1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 18*7033b937SEric Biggers select CRYPTO_LIB_UTILS 191da177e4SLinus Torvalds help 201da177e4SLinus Torvalds This option provides the core Cryptographic API. 211da177e4SLinus Torvalds 22cce9e06dSHerbert Xuif CRYPTO 23cce9e06dSHerbert Xu 24584fffc8SSebastian Siewiorcomment "Crypto core or helper" 25584fffc8SSebastian Siewior 26ccb778e1SNeil Hormanconfig CRYPTO_FIPS 27ccb778e1SNeil Horman bool "FIPS 200 compliance" 28f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 291f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 30ccb778e1SNeil Horman help 31d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 32d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 33ccb778e1SNeil Horman certification. You should say no unless you know what 34e84c5480SChuck Ebbert this is. 35ccb778e1SNeil Horman 365a44749fSVladis Dronovconfig CRYPTO_FIPS_NAME 375a44749fSVladis Dronov string "FIPS Module Name" 385a44749fSVladis Dronov default "Linux Kernel Cryptographic API" 395a44749fSVladis Dronov depends on CRYPTO_FIPS 405a44749fSVladis Dronov help 415a44749fSVladis Dronov This option sets the FIPS Module name reported by the Crypto API via 425a44749fSVladis Dronov the /proc/sys/crypto/fips_name file. 435a44749fSVladis Dronov 445a44749fSVladis Dronovconfig CRYPTO_FIPS_CUSTOM_VERSION 455a44749fSVladis Dronov bool "Use Custom FIPS Module Version" 465a44749fSVladis Dronov depends on CRYPTO_FIPS 475a44749fSVladis Dronov default n 485a44749fSVladis Dronov 495a44749fSVladis Dronovconfig CRYPTO_FIPS_VERSION 505a44749fSVladis Dronov string "FIPS Module Version" 515a44749fSVladis Dronov default "(none)" 525a44749fSVladis Dronov depends on CRYPTO_FIPS_CUSTOM_VERSION 535a44749fSVladis Dronov help 545a44749fSVladis Dronov This option provides the ability to override the FIPS Module Version. 555a44749fSVladis Dronov By default the KERNELRELEASE value is used. 565a44749fSVladis Dronov 57cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 58cce9e06dSHerbert Xu tristate 596a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 60cce9e06dSHerbert Xu help 61cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 62cce9e06dSHerbert Xu 636a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 646a0fcbb4SHerbert Xu tristate 656a0fcbb4SHerbert Xu 661ae97820SHerbert Xuconfig CRYPTO_AEAD 671ae97820SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_AEAD2 691ae97820SHerbert Xu select CRYPTO_ALGAPI 701ae97820SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 74149a3971SHerbert Xu select CRYPTO_NULL2 75149a3971SHerbert Xu select CRYPTO_RNG2 766a0fcbb4SHerbert Xu 77b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 785cde0af2SHerbert Xu tristate 79b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 805cde0af2SHerbert Xu select CRYPTO_ALGAPI 816a0fcbb4SHerbert Xu 82b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 836a0fcbb4SHerbert Xu tristate 846a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 856a0fcbb4SHerbert Xu select CRYPTO_RNG2 865cde0af2SHerbert Xu 87055bcee3SHerbert Xuconfig CRYPTO_HASH 88055bcee3SHerbert Xu tristate 896a0fcbb4SHerbert Xu select CRYPTO_HASH2 90055bcee3SHerbert Xu select CRYPTO_ALGAPI 91055bcee3SHerbert Xu 926a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 936a0fcbb4SHerbert Xu tristate 946a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 956a0fcbb4SHerbert Xu 9617f0f4a4SNeil Hormanconfig CRYPTO_RNG 9717f0f4a4SNeil Horman tristate 986a0fcbb4SHerbert Xu select CRYPTO_RNG2 9917f0f4a4SNeil Horman select CRYPTO_ALGAPI 10017f0f4a4SNeil Horman 1016a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 1026a0fcbb4SHerbert Xu tristate 1036a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 1046a0fcbb4SHerbert Xu 105401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 106401e4238SHerbert Xu tristate 107401e4238SHerbert Xu select CRYPTO_DRBG_MENU 108401e4238SHerbert Xu 1093c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 1103c339ab8STadeusz Struk tristate 1113c339ab8STadeusz Struk select CRYPTO_ALGAPI2 1123c339ab8STadeusz Struk 1133c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 1143c339ab8STadeusz Struk tristate 1153c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 1163c339ab8STadeusz Struk select CRYPTO_ALGAPI 1173c339ab8STadeusz Struk 1184e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 1194e5f2c40SSalvatore Benedetto tristate 1204e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1214e5f2c40SSalvatore Benedetto 1224e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1234e5f2c40SSalvatore Benedetto tristate 