1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 140326a6346SHerbert Xu bool "Disable run-time self tests" 14100ca28a5SHerbert Xu default y 1420b767f96SAlexander Shishkin help 143326a6346SHerbert Xu Disable run-time self tests that normally take place at 144326a6346SHerbert Xu algorithm registration. 1450b767f96SAlexander Shishkin 1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1475b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1486569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1495b2706a4SEric Biggers help 1505b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1515b2706a4SEric Biggers including randomized fuzz tests. 1525b2706a4SEric Biggers 1535b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1545b2706a4SEric Biggers longer to run than the normal self tests. 1555b2706a4SEric Biggers 156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 157e590e132SEric Biggers tristate 158584fffc8SSebastian Siewior 159584fffc8SSebastian Siewiorconfig CRYPTO_NULL 160584fffc8SSebastian Siewior tristate "Null algorithms" 161149a3971SHerbert Xu select CRYPTO_NULL2 162584fffc8SSebastian Siewior help 163584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 164584fffc8SSebastian Siewior 165149a3971SHerbert Xuconfig CRYPTO_NULL2 166dd43c4e9SHerbert Xu tristate 167149a3971SHerbert Xu select CRYPTO_ALGAPI2 168b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 169149a3971SHerbert Xu select CRYPTO_HASH2 170149a3971SHerbert Xu 1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1723b4afaf2SKees Cook tristate "Parallel crypto engine" 1733b4afaf2SKees Cook depends on SMP 1745068c7a8SSteffen Klassert select PADATA 1755068c7a8SSteffen Klassert select CRYPTO_MANAGER 1765068c7a8SSteffen Klassert select CRYPTO_AEAD 1775068c7a8SSteffen Klassert help 1785068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1795068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1805068c7a8SSteffen Klassert 181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 182584fffc8SSebastian Siewior tristate "Software async crypto daemon" 183b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184b8a28251SLoc Ho select CRYPTO_HASH 185584fffc8SSebastian Siewior select CRYPTO_MANAGER 186584fffc8SSebastian Siewior help 187584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 188584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 189584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 190584fffc8SSebastian Siewior 191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 192584fffc8SSebastian Siewior tristate "Authenc support" 193584fffc8SSebastian Siewior select CRYPTO_AEAD 194b95bba5dSEric Biggers select CRYPTO_SKCIPHER 195584fffc8SSebastian Siewior select CRYPTO_MANAGER 196584fffc8SSebastian Siewior select CRYPTO_HASH 197e94c6a7aSHerbert Xu select CRYPTO_NULL 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 200584fffc8SSebastian Siewior This is required for IPSec. 201584fffc8SSebastian Siewior 202584fffc8SSebastian Siewiorconfig CRYPTO_TEST 203584fffc8SSebastian Siewior tristate "Testing module" 20400ea27f1SArd Biesheuvel depends on m || EXPERT 205da7f033dSHerbert Xu select CRYPTO_MANAGER 206584fffc8SSebastian Siewior help 207584fffc8SSebastian Siewior Quick & dirty crypto test module. 208584fffc8SSebastian Siewior 209266d0516SHerbert Xuconfig CRYPTO_SIMD 210266d0516SHerbert Xu tristate 211266d0516SHerbert Xu select CRYPTO_CRYPTD 212266d0516SHerbert Xu 213735d37b5SBaolin Wangconfig CRYPTO_ENGINE 214735d37b5SBaolin Wang tristate 215735d37b5SBaolin Wang 2163d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2173d6228a5SVitaly Chikunov 2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2193d6228a5SVitaly Chikunov tristate "RSA algorithm" 2203d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2213d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2223d6228a5SVitaly Chikunov select MPILIB 2233d6228a5SVitaly Chikunov select ASN1 2243d6228a5SVitaly Chikunov help 2253d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_DH 2283d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_KPP 2303d6228a5SVitaly Chikunov select MPILIB 2313d6228a5SVitaly Chikunov help 2323d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2333d6228a5SVitaly Chikunov 234*7dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS 235*7dce5981SNicolai Stange bool "Support for RFC 7919 FFDHE group parameters" 236*7dce5981SNicolai Stange depends on CRYPTO_DH 237*7dce5981SNicolai Stange help 238*7dce5981SNicolai Stange Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 239*7dce5981SNicolai Stange 2404a2289daSVitaly Chikunovconfig CRYPTO_ECC 2414a2289daSVitaly Chikunov tristate 24238aa192aSArnd Bergmann select CRYPTO_RNG_DEFAULT 2434a2289daSVitaly Chikunov 2443d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2453d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2464a2289daSVitaly Chikunov select CRYPTO_ECC 2473d6228a5SVitaly Chikunov select CRYPTO_KPP 2483d6228a5SVitaly Chikunov help 2493d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2503d6228a5SVitaly Chikunov 2514e660291SStefan Bergerconfig CRYPTO_ECDSA 2524e660291SStefan Berger tristate "ECDSA (NIST P192, P256 etc.) algorithm" 2534e660291SStefan Berger select CRYPTO_ECC 2544e660291SStefan Berger select CRYPTO_AKCIPHER 2554e660291SStefan Berger select ASN1 2564e660291SStefan Berger help 2574e660291SStefan Berger Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 2584e660291SStefan Berger is A NIST cryptographic standard algorithm. Only signature verification 2594e660291SStefan Berger is implemented. 2604e660291SStefan Berger 2610d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2620d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2630d7a7864SVitaly Chikunov select CRYPTO_ECC 2640d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2650d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2661036633eSVitaly Chikunov select OID_REGISTRY 2671036633eSVitaly Chikunov select ASN1 2680d7a7864SVitaly Chikunov help 2690d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2700d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2710d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2720d7a7864SVitaly Chikunov is implemented. 2730d7a7864SVitaly Chikunov 274ea7ecb66STianjia Zhangconfig CRYPTO_SM2 275ea7ecb66STianjia Zhang tristate "SM2 algorithm" 27611400469STianjia Zhang select CRYPTO_LIB_SM3 277ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 278ea7ecb66STianjia Zhang select CRYPTO_MANAGER 279ea7ecb66STianjia Zhang select MPILIB 280ea7ecb66STianjia Zhang select ASN1 281ea7ecb66STianjia Zhang help 282ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 283ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 284ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 285ea7ecb66STianjia Zhang 286ea7ecb66STianjia Zhang References: 287ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 288ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 289ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 290ea7ecb66STianjia Zhang 291ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 292ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 293ee772cb6SArd Biesheuvel select CRYPTO_KPP 294ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 295ee772cb6SArd Biesheuvel 296bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 297bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 298bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 299bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 300bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 301bb611bdfSJason A. Donenfeld 302584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 303584fffc8SSebastian Siewior 304584fffc8SSebastian Siewiorconfig CRYPTO_CCM 305584fffc8SSebastian Siewior tristate "CCM support" 306584fffc8SSebastian Siewior select CRYPTO_CTR 307f15f05b0SArd Biesheuvel select CRYPTO_HASH 308584fffc8SSebastian Siewior select CRYPTO_AEAD 309c8a3315aSEric Biggers select CRYPTO_MANAGER 310584fffc8SSebastian Siewior help 311584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 312584fffc8SSebastian Siewior 313584fffc8SSebastian Siewiorconfig CRYPTO_GCM 314584fffc8SSebastian Siewior tristate "GCM/GMAC support" 315584fffc8SSebastian Siewior select CRYPTO_CTR 316584fffc8SSebastian Siewior select CRYPTO_AEAD 3179382d97aSHuang Ying select CRYPTO_GHASH 3189489667dSJussi Kivilinna select CRYPTO_NULL 319c8a3315aSEric Biggers select CRYPTO_MANAGER 320584fffc8SSebastian Siewior help 321584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 322584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 323584fffc8SSebastian Siewior 32471ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 32571ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 32671ebc4d1SMartin Willi select CRYPTO_CHACHA20 32771ebc4d1SMartin Willi select CRYPTO_POLY1305 32871ebc4d1SMartin Willi select CRYPTO_AEAD 329c8a3315aSEric Biggers select CRYPTO_MANAGER 33071ebc4d1SMartin Willi help 33171ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 33271ebc4d1SMartin Willi 33371ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 33471ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 33571ebc4d1SMartin Willi IETF protocols. 33671ebc4d1SMartin Willi 337f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 338f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 339f606a88eSOndrej Mosnacek select CRYPTO_AEAD 340f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 341f606a88eSOndrej Mosnacek help 342f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 343f606a88eSOndrej Mosnacek 344a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 345a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 346a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 347a4397635SArd Biesheuvel default y 348a4397635SArd Biesheuvel 3491d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3501d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3511d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3521d373d4eSOndrej Mosnacek select CRYPTO_AEAD 353de272ca7SEric Biggers select CRYPTO_SIMD 3541d373d4eSOndrej Mosnacek help 3554e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3561d373d4eSOndrej Mosnacek 357584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 358584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 359584fffc8SSebastian Siewior select CRYPTO_AEAD 360b95bba5dSEric Biggers select CRYPTO_SKCIPHER 361856e3f40SHerbert Xu select CRYPTO_NULL 362401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 363c8a3315aSEric Biggers select CRYPTO_MANAGER 364584fffc8SSebastian Siewior help 365584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 366584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 367584fffc8SSebastian Siewior 368a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 369a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 370a10f554fSHerbert Xu select CRYPTO_AEAD 371a10f554fSHerbert Xu select CRYPTO_NULL 372401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 373c8a3315aSEric Biggers select CRYPTO_MANAGER 374a10f554fSHerbert Xu help 375a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 376a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 