHerbert Xu select CRYPTO_AEAD 337a10f554fSHerbert Xu select CRYPTO_NULL 338401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 339c8a3315aSEric Biggers select CRYPTO_MANAGER 340a10f554fSHerbert Xu help 341a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 342a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 343a10f554fSHerbert Xu algorithm for CBC. 344a10f554fSHerbert Xu 345584fffc8SSebastian Siewiorcomment "Block modes" 346584fffc8SSebastian Siewior 347584fffc8SSebastian Siewiorconfig CRYPTO_CBC 348584fffc8SSebastian Siewior tristate "CBC support" 349b95bba5dSEric Biggers select CRYPTO_SKCIPHER 350584fffc8SSebastian Siewior select CRYPTO_MANAGER 351584fffc8SSebastian Siewior help 352584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 353584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 354584fffc8SSebastian Siewior 355a7d85e06SJames Bottomleyconfig CRYPTO_CFB 356a7d85e06SJames Bottomley tristate "CFB support" 357b95bba5dSEric Biggers select CRYPTO_SKCIPHER 358a7d85e06SJames Bottomley select CRYPTO_MANAGER 359a7d85e06SJames Bottomley help 360a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 361a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 362a7d85e06SJames Bottomley 363584fffc8SSebastian Siewiorconfig CRYPTO_CTR 364584fffc8SSebastian Siewior tristate "CTR support" 365b95bba5dSEric Biggers select CRYPTO_SKCIPHER 366584fffc8SSebastian Siewior select CRYPTO_SEQIV 367584fffc8SSebastian Siewior select CRYPTO_MANAGER 368584fffc8SSebastian Siewior help 369584fffc8SSebastian Siewior CTR: Counter mode 370584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 371584fffc8SSebastian Siewior 372584fffc8SSebastian Siewiorconfig CRYPTO_CTS 373584fffc8SSebastian Siewior tristate "CTS support" 374b95bba5dSEric Biggers select CRYPTO_SKCIPHER 375c8a3315aSEric Biggers select CRYPTO_MANAGER 376584fffc8SSebastian Siewior help 377584fffc8SSebastian Siewior CTS: Cipher Text Stealing 378584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 379ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 380ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 381ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 382584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 383584fffc8SSebastian Siewior for AES encryption. 384584fffc8SSebastian Siewior 385ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 386ecd6d5c9SGilad Ben-Yossef 387584fffc8SSebastian Siewiorconfig CRYPTO_ECB 388584fffc8SSebastian Siewior tristate "ECB support" 389b95bba5dSEric Biggers select CRYPTO_SKCIPHER 390584fffc8SSebastian Siewior select CRYPTO_MANAGER 391584fffc8SSebastian Siewior help 392584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 393584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 394584fffc8SSebastian Siewior the input block by block. 395584fffc8SSebastian Siewior 396584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3972470a2b2SJussi Kivilinna tristate "LRW support" 398b95bba5dSEric Biggers select CRYPTO_SKCIPHER 399584fffc8SSebastian Siewior select CRYPTO_MANAGER 400584fffc8SSebastian Siewior select CRYPTO_GF128MUL 401584fffc8SSebastian Siewior help 402584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 403584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 404584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 405584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 406584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 407584fffc8SSebastian Siewior 408e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 409e497c518SGilad Ben-Yossef tristate "OFB support" 410b95bba5dSEric Biggers select CRYPTO_SKCIPHER 411e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 412e497c518SGilad Ben-Yossef help 413e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 414e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 415e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 416e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 417e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 418e497c518SGilad Ben-Yossef normally even when applied before encryption. 419e497c518SGilad Ben-Yossef 420584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 421584fffc8SSebastian Siewior tristate "PCBC support" 422b95bba5dSEric Biggers select CRYPTO_SKCIPHER 423584fffc8SSebastian Siewior select CRYPTO_MANAGER 424584fffc8SSebastian Siewior help 425584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 426584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 427584fffc8SSebastian Siewior 428584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4295bcf8e6dSJussi Kivilinna tristate "XTS support" 430b95bba5dSEric Biggers select CRYPTO_SKCIPHER 431584fffc8SSebastian Siewior select CRYPTO_MANAGER 43212cb3a1cSMilan Broz select CRYPTO_ECB 433584fffc8SSebastian Siewior help 434584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 435584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 436584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 437584fffc8SSebastian Siewior 4381c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4391c49678eSStephan Mueller tristate "Key wrapping support" 440b95bba5dSEric Biggers select CRYPTO_SKCIPHER 441c8a3315aSEric Biggers select CRYPTO_MANAGER 4421c49678eSStephan Mueller help 4431c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4441c49678eSStephan Mueller padding. 4451c49678eSStephan Mueller 44626609a21SEric Biggersconfig CRYPTO_NHPOLY1305 44726609a21SEric Biggers tristate 44826609a21SEric Biggers select CRYPTO_HASH 44948ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 45026609a21SEric Biggers 451012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 452012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 453012c8238SEric Biggers depends on X86 && 64BIT 454012c8238SEric Biggers select CRYPTO_NHPOLY1305 455012c8238SEric Biggers help 456012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 457012c8238SEric Biggers Adiantum encryption mode. 458012c8238SEric Biggers 4590f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4600f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4610f961f9fSEric Biggers depends on X86 && 64BIT 4620f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4630f961f9fSEric Biggers help 4640f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4650f961f9fSEric Biggers Adiantum encryption mode. 4660f961f9fSEric Biggers 467059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 468059c2a4dSEric Biggers tristate "Adiantum support" 469059c2a4dSEric Biggers select CRYPTO_CHACHA20 47048ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 471059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 472c8a3315aSEric Biggers select CRYPTO_MANAGER 473059c2a4dSEric Biggers help 474059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 475059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 476059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 477059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 478059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 479059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 480059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 481059c2a4dSEric Biggers AES-XTS. 482059c2a4dSEric Biggers 483059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 484059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 485059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 486059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 487059c2a4dSEric Biggers security than XTS, subject to the security bound. 488059c2a4dSEric Biggers 489059c2a4dSEric Biggers If unsure, say N. 490059c2a4dSEric Biggers 491be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 492be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 493be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 494be1eb7f7SArd Biesheuvel help 495be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 496be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 497be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 498be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 499be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 500be1eb7f7SArd Biesheuvel encryption. 501be1eb7f7SArd Biesheuvel 502be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 503be1eb7f7SArd Biesheuvel instantiated either as a skcipher or as a aead (depending on the 504be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 505be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 506be1eb7f7SArd Biesheuvel ESSIV to the input IV. Note that in the aead case, it is assumed 507be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 508be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 509be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 510be1eb7f7SArd Biesheuvel 511be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 512be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 513be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 514be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 515be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 516be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 517be1eb7f7SArd Biesheuvel block encryption) 518be1eb7f7SArd Biesheuvel 519584fffc8SSebastian Siewiorcomment "Hash modes" 520584fffc8SSebastian Siewior 52193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 52293b5e86aSJussi Kivilinna tristate "CMAC support" 52393b5e86aSJussi Kivilinna select CRYPTO_HASH 52493b5e86aSJussi Kivilinna select CRYPTO_MANAGER 52593b5e86aSJussi Kivilinna help 52693b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 52793b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 52893b5e86aSJussi Kivilinna 52993b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 53093b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 53193b5e86aSJussi Kivilinna 5321da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5338425165dSHerbert Xu tristate "HMAC support" 5340796ae06SHerbert Xu select CRYPTO_HASH 53543518407SHerbert Xu select CRYPTO_MANAGER 5361da177e4SLinus Torvalds help 5371da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5381da177e4SLinus Torvalds This is required for IPSec. 