1244e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1254e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1264e5f2c40SSalvatore Benedetto 1272ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1282ebda74fSGiovanni Cabiddu tristate 1292ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1308cd579d2SBart Van Assche select SGL_ALLOC 1312ebda74fSGiovanni Cabiddu 1322ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1332ebda74fSGiovanni Cabiddu tristate 1342ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1352ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1362ebda74fSGiovanni Cabiddu 1372b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1382b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1396a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1402b8c19dbSHerbert Xu help 1412b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1422b8c19dbSHerbert Xu cbc(aes). 1432b8c19dbSHerbert Xu 1446a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1456a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1476a0fcbb4SHerbert Xu select CRYPTO_HASH2 148b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 149946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1504e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1512ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1526a0fcbb4SHerbert Xu 153a38f7907SSteffen Klassertconfig CRYPTO_USER 154a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1555db017aaSHerbert Xu depends on NET 156a38f7907SSteffen Klassert select CRYPTO_MANAGER 157a38f7907SSteffen Klassert help 158d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 159a38f7907SSteffen Klassert cbc(aes). 160a38f7907SSteffen Klassert 161326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 162326a6346SHerbert Xu bool "Disable run-time self tests" 16300ca28a5SHerbert Xu default y 1640b767f96SAlexander Shishkin help 165326a6346SHerbert Xu Disable run-time self tests that normally take place at 166326a6346SHerbert Xu algorithm registration. 1670b767f96SAlexander Shishkin 1685b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1695b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1706569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1715b2706a4SEric Biggers help 1725b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1735b2706a4SEric Biggers including randomized fuzz tests. 1745b2706a4SEric Biggers 1755b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1765b2706a4SEric Biggers longer to run than the normal self tests. 1775b2706a4SEric Biggers 178584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 179e590e132SEric Biggers tristate 180584fffc8SSebastian Siewior 181584fffc8SSebastian Siewiorconfig CRYPTO_NULL 182584fffc8SSebastian Siewior tristate "Null algorithms" 183149a3971SHerbert Xu select CRYPTO_NULL2 184584fffc8SSebastian Siewior help 185584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 186584fffc8SSebastian Siewior 187149a3971SHerbert Xuconfig CRYPTO_NULL2 188dd43c4e9SHerbert Xu tristate 189149a3971SHerbert Xu select CRYPTO_ALGAPI2 190b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 191149a3971SHerbert Xu select CRYPTO_HASH2 192149a3971SHerbert Xu 1935068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1943b4afaf2SKees Cook tristate "Parallel crypto engine" 1953b4afaf2SKees Cook depends on SMP 1965068c7a8SSteffen Klassert select PADATA 1975068c7a8SSteffen Klassert select CRYPTO_MANAGER 1985068c7a8SSteffen Klassert select CRYPTO_AEAD 1995068c7a8SSteffen Klassert help 2005068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2015068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2025068c7a8SSteffen Klassert 203584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 204584fffc8SSebastian Siewior tristate "Software async crypto daemon" 205b95bba5dSEric Biggers select CRYPTO_SKCIPHER 206b8a28251SLoc Ho select CRYPTO_HASH 207584fffc8SSebastian Siewior select CRYPTO_MANAGER 208584fffc8SSebastian Siewior help 209584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 210584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 211584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 212584fffc8SSebastian Siewior 213584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 214584fffc8SSebastian Siewior tristate "Authenc support" 215584fffc8SSebastian Siewior select CRYPTO_AEAD 216b95bba5dSEric Biggers select CRYPTO_SKCIPHER 217584fffc8SSebastian Siewior select CRYPTO_MANAGER 218584fffc8SSebastian Siewior select CRYPTO_HASH 219e94c6a7aSHerbert Xu select CRYPTO_NULL 220584fffc8SSebastian Siewior help 221584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 222584fffc8SSebastian Siewior This is required for IPSec. 