377a10f554fSHerbert Xu algorithm for CBC. 378a10f554fSHerbert Xu 379584fffc8SSebastian Siewiorcomment "Block modes" 380584fffc8SSebastian Siewior 381584fffc8SSebastian Siewiorconfig CRYPTO_CBC 382584fffc8SSebastian Siewior tristate "CBC support" 383b95bba5dSEric Biggers select CRYPTO_SKCIPHER 384584fffc8SSebastian Siewior select CRYPTO_MANAGER 385584fffc8SSebastian Siewior help 386584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 387584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 388584fffc8SSebastian Siewior 389a7d85e06SJames Bottomleyconfig CRYPTO_CFB 390a7d85e06SJames Bottomley tristate "CFB support" 391b95bba5dSEric Biggers select CRYPTO_SKCIPHER 392a7d85e06SJames Bottomley select CRYPTO_MANAGER 393a7d85e06SJames Bottomley help 394a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 395a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 396a7d85e06SJames Bottomley 397584fffc8SSebastian Siewiorconfig CRYPTO_CTR 398584fffc8SSebastian Siewior tristate "CTR support" 399b95bba5dSEric Biggers select CRYPTO_SKCIPHER 400584fffc8SSebastian Siewior select CRYPTO_MANAGER 401584fffc8SSebastian Siewior help 402584fffc8SSebastian Siewior CTR: Counter mode 403584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 404584fffc8SSebastian Siewior 405584fffc8SSebastian Siewiorconfig CRYPTO_CTS 406584fffc8SSebastian Siewior tristate "CTS support" 407b95bba5dSEric Biggers select CRYPTO_SKCIPHER 408c8a3315aSEric Biggers select CRYPTO_MANAGER 409584fffc8SSebastian Siewior help 410584fffc8SSebastian Siewior CTS: Cipher Text Stealing 411584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 412ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 413ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 414ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 415584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 416584fffc8SSebastian Siewior for AES encryption. 417584fffc8SSebastian Siewior 418ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 419ecd6d5c9SGilad Ben-Yossef 420584fffc8SSebastian Siewiorconfig CRYPTO_ECB 421584fffc8SSebastian Siewior tristate "ECB support" 422b95bba5dSEric Biggers select CRYPTO_SKCIPHER 423584fffc8SSebastian Siewior select CRYPTO_MANAGER 424584fffc8SSebastian Siewior help 425584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 426584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 427584fffc8SSebastian Siewior the input block by block. 428584fffc8SSebastian Siewior 429584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4302470a2b2SJussi Kivilinna tristate "LRW support" 431b95bba5dSEric Biggers select CRYPTO_SKCIPHER 432584fffc8SSebastian Siewior select CRYPTO_MANAGER 433584fffc8SSebastian Siewior select CRYPTO_GF128MUL 434f60bbbbeSHerbert Xu select CRYPTO_ECB 435584fffc8SSebastian Siewior help 436584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 437584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 438584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 439584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 440584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 441584fffc8SSebastian Siewior 442e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 443e497c518SGilad Ben-Yossef tristate "OFB support" 444b95bba5dSEric Biggers select CRYPTO_SKCIPHER 445e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 446e497c518SGilad Ben-Yossef help 447e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 448e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 449e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 450e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 451e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 452e497c518SGilad Ben-Yossef normally even when applied before encryption. 453e497c518SGilad Ben-Yossef 454584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 455584fffc8SSebastian Siewior tristate "PCBC support" 456b95bba5dSEric Biggers select CRYPTO_SKCIPHER 457584fffc8SSebastian Siewior select CRYPTO_MANAGER 458584fffc8SSebastian Siewior help 459584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 460584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 461584fffc8SSebastian Siewior 462584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4635bcf8e6dSJussi Kivilinna tristate "XTS support" 464b95bba5dSEric Biggers select CRYPTO_SKCIPHER 465584fffc8SSebastian Siewior select CRYPTO_MANAGER 46612cb3a1cSMilan Broz select CRYPTO_ECB 467584fffc8SSebastian Siewior help 468584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 469584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 470584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 471584fffc8SSebastian Siewior 4721c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4731c49678eSStephan Mueller tristate "Key wrapping support" 474b95bba5dSEric Biggers select CRYPTO_SKCIPHER 475c8a3315aSEric Biggers select CRYPTO_MANAGER 4761c49678eSStephan Mueller help 4771c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4781c49678eSStephan Mueller padding. 4791c49678eSStephan Mueller 48026609a21SEric Biggersconfig CRYPTO_NHPOLY1305 48126609a21SEric Biggers tristate 48226609a21SEric Biggers select CRYPTO_HASH 48348ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 48426609a21SEric Biggers 485012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 486012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 487012c8238SEric Biggers depends on X86 && 64BIT 488012c8238SEric Biggers select CRYPTO_NHPOLY1305 489012c8238SEric Biggers help 490012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 491012c8238SEric Biggers Adiantum encryption mode. 492012c8238SEric Biggers 4930f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4940f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4950f961f9fSEric Biggers depends on X86 && 64BIT 4960f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4970f961f9fSEric Biggers help 4980f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4990f961f9fSEric Biggers Adiantum encryption mode. 5000f961f9fSEric Biggers 501059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 502059c2a4dSEric Biggers tristate "Adiantum support" 503059c2a4dSEric Biggers select CRYPTO_CHACHA20 50448ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 505059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 506c8a3315aSEric Biggers select CRYPTO_MANAGER 507059c2a4dSEric Biggers help 508059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 509059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 510059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 511059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 512059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 513059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 514059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 515059c2a4dSEric Biggers AES-XTS. 516059c2a4dSEric Biggers 517059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 518059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 519059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 520059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 521059c2a4dSEric Biggers security than XTS, subject to the security bound. 522059c2a4dSEric Biggers 523059c2a4dSEric Biggers If unsure, say N. 524059c2a4dSEric Biggers 525be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 526be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 527be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 528be1eb7f7SArd Biesheuvel help 529be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 530be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 531be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 532be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 533be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 534be1eb7f7SArd Biesheuvel encryption. 535be1eb7f7SArd Biesheuvel 536be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 537ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 538be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 539be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 540ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 541be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 542be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 543be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 544be1eb7f7SArd Biesheuvel 545be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 546be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 547be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 548be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 549be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 550be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 551be1eb7f7SArd Biesheuvel block encryption) 552be1eb7f7SArd Biesheuvel 553584fffc8SSebastian Siewiorcomment "Hash modes" 554584fffc8SSebastian Siewior 55593b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 55693b5e86aSJussi Kivilinna tristate "CMAC support" 55793b5e86aSJussi Kivilinna select CRYPTO_HASH 55893b5e86aSJussi Kivilinna select CRYPTO_MANAGER 55993b5e86aSJussi Kivilinna help 56093b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 56193b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 56293b5e86aSJussi Kivilinna 56393b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 56493b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 56593b5e86aSJussi Kivilinna 5661da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5678425165dSHerbert Xu tristate "HMAC support" 5680796ae06SHerbert Xu select CRYPTO_HASH 56943518407SHerbert Xu select CRYPTO_MANAGER 5701da177e4SLinus Torvalds help 5711da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5721da177e4SLinus Torvalds This is required for IPSec. 5731da177e4SLinus Torvalds 574333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 575333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 576333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 577333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 578333b0d7eSKazunori MIYAZAWA help 579333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 5809332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 581333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 582333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 583333b0d7eSKazunori MIYAZAWA 584f1939f7cSShane Wangconfig CRYPTO_VMAC 585f1939f7cSShane Wang tristate "VMAC support" 586f1939f7cSShane Wang select CRYPTO_HASH 587f1939f7cSShane Wang select CRYPTO_MANAGER 588f1939f7cSShane Wang help 589f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 590f1939f7cSShane Wang very high speed on 64-bit architectures. 