5391da177e4SLinus Torvalds 540333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 541333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 542333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 543333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 544333b0d7eSKazunori MIYAZAWA help 545333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 546333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 547333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 548333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 549333b0d7eSKazunori MIYAZAWA 550f1939f7cSShane Wangconfig CRYPTO_VMAC 551f1939f7cSShane Wang tristate "VMAC support" 552f1939f7cSShane Wang select CRYPTO_HASH 553f1939f7cSShane Wang select CRYPTO_MANAGER 554f1939f7cSShane Wang help 555f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 556f1939f7cSShane Wang very high speed on 64-bit architectures. 557f1939f7cSShane Wang 558f1939f7cSShane Wang See also: 559f1939f7cSShane Wang <http://fastcrypto.org/vmac> 560f1939f7cSShane Wang 561584fffc8SSebastian Siewiorcomment "Digest" 562584fffc8SSebastian Siewior 563584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 564584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5655773a3e6SHerbert Xu select CRYPTO_HASH 5666a0962b2SDarrick J. Wong select CRC32 5671da177e4SLinus Torvalds help 568584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 569584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 57069c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5711da177e4SLinus Torvalds 5728cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5738cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5748cb51ba8SAustin Zhang depends on X86 5758cb51ba8SAustin Zhang select CRYPTO_HASH 5768cb51ba8SAustin Zhang help 5778cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5788cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5798cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5808cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5818cb51ba8SAustin Zhang gain performance compared with software implementation. 5828cb51ba8SAustin Zhang Module will be crc32c-intel. 5838cb51ba8SAustin Zhang 5847cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5856dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 586c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5876dd7a82cSAnton Blanchard select CRYPTO_HASH 5886dd7a82cSAnton Blanchard select CRC32 5896dd7a82cSAnton Blanchard help 5906dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 5916dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 5926dd7a82cSAnton Blanchard and newer processors for improved performance. 5936dd7a82cSAnton Blanchard 5946dd7a82cSAnton Blanchard 595442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 596442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 597442a7c40SDavid S. Miller depends on SPARC64 598442a7c40SDavid S. Miller select CRYPTO_HASH 599442a7c40SDavid S. Miller select CRC32 600442a7c40SDavid S. Miller help 601442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 602442a7c40SDavid S. Miller when available. 603442a7c40SDavid S. Miller 60478c37d19SAlexander Boykoconfig CRYPTO_CRC32 60578c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 60678c37d19SAlexander Boyko select CRYPTO_HASH 60778c37d19SAlexander Boyko select CRC32 60878c37d19SAlexander Boyko help 60978c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 61078c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 61178c37d19SAlexander Boyko 61278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 61378c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 61478c37d19SAlexander Boyko depends on X86 61578c37d19SAlexander Boyko select CRYPTO_HASH 61678c37d19SAlexander Boyko select CRC32 61778c37d19SAlexander Boyko help 61878c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 61978c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 62078c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 621af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 62278c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 62378c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 62478c37d19SAlexander Boyko 6254a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6264a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6274a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6284a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6294a5dc51eSMarcin Nowakowski help 6304a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6314a5dc51eSMarcin Nowakowski instructions, when available. 6324a5dc51eSMarcin Nowakowski 6334a5dc51eSMarcin Nowakowski 63467882e76SNikolay Borisovconfig CRYPTO_XXHASH 63567882e76SNikolay Borisov tristate "xxHash hash algorithm" 63667882e76SNikolay Borisov select CRYPTO_HASH 63767882e76SNikolay Borisov select XXHASH 63867882e76SNikolay Borisov help 63967882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 64067882e76SNikolay Borisov speeds close to RAM limits. 64167882e76SNikolay Borisov 64291d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 64391d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 64491d68933SDavid Sterba select CRYPTO_HASH 64591d68933SDavid Sterba help 64691d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 64791d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 64891d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 64991d68933SDavid Sterba 65091d68933SDavid Sterba This module provides the following algorithms: 65191d68933SDavid Sterba 65291d68933SDavid Sterba - blake2b-160 65391d68933SDavid Sterba - blake2b-256 65491d68933SDavid Sterba - blake2b-384 65591d68933SDavid Sterba - blake2b-512 65691d68933SDavid Sterba 65791d68933SDavid Sterba See https://blake2.net for further information. 65891d68933SDavid Sterba 659*7f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 660*7f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 661*7f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 662*7f9b0880SArd Biesheuvel select CRYPTO_HASH 663*7f9b0880SArd Biesheuvel help 664*7f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 665*7f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 666*7f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 667*7f9b0880SArd Biesheuvel 668*7f9b0880SArd Biesheuvel This module provides the following algorithms: 669*7f9b0880SArd Biesheuvel 670*7f9b0880SArd Biesheuvel - blake2s-128 671*7f9b0880SArd Biesheuvel - blake2s-160 672*7f9b0880SArd Biesheuvel - blake2s-224 673*7f9b0880SArd Biesheuvel - blake2s-256 674*7f9b0880SArd Biesheuvel 675*7f9b0880SArd Biesheuvel See https://blake2.net for further information. 676*7f9b0880SArd Biesheuvel 67768411521SHerbert Xuconfig CRYPTO_CRCT10DIF 67868411521SHerbert Xu tristate "CRCT10DIF algorithm" 67968411521SHerbert Xu select CRYPTO_HASH 68068411521SHerbert Xu help 68168411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 68268411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 68368411521SHerbert Xu transforms to be used if they are available. 68468411521SHerbert Xu 68568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 68668411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 68768411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 68868411521SHerbert Xu select CRYPTO_HASH 68968411521SHerbert Xu help 69068411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 69168411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 69268411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 693af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 69468411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 69568411521SHerbert Xu 696b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 697b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 698b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 699b01df1c1SDaniel Axtens select CRYPTO_HASH 700b01df1c1SDaniel Axtens help 701b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 702b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 703b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 704b01df1c1SDaniel Axtens 705146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 706146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 707146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 708146c8688SDaniel Axtens help 709146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 710146c8688SDaniel Axtens POWER8 vpmsum instructions. 