223584fffc8SSebastian Siewior 224584fffc8SSebastian Siewiorconfig CRYPTO_TEST 225584fffc8SSebastian Siewior tristate "Testing module" 22600ea27f1SArd Biesheuvel depends on m || EXPERT 227da7f033dSHerbert Xu select CRYPTO_MANAGER 228584fffc8SSebastian Siewior help 229584fffc8SSebastian Siewior Quick & dirty crypto test module. 230584fffc8SSebastian Siewior 231266d0516SHerbert Xuconfig CRYPTO_SIMD 232266d0516SHerbert Xu tristate 233266d0516SHerbert Xu select CRYPTO_CRYPTD 234266d0516SHerbert Xu 235735d37b5SBaolin Wangconfig CRYPTO_ENGINE 236735d37b5SBaolin Wang tristate 237735d37b5SBaolin Wang 2383d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2393d6228a5SVitaly Chikunov 2403d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2413d6228a5SVitaly Chikunov tristate "RSA algorithm" 2423d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2433d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2443d6228a5SVitaly Chikunov select MPILIB 2453d6228a5SVitaly Chikunov select ASN1 2463d6228a5SVitaly Chikunov help 2473d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2483d6228a5SVitaly Chikunov 2493d6228a5SVitaly Chikunovconfig CRYPTO_DH 2503d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2513d6228a5SVitaly Chikunov select CRYPTO_KPP 2523d6228a5SVitaly Chikunov select MPILIB 2533d6228a5SVitaly Chikunov help 2543d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2553d6228a5SVitaly Chikunov 2567dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS 2577dce5981SNicolai Stange bool "Support for RFC 7919 FFDHE group parameters" 2587dce5981SNicolai Stange depends on CRYPTO_DH 2591e207964SNicolai Stange select CRYPTO_RNG_DEFAULT 2607dce5981SNicolai Stange help 2617dce5981SNicolai Stange Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 2627dce5981SNicolai Stange 2634a2289daSVitaly Chikunovconfig CRYPTO_ECC 2644a2289daSVitaly Chikunov tristate 26538aa192aSArnd Bergmann select CRYPTO_RNG_DEFAULT 2664a2289daSVitaly Chikunov 2673d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2683d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2694a2289daSVitaly Chikunov select CRYPTO_ECC 2703d6228a5SVitaly Chikunov select CRYPTO_KPP 2713d6228a5SVitaly Chikunov help 2723d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2733d6228a5SVitaly Chikunov 2744e660291SStefan Bergerconfig CRYPTO_ECDSA 2754e660291SStefan Berger tristate "ECDSA (NIST P192, P256 etc.) algorithm" 2764e660291SStefan Berger select CRYPTO_ECC 2774e660291SStefan Berger select CRYPTO_AKCIPHER 2784e660291SStefan Berger select ASN1 2794e660291SStefan Berger help 2804e660291SStefan Berger Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 2814e660291SStefan Berger is A NIST cryptographic standard algorithm. Only signature verification 2824e660291SStefan Berger is implemented. 2834e660291SStefan Berger 2840d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2850d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2860d7a7864SVitaly Chikunov select CRYPTO_ECC 2870d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2880d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2891036633eSVitaly Chikunov select OID_REGISTRY 2901036633eSVitaly Chikunov select ASN1 2910d7a7864SVitaly Chikunov help 2920d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2930d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2940d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2950d7a7864SVitaly Chikunov is implemented. 2960d7a7864SVitaly Chikunov 297ea7ecb66STianjia Zhangconfig CRYPTO_SM2 298ea7ecb66STianjia Zhang tristate "SM2 algorithm" 299d2825fa9SJason A. Donenfeld select CRYPTO_SM3 300ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 301ea7ecb66STianjia Zhang select CRYPTO_MANAGER 302ea7ecb66STianjia Zhang select MPILIB 303ea7ecb66STianjia Zhang select ASN1 304ea7ecb66STianjia Zhang help 305ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 306ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 307ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 308ea7ecb66STianjia Zhang 309ea7ecb66STianjia Zhang References: 310ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 311ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 312ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 313ea7ecb66STianjia Zhang 314ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 315ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 316ee772cb6SArd Biesheuvel select CRYPTO_KPP 317ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 318ee772cb6SArd Biesheuvel 319bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 320bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 321bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 322bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 323bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 324bb611bdfSJason A. Donenfeld 325584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 326584fffc8SSebastian Siewior 327584fffc8SSebastian Siewiorconfig CRYPTO_CCM 328584fffc8SSebastian Siewior tristate "CCM support" 329584fffc8SSebastian Siewior select CRYPTO_CTR 330f15f05b0SArd Biesheuvel select CRYPTO_HASH 331584fffc8SSebastian Siewior select CRYPTO_AEAD 332c8a3315aSEric Biggers select CRYPTO_MANAGER 333584fffc8SSebastian Siewior help 334584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 335584fffc8SSebastian Siewior 336584fffc8SSebastian Siewiorconfig CRYPTO_GCM 337584fffc8SSebastian Siewior tristate "GCM/GMAC support" 338584fffc8SSebastian Siewior select CRYPTO_CTR 339584fffc8SSebastian Siewior select CRYPTO_AEAD 3409382d97aSHuang Ying select CRYPTO_GHASH 3419489667dSJussi Kivilinna select CRYPTO_NULL 342c8a3315aSEric Biggers select CRYPTO_MANAGER 343584fffc8SSebastian Siewior help 344584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 345584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 346584fffc8SSebastian Siewior 34771ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 34871ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 34971ebc4d1SMartin Willi select CRYPTO_CHACHA20 35071ebc4d1SMartin Willi select CRYPTO_POLY1305 35171ebc4d1SMartin Willi select CRYPTO_AEAD 352c8a3315aSEric Biggers select CRYPTO_MANAGER 35371ebc4d1SMartin Willi help 35471ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 35571ebc4d1SMartin Willi 35671ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 35771ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 35871ebc4d1SMartin Willi IETF protocols. 35971ebc4d1SMartin Willi 360f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 361f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 362f606a88eSOndrej Mosnacek select CRYPTO_AEAD 363f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 364f606a88eSOndrej Mosnacek help 365f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 366f606a88eSOndrej Mosnacek 367a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 368a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 369a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 370a4397635SArd Biesheuvel default y 371a4397635SArd Biesheuvel 3721d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3731d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3741d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3751d373d4eSOndrej Mosnacek select CRYPTO_AEAD 376de272ca7SEric Biggers select CRYPTO_SIMD 3771d373d4eSOndrej Mosnacek help 3784e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3791d373d4eSOndrej Mosnacek 380584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 381584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 382584fffc8SSebastian Siewior select CRYPTO_AEAD 383b95bba5dSEric Biggers select CRYPTO_SKCIPHER 384856e3f40SHerbert Xu select CRYPTO_NULL 385401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 386c8a3315aSEric Biggers select CRYPTO_MANAGER 387584fffc8SSebastian Siewior help 388584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 389584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 390584fffc8SSebastian Siewior 391a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 392a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 393a10f554fSHerbert Xu select CRYPTO_AEAD 394a10f554fSHerbert Xu select CRYPTO_NULL 395401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 396c8a3315aSEric Biggers select CRYPTO_MANAGER 397a10f554fSHerbert Xu help 398a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 399a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 400a10f554fSHerbert Xu algorithm for CBC. 401a10f554fSHerbert Xu 402584fffc8SSebastian Siewiorcomment "Block modes" 403584fffc8SSebastian Siewior 404584fffc8SSebastian Siewiorconfig CRYPTO_CBC 405584fffc8SSebastian Siewior tristate "CBC support" 406b95bba5dSEric Biggers select CRYPTO_SKCIPHER 407584fffc8SSebastian Siewior select CRYPTO_MANAGER 408584fffc8SSebastian Siewior help 409584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 410584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 411584fffc8SSebastian Siewior 412a7d85e06SJames Bottomleyconfig CRYPTO_CFB 413a7d85e06SJames Bottomley tristate "CFB support" 414b95bba5dSEric Biggers select CRYPTO_SKCIPHER 415a7d85e06SJames Bottomley select CRYPTO_MANAGER 416a7d85e06SJames Bottomley help 