591f1939f7cSShane Wang 592f1939f7cSShane Wang See also: 5939332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 594f1939f7cSShane Wang 595584fffc8SSebastian Siewiorcomment "Digest" 596584fffc8SSebastian Siewior 597584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 598584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5995773a3e6SHerbert Xu select CRYPTO_HASH 6006a0962b2SDarrick J. Wong select CRC32 6011da177e4SLinus Torvalds help 602584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 603584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 60469c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6051da177e4SLinus Torvalds 6068cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6078cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6088cb51ba8SAustin Zhang depends on X86 6098cb51ba8SAustin Zhang select CRYPTO_HASH 6108cb51ba8SAustin Zhang help 6118cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6128cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6138cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6148cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6158cb51ba8SAustin Zhang gain performance compared with software implementation. 6168cb51ba8SAustin Zhang Module will be crc32c-intel. 6178cb51ba8SAustin Zhang 6187cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6196dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 620c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6216dd7a82cSAnton Blanchard select CRYPTO_HASH 6226dd7a82cSAnton Blanchard select CRC32 6236dd7a82cSAnton Blanchard help 6246dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6256dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6266dd7a82cSAnton Blanchard and newer processors for improved performance. 6276dd7a82cSAnton Blanchard 6286dd7a82cSAnton Blanchard 629442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 630442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 631442a7c40SDavid S. Miller depends on SPARC64 632442a7c40SDavid S. Miller select CRYPTO_HASH 633442a7c40SDavid S. Miller select CRC32 634442a7c40SDavid S. Miller help 635442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 636442a7c40SDavid S. Miller when available. 637442a7c40SDavid S. Miller 63878c37d19SAlexander Boykoconfig CRYPTO_CRC32 63978c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 64078c37d19SAlexander Boyko select CRYPTO_HASH 64178c37d19SAlexander Boyko select CRC32 64278c37d19SAlexander Boyko help 64378c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 64478c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 64578c37d19SAlexander Boyko 64678c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 64778c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 64878c37d19SAlexander Boyko depends on X86 64978c37d19SAlexander Boyko select CRYPTO_HASH 65078c37d19SAlexander Boyko select CRC32 65178c37d19SAlexander Boyko help 65278c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 65378c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 65478c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 655af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 65678c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 65778c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 65878c37d19SAlexander Boyko 6594a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6604a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6614a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6624a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6634a5dc51eSMarcin Nowakowski help 6644a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6654a5dc51eSMarcin Nowakowski instructions, when available. 6664a5dc51eSMarcin Nowakowski 6674a5dc51eSMarcin Nowakowski 66867882e76SNikolay Borisovconfig CRYPTO_XXHASH 66967882e76SNikolay Borisov tristate "xxHash hash algorithm" 67067882e76SNikolay Borisov select CRYPTO_HASH 67167882e76SNikolay Borisov select XXHASH 67267882e76SNikolay Borisov help 67367882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 67467882e76SNikolay Borisov speeds close to RAM limits. 67567882e76SNikolay Borisov 67691d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 67791d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 67891d68933SDavid Sterba select CRYPTO_HASH 67991d68933SDavid Sterba help 68091d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 68191d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 68291d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 68391d68933SDavid Sterba 68491d68933SDavid Sterba This module provides the following algorithms: 68591d68933SDavid Sterba 68691d68933SDavid Sterba - blake2b-160 68791d68933SDavid Sterba - blake2b-256 68891d68933SDavid Sterba - blake2b-384 68991d68933SDavid Sterba - blake2b-512 69091d68933SDavid Sterba 69191d68933SDavid Sterba See https://blake2.net for further information. 69291d68933SDavid Sterba 6937f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 6947f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 6957f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 6967f9b0880SArd Biesheuvel select CRYPTO_HASH 6977f9b0880SArd Biesheuvel help 6987f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 6997f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 7007f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 7017f9b0880SArd Biesheuvel 7027f9b0880SArd Biesheuvel This module provides the following algorithms: 7037f9b0880SArd Biesheuvel 7047f9b0880SArd Biesheuvel - blake2s-128 7057f9b0880SArd Biesheuvel - blake2s-160 7067f9b0880SArd Biesheuvel - blake2s-224 7077f9b0880SArd Biesheuvel - blake2s-256 7087f9b0880SArd Biesheuvel 7097f9b0880SArd Biesheuvel See https://blake2.net for further information. 7107f9b0880SArd Biesheuvel 711ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 712ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 713ed0356edSJason A. Donenfeld depends on X86 && 64BIT 714ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 715ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 716ed0356edSJason A. Donenfeld 71768411521SHerbert Xuconfig CRYPTO_CRCT10DIF 71868411521SHerbert Xu tristate "CRCT10DIF algorithm" 71968411521SHerbert Xu select CRYPTO_HASH 72068411521SHerbert Xu help 72168411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 72268411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 72368411521SHerbert Xu transforms to be used if they are available. 72468411521SHerbert Xu 72568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 72668411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 72768411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 72868411521SHerbert Xu select CRYPTO_HASH 72968411521SHerbert Xu help 73068411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 73168411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 73268411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 733af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 73468411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 73568411521SHerbert Xu 736b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 737b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 738b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 739b01df1c1SDaniel Axtens select CRYPTO_HASH 740b01df1c1SDaniel Axtens help 741b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 742b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 743b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 744b01df1c1SDaniel Axtens 745146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 746146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 747146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 748146c8688SDaniel Axtens help 749146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 750146c8688SDaniel Axtens POWER8 vpmsum instructions. 751146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 752146c8688SDaniel Axtens 7532cdc6899SHuang Yingconfig CRYPTO_GHASH 7548dfa20fcSEric Biggers tristate "GHASH hash function" 7552cdc6899SHuang Ying select CRYPTO_GF128MUL 756578c60fbSArnd Bergmann select CRYPTO_HASH 7572cdc6899SHuang Ying help 7588dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7598dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7602cdc6899SHuang Ying 761f979e014SMartin Williconfig CRYPTO_POLY1305 762f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 763578c60fbSArnd Bergmann select CRYPTO_HASH 76448ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 765f979e014SMartin Willi help 766f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 767f979e014SMartin Willi 768f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 769f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 770f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 771f979e014SMartin Willi 772c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 773b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 774c70f4abeSMartin Willi depends on X86 && 64BIT 7751b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 776f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 777c70f4abeSMartin Willi help 778c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 779c70f4abeSMartin Willi 780c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 781c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 782c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 783c70f4abeSMartin Willi instructions. 784c70f4abeSMartin Willi 785a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 786a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 7876c810cf2SMaciej W. Rozycki depends on MIPS 788a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 789a11d055eSArd Biesheuvel 7901da177e4SLinus Torvaldsconfig CRYPTO_MD4 7911da177e4SLinus Torvalds tristate "MD4 digest algorithm" 792808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7931da177e4SLinus Torvalds help 7941da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7951da177e4SLinus Torvalds 7961da177e4SLinus Torvaldsconfig CRYPTO_MD5 7971da177e4SLinus Torvalds tristate "MD5 digest algorithm" 79814b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7991da177e4SLinus Torvalds help 8001da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 8011da177e4SLinus Torvalds 802d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 803d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 804d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 805d69e75deSAaro Koskinen select CRYPTO_MD5 806d69e75deSAaro Koskinen select CRYPTO_HASH 807d69e75deSAaro Koskinen help 808d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 809d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 810d69e75deSAaro Koskinen 811e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 812e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 813e8e59953SMarkus Stockhausen depends on PPC 814e8e59953SMarkus Stockhausen select CRYPTO_HASH 815e8e59953SMarkus Stockhausen help 816e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 817e8e59953SMarkus Stockhausen in PPC assembler. 818e8e59953SMarkus Stockhausen 819fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 820fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 821fa4dfedcSDavid S. Miller depends on SPARC64 822fa4dfedcSDavid S. Miller select CRYPTO_MD5 823fa4dfedcSDavid S. Miller select CRYPTO_HASH 824fa4dfedcSDavid S. Miller help 825fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 826fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 827fa4dfedcSDavid S. Miller 828584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 829584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 83019e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 831584fffc8SSebastian Siewior help 832584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 833584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 834584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 835584fffc8SSebastian Siewior of the algorithm. 