xref: /linux/crypto/Kconfig (revision 7033b937e21b12629d920e7864c20c46bc4ccf39)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
18*7033b937SEric Biggers	select CRYPTO_LIB_UTILS
191da177e4SLinus Torvalds	help
201da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
211da177e4SLinus Torvalds
22cce9e06dSHerbert Xuif CRYPTO
23cce9e06dSHerbert Xu
24584fffc8SSebastian Siewiorcomment "Crypto core or helper"
25584fffc8SSebastian Siewior
26ccb778e1SNeil Hormanconfig CRYPTO_FIPS
27ccb778e1SNeil Horman	bool "FIPS 200 compliance"
28f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
291f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
30ccb778e1SNeil Horman	help
31d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
32d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
33ccb778e1SNeil Horman	  certification.  You should say no unless you know what
34e84c5480SChuck Ebbert	  this is.
35ccb778e1SNeil Horman
365a44749fSVladis Dronovconfig CRYPTO_FIPS_NAME
375a44749fSVladis Dronov	string "FIPS Module Name"
385a44749fSVladis Dronov	default "Linux Kernel Cryptographic API"
395a44749fSVladis Dronov	depends on CRYPTO_FIPS
405a44749fSVladis Dronov	help
415a44749fSVladis Dronov	  This option sets the FIPS Module name reported by the Crypto API via
425a44749fSVladis Dronov	  the /proc/sys/crypto/fips_name file.
435a44749fSVladis Dronov
445a44749fSVladis Dronovconfig CRYPTO_FIPS_CUSTOM_VERSION
455a44749fSVladis Dronov	bool "Use Custom FIPS Module Version"
465a44749fSVladis Dronov	depends on CRYPTO_FIPS
475a44749fSVladis Dronov	default n
485a44749fSVladis Dronov
495a44749fSVladis Dronovconfig CRYPTO_FIPS_VERSION
505a44749fSVladis Dronov	string "FIPS Module Version"
515a44749fSVladis Dronov	default "(none)"
525a44749fSVladis Dronov	depends on CRYPTO_FIPS_CUSTOM_VERSION
535a44749fSVladis Dronov	help
545a44749fSVladis Dronov	  This option provides the ability to override the FIPS Module Version.
555a44749fSVladis Dronov	  By default the KERNELRELEASE value is used.
565a44749fSVladis Dronov
57cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
58cce9e06dSHerbert Xu	tristate
596a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
60cce9e06dSHerbert Xu	help
61cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
62cce9e06dSHerbert Xu
636a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
646a0fcbb4SHerbert Xu	tristate
656a0fcbb4SHerbert Xu
661ae97820SHerbert Xuconfig CRYPTO_AEAD
671ae97820SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
691ae97820SHerbert Xu	select CRYPTO_ALGAPI
701ae97820SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
74149a3971SHerbert Xu	select CRYPTO_NULL2
75149a3971SHerbert Xu	select CRYPTO_RNG2
766a0fcbb4SHerbert Xu
77b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER
785cde0af2SHerbert Xu	tristate
79b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
805cde0af2SHerbert Xu	select CRYPTO_ALGAPI
816a0fcbb4SHerbert Xu
82b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2
836a0fcbb4SHerbert Xu	tristate
846a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
856a0fcbb4SHerbert Xu	select CRYPTO_RNG2
865cde0af2SHerbert Xu
87055bcee3SHerbert Xuconfig CRYPTO_HASH
88055bcee3SHerbert Xu	tristate
896a0fcbb4SHerbert Xu	select CRYPTO_HASH2
90055bcee3SHerbert Xu	select CRYPTO_ALGAPI
91055bcee3SHerbert Xu
926a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
936a0fcbb4SHerbert Xu	tristate
946a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
956a0fcbb4SHerbert Xu
9617f0f4a4SNeil Hormanconfig CRYPTO_RNG
9717f0f4a4SNeil Horman	tristate
986a0fcbb4SHerbert Xu	select CRYPTO_RNG2
9917f0f4a4SNeil Horman	select CRYPTO_ALGAPI
10017f0f4a4SNeil Horman
1016a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
1026a0fcbb4SHerbert Xu	tristate
1036a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
1046a0fcbb4SHerbert Xu
105401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
106401e4238SHerbert Xu	tristate
107401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
108401e4238SHerbert Xu
1093c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
1103c339ab8STadeusz Struk	tristate
1113c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
1123c339ab8STadeusz Struk
1133c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
1143c339ab8STadeusz Struk	tristate
1153c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
1163c339ab8STadeusz Struk	select CRYPTO_ALGAPI
1173c339ab8STadeusz Struk
1184e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
1194e5f2c40SSalvatore Benedetto	tristate
1204e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1214e5f2c40SSalvatore Benedetto
1224e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1234e5f2c40SSalvatore Benedetto	tristate
1244e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1254e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1264e5f2c40SSalvatore Benedetto
1272ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1282ebda74fSGiovanni Cabiddu	tristate
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1308cd579d2SBart Van Assche	select SGL_ALLOC
1312ebda74fSGiovanni Cabiddu
1322ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1332ebda74fSGiovanni Cabiddu	tristate
1342ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1352ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1362ebda74fSGiovanni Cabiddu
1372b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1382b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1396a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1402b8c19dbSHerbert Xu	help
1412b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1422b8c19dbSHerbert Xu	  cbc(aes).
1432b8c19dbSHerbert Xu
1446a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1456a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1476a0fcbb4SHerbert Xu	select CRYPTO_HASH2
148b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
149946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1504e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1512ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1526a0fcbb4SHerbert Xu
153a38f7907SSteffen Klassertconfig CRYPTO_USER
154a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1555db017aaSHerbert Xu	depends on NET
156a38f7907SSteffen Klassert	select CRYPTO_MANAGER
157a38f7907SSteffen Klassert	help
158d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
159a38f7907SSteffen Klassert	  cbc(aes).
160a38f7907SSteffen Klassert
161326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
162326a6346SHerbert Xu	bool "Disable run-time self tests"
16300ca28a5SHerbert Xu	default y
1640b767f96SAlexander Shishkin	help
165326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
166326a6346SHerbert Xu	  algorithm registration.
1670b767f96SAlexander Shishkin
1685b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1695b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1706569e309SJason A. Donenfeld	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
1715b2706a4SEric Biggers	help
1725b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1735b2706a4SEric Biggers	  including randomized fuzz tests.
1745b2706a4SEric Biggers
1755b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1765b2706a4SEric Biggers	  longer to run than the normal self tests.
1775b2706a4SEric Biggers
178584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
179e590e132SEric Biggers	tristate
180584fffc8SSebastian Siewior
181584fffc8SSebastian Siewiorconfig CRYPTO_NULL
182584fffc8SSebastian Siewior	tristate "Null algorithms"
183149a3971SHerbert Xu	select CRYPTO_NULL2
184584fffc8SSebastian Siewior	help
185584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
186584fffc8SSebastian Siewior
187149a3971SHerbert Xuconfig CRYPTO_NULL2
188dd43c4e9SHerbert Xu	tristate
189149a3971SHerbert Xu	select CRYPTO_ALGAPI2
190b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
191149a3971SHerbert Xu	select CRYPTO_HASH2
192149a3971SHerbert Xu
1935068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1943b4afaf2SKees Cook	tristate "Parallel crypto engine"
1953b4afaf2SKees Cook	depends on SMP
1965068c7a8SSteffen Klassert	select PADATA
1975068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1985068c7a8SSteffen Klassert	select CRYPTO_AEAD
1995068c7a8SSteffen Klassert	help
2005068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2015068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2025068c7a8SSteffen Klassert
203584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
204584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
205b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
206b8a28251SLoc Ho	select CRYPTO_HASH
207584fffc8SSebastian Siewior	select CRYPTO_MANAGER
208584fffc8SSebastian Siewior	help
209584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
210584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
211584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
212584fffc8SSebastian Siewior
213584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
214584fffc8SSebastian Siewior	tristate "Authenc support"
215584fffc8SSebastian Siewior	select CRYPTO_AEAD
216b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
217584fffc8SSebastian Siewior	select CRYPTO_MANAGER
218584fffc8SSebastian Siewior	select CRYPTO_HASH
219e94c6a7aSHerbert Xu	select CRYPTO_NULL
220584fffc8SSebastian Siewior	help
221584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
222584fffc8SSebastian Siewior	  This is required for IPSec.
223584fffc8SSebastian Siewior
224584fffc8SSebastian Siewiorconfig CRYPTO_TEST
225584fffc8SSebastian Siewior	tristate "Testing module"
22600ea27f1SArd Biesheuvel	depends on m || EXPERT
227da7f033dSHerbert Xu	select CRYPTO_MANAGER
228584fffc8SSebastian Siewior	help
229584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
230584fffc8SSebastian Siewior
231266d0516SHerbert Xuconfig CRYPTO_SIMD
232266d0516SHerbert Xu	tristate
233266d0516SHerbert Xu	select CRYPTO_CRYPTD
234266d0516SHerbert Xu
235735d37b5SBaolin Wangconfig CRYPTO_ENGINE
236735d37b5SBaolin Wang	tristate
237735d37b5SBaolin Wang
2383d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2393d6228a5SVitaly Chikunov
2403d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2413d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2423d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2433d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2443d6228a5SVitaly Chikunov	select MPILIB
2453d6228a5SVitaly Chikunov	select ASN1
2463d6228a5SVitaly Chikunov	help
2473d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2483d6228a5SVitaly Chikunov
2493d6228a5SVitaly Chikunovconfig CRYPTO_DH
2503d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2513d6228a5SVitaly Chikunov	select CRYPTO_KPP
2523d6228a5SVitaly Chikunov	select MPILIB
2533d6228a5SVitaly Chikunov	help
2543d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2553d6228a5SVitaly Chikunov
2567dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS
2577dce5981SNicolai Stange	bool "Support for RFC 7919 FFDHE group parameters"
2587dce5981SNicolai Stange	depends on CRYPTO_DH
2591e207964SNicolai Stange	select CRYPTO_RNG_DEFAULT
2607dce5981SNicolai Stange	help
2617dce5981SNicolai Stange	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
2627dce5981SNicolai Stange
2634a2289daSVitaly Chikunovconfig CRYPTO_ECC
2644a2289daSVitaly Chikunov	tristate
26538aa192aSArnd Bergmann	select CRYPTO_RNG_DEFAULT
2664a2289daSVitaly Chikunov
2673d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2683d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2694a2289daSVitaly Chikunov	select CRYPTO_ECC
2703d6228a5SVitaly Chikunov	select CRYPTO_KPP
2713d6228a5SVitaly Chikunov	help
2723d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2733d6228a5SVitaly Chikunov
2744e660291SStefan Bergerconfig CRYPTO_ECDSA
2754e660291SStefan Berger	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
2764e660291SStefan Berger	select CRYPTO_ECC
2774e660291SStefan Berger	select CRYPTO_AKCIPHER
2784e660291SStefan Berger	select ASN1
2794e660291SStefan Berger	help
2804e660291SStefan Berger	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
2814e660291SStefan Berger	  is A NIST cryptographic standard algorithm. Only signature verification
2824e660291SStefan Berger	  is implemented.