711146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 712146c8688SDaniel Axtens 7132cdc6899SHuang Yingconfig CRYPTO_GHASH 7148dfa20fcSEric Biggers tristate "GHASH hash function" 7152cdc6899SHuang Ying select CRYPTO_GF128MUL 716578c60fbSArnd Bergmann select CRYPTO_HASH 7172cdc6899SHuang Ying help 7188dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7198dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7202cdc6899SHuang Ying 721f979e014SMartin Williconfig CRYPTO_POLY1305 722f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 723578c60fbSArnd Bergmann select CRYPTO_HASH 72448ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 725f979e014SMartin Willi help 726f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 727f979e014SMartin Willi 728f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 729f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 730f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 731f979e014SMartin Willi 732c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 733b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 734c70f4abeSMartin Willi depends on X86 && 64BIT 7351b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 736f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 737c70f4abeSMartin Willi help 738c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 739c70f4abeSMartin Willi 740c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 741c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 742c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 743c70f4abeSMartin Willi instructions. 744c70f4abeSMartin Willi 745a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 746a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 747a11d055eSArd Biesheuvel depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT) 748a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 749a11d055eSArd Biesheuvel 7501da177e4SLinus Torvaldsconfig CRYPTO_MD4 7511da177e4SLinus Torvalds tristate "MD4 digest algorithm" 752808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7531da177e4SLinus Torvalds help 7541da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7551da177e4SLinus Torvalds 7561da177e4SLinus Torvaldsconfig CRYPTO_MD5 7571da177e4SLinus Torvalds tristate "MD5 digest algorithm" 75814b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7591da177e4SLinus Torvalds help 7601da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7611da177e4SLinus Torvalds 762d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 763d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 764d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 765d69e75deSAaro Koskinen select CRYPTO_MD5 766d69e75deSAaro Koskinen select CRYPTO_HASH 767d69e75deSAaro Koskinen help 768d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 769d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 770d69e75deSAaro Koskinen 771e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 772e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 773e8e59953SMarkus Stockhausen depends on PPC 774e8e59953SMarkus Stockhausen select CRYPTO_HASH 775e8e59953SMarkus Stockhausen help 776e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 777e8e59953SMarkus Stockhausen in PPC assembler. 778e8e59953SMarkus Stockhausen 779fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 780fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 781fa4dfedcSDavid S. Miller depends on SPARC64 782fa4dfedcSDavid S. Miller select CRYPTO_MD5 783fa4dfedcSDavid S. Miller select CRYPTO_HASH 784fa4dfedcSDavid S. Miller help 785fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 786fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 787fa4dfedcSDavid S. Miller 788584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 789584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 79019e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 791584fffc8SSebastian Siewior help 792584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 793584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 794584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 795584fffc8SSebastian Siewior of the algorithm. 796584fffc8SSebastian Siewior 79782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 79882798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7997c4468bcSHerbert Xu select CRYPTO_HASH 80082798f90SAdrian-Ken Rueegsegger help 80182798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 80282798f90SAdrian-Ken Rueegsegger 80382798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 80435ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 80582798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 80682798f90SAdrian-Ken Rueegsegger 80782798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8086d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 80982798f90SAdrian-Ken Rueegsegger 81082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 81182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 812e5835fbaSHerbert Xu select CRYPTO_HASH 81382798f90SAdrian-Ken Rueegsegger help 81482798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 81582798f90SAdrian-Ken Rueegsegger 81682798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 81782798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 818b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 819b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 82082798f90SAdrian-Ken Rueegsegger 821b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 822b6d44341SAdrian Bunk against RIPEMD-160. 823534fe2c1SAdrian-Ken Rueegsegger 824534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8256d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 826534fe2c1SAdrian-Ken Rueegsegger 827534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 828534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 829d8a5e2e9SHerbert Xu select CRYPTO_HASH 830534fe2c1SAdrian-Ken Rueegsegger help 831b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 832b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 833b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 834b6d44341SAdrian Bunk (than RIPEMD-128). 835534fe2c1SAdrian-Ken Rueegsegger 836534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8376d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 838534fe2c1SAdrian-Ken Rueegsegger 839534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 840534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8413b8efb4cSHerbert Xu select CRYPTO_HASH 842534fe2c1SAdrian-Ken Rueegsegger help 843b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 844b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 845b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 846b6d44341SAdrian Bunk (than RIPEMD-160). 847534fe2c1SAdrian-Ken Rueegsegger 84882798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8496d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 85082798f90SAdrian-Ken Rueegsegger 8511da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8521da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 85354ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8541da177e4SLinus Torvalds help 8551da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8561da177e4SLinus Torvalds 85766be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 858e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 85966be8951SMathias Krause depends on X86 && 64BIT 86066be8951SMathias Krause select CRYPTO_SHA1 86166be8951SMathias Krause select CRYPTO_HASH 86266be8951SMathias Krause help 86366be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 86466be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 865e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 866e38b6b7fStim when available. 86766be8951SMathias Krause 8688275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 869e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8708275d1aaSTim Chen depends on X86 && 64BIT 8718275d1aaSTim Chen select CRYPTO_SHA256 8728275d1aaSTim Chen select CRYPTO_HASH 8738275d1aaSTim Chen help 8748275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8758275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8768275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 877e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 878e38b6b7fStim Instructions) when available. 8798275d1aaSTim Chen 88087de4579STim Chenconfig CRYPTO_SHA512_SSSE3 88187de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 88287de4579STim Chen depends on X86 && 64BIT 88387de4579STim Chen select CRYPTO_SHA512 88487de4579STim Chen select CRYPTO_HASH 88587de4579STim Chen help 88687de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 88787de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 88887de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 88987de4579STim Chen version 2 (AVX2) instructions, when available. 89087de4579STim Chen 891efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 892efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 893efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 894efdb6f6eSAaro Koskinen select CRYPTO_SHA1 895efdb6f6eSAaro Koskinen select CRYPTO_HASH 896efdb6f6eSAaro Koskinen help 897efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 898efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 899efdb6f6eSAaro Koskinen 9004ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9014ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9024ff28d4cSDavid S. Miller depends on SPARC64 9034ff28d4cSDavid S. Miller select CRYPTO_SHA1 9044ff28d4cSDavid S. Miller select CRYPTO_HASH 9054ff28d4cSDavid S. Miller help 9064ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9074ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9084ff28d4cSDavid S. Miller 909323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 910323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 911323a6bf1SMichael Ellerman depends on PPC 912323a6bf1SMichael Ellerman help 913323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 914323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 915323a6bf1SMichael Ellerman 916d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 917d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 918d9850fc5SMarkus Stockhausen depends on PPC && SPE 919d9850fc5SMarkus Stockhausen help 920d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 921d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 922d9850fc5SMarkus Stockhausen 9231da177e4SLinus Torvaldsconfig CRYPTO_SHA256 924cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 92550e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 92608c327f6SHans de Goede select CRYPTO_LIB_SHA256 9271da177e4SLinus Torvalds help 9281da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9291da177e4SLinus Torvalds 9301da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9311da177e4SLinus Torvalds security against collision attacks. 