836584fffc8SSebastian Siewior 83782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 83882798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 839e5835fbaSHerbert Xu select CRYPTO_HASH 84082798f90SAdrian-Ken Rueegsegger help 84182798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 84282798f90SAdrian-Ken Rueegsegger 84382798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 84482798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 845b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 846b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 84782798f90SAdrian-Ken Rueegsegger 848b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 849b6d44341SAdrian Bunk against RIPEMD-160. 850534fe2c1SAdrian-Ken Rueegsegger 851534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8529332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 853534fe2c1SAdrian-Ken Rueegsegger 8541da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8551da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 85654ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8571da177e4SLinus Torvalds help 8581da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8591da177e4SLinus Torvalds 86066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 861e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 86266be8951SMathias Krause depends on X86 && 64BIT 86366be8951SMathias Krause select CRYPTO_SHA1 86466be8951SMathias Krause select CRYPTO_HASH 86566be8951SMathias Krause help 86666be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 86766be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 868e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 869e38b6b7fStim when available. 87066be8951SMathias Krause 8718275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 872e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8738275d1aaSTim Chen depends on X86 && 64BIT 8748275d1aaSTim Chen select CRYPTO_SHA256 8758275d1aaSTim Chen select CRYPTO_HASH 8768275d1aaSTim Chen help 8778275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8788275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8798275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 880e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 881e38b6b7fStim Instructions) when available. 8828275d1aaSTim Chen 88387de4579STim Chenconfig CRYPTO_SHA512_SSSE3 88487de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 88587de4579STim Chen depends on X86 && 64BIT 88687de4579STim Chen select CRYPTO_SHA512 88787de4579STim Chen select CRYPTO_HASH 88887de4579STim Chen help 88987de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 89087de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 89187de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 89287de4579STim Chen version 2 (AVX2) instructions, when available. 89387de4579STim Chen 894efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 895efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 896efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 897efdb6f6eSAaro Koskinen select CRYPTO_SHA1 898efdb6f6eSAaro Koskinen select CRYPTO_HASH 899efdb6f6eSAaro Koskinen help 900efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 901efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 902efdb6f6eSAaro Koskinen 9034ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9044ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9054ff28d4cSDavid S. Miller depends on SPARC64 9064ff28d4cSDavid S. Miller select CRYPTO_SHA1 9074ff28d4cSDavid S. Miller select CRYPTO_HASH 9084ff28d4cSDavid S. Miller help 9094ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9104ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9114ff28d4cSDavid S. Miller 912323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 913323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 914323a6bf1SMichael Ellerman depends on PPC 915323a6bf1SMichael Ellerman help 916323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 917323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 918323a6bf1SMichael Ellerman 919d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 920d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 921d9850fc5SMarkus Stockhausen depends on PPC && SPE 922d9850fc5SMarkus Stockhausen help 923d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 924d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 925d9850fc5SMarkus Stockhausen 9261da177e4SLinus Torvaldsconfig CRYPTO_SHA256 927cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 92850e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 92908c327f6SHans de Goede select CRYPTO_LIB_SHA256 9301da177e4SLinus Torvalds help 9311da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9321da177e4SLinus Torvalds 9331da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9341da177e4SLinus Torvalds security against collision attacks. 9351da177e4SLinus Torvalds 936cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 937cd12fb90SJonathan Lynch of security against collision attacks. 938cd12fb90SJonathan Lynch 9392ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9402ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9412ecc1e95SMarkus Stockhausen depends on PPC && SPE 9422ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9432ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9442ecc1e95SMarkus Stockhausen help 9452ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9462ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9472ecc1e95SMarkus Stockhausen 948efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 949efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 950efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 951efdb6f6eSAaro Koskinen select CRYPTO_SHA256 952efdb6f6eSAaro Koskinen select CRYPTO_HASH 953efdb6f6eSAaro Koskinen help 954efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 955efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 956efdb6f6eSAaro Koskinen 95786c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 95886c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 95986c93b24SDavid S. Miller depends on SPARC64 96086c93b24SDavid S. Miller select CRYPTO_SHA256 96186c93b24SDavid S. Miller select CRYPTO_HASH 96286c93b24SDavid S. Miller help 96386c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 96486c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 96586c93b24SDavid S. Miller 9661da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9671da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 968bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9691da177e4SLinus Torvalds help 9701da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9711da177e4SLinus Torvalds 9721da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9731da177e4SLinus Torvalds security against collision attacks. 9741da177e4SLinus Torvalds 9751da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9761da177e4SLinus Torvalds of security against collision attacks. 9771da177e4SLinus Torvalds 978efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 979efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 980efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 981efdb6f6eSAaro Koskinen select CRYPTO_SHA512 982efdb6f6eSAaro Koskinen select CRYPTO_HASH 983efdb6f6eSAaro Koskinen help 984efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 985efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 986efdb6f6eSAaro Koskinen 987775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 988775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 989775e0c69SDavid S. Miller depends on SPARC64 990775e0c69SDavid S. Miller select CRYPTO_SHA512 991775e0c69SDavid S. Miller select CRYPTO_HASH 992775e0c69SDavid S. Miller help 993775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 994775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 995775e0c69SDavid S. Miller 99653964b9eSJeff Garzikconfig CRYPTO_SHA3 99753964b9eSJeff Garzik tristate "SHA3 digest algorithm" 99853964b9eSJeff Garzik select CRYPTO_HASH 99953964b9eSJeff Garzik help 100053964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 100153964b9eSJeff Garzik cryptographic sponge function family called Keccak. 100253964b9eSJeff Garzik 100353964b9eSJeff Garzik References: 100453964b9eSJeff Garzik http://keccak.noekeon.org/ 100553964b9eSJeff Garzik 10064f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10074f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10084f0fc160SGilad Ben-Yossef select CRYPTO_HASH 1009b4784a45STianjia Zhang select CRYPTO_LIB_SM3 10104f0fc160SGilad Ben-Yossef help 10114f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10124f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10134f0fc160SGilad Ben-Yossef 10144f0fc160SGilad Ben-Yossef References: 10154f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10164f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10174f0fc160SGilad Ben-Yossef 1018930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64 1019930ab34dSTianjia Zhang tristate "SM3 digest algorithm (x86_64/AVX)" 1020930ab34dSTianjia Zhang depends on X86 && 64BIT 1021930ab34dSTianjia Zhang select CRYPTO_HASH 1022930ab34dSTianjia Zhang select CRYPTO_LIB_SM3 1023930ab34dSTianjia Zhang help 1024930ab34dSTianjia Zhang SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1025930ab34dSTianjia Zhang It is part of the Chinese Commercial Cryptography suite. This is 1026930ab34dSTianjia Zhang SM3 optimized implementation using Advanced Vector Extensions (AVX) 1027930ab34dSTianjia Zhang when available. 1028930ab34dSTianjia Zhang 1029930ab34dSTianjia Zhang If unsure, say N. 1030930ab34dSTianjia Zhang 1031fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1032fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1033fe18957eSVitaly Chikunov select CRYPTO_HASH 1034fe18957eSVitaly Chikunov help 1035fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1036fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1037fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1038fe18957eSVitaly Chikunov 1039fe18957eSVitaly Chikunov References: 1040fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1041fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1042fe18957eSVitaly Chikunov 1043584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1044584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10454946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10461da177e4SLinus Torvalds help 1047584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10481da177e4SLinus Torvalds 1049584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1050584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10511da177e4SLinus Torvalds 10521da177e4SLinus Torvalds See also: 10536d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10541da177e4SLinus Torvalds 10550e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10568dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10578af00860SRichard Weinberger depends on X86 && 64BIT 10580e1227d3SHuang Ying select CRYPTO_CRYPTD 10590e1227d3SHuang Ying help 10608dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10618dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10620e1227d3SHuang Ying 1063584fffc8SSebastian Siewiorcomment "Ciphers" 10641da177e4SLinus Torvalds 10651da177e4SLinus Torvaldsconfig CRYPTO_AES 10661da177e4SLinus Torvalds tristate "AES cipher algorithms" 1067cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10685bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10691da177e4SLinus Torvalds help 10701da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10711da177e4SLinus Torvalds algorithm. 