2834e660291SStefan Berger
2840d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2850d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2860d7a7864SVitaly Chikunov	select CRYPTO_ECC
2870d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2880d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2891036633eSVitaly Chikunov	select OID_REGISTRY
2901036633eSVitaly Chikunov	select ASN1
2910d7a7864SVitaly Chikunov	help
2920d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2930d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2940d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2950d7a7864SVitaly Chikunov	  is implemented.
2960d7a7864SVitaly Chikunov
297ea7ecb66STianjia Zhangconfig CRYPTO_SM2
298ea7ecb66STianjia Zhang	tristate "SM2 algorithm"
299d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
300ea7ecb66STianjia Zhang	select CRYPTO_AKCIPHER
301ea7ecb66STianjia Zhang	select CRYPTO_MANAGER
302ea7ecb66STianjia Zhang	select MPILIB
303ea7ecb66STianjia Zhang	select ASN1
304ea7ecb66STianjia Zhang	help
305ea7ecb66STianjia Zhang	  Generic implementation of the SM2 public key algorithm. It was
306ea7ecb66STianjia Zhang	  published by State Encryption Management Bureau, China.
307ea7ecb66STianjia Zhang	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
308ea7ecb66STianjia Zhang
309ea7ecb66STianjia Zhang	  References:
310ea7ecb66STianjia Zhang	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
311ea7ecb66STianjia Zhang	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
312ea7ecb66STianjia Zhang	  http://www.gmbz.org.cn/main/bzlb.html
313ea7ecb66STianjia Zhang
314ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519
315ee772cb6SArd Biesheuvel	tristate "Curve25519 algorithm"
316ee772cb6SArd Biesheuvel	select CRYPTO_KPP
317ee772cb6SArd Biesheuvel	select CRYPTO_LIB_CURVE25519_GENERIC
318ee772cb6SArd Biesheuvel
319bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86
320bb611bdfSJason A. Donenfeld	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
321bb611bdfSJason A. Donenfeld	depends on X86 && 64BIT
322bb611bdfSJason A. Donenfeld	select CRYPTO_LIB_CURVE25519_GENERIC
323bb611bdfSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
324bb611bdfSJason A. Donenfeld
325584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
326584fffc8SSebastian Siewior
327584fffc8SSebastian Siewiorconfig CRYPTO_CCM
328584fffc8SSebastian Siewior	tristate "CCM support"
329584fffc8SSebastian Siewior	select CRYPTO_CTR
330f15f05b0SArd Biesheuvel	select CRYPTO_HASH
331584fffc8SSebastian Siewior	select CRYPTO_AEAD
332c8a3315aSEric Biggers	select CRYPTO_MANAGER
333584fffc8SSebastian Siewior	help
334584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
335584fffc8SSebastian Siewior
336584fffc8SSebastian Siewiorconfig CRYPTO_GCM
337584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
338584fffc8SSebastian Siewior	select CRYPTO_CTR
339584fffc8SSebastian Siewior	select CRYPTO_AEAD
3409382d97aSHuang Ying	select CRYPTO_GHASH
3419489667dSJussi Kivilinna	select CRYPTO_NULL
342c8a3315aSEric Biggers	select CRYPTO_MANAGER
343584fffc8SSebastian Siewior	help
344584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
345584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
346584fffc8SSebastian Siewior
34771ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
34871ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
34971ebc4d1SMartin Willi	select CRYPTO_CHACHA20
35071ebc4d1SMartin Willi	select CRYPTO_POLY1305
35171ebc4d1SMartin Willi	select CRYPTO_AEAD
352c8a3315aSEric Biggers	select CRYPTO_MANAGER
35371ebc4d1SMartin Willi	help
35471ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
35571ebc4d1SMartin Willi
35671ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
35771ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
35871ebc4d1SMartin Willi	  IETF protocols.
35971ebc4d1SMartin Willi
360f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
361f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
362f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
363f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
364f606a88eSOndrej Mosnacek	help
365f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
366f606a88eSOndrej Mosnacek
367a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
368a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
369a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
370a4397635SArd Biesheuvel	default y
371a4397635SArd Biesheuvel
3721d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3731d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3741d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3751d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
376de272ca7SEric Biggers	select CRYPTO_SIMD
3771d373d4eSOndrej Mosnacek	help
3784e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3791d373d4eSOndrej Mosnacek
380584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
381584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
382584fffc8SSebastian Siewior	select CRYPTO_AEAD
383b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
384856e3f40SHerbert Xu	select CRYPTO_NULL
385401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
386c8a3315aSEric Biggers	select CRYPTO_MANAGER
387584fffc8SSebastian Siewior	help
388584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
389584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
390584fffc8SSebastian Siewior
391a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
392a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
393a10f554fSHerbert Xu	select CRYPTO_AEAD
394a10f554fSHerbert Xu	select CRYPTO_NULL
395401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
396c8a3315aSEric Biggers	select CRYPTO_MANAGER
397a10f554fSHerbert Xu	help
398a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
399a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
400a10f554fSHerbert Xu	  algorithm for CBC.
401a10f554fSHerbert Xu
402584fffc8SSebastian Siewiorcomment "Block modes"
403584fffc8SSebastian Siewior
404584fffc8SSebastian Siewiorconfig CRYPTO_CBC
405584fffc8SSebastian Siewior	tristate "CBC support"
406b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
407584fffc8SSebastian Siewior	select CRYPTO_MANAGER
408584fffc8SSebastian Siewior	help
409584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
410584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
411584fffc8SSebastian Siewior
412a7d85e06SJames Bottomleyconfig CRYPTO_CFB
413a7d85e06SJames Bottomley	tristate "CFB support"
414b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
415a7d85e06SJames Bottomley	select CRYPTO_MANAGER
416a7d85e06SJames Bottomley	help
417a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
418a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
419a7d85e06SJames Bottomley
420584fffc8SSebastian Siewiorconfig CRYPTO_CTR
421584fffc8SSebastian Siewior	tristate "CTR support"
422b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
423584fffc8SSebastian Siewior	select CRYPTO_MANAGER
424584fffc8SSebastian Siewior	help
425584fffc8SSebastian Siewior	  CTR: Counter mode
426584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
427584fffc8SSebastian Siewior
428584fffc8SSebastian Siewiorconfig CRYPTO_CTS
429584fffc8SSebastian Siewior	tristate "CTS support"
430b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
431c8a3315aSEric Biggers	select CRYPTO_MANAGER
432584fffc8SSebastian Siewior	help
433584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
434584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
435ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
436ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
437ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
438584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
439584fffc8SSebastian Siewior	  for AES encryption.
440584fffc8SSebastian Siewior
441ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
442ecd6d5c9SGilad Ben-Yossef
443584fffc8SSebastian Siewiorconfig CRYPTO_ECB
444584fffc8SSebastian Siewior	tristate "ECB support"
445b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
446584fffc8SSebastian Siewior	select CRYPTO_MANAGER
447584fffc8SSebastian Siewior	help
448584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
449584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
450584fffc8SSebastian Siewior	  the input block by block.
451584fffc8SSebastian Siewior
452584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4532470a2b2SJussi Kivilinna	tristate "LRW support"
454b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
455584fffc8SSebastian Siewior	select CRYPTO_MANAGER
456584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
457f60bbbbeSHerbert Xu	select CRYPTO_ECB
458584fffc8SSebastian Siewior	help
459584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
460584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
461584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
462584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
463584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
464584fffc8SSebastian Siewior
465e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
466e497c518SGilad Ben-Yossef	tristate "OFB support"
467b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
468e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
469e497c518SGilad Ben-Yossef	help
470e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
471e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
472e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
473e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
474e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
475e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
476e497c518SGilad Ben-Yossef
477584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
478584fffc8SSebastian Siewior	tristate "PCBC support"
479b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
480584fffc8SSebastian Siewior	select CRYPTO_MANAGER
481584fffc8SSebastian Siewior	help
482584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
483584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
484584fffc8SSebastian Siewior
48517fee07aSNathan Huckleberryconfig CRYPTO_XCTR
48617fee07aSNathan Huckleberry	tristate
48717fee07aSNathan Huckleberry	select CRYPTO_SKCIPHER
48817fee07aSNathan Huckleberry	select CRYPTO_MANAGER
48917fee07aSNathan Huckleberry	help
49017fee07aSNathan Huckleberry	  XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode
49117fee07aSNathan Huckleberry	  using XORs and little-endian addition rather than big-endian arithmetic.
49217fee07aSNathan Huckleberry	  XCTR mode is used to implement HCTR2.