9321da177e4SLinus Torvalds 933cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 934cd12fb90SJonathan Lynch of security against collision attacks. 935cd12fb90SJonathan Lynch 9362ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9372ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9382ecc1e95SMarkus Stockhausen depends on PPC && SPE 9392ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9402ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9412ecc1e95SMarkus Stockhausen help 9422ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9432ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9442ecc1e95SMarkus Stockhausen 945efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 946efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 947efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 948efdb6f6eSAaro Koskinen select CRYPTO_SHA256 949efdb6f6eSAaro Koskinen select CRYPTO_HASH 950efdb6f6eSAaro Koskinen help 951efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 952efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 953efdb6f6eSAaro Koskinen 95486c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 95586c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 95686c93b24SDavid S. Miller depends on SPARC64 95786c93b24SDavid S. Miller select CRYPTO_SHA256 95886c93b24SDavid S. Miller select CRYPTO_HASH 95986c93b24SDavid S. Miller help 96086c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 96186c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 96286c93b24SDavid S. Miller 9631da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9641da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 965bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9661da177e4SLinus Torvalds help 9671da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9681da177e4SLinus Torvalds 9691da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9701da177e4SLinus Torvalds security against collision attacks. 9711da177e4SLinus Torvalds 9721da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9731da177e4SLinus Torvalds of security against collision attacks. 9741da177e4SLinus Torvalds 975efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 976efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 977efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 978efdb6f6eSAaro Koskinen select CRYPTO_SHA512 979efdb6f6eSAaro Koskinen select CRYPTO_HASH 980efdb6f6eSAaro Koskinen help 981efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 982efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 983efdb6f6eSAaro Koskinen 984775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 985775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 986775e0c69SDavid S. Miller depends on SPARC64 987775e0c69SDavid S. Miller select CRYPTO_SHA512 988775e0c69SDavid S. Miller select CRYPTO_HASH 989775e0c69SDavid S. Miller help 990775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 991775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 992775e0c69SDavid S. Miller 99353964b9eSJeff Garzikconfig CRYPTO_SHA3 99453964b9eSJeff Garzik tristate "SHA3 digest algorithm" 99553964b9eSJeff Garzik select CRYPTO_HASH 99653964b9eSJeff Garzik help 99753964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 99853964b9eSJeff Garzik cryptographic sponge function family called Keccak. 99953964b9eSJeff Garzik 100053964b9eSJeff Garzik References: 100153964b9eSJeff Garzik http://keccak.noekeon.org/ 100253964b9eSJeff Garzik 10034f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10044f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10054f0fc160SGilad Ben-Yossef select CRYPTO_HASH 10064f0fc160SGilad Ben-Yossef help 10074f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10084f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10094f0fc160SGilad Ben-Yossef 10104f0fc160SGilad Ben-Yossef References: 10114f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10124f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10134f0fc160SGilad Ben-Yossef 1014fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1015fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1016fe18957eSVitaly Chikunov select CRYPTO_HASH 1017fe18957eSVitaly Chikunov help 1018fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1019fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1020fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1021fe18957eSVitaly Chikunov 1022fe18957eSVitaly Chikunov References: 1023fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1024fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1025fe18957eSVitaly Chikunov 10261da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10271da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1028f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10291da177e4SLinus Torvalds help 10301da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10311da177e4SLinus Torvalds 10321da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10331da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10341da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10351da177e4SLinus Torvalds 10361da177e4SLinus Torvalds See also: 10371da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10381da177e4SLinus Torvalds 1039584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1040584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10414946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10421da177e4SLinus Torvalds help 1043584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10441da177e4SLinus Torvalds 1045584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1046584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10471da177e4SLinus Torvalds 10481da177e4SLinus Torvalds See also: 10496d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10501da177e4SLinus Torvalds 10510e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10528dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10538af00860SRichard Weinberger depends on X86 && 64BIT 10540e1227d3SHuang Ying select CRYPTO_CRYPTD 10550e1227d3SHuang Ying help 10568dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10578dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10580e1227d3SHuang Ying 1059584fffc8SSebastian Siewiorcomment "Ciphers" 10601da177e4SLinus Torvalds 10611da177e4SLinus Torvaldsconfig CRYPTO_AES 10621da177e4SLinus Torvalds tristate "AES cipher algorithms" 1063cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10645bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10651da177e4SLinus Torvalds help 10661da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10671da177e4SLinus Torvalds algorithm. 10681da177e4SLinus Torvalds 10691da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10701da177e4SLinus Torvalds both hardware and software across a wide range of computing 10711da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10721da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10731da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10741da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10751da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10761da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10771da177e4SLinus Torvalds 10781da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10791da177e4SLinus Torvalds 10801da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10811da177e4SLinus Torvalds 1082b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1083b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1084b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1085e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1086b5e0b032SArd Biesheuvel help 1087b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1088b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1089b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1090b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1091b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1092b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1093b5e0b032SArd Biesheuvel 1094b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1095b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1096b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1097b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10980a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10990a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1100b5e0b032SArd Biesheuvel 110154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 110254b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11038af00860SRichard Weinberger depends on X86 110485671860SHerbert Xu select CRYPTO_AEAD 11052c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 110654b6a1bdSHuang Ying select CRYPTO_ALGAPI 1107b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11087643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 110985671860SHerbert Xu select CRYPTO_SIMD 111054b6a1bdSHuang Ying help 111154b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 111254b6a1bdSHuang Ying 111354b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 111454b6a1bdSHuang Ying algorithm. 