10721da177e4SLinus Torvalds 10731da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10741da177e4SLinus Torvalds both hardware and software across a wide range of computing 10751da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10761da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10771da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10781da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10791da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10801da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10811da177e4SLinus Torvalds 10821da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10831da177e4SLinus Torvalds 10841da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10851da177e4SLinus Torvalds 1086b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1087b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1088b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1089e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1090b5e0b032SArd Biesheuvel help 1091b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1092b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1093b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1094b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1095b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1096b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1097b5e0b032SArd Biesheuvel 1098b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1099b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1100b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1101b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11020a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11030a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1104b5e0b032SArd Biesheuvel 110554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 110654b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11078af00860SRichard Weinberger depends on X86 110885671860SHerbert Xu select CRYPTO_AEAD 11092c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 111054b6a1bdSHuang Ying select CRYPTO_ALGAPI 1111b95bba5dSEric Biggers select CRYPTO_SKCIPHER 111285671860SHerbert Xu select CRYPTO_SIMD 111354b6a1bdSHuang Ying help 111454b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 111554b6a1bdSHuang Ying 111654b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 111754b6a1bdSHuang Ying algorithm. 111854b6a1bdSHuang Ying 111954b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 112054b6a1bdSHuang Ying both hardware and software across a wide range of computing 112154b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 112254b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 112354b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 112454b6a1bdSHuang Ying suited for restricted-space environments, in which it also 112554b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 112654b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 112754b6a1bdSHuang Ying 112854b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 112954b6a1bdSHuang Ying 113054b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 113154b6a1bdSHuang Ying 11320d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11330d258efbSMathias Krause for some popular block cipher mode is supported too, including 1134944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11350d258efbSMathias Krause acceleration for CTR. 11362cf4ac8bSHuang Ying 11379bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11389bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11399bf4852dSDavid S. Miller depends on SPARC64 1140b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11419bf4852dSDavid S. Miller help 11429bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11439bf4852dSDavid S. Miller 11449bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11459bf4852dSDavid S. Miller algorithm. 11469bf4852dSDavid S. Miller 11479bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11489bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11499bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11509bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11519bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11529bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11539bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11549bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11559bf4852dSDavid S. Miller 11569bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11579bf4852dSDavid S. Miller 11589bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11599bf4852dSDavid S. Miller 11609bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11619bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11629bf4852dSDavid S. Miller ECB and CBC. 11639bf4852dSDavid S. Miller 1164504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1165504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1166504c6143SMarkus Stockhausen depends on PPC && SPE 1167b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1168504c6143SMarkus Stockhausen help 1169504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1170504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1171504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1172504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1173504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1174504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1175504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1176504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1177504c6143SMarkus Stockhausen 11781da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11791da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 11801674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1181cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11821da177e4SLinus Torvalds help 11831da177e4SLinus Torvalds Anubis cipher algorithm. 11841da177e4SLinus Torvalds 11851da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11861da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11871da177e4SLinus Torvalds in the NESSIE competition. 11881da177e4SLinus Torvalds 11891da177e4SLinus Torvalds See also: 11906d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11916d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11921da177e4SLinus Torvalds 1193584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1194584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 11959ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1196b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1197dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1198e2ee95b8SHye-Shik Chang help 1199584fffc8SSebastian Siewior ARC4 cipher algorithm. 1200e2ee95b8SHye-Shik Chang 1201584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1202584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1203584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1204584fffc8SSebastian Siewior weakness of the algorithm. 1205584fffc8SSebastian Siewior 1206584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1207584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1208584fffc8SSebastian Siewior select CRYPTO_ALGAPI 120952ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1210584fffc8SSebastian Siewior help 1211584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1212584fffc8SSebastian Siewior 1213584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1214584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1215584fffc8SSebastian Siewior designed for use on "large microprocessors". 1216e2ee95b8SHye-Shik Chang 1217e2ee95b8SHye-Shik Chang See also: 12189332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1219584fffc8SSebastian Siewior 122052ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 122152ba867cSJussi Kivilinna tristate 122252ba867cSJussi Kivilinna help 122352ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 122452ba867cSJussi Kivilinna generic c and the assembler implementations. 122552ba867cSJussi Kivilinna 122652ba867cSJussi Kivilinna See also: 12279332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 122852ba867cSJussi Kivilinna 122964b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 123064b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1231f21a7c19SAl Viro depends on X86 && 64BIT 1232b95bba5dSEric Biggers select CRYPTO_SKCIPHER 123364b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1234c0a64926SArd Biesheuvel imply CRYPTO_CTR 123564b94ceaSJussi Kivilinna help 123664b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 123764b94ceaSJussi Kivilinna 123864b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 123964b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 124064b94ceaSJussi Kivilinna designed for use on "large microprocessors". 124164b94ceaSJussi Kivilinna 124264b94ceaSJussi Kivilinna See also: 12439332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 124464b94ceaSJussi Kivilinna 1245584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1246584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1247584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1248584fffc8SSebastian Siewior help 1249584fffc8SSebastian Siewior Camellia cipher algorithms module. 