49317fee07aSNathan Huckleberry
494584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4955bcf8e6dSJussi Kivilinna	tristate "XTS support"
496b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
497584fffc8SSebastian Siewior	select CRYPTO_MANAGER
49812cb3a1cSMilan Broz	select CRYPTO_ECB
499584fffc8SSebastian Siewior	help
500584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
501584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
502584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
503584fffc8SSebastian Siewior
5041c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5051c49678eSStephan Mueller	tristate "Key wrapping support"
506b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
507c8a3315aSEric Biggers	select CRYPTO_MANAGER
5081c49678eSStephan Mueller	help
5091c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5101c49678eSStephan Mueller	  padding.
5111c49678eSStephan Mueller
51226609a21SEric Biggersconfig CRYPTO_NHPOLY1305
51326609a21SEric Biggers	tristate
51426609a21SEric Biggers	select CRYPTO_HASH
51548ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
51626609a21SEric Biggers
517012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
518012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
519012c8238SEric Biggers	depends on X86 && 64BIT
520012c8238SEric Biggers	select CRYPTO_NHPOLY1305
521012c8238SEric Biggers	help
522012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
523012c8238SEric Biggers	  Adiantum encryption mode.
524012c8238SEric Biggers
5250f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5260f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5270f961f9fSEric Biggers	depends on X86 && 64BIT
5280f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5290f961f9fSEric Biggers	help
5300f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5310f961f9fSEric Biggers	  Adiantum encryption mode.
5320f961f9fSEric Biggers
533059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
534059c2a4dSEric Biggers	tristate "Adiantum support"
535059c2a4dSEric Biggers	select CRYPTO_CHACHA20
53648ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
537059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
538c8a3315aSEric Biggers	select CRYPTO_MANAGER
539059c2a4dSEric Biggers	help
540059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
541059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
542059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
543059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
544059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
545059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
546059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
547059c2a4dSEric Biggers	  AES-XTS.
548059c2a4dSEric Biggers
549059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
550059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
551059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
552059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
553059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
554059c2a4dSEric Biggers
555059c2a4dSEric Biggers	  If unsure, say N.
556059c2a4dSEric Biggers
5577ff554ceSNathan Huckleberryconfig CRYPTO_HCTR2
5587ff554ceSNathan Huckleberry	tristate "HCTR2 support"
5597ff554ceSNathan Huckleberry	select CRYPTO_XCTR
5607ff554ceSNathan Huckleberry	select CRYPTO_POLYVAL
5617ff554ceSNathan Huckleberry	select CRYPTO_MANAGER
5627ff554ceSNathan Huckleberry	help
5637ff554ceSNathan Huckleberry	  HCTR2 is a length-preserving encryption mode for storage encryption that
5647ff554ceSNathan Huckleberry	  is efficient on processors with instructions to accelerate AES and
5657ff554ceSNathan Huckleberry	  carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and
5667ff554ceSNathan Huckleberry	  ARM processors with the ARMv8 crypto extensions.
5677ff554ceSNathan Huckleberry
568be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
569be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
570be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
571be1eb7f7SArd Biesheuvel	help
572be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
573be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
574be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
575be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
576be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
577be1eb7f7SArd Biesheuvel	  encryption.
578be1eb7f7SArd Biesheuvel
579be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
580ab3d436bSGeert Uytterhoeven	  instantiated either as an skcipher or as an AEAD (depending on the
581be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
582be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
583ab3d436bSGeert Uytterhoeven	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
584be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
585be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
586be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
587be1eb7f7SArd Biesheuvel
588be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
589be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
590be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
591be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
592be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
593be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
594be1eb7f7SArd Biesheuvel	  block encryption)
595be1eb7f7SArd Biesheuvel
596584fffc8SSebastian Siewiorcomment "Hash modes"
597584fffc8SSebastian Siewior
59893b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
59993b5e86aSJussi Kivilinna	tristate "CMAC support"
60093b5e86aSJussi Kivilinna	select CRYPTO_HASH
60193b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
60293b5e86aSJussi Kivilinna	help
60393b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
60493b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
60593b5e86aSJussi Kivilinna
60693b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
60793b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
60893b5e86aSJussi Kivilinna
6091da177e4SLinus Torvaldsconfig CRYPTO_HMAC
6108425165dSHerbert Xu	tristate "HMAC support"
6110796ae06SHerbert Xu	select CRYPTO_HASH
61243518407SHerbert Xu	select CRYPTO_MANAGER
6131da177e4SLinus Torvalds	help
6141da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
6151da177e4SLinus Torvalds	  This is required for IPSec.
6161da177e4SLinus Torvalds
617333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
618333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
619333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
620333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
621333b0d7eSKazunori MIYAZAWA	help
622333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
6239332a9e7SAlexander A. Klimov		https://www.ietf.org/rfc/rfc3566.txt
624333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
625333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
626333b0d7eSKazunori MIYAZAWA
627f1939f7cSShane Wangconfig CRYPTO_VMAC
628f1939f7cSShane Wang	tristate "VMAC support"
629f1939f7cSShane Wang	select CRYPTO_HASH
630f1939f7cSShane Wang	select CRYPTO_MANAGER
631f1939f7cSShane Wang	help
632f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
633f1939f7cSShane Wang	  very high speed on 64-bit architectures.
634f1939f7cSShane Wang
635f1939f7cSShane Wang	  See also:
6369332a9e7SAlexander A. Klimov	  <https://fastcrypto.org/vmac>
637f1939f7cSShane Wang
638584fffc8SSebastian Siewiorcomment "Digest"
639584fffc8SSebastian Siewior
640584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
641584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6425773a3e6SHerbert Xu	select CRYPTO_HASH
6436a0962b2SDarrick J. Wong	select CRC32
6441da177e4SLinus Torvalds	help
645584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
646584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
64769c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6481da177e4SLinus Torvalds
6498cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6508cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6518cb51ba8SAustin Zhang	depends on X86
6528cb51ba8SAustin Zhang	select CRYPTO_HASH
6538cb51ba8SAustin Zhang	help
6548cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6558cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6568cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6578cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6588cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6598cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6608cb51ba8SAustin Zhang
6617cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6626dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
663c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6646dd7a82cSAnton Blanchard	select CRYPTO_HASH
6656dd7a82cSAnton Blanchard	select CRC32
6666dd7a82cSAnton Blanchard	help
6676dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6686dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6696dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6706dd7a82cSAnton Blanchard
6716dd7a82cSAnton Blanchard
672442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
673442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
674442a7c40SDavid S. Miller	depends on SPARC64
675442a7c40SDavid S. Miller	select CRYPTO_HASH
676442a7c40SDavid S. Miller	select CRC32
677442a7c40SDavid S. Miller	help
678442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
679442a7c40SDavid S. Miller	  when available.
680442a7c40SDavid S. Miller
68178c37d19SAlexander Boykoconfig CRYPTO_CRC32
68278c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
68378c37d19SAlexander Boyko	select CRYPTO_HASH
68478c37d19SAlexander Boyko	select CRC32
68578c37d19SAlexander Boyko	help
68678c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
68778c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
68878c37d19SAlexander Boyko
68978c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
69078c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
69178c37d19SAlexander Boyko	depends on X86
69278c37d19SAlexander Boyko	select CRYPTO_HASH
69378c37d19SAlexander Boyko	select CRC32
69478c37d19SAlexander Boyko	help
69578c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
69678c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
69778c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
698af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
69978c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
70078c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
70178c37d19SAlexander Boyko
7024a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
7034a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
7044a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
7054a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
7064a5dc51eSMarcin Nowakowski	help
7074a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
7084a5dc51eSMarcin Nowakowski	  instructions, when available.
7094a5dc51eSMarcin Nowakowski
710b7133757SJason A. Donenfeldconfig CRYPTO_CRC32_S390
711b7133757SJason A. Donenfeld	tristate "CRC-32 algorithms"
712b7133757SJason A. Donenfeld	depends on S390
713b7133757SJason A. Donenfeld	select CRYPTO_HASH
714b7133757SJason A. Donenfeld	select CRC32
715b7133757SJason A. Donenfeld	help
716b7133757SJason A. Donenfeld	  Select this option if you want to use hardware accelerated
717b7133757SJason A. Donenfeld	  implementations of CRC algorithms.  With this option, you
718b7133757SJason A. Donenfeld	  can optimize the computation of CRC-32 (IEEE 802.3 Ethernet)
719b7133757SJason A. Donenfeld	  and CRC-32C (Castagnoli).
720b7133757SJason A. Donenfeld
721b7133757SJason A. Donenfeld	  It is available with IBM z13 or later.
7224a5dc51eSMarcin Nowakowski
72367882e76SNikolay Borisovconfig CRYPTO_XXHASH
72467882e76SNikolay Borisov	tristate "xxHash hash algorithm"
72567882e76SNikolay Borisov	select CRYPTO_HASH
72667882e76SNikolay Borisov	select XXHASH
72767882e76SNikolay Borisov	help
72867882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
72967882e76SNikolay Borisov	  speeds close to RAM limits.
73067882e76SNikolay Borisov
73191d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
73291d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
73391d68933SDavid Sterba	select CRYPTO_HASH
73491d68933SDavid Sterba	help
73591d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
73691d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
73791d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
73891d68933SDavid Sterba
73991d68933SDavid Sterba	  This module provides the following algorithms:
74091d68933SDavid Sterba
74191d68933SDavid Sterba	  - blake2b-160
74291d68933SDavid Sterba	  - blake2b-256
74391d68933SDavid Sterba	  - blake2b-384
74491d68933SDavid Sterba	  - blake2b-512
74591d68933SDavid Sterba
74691d68933SDavid Sterba	  See https://blake2.net for further information.