111554b6a1bdSHuang Ying 111654b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 111754b6a1bdSHuang Ying both hardware and software across a wide range of computing 111854b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 111954b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 112054b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 112154b6a1bdSHuang Ying suited for restricted-space environments, in which it also 112254b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 112354b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 112454b6a1bdSHuang Ying 112554b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 112654b6a1bdSHuang Ying 112754b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 112854b6a1bdSHuang Ying 11290d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11300d258efbSMathias Krause for some popular block cipher mode is supported too, including 1131944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11320d258efbSMathias Krause acceleration for CTR. 11332cf4ac8bSHuang Ying 11349bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11359bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11369bf4852dSDavid S. Miller depends on SPARC64 1137b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11389bf4852dSDavid S. Miller help 11399bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11409bf4852dSDavid S. Miller 11419bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11429bf4852dSDavid S. Miller algorithm. 11439bf4852dSDavid S. Miller 11449bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11459bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11469bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11479bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11489bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11499bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11509bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11519bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11529bf4852dSDavid S. Miller 11539bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11549bf4852dSDavid S. Miller 11559bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11569bf4852dSDavid S. Miller 11579bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11589bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11599bf4852dSDavid S. Miller ECB and CBC. 11609bf4852dSDavid S. Miller 1161504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1162504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1163504c6143SMarkus Stockhausen depends on PPC && SPE 1164b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1165504c6143SMarkus Stockhausen help 1166504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1167504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1168504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1169504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1170504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1171504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1172504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1173504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1174504c6143SMarkus Stockhausen 11751da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11761da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1177cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11781da177e4SLinus Torvalds help 11791da177e4SLinus Torvalds Anubis cipher algorithm. 11801da177e4SLinus Torvalds 11811da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11821da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11831da177e4SLinus Torvalds in the NESSIE competition. 11841da177e4SLinus Torvalds 11851da177e4SLinus Torvalds See also: 11866d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11876d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11881da177e4SLinus Torvalds 1189584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1190584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1191b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1192dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1193e2ee95b8SHye-Shik Chang help 1194584fffc8SSebastian Siewior ARC4 cipher algorithm. 1195e2ee95b8SHye-Shik Chang 1196584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1197584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1198584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1199584fffc8SSebastian Siewior weakness of the algorithm. 1200584fffc8SSebastian Siewior 1201584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1202584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1203584fffc8SSebastian Siewior select CRYPTO_ALGAPI 120452ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1205584fffc8SSebastian Siewior help 1206584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1207584fffc8SSebastian Siewior 1208584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1209584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1210584fffc8SSebastian Siewior designed for use on "large microprocessors". 1211e2ee95b8SHye-Shik Chang 1212e2ee95b8SHye-Shik Chang See also: 1213584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1214584fffc8SSebastian Siewior 121552ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 121652ba867cSJussi Kivilinna tristate 121752ba867cSJussi Kivilinna help 121852ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 121952ba867cSJussi Kivilinna generic c and the assembler implementations. 122052ba867cSJussi Kivilinna 122152ba867cSJussi Kivilinna See also: 122252ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 122352ba867cSJussi Kivilinna 122464b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 122564b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1226f21a7c19SAl Viro depends on X86 && 64BIT 1227b95bba5dSEric Biggers select CRYPTO_SKCIPHER 122864b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 122964b94ceaSJussi Kivilinna help 123064b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 123164b94ceaSJussi Kivilinna 123264b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 123364b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 123464b94ceaSJussi Kivilinna designed for use on "large microprocessors". 123564b94ceaSJussi Kivilinna 123664b94ceaSJussi Kivilinna See also: 123764b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 123864b94ceaSJussi Kivilinna 1239584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1240584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1241584fffc8SSebastian Siewior depends on CRYPTO 1242584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1243584fffc8SSebastian Siewior help 1244584fffc8SSebastian Siewior Camellia cipher algorithms module. 1245584fffc8SSebastian Siewior 1246584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1247584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1248584fffc8SSebastian Siewior 1249584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1250584fffc8SSebastian Siewior 1251584fffc8SSebastian Siewior See also: 1252584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1253584fffc8SSebastian Siewior 12540b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12550b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1256f21a7c19SAl Viro depends on X86 && 64BIT 12570b95ec56SJussi Kivilinna depends on CRYPTO 1258b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1259964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12600b95ec56SJussi Kivilinna help 12610b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12620b95ec56SJussi Kivilinna 12630b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12640b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12650b95ec56SJussi Kivilinna 12660b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12670b95ec56SJussi Kivilinna 12680b95ec56SJussi Kivilinna See also: 12690b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12700b95ec56SJussi Kivilinna 1271d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1272d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1273d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1274d9b1d2e7SJussi Kivilinna depends on CRYPTO 1275b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1276d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 127744893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 127844893bc2SEric Biggers select CRYPTO_SIMD 1279d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1280d9b1d2e7SJussi Kivilinna help 1281d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1282d9b1d2e7SJussi Kivilinna 1283d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1284d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1285d9b1d2e7SJussi Kivilinna 1286d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1287d9b1d2e7SJussi Kivilinna 1288d9b1d2e7SJussi Kivilinna See also: 1289d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1290d9b1d2e7SJussi Kivilinna 1291f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1292f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1293f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1294f3f935a7SJussi Kivilinna depends on CRYPTO 1295f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1296f3f935a7SJussi Kivilinna help 1297f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1298f3f935a7SJussi Kivilinna 1299f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1300f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1301f3f935a7SJussi Kivilinna 1302f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1303f3f935a7SJussi Kivilinna 1304f3f935a7SJussi Kivilinna See also: 1305f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1306f3f935a7SJussi Kivilinna 130781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 130881658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 130981658ad0SDavid S. Miller depends on SPARC64 131081658ad0SDavid S. Miller depends on CRYPTO 131181658ad0SDavid S. Miller select CRYPTO_ALGAPI 1312b95bba5dSEric Biggers select CRYPTO_SKCIPHER 131381658ad0SDavid S. Miller help 131481658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 131581658ad0SDavid S. Miller 131681658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 131781658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 131881658ad0SDavid S. Miller 131981658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 132081658ad0SDavid S. Miller 132181658ad0SDavid S. Miller See also: 132281658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 132381658ad0SDavid S. Miller 1324044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1325044ab525SJussi Kivilinna tristate 1326044ab525SJussi Kivilinna help 1327044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1328044ab525SJussi Kivilinna generic c and the assembler implementations. 