1250584fffc8SSebastian Siewior 1251584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1252584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1253584fffc8SSebastian Siewior 1254584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1255584fffc8SSebastian Siewior 1256584fffc8SSebastian Siewior See also: 1257584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1258584fffc8SSebastian Siewior 12590b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12600b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1261f21a7c19SAl Viro depends on X86 && 64BIT 1262b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1263a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 12640b95ec56SJussi Kivilinna help 12650b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12660b95ec56SJussi Kivilinna 12670b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12680b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12690b95ec56SJussi Kivilinna 12700b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12710b95ec56SJussi Kivilinna 12720b95ec56SJussi Kivilinna See also: 12730b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12740b95ec56SJussi Kivilinna 1275d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1276d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1277d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1278b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1279d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 128044893bc2SEric Biggers select CRYPTO_SIMD 128155a7e88fSArd Biesheuvel imply CRYPTO_XTS 1282d9b1d2e7SJussi Kivilinna help 1283d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1284d9b1d2e7SJussi Kivilinna 1285d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1286d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1287d9b1d2e7SJussi Kivilinna 1288d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1289d9b1d2e7SJussi Kivilinna 1290d9b1d2e7SJussi Kivilinna See also: 1291d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1292d9b1d2e7SJussi Kivilinna 1293f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1294f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1295f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1296f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1297f3f935a7SJussi Kivilinna help 1298f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1299f3f935a7SJussi Kivilinna 1300f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1301f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1302f3f935a7SJussi Kivilinna 1303f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1304f3f935a7SJussi Kivilinna 1305f3f935a7SJussi Kivilinna See also: 1306f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1307f3f935a7SJussi Kivilinna 130881658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 130981658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 131081658ad0SDavid S. Miller depends on SPARC64 131181658ad0SDavid S. Miller select CRYPTO_ALGAPI 1312b95bba5dSEric Biggers select CRYPTO_SKCIPHER 131381658ad0SDavid S. Miller help 131481658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 131581658ad0SDavid S. Miller 131681658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 131781658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 131881658ad0SDavid S. Miller 131981658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 132081658ad0SDavid S. Miller 132181658ad0SDavid S. Miller See also: 132281658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 132381658ad0SDavid S. Miller 1324044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1325044ab525SJussi Kivilinna tristate 1326044ab525SJussi Kivilinna help 1327044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1328044ab525SJussi Kivilinna generic c and the assembler implementations. 1329044ab525SJussi Kivilinna 1330584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1331584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1332584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1333044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1334584fffc8SSebastian Siewior help 1335584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1336584fffc8SSebastian Siewior described in RFC2144. 1337584fffc8SSebastian Siewior 13384d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13394d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13404d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1341b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13424d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13431e63183aSEric Biggers select CRYPTO_CAST_COMMON 13441e63183aSEric Biggers select CRYPTO_SIMD 1345e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 13464d6d6a2cSJohannes Goetzfried help 13474d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13484d6d6a2cSJohannes Goetzfried described in RFC2144. 13494d6d6a2cSJohannes Goetzfried 13504d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13514d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13524d6d6a2cSJohannes Goetzfried 1353584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1354584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1355584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1356044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1357584fffc8SSebastian Siewior help 1358584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1359584fffc8SSebastian Siewior described in RFC2612. 1360584fffc8SSebastian Siewior 13614ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13624ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13634ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1364b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13654ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13664bd96924SEric Biggers select CRYPTO_CAST_COMMON 13674bd96924SEric Biggers select CRYPTO_SIMD 13682cc0fedbSArd Biesheuvel imply CRYPTO_XTS 13697a6623ccSArd Biesheuvel imply CRYPTO_CTR 13704ea1277dSJohannes Goetzfried help 13714ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13724ea1277dSJohannes Goetzfried described in RFC2612. 13734ea1277dSJohannes Goetzfried 13744ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13754ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13764ea1277dSJohannes Goetzfried 1377584fffc8SSebastian Siewiorconfig CRYPTO_DES 1378584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1379584fffc8SSebastian Siewior select CRYPTO_ALGAPI 138004007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1381584fffc8SSebastian Siewior help 1382584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1383584fffc8SSebastian Siewior 1384c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1385c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 138697da37b3SDave Jones depends on SPARC64 1387c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 138804007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1389b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1390c5aac2dfSDavid S. Miller help 1391c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1392c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1393c5aac2dfSDavid S. Miller 13946574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13956574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13966574e6c6SJussi Kivilinna depends on X86 && 64BIT 1397b95bba5dSEric Biggers select CRYPTO_SKCIPHER 139804007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1399768db5feSArd Biesheuvel imply CRYPTO_CTR 14006574e6c6SJussi Kivilinna help 14016574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14026574e6c6SJussi Kivilinna 14036574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14046574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14056574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14066574e6c6SJussi Kivilinna one that processes three blocks parallel. 14076574e6c6SJussi Kivilinna 1408584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1409584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1410584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1411b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1412584fffc8SSebastian Siewior help 1413584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1414584fffc8SSebastian Siewior 1415584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1416584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 14171674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1418584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1419584fffc8SSebastian Siewior help 1420584fffc8SSebastian Siewior Khazad cipher algorithm. 1421584fffc8SSebastian Siewior 1422584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1423584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1424584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1425584fffc8SSebastian Siewior 1426584fffc8SSebastian Siewior See also: 14276d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1428e2ee95b8SHye-Shik Chang 1429c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1430aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14315fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1432b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1433c08d0e64SMartin Willi help 1434aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1435c08d0e64SMartin Willi 1436c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1437c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1438de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 14399332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1440c08d0e64SMartin Willi 1441de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1442de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1443de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1444de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1445de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1446de61d7aeSEric Biggers 1447aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1448aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1449aa762409SEric Biggers in some performance-sensitive scenarios. 1450aa762409SEric Biggers 1451c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14524af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1453c9320b6dSMartin Willi depends on X86 && 64BIT 1454b95bba5dSEric Biggers select CRYPTO_SKCIPHER 145528e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 145684e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1457c9320b6dSMartin Willi help 14587a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14597a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1460c9320b6dSMartin Willi 14613a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14623a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14633a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1464660eda8dSEric Biggers select CRYPTO_SKCIPHER 14653a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14663a2f58f3SArd Biesheuvel 1467584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1468584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 14691674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1470584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1471584fffc8SSebastian Siewior help 1472584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1473584fffc8SSebastian Siewior 1474584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1475584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1476584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1477584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1478584fffc8SSebastian Siewior 1479584fffc8SSebastian Siewior See also: 1480584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1481584fffc8SSebastian Siewior 1482584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1483584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1484584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1485584fffc8SSebastian Siewior help 1486584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1487584fffc8SSebastian Siewior 1488584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1489784506a1SArd Biesheuvel of 8 bits. 1490584fffc8SSebastian Siewior 1491584fffc8SSebastian Siewior See also: 14929332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1493584fffc8SSebastian Siewior 1494937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1495937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1496937c30d7SJussi Kivilinna depends on X86 && 64BIT 1497b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1498937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1499e0f409dcSEric