74791d68933SDavid Sterba
748ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86
7492d16803cSJason A. Donenfeld	bool "BLAKE2s digest algorithm (x86 accelerated version)"
750ed0356edSJason A. Donenfeld	depends on X86 && 64BIT
751ed0356edSJason A. Donenfeld	select CRYPTO_LIB_BLAKE2S_GENERIC
752ed0356edSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
753ed0356edSJason A. Donenfeld
75468411521SHerbert Xuconfig CRYPTO_CRCT10DIF
75568411521SHerbert Xu	tristate "CRCT10DIF algorithm"
75668411521SHerbert Xu	select CRYPTO_HASH
75768411521SHerbert Xu	help
75868411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
75968411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
76068411521SHerbert Xu	  transforms to be used if they are available.
76168411521SHerbert Xu
76268411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
76368411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
76468411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
76568411521SHerbert Xu	select CRYPTO_HASH
76668411521SHerbert Xu	help
76768411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
76868411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
76968411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
770af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
77168411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
77268411521SHerbert Xu
773b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
774b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
775b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
776b01df1c1SDaniel Axtens	select CRYPTO_HASH
777b01df1c1SDaniel Axtens	help
778b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
779b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
780b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
781b01df1c1SDaniel Axtens
782f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT
783f3813f4bSKeith Busch	tristate "Rocksoft Model CRC64 algorithm"
784f3813f4bSKeith Busch	depends on CRC64
785f3813f4bSKeith Busch	select CRYPTO_HASH
786f3813f4bSKeith Busch
787146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
788146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
789146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
790146c8688SDaniel Axtens	help
791146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
792146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
793146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
794146c8688SDaniel Axtens
7952cdc6899SHuang Yingconfig CRYPTO_GHASH
7968dfa20fcSEric Biggers	tristate "GHASH hash function"
7972cdc6899SHuang Ying	select CRYPTO_GF128MUL
798578c60fbSArnd Bergmann	select CRYPTO_HASH
7992cdc6899SHuang Ying	help
8008dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
8018dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
8022cdc6899SHuang Ying
803f3c923a0SNathan Huckleberryconfig CRYPTO_POLYVAL
804f3c923a0SNathan Huckleberry	tristate
805f3c923a0SNathan Huckleberry	select CRYPTO_GF128MUL
806f3c923a0SNathan Huckleberry	select CRYPTO_HASH
807f3c923a0SNathan Huckleberry	help
808f3c923a0SNathan Huckleberry	  POLYVAL is the hash function used in HCTR2.  It is not a general-purpose
809f3c923a0SNathan Huckleberry	  cryptographic hash function.
810f3c923a0SNathan Huckleberry
81134f7f6c3SNathan Huckleberryconfig CRYPTO_POLYVAL_CLMUL_NI
81234f7f6c3SNathan Huckleberry	tristate "POLYVAL hash function (CLMUL-NI accelerated)"
81334f7f6c3SNathan Huckleberry	depends on X86 && 64BIT
81434f7f6c3SNathan Huckleberry	select CRYPTO_POLYVAL
81534f7f6c3SNathan Huckleberry	help
81634f7f6c3SNathan Huckleberry	  This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is
81734f7f6c3SNathan Huckleberry	  used to efficiently implement HCTR2 on x86-64 processors that support
81834f7f6c3SNathan Huckleberry	  carry-less multiplication instructions.
81934f7f6c3SNathan Huckleberry
820f979e014SMartin Williconfig CRYPTO_POLY1305
821f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
822578c60fbSArnd Bergmann	select CRYPTO_HASH
82348ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
824f979e014SMartin Willi	help
825f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
826f979e014SMartin Willi
827f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
828f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
829f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
830f979e014SMartin Willi
831c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
832b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
833c70f4abeSMartin Willi	depends on X86 && 64BIT
8341b2c6a51SArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
835f0e89bcfSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
836c70f4abeSMartin Willi	help
837c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
838c70f4abeSMartin Willi
839c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
840c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
841c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
842c70f4abeSMartin Willi	  instructions.
843c70f4abeSMartin Willi
844a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS
845a11d055eSArd Biesheuvel	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
8466c810cf2SMaciej W. Rozycki	depends on MIPS
847a11d055eSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
848a11d055eSArd Biesheuvel
8491da177e4SLinus Torvaldsconfig CRYPTO_MD4
8501da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
851808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8521da177e4SLinus Torvalds	help
8531da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
8541da177e4SLinus Torvalds
8551da177e4SLinus Torvaldsconfig CRYPTO_MD5
8561da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
85714b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8581da177e4SLinus Torvalds	help
8591da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
8601da177e4SLinus Torvalds
861d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
862d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
863d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
864d69e75deSAaro Koskinen	select CRYPTO_MD5
865d69e75deSAaro Koskinen	select CRYPTO_HASH
866d69e75deSAaro Koskinen	help
867d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
868d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
869d69e75deSAaro Koskinen
870e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
871e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
872e8e59953SMarkus Stockhausen	depends on PPC
873e8e59953SMarkus Stockhausen	select CRYPTO_HASH
874e8e59953SMarkus Stockhausen	help
875e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
876e8e59953SMarkus Stockhausen	  in PPC assembler.
877e8e59953SMarkus Stockhausen
878fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
879fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
880fa4dfedcSDavid S. Miller	depends on SPARC64
881fa4dfedcSDavid S. Miller	select CRYPTO_MD5
882fa4dfedcSDavid S. Miller	select CRYPTO_HASH
883fa4dfedcSDavid S. Miller	help
884fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
885fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
886fa4dfedcSDavid S. Miller
887584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
888584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
88919e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
890584fffc8SSebastian Siewior	help
891584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
892584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
893584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
894584fffc8SSebastian Siewior	  of the algorithm.
895584fffc8SSebastian Siewior
89682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
89782798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
898e5835fbaSHerbert Xu	select CRYPTO_HASH
89982798f90SAdrian-Ken Rueegsegger	help
90082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
90182798f90SAdrian-Ken Rueegsegger
90282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
90382798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
9044cbdecd0SRandy Dunlap	  MD4, MD5 and its predecessor RIPEMD
905b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
90682798f90SAdrian-Ken Rueegsegger
907b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
908b6d44341SAdrian Bunk	  against RIPEMD-160.
909534fe2c1SAdrian-Ken Rueegsegger
910534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
9119332a9e7SAlexander A. Klimov	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
912534fe2c1SAdrian-Ken Rueegsegger
9131da177e4SLinus Torvaldsconfig CRYPTO_SHA1
9141da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
91554ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
916ec8f7f48SEric Biggers	select CRYPTO_LIB_SHA1
9171da177e4SLinus Torvalds	help
9181da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
9191da177e4SLinus Torvalds
92066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
921e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
92266be8951SMathias Krause	depends on X86 && 64BIT
92366be8951SMathias Krause	select CRYPTO_SHA1
92466be8951SMathias Krause	select CRYPTO_HASH
92566be8951SMathias Krause	help
92666be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
92766be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
928e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
929e38b6b7fStim	  when available.
93066be8951SMathias Krause
9318275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
932e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
9338275d1aaSTim Chen	depends on X86 && 64BIT
9348275d1aaSTim Chen	select CRYPTO_SHA256
9358275d1aaSTim Chen	select CRYPTO_HASH
9368275d1aaSTim Chen	help
9378275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
9388275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
9398275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
940e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
941e38b6b7fStim	  Instructions) when available.
9428275d1aaSTim Chen
94387de4579STim Chenconfig CRYPTO_SHA512_SSSE3
94487de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
94587de4579STim Chen	depends on X86 && 64BIT
94687de4579STim Chen	select CRYPTO_SHA512
94787de4579STim Chen	select CRYPTO_HASH
94887de4579STim Chen	help
94987de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
95087de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
95187de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
95287de4579STim Chen	  version 2 (AVX2) instructions, when available.
95387de4579STim Chen
954b7133757SJason A. Donenfeldconfig CRYPTO_SHA512_S390
955b7133757SJason A. Donenfeld	tristate "SHA384 and SHA512 digest algorithm"
956b7133757SJason A. Donenfeld	depends on S390
957b7133757SJason A. Donenfeld	select CRYPTO_HASH
958b7133757SJason A. Donenfeld	help
959b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
960b7133757SJason A. Donenfeld	  SHA512 secure hash standard.
961b7133757SJason A. Donenfeld
962b7133757SJason A. Donenfeld	  It is available as of z10.
963b7133757SJason A. Donenfeld
964efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
965efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
966efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
967efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
968efdb6f6eSAaro Koskinen	select CRYPTO_HASH
969efdb6f6eSAaro Koskinen	help
970efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
971efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
972efdb6f6eSAaro Koskinen
9734ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9744ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9754ff28d4cSDavid S. Miller	depends on SPARC64
9764ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9774ff28d4cSDavid S. Miller	select CRYPTO_HASH
9784ff28d4cSDavid S. Miller	help
9794ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9804ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9814ff28d4cSDavid S. Miller
982323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
983323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
984323a6bf1SMichael Ellerman	depends on PPC
985323a6bf1SMichael Ellerman	help
986323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
987323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
988323a6bf1SMichael Ellerman
989d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
990d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
991d9850fc5SMarkus Stockhausen	depends on PPC && SPE
992d9850fc5SMarkus Stockhausen	help
993d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
994d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
995d9850fc5SMarkus Stockhausen
996b7133757SJason A. Donenfeldconfig CRYPTO_SHA1_S390
997b7133757SJason A. Donenfeld	tristate "SHA1 digest algorithm"
998b7133757SJason A. Donenfeld	depends on S390
999b7133757SJason A. Donenfeld	select CRYPTO_HASH
1000b7133757SJason A. Donenfeld	help
1001b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1002b7133757SJason A. Donenfeld	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
1003b7133757SJason A. Donenfeld
1004b7133757SJason A. Donenfeld	  It is available as of z990.
1005b7133757SJason A. Donenfeld
10061da177e4SLinus Torvaldsconfig CRYPTO_SHA256
1007cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
100850e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
100908c327f6SHans de Goede	select CRYPTO_LIB_SHA256
10101da177e4SLinus Torvalds	help
10111da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
10121da177e4SLinus Torvalds
10131da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
10141da177e4SLinus Torvalds	  security against collision attacks.