1329044ab525SJussi Kivilinna 1330584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1331584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1332584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1333044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1334584fffc8SSebastian Siewior help 1335584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1336584fffc8SSebastian Siewior described in RFC2144. 1337584fffc8SSebastian Siewior 13384d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13394d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13404d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1341b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13424d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13431e63183aSEric Biggers select CRYPTO_CAST_COMMON 13441e63183aSEric Biggers select CRYPTO_SIMD 13454d6d6a2cSJohannes Goetzfried help 13464d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13474d6d6a2cSJohannes Goetzfried described in RFC2144. 13484d6d6a2cSJohannes Goetzfried 13494d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13504d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13514d6d6a2cSJohannes Goetzfried 1352584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1353584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1354584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1355044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1356584fffc8SSebastian Siewior help 1357584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1358584fffc8SSebastian Siewior described in RFC2612. 1359584fffc8SSebastian Siewior 13604ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13614ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13624ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1363b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13644ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13654bd96924SEric Biggers select CRYPTO_CAST_COMMON 13664bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13674bd96924SEric Biggers select CRYPTO_SIMD 13684ea1277dSJohannes Goetzfried select CRYPTO_XTS 13694ea1277dSJohannes Goetzfried help 13704ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13714ea1277dSJohannes Goetzfried described in RFC2612. 13724ea1277dSJohannes Goetzfried 13734ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13744ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13754ea1277dSJohannes Goetzfried 1376584fffc8SSebastian Siewiorconfig CRYPTO_DES 1377584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1378584fffc8SSebastian Siewior select CRYPTO_ALGAPI 137904007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1380584fffc8SSebastian Siewior help 1381584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1382584fffc8SSebastian Siewior 1383c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1384c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 138597da37b3SDave Jones depends on SPARC64 1386c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 138704007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1388b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1389c5aac2dfSDavid S. Miller help 1390c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1391c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1392c5aac2dfSDavid S. Miller 13936574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13946574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13956574e6c6SJussi Kivilinna depends on X86 && 64BIT 1396b95bba5dSEric Biggers select CRYPTO_SKCIPHER 139704007b0eSArd Biesheuvel select CRYPTO_LIB_DES 13986574e6c6SJussi Kivilinna help 13996574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14006574e6c6SJussi Kivilinna 14016574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14026574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14036574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14046574e6c6SJussi Kivilinna one that processes three blocks parallel. 14056574e6c6SJussi Kivilinna 1406584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1407584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1408584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1409b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1410584fffc8SSebastian Siewior help 1411584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1412584fffc8SSebastian Siewior 1413584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1414584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1415584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1416584fffc8SSebastian Siewior help 1417584fffc8SSebastian Siewior Khazad cipher algorithm. 1418584fffc8SSebastian Siewior 1419584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1420584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1421584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1422584fffc8SSebastian Siewior 1423584fffc8SSebastian Siewior See also: 14246d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1425e2ee95b8SHye-Shik Chang 14262407d608STan Swee Hengconfig CRYPTO_SALSA20 14273b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 1428b95bba5dSEric Biggers select CRYPTO_SKCIPHER 14292407d608STan Swee Heng help 14302407d608STan Swee Heng Salsa20 stream cipher algorithm. 14312407d608STan Swee Heng 14322407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14332407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14342407d608STan Swee Heng 14352407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14362407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14371da177e4SLinus Torvalds 1438c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1439aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14405fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1441b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1442c08d0e64SMartin Willi help 1443aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1444c08d0e64SMartin Willi 1445c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1446c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1447de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1448c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1449c08d0e64SMartin Willi 1450de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1451de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1452de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1453de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1454de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1455de61d7aeSEric Biggers 1456aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1457aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1458aa762409SEric Biggers in some performance-sensitive scenarios. 1459aa762409SEric Biggers 1460c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14614af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1462c9320b6dSMartin Willi depends on X86 && 64BIT 1463b95bba5dSEric Biggers select CRYPTO_SKCIPHER 146428e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 146584e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1466c9320b6dSMartin Willi help 14677a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14687a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1469c9320b6dSMartin Willi 14703a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14713a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14723a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 14733a2f58f3SArd Biesheuvel select CRYPTO_BLKCIPHER 14743a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14753a2f58f3SArd Biesheuvel 1476584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1477584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1478584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1479584fffc8SSebastian Siewior help 1480584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1481584fffc8SSebastian Siewior 1482584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1483584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1484584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1485584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1486584fffc8SSebastian Siewior 1487584fffc8SSebastian Siewior See also: 1488584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1489584fffc8SSebastian Siewior 1490584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1491584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1492584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1493584fffc8SSebastian Siewior help 1494584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1495584fffc8SSebastian Siewior 1496584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1497584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1498584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1499584fffc8SSebastian