Biggers select CRYPTO_SIMD 15002e9440aeSArd Biesheuvel imply CRYPTO_CTR 1501937c30d7SJussi Kivilinna help 1502937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1503937c30d7SJussi Kivilinna 1504937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1505937c30d7SJussi Kivilinna of 8 bits. 1506937c30d7SJussi Kivilinna 15071e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1508937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1509937c30d7SJussi Kivilinna 1510937c30d7SJussi Kivilinna See also: 15119332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1512937c30d7SJussi Kivilinna 1513251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1514251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1515251496dbSJussi Kivilinna depends on X86 && !64BIT 1516b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1517251496dbSJussi Kivilinna select CRYPTO_SERPENT 1518e0f409dcSEric Biggers select CRYPTO_SIMD 15192e9440aeSArd Biesheuvel imply CRYPTO_CTR 1520251496dbSJussi Kivilinna help 1521251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1522251496dbSJussi Kivilinna 1523251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1524251496dbSJussi Kivilinna of 8 bits. 1525251496dbSJussi Kivilinna 1526251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1527251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1528251496dbSJussi Kivilinna 1529251496dbSJussi Kivilinna See also: 15309332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1531251496dbSJussi Kivilinna 15327efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15337efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15347efe4076SJohannes Goetzfried depends on X86 && 64BIT 1535b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15367efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1537e16bf974SEric Biggers select CRYPTO_SIMD 15389ec0af8aSArd Biesheuvel imply CRYPTO_XTS 15392e9440aeSArd Biesheuvel imply CRYPTO_CTR 15407efe4076SJohannes Goetzfried help 15417efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15427efe4076SJohannes Goetzfried 15437efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15447efe4076SJohannes Goetzfried of 8 bits. 15457efe4076SJohannes Goetzfried 15467efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15477efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15487efe4076SJohannes Goetzfried 15497efe4076SJohannes Goetzfried See also: 15509332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 15517efe4076SJohannes Goetzfried 155256d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 155356d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 155456d76c96SJussi Kivilinna depends on X86 && 64BIT 155556d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 155656d76c96SJussi Kivilinna help 155756d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 155856d76c96SJussi Kivilinna 155956d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 156056d76c96SJussi Kivilinna of 8 bits. 156156d76c96SJussi Kivilinna 156256d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 156356d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 156456d76c96SJussi Kivilinna 156556d76c96SJussi Kivilinna See also: 15669332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 156756d76c96SJussi Kivilinna 1568747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1569747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1570747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 15712b31277aSTianjia Zhang select CRYPTO_LIB_SM4 1572747c8ce4SGilad Ben-Yossef help 1573747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1574747c8ce4SGilad Ben-Yossef 1575747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1576747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1577747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1578747c8ce4SGilad Ben-Yossef 1579747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1580747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1581747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1582747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1583747c8ce4SGilad Ben-Yossef 1584747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1585747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1586747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1587747c8ce4SGilad Ben-Yossef 1588747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1589747c8ce4SGilad Ben-Yossef 1590747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1591747c8ce4SGilad Ben-Yossef 1592747c8ce4SGilad Ben-Yossef If unsure, say N. 1593747c8ce4SGilad Ben-Yossef 1594a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64 1595a7ee22eeSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1596a7ee22eeSTianjia Zhang depends on X86 && 64BIT 1597a7ee22eeSTianjia Zhang select CRYPTO_SKCIPHER 1598a7ee22eeSTianjia Zhang select CRYPTO_SIMD 1599a7ee22eeSTianjia Zhang select CRYPTO_ALGAPI 1600a7ee22eeSTianjia Zhang select CRYPTO_LIB_SM4 1601a7ee22eeSTianjia Zhang help 1602a7ee22eeSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1603a7ee22eeSTianjia Zhang 1604a7ee22eeSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1605a7ee22eeSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 1606a7ee22eeSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 1607a7ee22eeSTianjia Zhang 1608a7ee22eeSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX/x86_64 1609a7ee22eeSTianjia Zhang instruction set for block cipher. Through two affine transforms, 1610a7ee22eeSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1611a7ee22eeSTianjia Zhang effect of instruction acceleration. 1612a7ee22eeSTianjia Zhang 1613a7ee22eeSTianjia Zhang If unsure, say N. 1614a7ee22eeSTianjia Zhang 16155b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64 16165b2efa2bSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 16175b2efa2bSTianjia Zhang depends on X86 && 64BIT 16185b2efa2bSTianjia Zhang select CRYPTO_SKCIPHER 16195b2efa2bSTianjia Zhang select CRYPTO_SIMD 16205b2efa2bSTianjia Zhang select CRYPTO_ALGAPI 16215b2efa2bSTianjia Zhang select CRYPTO_LIB_SM4 16225b2efa2bSTianjia Zhang select CRYPTO_SM4_AESNI_AVX_X86_64 16235b2efa2bSTianjia Zhang help 16245b2efa2bSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 16255b2efa2bSTianjia Zhang 16265b2efa2bSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 16275b2efa2bSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 16285b2efa2bSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 16295b2efa2bSTianjia Zhang 16305b2efa2bSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX2/x86_64 16315b2efa2bSTianjia Zhang instruction set for block cipher. Through two affine transforms, 16325b2efa2bSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 16335b2efa2bSTianjia Zhang effect of instruction acceleration. 16345b2efa2bSTianjia Zhang 16355b2efa2bSTianjia Zhang If unsure, say N. 16365b2efa2bSTianjia Zhang 1637584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1638584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 16391674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1640584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1641584fffc8SSebastian Siewior help 1642584fffc8SSebastian Siewior TEA cipher algorithm. 1643584fffc8SSebastian Siewior 1644584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1645584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1646584fffc8SSebastian Siewior little memory. 1647584fffc8SSebastian Siewior 1648584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1649584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1650584fffc8SSebastian Siewior in the TEA algorithm. 1651584fffc8SSebastian Siewior 1652584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1653584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1654584fffc8SSebastian Siewior 1655584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1656584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1657584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1658584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1659584fffc8SSebastian Siewior help 1660584fffc8SSebastian Siewior Twofish cipher algorithm. 1661584fffc8SSebastian Siewior 1662584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1663584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1664584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1665584fffc8SSebastian Siewior bits. 1666584fffc8SSebastian Siewior 1667584fffc8SSebastian Siewior See also: 16689332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1669584fffc8SSebastian Siewior 1670584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1671584fffc8SSebastian Siewior tristate 1672584fffc8SSebastian Siewior help 1673584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1674584fffc8SSebastian Siewior generic c and the assembler implementations. 1675584fffc8SSebastian Siewior 1676584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1677584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1678584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1679584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1680584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1681f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1682584fffc8SSebastian Siewior help 1683584fffc8SSebastian Siewior Twofish cipher algorithm. 1684584fffc8SSebastian Siewior 1685584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1686584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1687584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1688584fffc8SSebastian Siewior bits. 1689584fffc8SSebastian Siewior 1690584fffc8SSebastian Siewior See also: 16919332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1692584fffc8SSebastian Siewior 1693584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1694584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1695584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1696584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1697584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1698f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1699584fffc8SSebastian Siewior help 1700584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1701584fffc8SSebastian Siewior 1702584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1703584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1704584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1705584fffc8SSebastian Siewior bits. 1706584fffc8SSebastian Siewior 1707584fffc8SSebastian Siewior See also: 17089332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1709584fffc8SSebastian Siewior 17108280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17118280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1712f21a7c19SAl Viro depends on X86 && 64BIT 1713b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17148280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17158280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 17168280daadSJussi Kivilinna help 17178280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17188280daadSJussi Kivilinna 