10151da177e4SLinus Torvalds
1016cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
1017cd12fb90SJonathan Lynch	  of security against collision attacks.
1018cd12fb90SJonathan Lynch
10192ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
10202ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
10212ecc1e95SMarkus Stockhausen	depends on PPC && SPE
10222ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
10232ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
10242ecc1e95SMarkus Stockhausen	help
10252ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
10262ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
10272ecc1e95SMarkus Stockhausen
1028efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
1029efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
1030efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
1031efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
1032efdb6f6eSAaro Koskinen	select CRYPTO_HASH
1033efdb6f6eSAaro Koskinen	help
1034efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
1035efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
1036efdb6f6eSAaro Koskinen
103786c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
103886c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
103986c93b24SDavid S. Miller	depends on SPARC64
104086c93b24SDavid S. Miller	select CRYPTO_SHA256
104186c93b24SDavid S. Miller	select CRYPTO_HASH
104286c93b24SDavid S. Miller	help
104386c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
104486c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
104586c93b24SDavid S. Miller
1046b7133757SJason A. Donenfeldconfig CRYPTO_SHA256_S390
1047b7133757SJason A. Donenfeld	tristate "SHA256 digest algorithm"
1048b7133757SJason A. Donenfeld	depends on S390
1049b7133757SJason A. Donenfeld	select CRYPTO_HASH
1050b7133757SJason A. Donenfeld	help
1051b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1052b7133757SJason A. Donenfeld	  SHA256 secure hash standard (DFIPS 180-2).
1053b7133757SJason A. Donenfeld
1054b7133757SJason A. Donenfeld	  It is available as of z9.
1055b7133757SJason A. Donenfeld
10561da177e4SLinus Torvaldsconfig CRYPTO_SHA512
10571da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
1058bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10591da177e4SLinus Torvalds	help
10601da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
10611da177e4SLinus Torvalds
10621da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
10631da177e4SLinus Torvalds	  security against collision attacks.
10641da177e4SLinus Torvalds
10651da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
10661da177e4SLinus Torvalds	  of security against collision attacks.
10671da177e4SLinus Torvalds
1068efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
1069efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
1070efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
1071efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
1072efdb6f6eSAaro Koskinen	select CRYPTO_HASH
1073efdb6f6eSAaro Koskinen	help
1074efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1075efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
1076efdb6f6eSAaro Koskinen
1077775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
1078775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
1079775e0c69SDavid S. Miller	depends on SPARC64
1080775e0c69SDavid S. Miller	select CRYPTO_SHA512
1081775e0c69SDavid S. Miller	select CRYPTO_HASH
1082775e0c69SDavid S. Miller	help
1083775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1084775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
1085775e0c69SDavid S. Miller
108653964b9eSJeff Garzikconfig CRYPTO_SHA3
108753964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
108853964b9eSJeff Garzik	select CRYPTO_HASH
108953964b9eSJeff Garzik	help
109053964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
109153964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
109253964b9eSJeff Garzik
109353964b9eSJeff Garzik	  References:
109453964b9eSJeff Garzik	  http://keccak.noekeon.org/
109553964b9eSJeff Garzik
1096b7133757SJason A. Donenfeldconfig CRYPTO_SHA3_256_S390
1097b7133757SJason A. Donenfeld	tristate "SHA3_224 and SHA3_256 digest algorithm"
1098b7133757SJason A. Donenfeld	depends on S390
1099b7133757SJason A. Donenfeld	select CRYPTO_HASH
1100b7133757SJason A. Donenfeld	help
1101b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1102b7133757SJason A. Donenfeld	  SHA3_256 secure hash standard.
1103b7133757SJason A. Donenfeld
1104b7133757SJason A. Donenfeld	  It is available as of z14.
1105b7133757SJason A. Donenfeld
1106b7133757SJason A. Donenfeldconfig CRYPTO_SHA3_512_S390
1107b7133757SJason A. Donenfeld	tristate "SHA3_384 and SHA3_512 digest algorithm"
1108b7133757SJason A. Donenfeld	depends on S390
1109b7133757SJason A. Donenfeld	select CRYPTO_HASH
1110b7133757SJason A. Donenfeld	help
1111b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1112b7133757SJason A. Donenfeld	  SHA3_512 secure hash standard.
1113b7133757SJason A. Donenfeld
1114b7133757SJason A. Donenfeld	  It is available as of z14.
1115b7133757SJason A. Donenfeld
11164f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
1117d2825fa9SJason A. Donenfeld	tristate
1118d2825fa9SJason A. Donenfeld
1119d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC
11204f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
11214f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
1122d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
11234f0fc160SGilad Ben-Yossef	help
11244f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
11254f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
11264f0fc160SGilad Ben-Yossef
11274f0fc160SGilad Ben-Yossef	  References:
11284f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
11294f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
11304f0fc160SGilad Ben-Yossef
1131930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64
1132930ab34dSTianjia Zhang	tristate "SM3 digest algorithm (x86_64/AVX)"
1133930ab34dSTianjia Zhang	depends on X86 && 64BIT
1134930ab34dSTianjia Zhang	select CRYPTO_HASH
1135d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
1136930ab34dSTianjia Zhang	help
1137930ab34dSTianjia Zhang	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1138930ab34dSTianjia Zhang	  It is part of the Chinese Commercial Cryptography suite. This is
1139930ab34dSTianjia Zhang	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1140930ab34dSTianjia Zhang	  when available.
1141930ab34dSTianjia Zhang
1142930ab34dSTianjia Zhang	  If unsure, say N.
1143930ab34dSTianjia Zhang
1144fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1145fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1146fe18957eSVitaly Chikunov	select CRYPTO_HASH
1147fe18957eSVitaly Chikunov	help
1148fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1149fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1150fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1151fe18957eSVitaly Chikunov
1152fe18957eSVitaly Chikunov	  References:
1153fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1154fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1155fe18957eSVitaly Chikunov
1156584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1157584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
11584946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
11591da177e4SLinus Torvalds	help
1160584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
11611da177e4SLinus Torvalds
1162584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1163584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
11641da177e4SLinus Torvalds
11651da177e4SLinus Torvalds	  See also:
11666d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
11671da177e4SLinus Torvalds
11680e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
11698dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
11708af00860SRichard Weinberger	depends on X86 && 64BIT
11710e1227d3SHuang Ying	select CRYPTO_CRYPTD
11720e1227d3SHuang Ying	help
11738dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
11748dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
11750e1227d3SHuang Ying
1176b7133757SJason A. Donenfeldconfig CRYPTO_GHASH_S390
1177b7133757SJason A. Donenfeld	tristate "GHASH hash function"
1178b7133757SJason A. Donenfeld	depends on S390
1179b7133757SJason A. Donenfeld	select CRYPTO_HASH
1180b7133757SJason A. Donenfeld	help
1181b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of GHASH,
1182b7133757SJason A. Donenfeld	  the hash function used in GCM (Galois/Counter mode).
1183b7133757SJason A. Donenfeld
1184b7133757SJason A. Donenfeld	  It is available as of z196.
1185b7133757SJason A. Donenfeld
1186584fffc8SSebastian Siewiorcomment "Ciphers"
11871da177e4SLinus Torvalds
11881da177e4SLinus Torvaldsconfig CRYPTO_AES
11891da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1190cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11915bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
11921da177e4SLinus Torvalds	help
11931da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11941da177e4SLinus Torvalds	  algorithm.
11951da177e4SLinus Torvalds
11961da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
11971da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
11981da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
11991da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
12001da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
12011da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
12021da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
12031da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
12041da177e4SLinus Torvalds
12051da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
12061da177e4SLinus Torvalds
12071da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
12081da177e4SLinus Torvalds
1209b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1210b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1211b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1212e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1213b5e0b032SArd Biesheuvel	help
1214b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1215b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1216b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1217b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1218b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1219b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1220b5e0b032SArd Biesheuvel
1221b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1222b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1223b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1224b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
12250a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
12260a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1227b5e0b032SArd Biesheuvel
122854b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
122954b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
12308af00860SRichard Weinberger	depends on X86
123185671860SHerbert Xu	select CRYPTO_AEAD
12322c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
123354b6a1bdSHuang Ying	select CRYPTO_ALGAPI
1234b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
123585671860SHerbert Xu	select CRYPTO_SIMD
123654b6a1bdSHuang Ying	help
123754b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
123854b6a1bdSHuang Ying
123954b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
124054b6a1bdSHuang Ying	  algorithm.
124154b6a1bdSHuang Ying
124254b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
124354b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
124454b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
124554b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
124654b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
124754b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
124854b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
124954b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
125054b6a1bdSHuang Ying
125154b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
125254b6a1bdSHuang Ying
125354b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
125454b6a1bdSHuang Ying
12550d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
12560d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1257944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1258fd94fcf0SNathan Huckleberry	  acceleration for CTR and XCTR.
12592cf4ac8bSHuang Ying
12609bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
12619bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
12629bf4852dSDavid S. Miller	depends on SPARC64
1263b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
12649bf4852dSDavid S. Miller	help
12659bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
12669bf4852dSDavid S. Miller
12679bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
12689bf4852dSDavid S. Miller	  algorithm.
12699bf4852dSDavid S. Miller
12709bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
12719bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
12729bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
12739bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
12749bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
12759bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
12769bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
12779bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
12789bf4852dSDavid S. Miller
12799bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
12809bf4852dSDavid S. Miller
12819bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
12829bf4852dSDavid S. Miller
12839bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
12849bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
12859bf4852dSDavid S. Miller	  ECB and CBC.