Siewior 1500584fffc8SSebastian Siewior See also: 1501584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1502584fffc8SSebastian Siewior 1503937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1504937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1505937c30d7SJussi Kivilinna depends on X86 && 64BIT 1506b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1507596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1508937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1509e0f409dcSEric Biggers select CRYPTO_SIMD 1510937c30d7SJussi Kivilinna help 1511937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1512937c30d7SJussi Kivilinna 1513937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1514937c30d7SJussi Kivilinna of 8 bits. 1515937c30d7SJussi Kivilinna 15161e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1517937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1518937c30d7SJussi Kivilinna 1519937c30d7SJussi Kivilinna See also: 1520937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1521937c30d7SJussi Kivilinna 1522251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1523251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1524251496dbSJussi Kivilinna depends on X86 && !64BIT 1525b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1526596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1527251496dbSJussi Kivilinna select CRYPTO_SERPENT 1528e0f409dcSEric Biggers select CRYPTO_SIMD 1529251496dbSJussi Kivilinna help 1530251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1531251496dbSJussi Kivilinna 1532251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1533251496dbSJussi Kivilinna of 8 bits. 1534251496dbSJussi Kivilinna 1535251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1536251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1537251496dbSJussi Kivilinna 1538251496dbSJussi Kivilinna See also: 1539251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1540251496dbSJussi Kivilinna 15417efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15427efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15437efe4076SJohannes Goetzfried depends on X86 && 64BIT 1544b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15451d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15467efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1547e16bf974SEric Biggers select CRYPTO_SIMD 15487efe4076SJohannes Goetzfried select CRYPTO_XTS 15497efe4076SJohannes Goetzfried help 15507efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15517efe4076SJohannes Goetzfried 15527efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15537efe4076SJohannes Goetzfried of 8 bits. 15547efe4076SJohannes Goetzfried 15557efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15567efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15577efe4076SJohannes Goetzfried 15587efe4076SJohannes Goetzfried See also: 15597efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15607efe4076SJohannes Goetzfried 156156d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 156256d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 156356d76c96SJussi Kivilinna depends on X86 && 64BIT 156456d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 156556d76c96SJussi Kivilinna help 156656d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 156756d76c96SJussi Kivilinna 156856d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 156956d76c96SJussi Kivilinna of 8 bits. 157056d76c96SJussi Kivilinna 157156d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 157256d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 157356d76c96SJussi Kivilinna 157456d76c96SJussi Kivilinna See also: 157556d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 157656d76c96SJussi Kivilinna 1577747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1578747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1579747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1580747c8ce4SGilad Ben-Yossef help 1581747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1582747c8ce4SGilad Ben-Yossef 1583747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1584747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1585747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1586747c8ce4SGilad Ben-Yossef 1587747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1588747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1589747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1590747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1591747c8ce4SGilad Ben-Yossef 1592747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1593747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1594747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1595747c8ce4SGilad Ben-Yossef 1596747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1597747c8ce4SGilad Ben-Yossef 1598747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1599747c8ce4SGilad Ben-Yossef 1600747c8ce4SGilad Ben-Yossef If unsure, say N. 1601747c8ce4SGilad Ben-Yossef 1602584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1603584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1604584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1605584fffc8SSebastian Siewior help 1606584fffc8SSebastian Siewior TEA cipher algorithm. 1607584fffc8SSebastian Siewior 1608584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1609584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1610584fffc8SSebastian Siewior little memory. 1611584fffc8SSebastian Siewior 1612584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1613584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1614584fffc8SSebastian Siewior in the TEA algorithm. 1615584fffc8SSebastian Siewior 1616584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1617584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1618584fffc8SSebastian Siewior 1619584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1620584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1621584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1622584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1623584fffc8SSebastian Siewior help 1624584fffc8SSebastian Siewior Twofish cipher algorithm. 1625584fffc8SSebastian Siewior 1626584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1627584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1628584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1629584fffc8SSebastian Siewior bits. 1630584fffc8SSebastian Siewior 1631584fffc8SSebastian Siewior See also: 1632584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1633584fffc8SSebastian Siewior 1634584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1635584fffc8SSebastian Siewior tristate 1636584fffc8SSebastian Siewior help 1637584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1638584fffc8SSebastian Siewior generic c and the assembler implementations. 1639584fffc8SSebastian Siewior 1640584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1641584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1642584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1643584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1644584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1645584fffc8SSebastian Siewior help 1646584fffc8SSebastian Siewior Twofish cipher algorithm. 1647584fffc8SSebastian Siewior 1648584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1649584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1650584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1651584fffc8SSebastian Siewior bits. 1652584fffc8SSebastian Siewior 1653584fffc8SSebastian Siewior See also: 1654584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1655584fffc8SSebastian Siewior 1656584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1657584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1658584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1659584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1660584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1661584fffc8SSebastian Siewior help 1662584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1663584fffc8SSebastian Siewior 1664584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1665584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1666584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1667584fffc8SSebastian Siewior bits. 1668584fffc8SSebastian Siewior 1669584fffc8SSebastian Siewior See also: 1670584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1671584fffc8SSebastian Siewior 16728280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16738280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1674f21a7c19SAl Viro depends on X86 && 64BIT 1675b95bba5dSEric Biggers select CRYPTO_SKCIPHER 16768280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16778280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1678414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16798280daadSJussi Kivilinna help 16808280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16818280daadSJussi Kivilinna 16828280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16838280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16848280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16858280daadSJussi Kivilinna bits. 16868280daadSJussi Kivilinna 16878280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16888280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16898280daadSJussi Kivilinna 16908280daadSJussi Kivilinna See also: 16918280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16928280daadSJussi Kivilinna 