17198280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17208280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17218280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17228280daadSJussi Kivilinna bits. 17238280daadSJussi Kivilinna 17248280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17258280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17268280daadSJussi Kivilinna 17278280daadSJussi Kivilinna See also: 17289332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 17298280daadSJussi Kivilinna 1730107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1731107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1732107778b5SJohannes Goetzfried depends on X86 && 64BIT 1733b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17340e6ab46dSEric Biggers select CRYPTO_SIMD 1735107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1736107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1737107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1738da4df93aSArd Biesheuvel imply CRYPTO_XTS 1739107778b5SJohannes Goetzfried help 1740107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1741107778b5SJohannes Goetzfried 1742107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1743107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1744107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1745107778b5SJohannes Goetzfried bits. 1746107778b5SJohannes Goetzfried 1747107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1748107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1749107778b5SJohannes Goetzfried 1750107778b5SJohannes Goetzfried See also: 17519332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1752107778b5SJohannes Goetzfried 1753584fffc8SSebastian Siewiorcomment "Compression" 1754584fffc8SSebastian Siewior 17551da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17561da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1757cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1758f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17591da177e4SLinus Torvalds select ZLIB_INFLATE 17601da177e4SLinus Torvalds select ZLIB_DEFLATE 17611da177e4SLinus Torvalds help 17621da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17631da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17641da177e4SLinus Torvalds 17651da177e4SLinus Torvalds You will most probably want this if using IPSec. 17661da177e4SLinus Torvalds 17670b77abb3SZoltan Sogorconfig CRYPTO_LZO 17680b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17690b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1770ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17710b77abb3SZoltan Sogor select LZO_COMPRESS 17720b77abb3SZoltan Sogor select LZO_DECOMPRESS 17730b77abb3SZoltan Sogor help 17740b77abb3SZoltan Sogor This is the LZO algorithm. 17750b77abb3SZoltan Sogor 177635a1fc18SSeth Jenningsconfig CRYPTO_842 177735a1fc18SSeth Jennings tristate "842 compression algorithm" 17782062c5b6SDan Streetman select CRYPTO_ALGAPI 17796a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17802062c5b6SDan Streetman select 842_COMPRESS 17812062c5b6SDan Streetman select 842_DECOMPRESS 178235a1fc18SSeth Jennings help 178335a1fc18SSeth Jennings This is the 842 algorithm. 178435a1fc18SSeth Jennings 17850ea8530dSChanho Minconfig CRYPTO_LZ4 17860ea8530dSChanho Min tristate "LZ4 compression algorithm" 17870ea8530dSChanho Min select CRYPTO_ALGAPI 17888cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17890ea8530dSChanho Min select LZ4_COMPRESS 17900ea8530dSChanho Min select LZ4_DECOMPRESS 17910ea8530dSChanho Min help 17920ea8530dSChanho Min This is the LZ4 algorithm. 17930ea8530dSChanho Min 17940ea8530dSChanho Minconfig CRYPTO_LZ4HC 17950ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17960ea8530dSChanho Min select CRYPTO_ALGAPI 179791d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17980ea8530dSChanho Min select LZ4HC_COMPRESS 17990ea8530dSChanho Min select LZ4_DECOMPRESS 18000ea8530dSChanho Min help 18010ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 18020ea8530dSChanho Min 1803d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1804d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1805d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1806d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1807d28fc3dbSNick Terrell select ZSTD_COMPRESS 1808d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1809d28fc3dbSNick Terrell help 1810d28fc3dbSNick Terrell This is the zstd algorithm. 1811d28fc3dbSNick Terrell 181217f0f4a4SNeil Hormancomment "Random Number Generation" 181317f0f4a4SNeil Horman 181417f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 181517f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 181617f0f4a4SNeil Horman select CRYPTO_AES 181717f0f4a4SNeil Horman select CRYPTO_RNG 181817f0f4a4SNeil Horman help 181917f0f4a4SNeil Horman This option enables the generic pseudo random number generator 182017f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18217dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18227dd607e8SJiri Kosina CRYPTO_FIPS is selected 182317f0f4a4SNeil Horman 1824f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1825419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1826419090c6SStephan Mueller help 1827419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1828419090c6SStephan Mueller more of the DRBG types must be selected. 1829419090c6SStephan Mueller 1830f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1831419090c6SStephan Mueller 1832419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1833401e4238SHerbert Xu bool 1834419090c6SStephan Mueller default y 1835419090c6SStephan Mueller select CRYPTO_HMAC 18365261cdf4SStephan Mueller select CRYPTO_SHA512 1837419090c6SStephan Mueller 1838419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1839419090c6SStephan Mueller bool "Enable Hash DRBG" 1840826775bbSHerbert Xu select CRYPTO_SHA256 1841419090c6SStephan Mueller help 1842419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1843419090c6SStephan Mueller 1844419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1845419090c6SStephan Mueller bool "Enable CTR DRBG" 1846419090c6SStephan Mueller select CRYPTO_AES 1847d6fc1a45SCorentin Labbe select CRYPTO_CTR 1848419090c6SStephan Mueller help 1849419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1850419090c6SStephan Mueller 1851f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1852f2c89a10SHerbert Xu tristate 1853401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1854f2c89a10SHerbert Xu select CRYPTO_RNG 1855bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1856f2c89a10SHerbert Xu 1857f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1858419090c6SStephan Mueller 1859bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1860bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18612f313e02SArnd Bergmann select CRYPTO_RNG 1862bb5530e4SStephan Mueller help 1863bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1864bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1865bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1866bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1867bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1868bb5530e4SStephan Mueller 1869026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR 1870026a733eSStephan Müller tristate 1871a88592ccSHerbert Xu select CRYPTO_HMAC 1872304b4aceSStephan Müller select CRYPTO_SHA256 1873026a733eSStephan Müller 187403c8efc1SHerbert Xuconfig CRYPTO_USER_API 187503c8efc1SHerbert Xu tristate 187603c8efc1SHerbert Xu 1877fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1878fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18797451708fSHerbert Xu depends on NET 1880fe869cdbSHerbert Xu select CRYPTO_HASH 1881fe869cdbSHerbert Xu select CRYPTO_USER_API 1882fe869cdbSHerbert Xu help 1883fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1884fe869cdbSHerbert Xu algorithms. 1885fe869cdbSHerbert Xu 18868ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18878ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18887451708fSHerbert Xu depends on NET 1889b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18908ff59090SHerbert Xu select CRYPTO_USER_API 18918ff59090SHerbert Xu help 18928ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18938ff59090SHerbert Xu key cipher algorithms. 18948ff59090SHerbert Xu 18952f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18962f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18972f375538SStephan Mueller depends on NET 18982f375538SStephan Mueller select CRYPTO_RNG 18992f375538SStephan Mueller select CRYPTO_USER_API 19002f375538SStephan Mueller help 19012f375538SStephan Mueller This option enables the user-spaces interface for random 19022f375538SStephan Mueller number generator algorithms. 19032f375538SStephan Mueller 190477ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 190577ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 190677ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 190777ebdabeSElena Petrova help 190877ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 190977ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 191077ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 191177ebdabeSElena Petrova no unless you know what this is. 191277ebdabeSElena Petrova 1913b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1914b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1915b64a2d95SHerbert Xu depends on NET 1916b64a2d95SHerbert Xu select CRYPTO_AEAD 1917b95bba5dSEric Biggers select CRYPTO_SKCIPHER 191872548b09SStephan Mueller select CRYPTO_NULL 1919b64a2d95SHerbert Xu select CRYPTO_USER_API 1920b64a2d95SHerbert Xu help 1921b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1922b64a2d95SHerbert Xu cipher algorithms. 1923b64a2d95SHerbert Xu 19249ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 19259ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 19269ace6771SArd Biesheuvel depends on CRYPTO_USER_API 19279ace6771SArd Biesheuvel default y 19289ace6771SArd Biesheuvel help 19299ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 19309ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 19319ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 19329ace6771SArd Biesheuvel 1933cac5818cSCorentin Labbeconfig CRYPTO_STATS 1934cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1935a6a31385SCorentin Labbe depends on CRYPTO_USER 1936cac5818cSCorentin Labbe help 1937cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1938cac5818cSCorentin Labbe This will collect: 1939cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1940cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1941cac5818cSCorentin Labbe - size and numbers of hash operations 1942cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1943cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1944cac5818cSCorentin Labbe 1945ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1946ee08997fSDmitry Kasatkin bool 1947ee08997fSDmitry Kasatkin 19481da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19498636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19508636a1f9SMasahiro Yamadasource "certs/Kconfig" 19511da177e4SLinus Torvalds 1952cce9e06dSHerbert Xuendif # if CRYPTO 1953