12869bf4852dSDavid S. Miller
1287504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1288504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1289504c6143SMarkus Stockhausen	depends on PPC && SPE
1290b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1291504c6143SMarkus Stockhausen	help
1292504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1293504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1294504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1295504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1296504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1297504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1298504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1299504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1300504c6143SMarkus Stockhausen
1301b7133757SJason A. Donenfeldconfig CRYPTO_AES_S390
1302b7133757SJason A. Donenfeld	tristate "AES cipher algorithms"
1303b7133757SJason A. Donenfeld	depends on S390
1304b7133757SJason A. Donenfeld	select CRYPTO_ALGAPI
1305b7133757SJason A. Donenfeld	select CRYPTO_SKCIPHER
1306b7133757SJason A. Donenfeld	help
1307b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1308b7133757SJason A. Donenfeld	  AES cipher algorithms (FIPS-197).
1309b7133757SJason A. Donenfeld
1310b7133757SJason A. Donenfeld	  As of z9 the ECB and CBC modes are hardware accelerated
1311b7133757SJason A. Donenfeld	  for 128 bit keys.
1312b7133757SJason A. Donenfeld	  As of z10 the ECB and CBC modes are hardware accelerated
1313b7133757SJason A. Donenfeld	  for all AES key sizes.
1314b7133757SJason A. Donenfeld	  As of z196 the CTR mode is hardware accelerated for all AES
1315b7133757SJason A. Donenfeld	  key sizes and XTS mode is hardware accelerated for 256 and
1316b7133757SJason A. Donenfeld	  512 bit keys.
1317b7133757SJason A. Donenfeld
13181da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
13191da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
13201674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1321cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
13221da177e4SLinus Torvalds	help
13231da177e4SLinus Torvalds	  Anubis cipher algorithm.
13241da177e4SLinus Torvalds
13251da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
13261da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
13271da177e4SLinus Torvalds	  in the NESSIE competition.
13281da177e4SLinus Torvalds
13291da177e4SLinus Torvalds	  See also:
13306d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
13316d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
13321da177e4SLinus Torvalds
1333584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1334584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
13359ace6771SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1336b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1337dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1338e2ee95b8SHye-Shik Chang	help
1339584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1340e2ee95b8SHye-Shik Chang
1341584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1342584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1343584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1344584fffc8SSebastian Siewior	  weakness of the algorithm.
1345584fffc8SSebastian Siewior
1346584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1347584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1348584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
134952ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1350584fffc8SSebastian Siewior	help
1351584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1352584fffc8SSebastian Siewior
1353584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1354584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1355584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1356e2ee95b8SHye-Shik Chang
1357e2ee95b8SHye-Shik Chang	  See also:
13589332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
1359584fffc8SSebastian Siewior
136052ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
136152ba867cSJussi Kivilinna	tristate
136252ba867cSJussi Kivilinna	help
136352ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
136452ba867cSJussi Kivilinna	  generic c and the assembler implementations.
136552ba867cSJussi Kivilinna
136652ba867cSJussi Kivilinna	  See also:
13679332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
136852ba867cSJussi Kivilinna
136964b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
137064b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1371f21a7c19SAl Viro	depends on X86 && 64BIT
1372b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
137364b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1374c0a64926SArd Biesheuvel	imply CRYPTO_CTR
137564b94ceaSJussi Kivilinna	help
137664b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
137764b94ceaSJussi Kivilinna
137864b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
137964b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
138064b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
138164b94ceaSJussi Kivilinna
138264b94ceaSJussi Kivilinna	  See also:
13839332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
138464b94ceaSJussi Kivilinna
1385584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1386584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1387584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1388584fffc8SSebastian Siewior	help
1389584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1390584fffc8SSebastian Siewior
1391584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1392584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1393584fffc8SSebastian Siewior
1394584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1395584fffc8SSebastian Siewior
1396584fffc8SSebastian Siewior	  See also:
1397584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1398584fffc8SSebastian Siewior
13990b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
14000b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1401f21a7c19SAl Viro	depends on X86 && 64BIT
1402b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1403a1f91ecfSArd Biesheuvel	imply CRYPTO_CTR
14040b95ec56SJussi Kivilinna	help
14050b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
14060b95ec56SJussi Kivilinna
14070b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
14080b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
14090b95ec56SJussi Kivilinna
14100b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
14110b95ec56SJussi Kivilinna
14120b95ec56SJussi Kivilinna	  See also:
14130b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
14140b95ec56SJussi Kivilinna
1415d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1416d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1417d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1418b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1419d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
142044893bc2SEric Biggers	select CRYPTO_SIMD
142155a7e88fSArd Biesheuvel	imply CRYPTO_XTS
1422d9b1d2e7SJussi Kivilinna	help
1423d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1424d9b1d2e7SJussi Kivilinna
1425d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1426d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1427d9b1d2e7SJussi Kivilinna
1428d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1429d9b1d2e7SJussi Kivilinna
1430d9b1d2e7SJussi Kivilinna	  See also:
1431d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1432d9b1d2e7SJussi Kivilinna
1433f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1434f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1435f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1436f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1437f3f935a7SJussi Kivilinna	help
1438f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1439f3f935a7SJussi Kivilinna
1440f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1441f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1442f3f935a7SJussi Kivilinna
1443f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1444f3f935a7SJussi Kivilinna
1445f3f935a7SJussi Kivilinna	  See also:
1446f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1447f3f935a7SJussi Kivilinna
144881658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
144981658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
145081658ad0SDavid S. Miller	depends on SPARC64
145181658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1452b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
145381658ad0SDavid S. Miller	help
145481658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
145581658ad0SDavid S. Miller
145681658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
145781658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
145881658ad0SDavid S. Miller
145981658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
146081658ad0SDavid S. Miller
146181658ad0SDavid S. Miller	  See also:
146281658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
146381658ad0SDavid S. Miller
1464044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1465044ab525SJussi Kivilinna	tristate
1466044ab525SJussi Kivilinna	help
1467044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1468044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1469044ab525SJussi Kivilinna
1470584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1471584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1472584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1473044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1474584fffc8SSebastian Siewior	help
1475584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1476584fffc8SSebastian Siewior	  described in RFC2144.
1477584fffc8SSebastian Siewior
14784d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
14794d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
14804d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
1481b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
14824d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
14831e63183aSEric Biggers	select CRYPTO_CAST_COMMON
14841e63183aSEric Biggers	select CRYPTO_SIMD
1485e2d60e2fSArd Biesheuvel	imply CRYPTO_CTR
14864d6d6a2cSJohannes Goetzfried	help
14874d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
14884d6d6a2cSJohannes Goetzfried	  described in RFC2144.
14894d6d6a2cSJohannes Goetzfried
14904d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
14914d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
14924d6d6a2cSJohannes Goetzfried
1493584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1494584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1495584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1496044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1497584fffc8SSebastian Siewior	help
1498584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1499584fffc8SSebastian Siewior	  described in RFC2612.
1500584fffc8SSebastian Siewior
15014ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
15024ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
15034ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1504b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
15054ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
15064bd96924SEric Biggers	select CRYPTO_CAST_COMMON
15074bd96924SEric Biggers	select CRYPTO_SIMD
15082cc0fedbSArd Biesheuvel	imply CRYPTO_XTS
15097a6623ccSArd Biesheuvel	imply CRYPTO_CTR
15104ea1277dSJohannes Goetzfried	help
15114ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
15124ea1277dSJohannes Goetzfried	  described in RFC2612.
15134ea1277dSJohannes Goetzfried
15144ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
15154ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15164ea1277dSJohannes Goetzfried
1517584fffc8SSebastian Siewiorconfig CRYPTO_DES
1518584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1519584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
152004007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1521584fffc8SSebastian Siewior	help
1522584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1523584fffc8SSebastian Siewior
1524c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1525c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
152697da37b3SDave Jones	depends on SPARC64
1527c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
152804007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1529b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1530c5aac2dfSDavid S. Miller	help
1531c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1532c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1533c5aac2dfSDavid S. Miller
15346574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
15356574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
15366574e6c6SJussi Kivilinna	depends on X86 && 64BIT
1537b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
153804007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1539768db5feSArd Biesheuvel	imply CRYPTO_CTR
15406574e6c6SJussi Kivilinna	help
15416574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
15426574e6c6SJussi Kivilinna
15436574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
15446574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
15456574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
15466574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
15476574e6c6SJussi Kivilinna
1548b7133757SJason A. Donenfeldconfig CRYPTO_DES_S390
1549b7133757SJason A. Donenfeld	tristate "DES and Triple DES cipher algorithms"
1550b7133757SJason A. Donenfeld	depends on S390
1551b7133757SJason A. Donenfeld	select CRYPTO_ALGAPI
1552b7133757SJason A. Donenfeld	select CRYPTO_SKCIPHER
1553b7133757SJason A. Donenfeld	select CRYPTO_LIB_DES
1554b7133757SJason A. Donenfeld	help
1555b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1556b7133757SJason A. Donenfeld	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1557b7133757SJason A. Donenfeld
1558b7133757SJason A. Donenfeld	  As of z990 the ECB and CBC mode are hardware accelerated.
1559b7133757SJason A. Donenfeld	  As of z196 the CTR mode is hardware accelerated.
1560b7133757SJason A. Donenfeld
1561584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1562584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1563584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1564b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1565584fffc8SSebastian Siewior	help
1566584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1567584fffc8SSebastian Siewior
1568584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1569584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
15701674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1571584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1572584fffc8SSebastian Siewior	help
1573584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1574584fffc8SSebastian Siewior
1575584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1576584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1577584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1578584fffc8SSebastian Siewior
1579584fffc8SSebastian Siewior	  See also:
15806d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1581e2ee95b8SHye-Shik Chang
1582c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1583aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
15845fb8ef25SArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
1585b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1586c08d0e64SMartin Willi	help
1587aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1588c08d0e64SMartin Willi
1589c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1590c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1591de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
15929332a9e7SAlexander A. Klimov	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1593c08d0e64SMartin Willi
1594de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1595de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1596de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1597de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1598de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1599de61d7aeSEric Biggers
1600aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1601aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1602aa762409SEric Biggers	  in some performance-sensitive scenarios.