1693107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1694107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1695107778b5SJohannes Goetzfried depends on X86 && 64BIT 1696b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1697a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16980e6ab46dSEric Biggers select CRYPTO_SIMD 1699107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1700107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1701107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1702107778b5SJohannes Goetzfried help 1703107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1704107778b5SJohannes Goetzfried 1705107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1706107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1707107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1708107778b5SJohannes Goetzfried bits. 1709107778b5SJohannes Goetzfried 1710107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1711107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1712107778b5SJohannes Goetzfried 1713107778b5SJohannes Goetzfried See also: 1714107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1715107778b5SJohannes Goetzfried 1716584fffc8SSebastian Siewiorcomment "Compression" 1717584fffc8SSebastian Siewior 17181da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17191da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1720cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1721f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17221da177e4SLinus Torvalds select ZLIB_INFLATE 17231da177e4SLinus Torvalds select ZLIB_DEFLATE 17241da177e4SLinus Torvalds help 17251da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17261da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17271da177e4SLinus Torvalds 17281da177e4SLinus Torvalds You will most probably want this if using IPSec. 17291da177e4SLinus Torvalds 17300b77abb3SZoltan Sogorconfig CRYPTO_LZO 17310b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17320b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1733ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17340b77abb3SZoltan Sogor select LZO_COMPRESS 17350b77abb3SZoltan Sogor select LZO_DECOMPRESS 17360b77abb3SZoltan Sogor help 17370b77abb3SZoltan Sogor This is the LZO algorithm. 17380b77abb3SZoltan Sogor 173935a1fc18SSeth Jenningsconfig CRYPTO_842 174035a1fc18SSeth Jennings tristate "842 compression algorithm" 17412062c5b6SDan Streetman select CRYPTO_ALGAPI 17426a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17432062c5b6SDan Streetman select 842_COMPRESS 17442062c5b6SDan Streetman select 842_DECOMPRESS 174535a1fc18SSeth Jennings help 174635a1fc18SSeth Jennings This is the 842 algorithm. 174735a1fc18SSeth Jennings 17480ea8530dSChanho Minconfig CRYPTO_LZ4 17490ea8530dSChanho Min tristate "LZ4 compression algorithm" 17500ea8530dSChanho Min select CRYPTO_ALGAPI 17518cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17520ea8530dSChanho Min select LZ4_COMPRESS 17530ea8530dSChanho Min select LZ4_DECOMPRESS 17540ea8530dSChanho Min help 17550ea8530dSChanho Min This is the LZ4 algorithm. 17560ea8530dSChanho Min 17570ea8530dSChanho Minconfig CRYPTO_LZ4HC 17580ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17590ea8530dSChanho Min select CRYPTO_ALGAPI 176091d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17610ea8530dSChanho Min select LZ4HC_COMPRESS 17620ea8530dSChanho Min select LZ4_DECOMPRESS 17630ea8530dSChanho Min help 17640ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17650ea8530dSChanho Min 1766d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1767d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1768d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1769d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1770d28fc3dbSNick Terrell select ZSTD_COMPRESS 1771d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1772d28fc3dbSNick Terrell help 1773d28fc3dbSNick Terrell This is the zstd algorithm. 1774d28fc3dbSNick Terrell 177517f0f4a4SNeil Hormancomment "Random Number Generation" 177617f0f4a4SNeil Horman 177717f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 177817f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 177917f0f4a4SNeil Horman select CRYPTO_AES 178017f0f4a4SNeil Horman select CRYPTO_RNG 178117f0f4a4SNeil Horman help 178217f0f4a4SNeil Horman This option enables the generic pseudo random number generator 178317f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17847dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17857dd607e8SJiri Kosina CRYPTO_FIPS is selected 178617f0f4a4SNeil Horman 1787f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1788419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1789419090c6SStephan Mueller help 1790419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1791419090c6SStephan Mueller more of the DRBG types must be selected. 1792419090c6SStephan Mueller 1793f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1794419090c6SStephan Mueller 1795419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1796401e4238SHerbert Xu bool 1797419090c6SStephan Mueller default y 1798419090c6SStephan Mueller select CRYPTO_HMAC 1799826775bbSHerbert Xu select CRYPTO_SHA256 1800419090c6SStephan Mueller 1801419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1802419090c6SStephan Mueller bool "Enable Hash DRBG" 1803826775bbSHerbert Xu select CRYPTO_SHA256 1804419090c6SStephan Mueller help 1805419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1806419090c6SStephan Mueller 1807419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1808419090c6SStephan Mueller bool "Enable CTR DRBG" 1809419090c6SStephan Mueller select CRYPTO_AES 181035591285SStephan Mueller depends on CRYPTO_CTR 1811419090c6SStephan Mueller help 1812419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1813419090c6SStephan Mueller 1814f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1815f2c89a10SHerbert Xu tristate 1816401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1817f2c89a10SHerbert Xu select CRYPTO_RNG 1818bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1819f2c89a10SHerbert Xu 1820f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1821419090c6SStephan Mueller 1822bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1823bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18242f313e02SArnd Bergmann select CRYPTO_RNG 1825bb5530e4SStephan Mueller help 1826bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1827bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1828bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1829bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1830bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1831bb5530e4SStephan Mueller 183203c8efc1SHerbert Xuconfig CRYPTO_USER_API 183303c8efc1SHerbert Xu tristate 183403c8efc1SHerbert Xu 1835fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1836fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18377451708fSHerbert Xu depends on NET 1838fe869cdbSHerbert Xu select CRYPTO_HASH 1839fe869cdbSHerbert Xu select CRYPTO_USER_API 1840fe869cdbSHerbert Xu help 1841fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1842fe869cdbSHerbert Xu algorithms. 1843fe869cdbSHerbert Xu 18448ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18458ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18467451708fSHerbert Xu depends on NET 1847b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18488ff59090SHerbert Xu select CRYPTO_USER_API 18498ff59090SHerbert Xu help 18508ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18518ff59090SHerbert Xu key cipher algorithms. 18528ff59090SHerbert Xu 18532f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18542f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18552f375538SStephan Mueller depends on NET 18562f375538SStephan Mueller select CRYPTO_RNG 18572f375538SStephan Mueller select CRYPTO_USER_API 18582f375538SStephan Mueller help 18592f375538SStephan Mueller This option enables the user-spaces interface for random 18602f375538SStephan Mueller number generator algorithms. 18612f375538SStephan Mueller 1862b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1863b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1864b64a2d95SHerbert Xu depends on NET 1865b64a2d95SHerbert Xu select CRYPTO_AEAD 1866b95bba5dSEric Biggers select CRYPTO_SKCIPHER 186772548b09SStephan Mueller select CRYPTO_NULL 1868b64a2d95SHerbert Xu select CRYPTO_USER_API 1869b64a2d95SHerbert Xu help 1870b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1871b64a2d95SHerbert Xu cipher algorithms. 1872b64a2d95SHerbert Xu 1873cac5818cSCorentin Labbeconfig CRYPTO_STATS 1874cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1875a6a31385SCorentin Labbe depends on CRYPTO_USER 1876cac5818cSCorentin Labbe help 1877cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1878cac5818cSCorentin Labbe This will collect: 1879cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1880cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1881cac5818cSCorentin Labbe - size and numbers of hash operations 1882cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1883cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1884cac5818cSCorentin Labbe 1885ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1886ee08997fSDmitry Kasatkin bool 1887ee08997fSDmitry Kasatkin 1888746b2e02SArd Biesheuvelsource "lib/crypto/Kconfig" 18891da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 18908636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 18918636a1f9SMasahiro Yamadasource "certs/Kconfig" 18921da177e4SLinus Torvalds 1893cce9e06dSHerbert Xuendif # if CRYPTO 1894