1603aa762409SEric Biggers
1604c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
16054af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1606c9320b6dSMartin Willi	depends on X86 && 64BIT
1607b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
160828e8d89bSArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
160984e03fa3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1610c9320b6dSMartin Willi	help
16117a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
16127a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1613c9320b6dSMartin Willi
16143a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS
16153a2f58f3SArd Biesheuvel	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
16163a2f58f3SArd Biesheuvel	depends on CPU_MIPS32_R2
1617660eda8dSEric Biggers	select CRYPTO_SKCIPHER
16183a2f58f3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
16193a2f58f3SArd Biesheuvel
1620b7133757SJason A. Donenfeldconfig CRYPTO_CHACHA_S390
1621b7133757SJason A. Donenfeld	tristate "ChaCha20 stream cipher"
1622b7133757SJason A. Donenfeld	depends on S390
1623b7133757SJason A. Donenfeld	select CRYPTO_SKCIPHER
1624b7133757SJason A. Donenfeld	select CRYPTO_LIB_CHACHA_GENERIC
1625b7133757SJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1626b7133757SJason A. Donenfeld	help
1627b7133757SJason A. Donenfeld	  This is the s390 SIMD implementation of the ChaCha20 stream
1628b7133757SJason A. Donenfeld	  cipher (RFC 7539).
1629b7133757SJason A. Donenfeld
1630b7133757SJason A. Donenfeld	  It is available as of z13.
1631b7133757SJason A. Donenfeld
1632584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1633584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
16341674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1635584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1636584fffc8SSebastian Siewior	help
1637584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1638584fffc8SSebastian Siewior
1639584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1640584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1641584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1642584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1643584fffc8SSebastian Siewior
1644584fffc8SSebastian Siewior	  See also:
1645584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1646584fffc8SSebastian Siewior
1647e4e712bbSTaehee Yooconfig CRYPTO_ARIA
1648e4e712bbSTaehee Yoo	tristate "ARIA cipher algorithm"
1649e4e712bbSTaehee Yoo	select CRYPTO_ALGAPI
1650e4e712bbSTaehee Yoo	help
1651e4e712bbSTaehee Yoo	  ARIA cipher algorithm (RFC5794).
1652e4e712bbSTaehee Yoo
1653e4e712bbSTaehee Yoo	  ARIA is a standard encryption algorithm of the Republic of Korea.
1654e4e712bbSTaehee Yoo	  The ARIA specifies three key sizes and rounds.
1655e4e712bbSTaehee Yoo	  128-bit: 12 rounds.
1656e4e712bbSTaehee Yoo	  192-bit: 14 rounds.
1657e4e712bbSTaehee Yoo	  256-bit: 16 rounds.
1658e4e712bbSTaehee Yoo
1659e4e712bbSTaehee Yoo	  See also:
1660e4e712bbSTaehee Yoo	  <https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do>
1661e4e712bbSTaehee Yoo
1662584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1663584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1664584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1665584fffc8SSebastian Siewior	help
1666584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1667584fffc8SSebastian Siewior
1668584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1669784506a1SArd Biesheuvel	  of 8 bits.
1670584fffc8SSebastian Siewior
1671584fffc8SSebastian Siewior	  See also:
16729332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1673584fffc8SSebastian Siewior
1674937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1675937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1676937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1677b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1678937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1679e0f409dcSEric Biggers	select CRYPTO_SIMD
16802e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1681937c30d7SJussi Kivilinna	help
1682937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1683937c30d7SJussi Kivilinna
1684937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1685937c30d7SJussi Kivilinna	  of 8 bits.
1686937c30d7SJussi Kivilinna
16871e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1688937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1689937c30d7SJussi Kivilinna
1690937c30d7SJussi Kivilinna	  See also:
16919332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1692937c30d7SJussi Kivilinna
1693251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1694251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1695251496dbSJussi Kivilinna	depends on X86 && !64BIT
1696b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1697251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1698e0f409dcSEric Biggers	select CRYPTO_SIMD
16992e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1700251496dbSJussi Kivilinna	help
1701251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1702251496dbSJussi Kivilinna
1703251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1704251496dbSJussi Kivilinna	  of 8 bits.
1705251496dbSJussi Kivilinna
1706251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1707251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1708251496dbSJussi Kivilinna
1709251496dbSJussi Kivilinna	  See also:
17109332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1711251496dbSJussi Kivilinna
17127efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
17137efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
17147efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1715b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17167efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1717e16bf974SEric Biggers	select CRYPTO_SIMD
17189ec0af8aSArd Biesheuvel	imply CRYPTO_XTS
17192e9440aeSArd Biesheuvel	imply CRYPTO_CTR
17207efe4076SJohannes Goetzfried	help
17217efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
17227efe4076SJohannes Goetzfried
17237efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
17247efe4076SJohannes Goetzfried	  of 8 bits.
17257efe4076SJohannes Goetzfried
17267efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
17277efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
17287efe4076SJohannes Goetzfried
17297efe4076SJohannes Goetzfried	  See also:
17309332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
17317efe4076SJohannes Goetzfried
173256d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
173356d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
173456d76c96SJussi Kivilinna	depends on X86 && 64BIT
173556d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
173656d76c96SJussi Kivilinna	help
173756d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
173856d76c96SJussi Kivilinna
173956d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
174056d76c96SJussi Kivilinna	  of 8 bits.
174156d76c96SJussi Kivilinna
174256d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
174356d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
174456d76c96SJussi Kivilinna
174556d76c96SJussi Kivilinna	  See also:
17469332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
174756d76c96SJussi Kivilinna
1748747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1749d2825fa9SJason A. Donenfeld	tristate
1750d2825fa9SJason A. Donenfeld
1751d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC
1752747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1753747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1754d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1755747c8ce4SGilad Ben-Yossef	help
1756747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1757747c8ce4SGilad Ben-Yossef
1758747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1759747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1760747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1761747c8ce4SGilad Ben-Yossef
1762747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1763747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1764747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1765747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1766747c8ce4SGilad Ben-Yossef
1767747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1768747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1769747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1770747c8ce4SGilad Ben-Yossef
1771747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1772747c8ce4SGilad Ben-Yossef
1773747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1774747c8ce4SGilad Ben-Yossef
1775747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1776747c8ce4SGilad Ben-Yossef
1777a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64
1778a7ee22eeSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1779a7ee22eeSTianjia Zhang	depends on X86 && 64BIT
1780a7ee22eeSTianjia Zhang	select CRYPTO_SKCIPHER
1781a7ee22eeSTianjia Zhang	select CRYPTO_SIMD
1782a7ee22eeSTianjia Zhang	select CRYPTO_ALGAPI
1783d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1784a7ee22eeSTianjia Zhang	help
1785a7ee22eeSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1786a7ee22eeSTianjia Zhang
1787a7ee22eeSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1788a7ee22eeSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
1789a7ee22eeSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
1790a7ee22eeSTianjia Zhang
1791a7ee22eeSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1792a7ee22eeSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
1793a7ee22eeSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1794a7ee22eeSTianjia Zhang	  effect of instruction acceleration.
1795a7ee22eeSTianjia Zhang
1796a7ee22eeSTianjia Zhang	  If unsure, say N.
1797a7ee22eeSTianjia Zhang
17985b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64
17995b2efa2bSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
18005b2efa2bSTianjia Zhang	depends on X86 && 64BIT
18015b2efa2bSTianjia Zhang	select CRYPTO_SKCIPHER
18025b2efa2bSTianjia Zhang	select CRYPTO_SIMD
18035b2efa2bSTianjia Zhang	select CRYPTO_ALGAPI
1804d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
18055b2efa2bSTianjia Zhang	select CRYPTO_SM4_AESNI_AVX_X86_64
18065b2efa2bSTianjia Zhang	help
18075b2efa2bSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
18085b2efa2bSTianjia Zhang
18095b2efa2bSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
18105b2efa2bSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
18115b2efa2bSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
18125b2efa2bSTianjia Zhang
18135b2efa2bSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
18145b2efa2bSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
18155b2efa2bSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
18165b2efa2bSTianjia Zhang	  effect of instruction acceleration.
18175b2efa2bSTianjia Zhang
18185b2efa2bSTianjia Zhang	  If unsure, say N.
18195b2efa2bSTianjia Zhang
1820584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1821584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
18221674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1823584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1824584fffc8SSebastian Siewior	help
1825584fffc8SSebastian Siewior	  TEA cipher algorithm.
1826584fffc8SSebastian Siewior
1827584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1828584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1829584fffc8SSebastian Siewior	  little memory.
1830584fffc8SSebastian Siewior
1831584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1832584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1833584fffc8SSebastian Siewior	  in the TEA algorithm.
1834584fffc8SSebastian Siewior
1835584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1836584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1837584fffc8SSebastian Siewior
1838584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1839584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1840584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1841584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1842584fffc8SSebastian Siewior	help
1843584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1844584fffc8SSebastian Siewior
1845584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1846584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1847584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1848584fffc8SSebastian Siewior	  bits.
1849584fffc8SSebastian Siewior
1850584fffc8SSebastian Siewior	  See also:
18519332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1852584fffc8SSebastian Siewior
1853584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1854584fffc8SSebastian Siewior	tristate
1855584fffc8SSebastian Siewior	help
1856584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1857584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1858584fffc8SSebastian Siewior
1859584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1860584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1861584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1862584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1863584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1864f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1865584fffc8SSebastian Siewior	help
1866584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1867584fffc8SSebastian Siewior
1868584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1869584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1870584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1871584fffc8SSebastian Siewior	  bits.
1872584fffc8SSebastian Siewior
1873584fffc8SSebastian Siewior	  See also:
18749332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1875584fffc8SSebastian Siewior
1876584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1877584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1878584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1879584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1880584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1881f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1882584fffc8SSebastian Siewior	help
1883584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1884584fffc8SSebastian Siewior
1885584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1886584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1887584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1888584fffc8SSebastian Siewior	  bits.
1889584fffc8SSebastian Siewior
1890584fffc8SSebastian Siewior	  See also:
18919332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1892584fffc8SSebastian Siewior
18938280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
18948280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1895f21a7c19SAl Viro	depends on X86 && 64BIT
1896b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
18978280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
18988280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
18998280daadSJussi Kivilinna	help
19008280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
19018280daadSJussi Kivilinna
19028280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
19038280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
19048280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
19058280daadSJussi Kivilinna	  bits.
19068280daadSJussi Kivilinna
19078280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
19088280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
19098280daadSJussi Kivilinna
19108280daadSJussi Kivilinna	  See also:
19119332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
19128280daadSJussi Kivilinna
1913107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1914107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1915107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1916b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
19170e6ab46dSEric Biggers	select CRYPTO_SIMD
1918107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1919107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1920107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1921da4df93aSArd Biesheuvel	imply CRYPTO_XTS
1922107778b5SJohannes Goetzfried	help
1923107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1924107778b5SJohannes Goetzfried
1925107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1926107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1927107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1928107778b5SJohannes Goetzfried	  bits.
1929107778b5SJohannes Goetzfried
1930107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1931107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1932107778b5SJohannes Goetzfried
1933107778b5SJohannes Goetzfried	  See also:
19349332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1935107778b5SJohannes Goetzfried
1936584fffc8SSebastian Siewiorcomment "Compression"
1937584fffc8SSebastian Siewior
19381da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
19391da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1940cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1941f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
19421da177e4SLinus Torvalds	select ZLIB_INFLATE
19431da177e4SLinus Torvalds	select ZLIB_DEFLATE
19441da177e4SLinus Torvalds	help
19451da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
19461da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
19471da177e4SLinus Torvalds
19481da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
19491da177e4SLinus Torvalds
19500b77abb3SZoltan Sogorconfig CRYPTO_LZO
19510b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
19520b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1953ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
19540b77abb3SZoltan Sogor	select LZO_COMPRESS
19550b77abb3SZoltan Sogor	select LZO_DECOMPRESS
19560b77abb3SZoltan Sogor	help
19570b77abb3SZoltan Sogor	  This is the LZO algorithm.
19580b77abb3SZoltan Sogor
195935a1fc18SSeth Jenningsconfig CRYPTO_842
196035a1fc18SSeth Jennings	tristate "842 compression algorithm"
19612062c5b6SDan Streetman	select CRYPTO_ALGAPI
19626a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
19632062c5b6SDan Streetman	select 842_COMPRESS
19642062c5b6SDan Streetman	select 842_DECOMPRESS
196535a1fc18SSeth Jennings	help
196635a1fc18SSeth Jennings	  This is the 842 algorithm.
196735a1fc18SSeth Jennings
19680ea8530dSChanho Minconfig CRYPTO_LZ4
19690ea8530dSChanho Min	tristate "LZ4 compression algorithm"
19700ea8530dSChanho Min	select CRYPTO_ALGAPI
19718cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
19720ea8530dSChanho Min	select LZ4_COMPRESS
19730ea8530dSChanho Min	select LZ4_DECOMPRESS
19740ea8530dSChanho Min	help
19750ea8530dSChanho Min	  This is the LZ4 algorithm.
19760ea8530dSChanho Min
19770ea8530dSChanho Minconfig CRYPTO_LZ4HC
19780ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
19790ea8530dSChanho Min	select CRYPTO_ALGAPI
198091d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
19810ea8530dSChanho Min	select LZ4HC_COMPRESS
19820ea8530dSChanho Min	select LZ4_DECOMPRESS
19830ea8530dSChanho Min	help
19840ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
19850ea8530dSChanho Min
1986d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1987d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1988d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1989d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1990d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1991d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1992d28fc3dbSNick Terrell	help
1993d28fc3dbSNick Terrell	  This is the zstd algorithm.
1994d28fc3dbSNick Terrell
199517f0f4a4SNeil Hormancomment "Random Number Generation"
199617f0f4a4SNeil Horman
199717f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
199817f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
199917f0f4a4SNeil Horman	select CRYPTO_AES
200017f0f4a4SNeil Horman	select CRYPTO_RNG
200117f0f4a4SNeil Horman	help
200217f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
200317f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
20047dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
20057dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
200617f0f4a4SNeil Horman
2007f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
2008419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
2009419090c6SStephan Mueller	help
2010419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
2011419090c6SStephan Mueller	  more of the DRBG types must be selected.
2012419090c6SStephan Mueller
2013f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
2014419090c6SStephan Mueller
2015419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
2016401e4238SHerbert Xu	bool
2017419090c6SStephan Mueller	default y
2018419090c6SStephan Mueller	select CRYPTO_HMAC
20195261cdf4SStephan Mueller	select CRYPTO_SHA512
2020419090c6SStephan Mueller
2021419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
2022419090c6SStephan Mueller	bool "Enable Hash DRBG"
2023826775bbSHerbert Xu	select CRYPTO_SHA256
2024419090c6SStephan Mueller	help
2025419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
2026419090c6SStephan Mueller
2027419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
2028419090c6SStephan Mueller	bool "Enable CTR DRBG"
2029419090c6SStephan Mueller	select CRYPTO_AES
2030d6fc1a45SCorentin Labbe	select CRYPTO_CTR
2031419090c6SStephan Mueller	help
2032419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
2033419090c6SStephan Mueller
2034f2c89a10SHerbert Xuconfig CRYPTO_DRBG
2035f2c89a10SHerbert Xu	tristate
2036401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
2037f2c89a10SHerbert Xu	select CRYPTO_RNG
2038bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
2039f2c89a10SHerbert Xu
2040f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
2041419090c6SStephan Mueller
2042bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
2043bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
20442f313e02SArnd Bergmann	select CRYPTO_RNG
2045bb5530e4SStephan Mueller	help
2046bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
2047bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
2048bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
2049bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
2050bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
2051bb5530e4SStephan Mueller
2052026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR
2053026a733eSStephan Müller	tristate
2054a88592ccSHerbert Xu	select CRYPTO_HMAC
2055304b4aceSStephan Müller	select CRYPTO_SHA256
2056026a733eSStephan Müller
205703c8efc1SHerbert Xuconfig CRYPTO_USER_API
205803c8efc1SHerbert Xu	tristate
205903c8efc1SHerbert Xu
2060fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
2061fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
20627451708fSHerbert Xu	depends on NET
2063fe869cdbSHerbert Xu	select CRYPTO_HASH
2064fe869cdbSHerbert Xu	select CRYPTO_USER_API
2065fe869cdbSHerbert Xu	help
2066fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
2067fe869cdbSHerbert Xu	  algorithms.
2068fe869cdbSHerbert Xu
20698ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
20708ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
20717451708fSHerbert Xu	depends on NET
2072b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
20738ff59090SHerbert Xu	select CRYPTO_USER_API
20748ff59090SHerbert Xu	help
20758ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
20768ff59090SHerbert Xu	  key cipher algorithms.
20778ff59090SHerbert Xu
20782f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
20792f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
20802f375538SStephan Mueller	depends on NET
20812f375538SStephan Mueller	select CRYPTO_RNG
20822f375538SStephan Mueller	select CRYPTO_USER_API
20832f375538SStephan Mueller	help
20842f375538SStephan Mueller	  This option enables the user-spaces interface for random
20852f375538SStephan Mueller	  number generator algorithms.
20862f375538SStephan Mueller
208777ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP
208877ebdabeSElena Petrova	bool "Enable CAVP testing of DRBG"
208977ebdabeSElena Petrova	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
209077ebdabeSElena Petrova	help
209177ebdabeSElena Petrova	  This option enables extra API for CAVP testing via the user-space
209277ebdabeSElena Petrova	  interface: resetting of DRBG entropy, and providing Additional Data.
209377ebdabeSElena Petrova	  This should only be enabled for CAVP testing. You should say
209477ebdabeSElena Petrova	  no unless you know what this is.
209577ebdabeSElena Petrova
2096b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
2097b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
2098b64a2d95SHerbert Xu	depends on NET
2099b64a2d95SHerbert Xu	select CRYPTO_AEAD
2100b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
210172548b09SStephan Mueller	select CRYPTO_NULL
2102b64a2d95SHerbert Xu	select CRYPTO_USER_API
2103b64a2d95SHerbert Xu	help
2104b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
2105b64a2d95SHerbert Xu	  cipher algorithms.
2106b64a2d95SHerbert Xu
21079ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE
21089ace6771SArd Biesheuvel	bool "Enable obsolete cryptographic algorithms for userspace"
21099ace6771SArd Biesheuvel	depends on CRYPTO_USER_API
21109ace6771SArd Biesheuvel	default y
21119ace6771SArd Biesheuvel	help
21129ace6771SArd Biesheuvel	  Allow obsolete cryptographic algorithms to be selected that have
21139ace6771SArd Biesheuvel	  already been phased out from internal use by the kernel, and are
21149ace6771SArd Biesheuvel	  only useful for userspace clients that still rely on them.
21159ace6771SArd Biesheuvel
2116cac5818cSCorentin Labbeconfig CRYPTO_STATS
2117cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
2118a6a31385SCorentin Labbe	depends on CRYPTO_USER
2119cac5818cSCorentin Labbe	help
2120cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
2121cac5818cSCorentin Labbe	  This will collect:
2122cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
2123cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
2124cac5818cSCorentin Labbe	  - size and numbers of hash operations
2125cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
2126cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
2127cac5818cSCorentin Labbe
2128ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
2129ee08997fSDmitry Kasatkin	bool
2130ee08997fSDmitry Kasatkin
21311da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
21328636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
21338636a1f9SMasahiro Yamadasource "certs/Kconfig"
21341da177e4SLinus Torvalds
2135cce9e06dSHerbert Xuendif	# if CRYPTO
2136