417a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 418a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 419a7d85e06SJames Bottomley 420584fffc8SSebastian Siewiorconfig CRYPTO_CTR 421584fffc8SSebastian Siewior tristate "CTR support" 422b95bba5dSEric Biggers select CRYPTO_SKCIPHER 423584fffc8SSebastian Siewior select CRYPTO_MANAGER 424584fffc8SSebastian Siewior help 425584fffc8SSebastian Siewior CTR: Counter mode 426584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 427584fffc8SSebastian Siewior 428584fffc8SSebastian Siewiorconfig CRYPTO_CTS 429584fffc8SSebastian Siewior tristate "CTS support" 430b95bba5dSEric Biggers select CRYPTO_SKCIPHER 431c8a3315aSEric Biggers select CRYPTO_MANAGER 432584fffc8SSebastian Siewior help 433584fffc8SSebastian Siewior CTS: Cipher Text Stealing 434584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 435ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 436ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 437ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 438584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 439584fffc8SSebastian Siewior for AES encryption. 440584fffc8SSebastian Siewior 441ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 442ecd6d5c9SGilad Ben-Yossef 443584fffc8SSebastian Siewiorconfig CRYPTO_ECB 444584fffc8SSebastian Siewior tristate "ECB support" 445b95bba5dSEric Biggers select CRYPTO_SKCIPHER 446584fffc8SSebastian Siewior select CRYPTO_MANAGER 447584fffc8SSebastian Siewior help 448584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 449584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 450584fffc8SSebastian Siewior the input block by block. 451584fffc8SSebastian Siewior 452584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4532470a2b2SJussi Kivilinna tristate "LRW support" 454b95bba5dSEric Biggers select CRYPTO_SKCIPHER 455584fffc8SSebastian Siewior select CRYPTO_MANAGER 456584fffc8SSebastian Siewior select CRYPTO_GF128MUL 457f60bbbbeSHerbert Xu select CRYPTO_ECB 458584fffc8SSebastian Siewior help 459584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 460584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 461584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 462584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 463584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 464584fffc8SSebastian Siewior 465e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 466e497c518SGilad Ben-Yossef tristate "OFB support" 467b95bba5dSEric Biggers select CRYPTO_SKCIPHER 468e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 469e497c518SGilad Ben-Yossef help 470e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 471e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 472e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 473e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 474e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 475e497c518SGilad Ben-Yossef normally even when applied before encryption. 476e497c518SGilad Ben-Yossef 477584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 478584fffc8SSebastian Siewior tristate "PCBC support" 479b95bba5dSEric Biggers select CRYPTO_SKCIPHER 480584fffc8SSebastian Siewior select CRYPTO_MANAGER 481584fffc8SSebastian Siewior help 482584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 483584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 484584fffc8SSebastian Siewior 48517fee07aSNathan Huckleberryconfig CRYPTO_XCTR 48617fee07aSNathan Huckleberry tristate 48717fee07aSNathan Huckleberry select CRYPTO_SKCIPHER 48817fee07aSNathan Huckleberry select CRYPTO_MANAGER 48917fee07aSNathan Huckleberry help 49017fee07aSNathan Huckleberry XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode 49117fee07aSNathan Huckleberry using XORs and little-endian addition rather than big-endian arithmetic. 49217fee07aSNathan Huckleberry XCTR mode is used to implement HCTR2. 49317fee07aSNathan Huckleberry 494584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4955bcf8e6dSJussi Kivilinna tristate "XTS support" 496b95bba5dSEric Biggers select CRYPTO_SKCIPHER 497584fffc8SSebastian Siewior select CRYPTO_MANAGER 49812cb3a1cSMilan Broz select CRYPTO_ECB 499584fffc8SSebastian Siewior help 500584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 501584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 502584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 503584fffc8SSebastian Siewior 5041c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 5051c49678eSStephan Mueller tristate "Key wrapping support" 506b95bba5dSEric Biggers select CRYPTO_SKCIPHER 507c8a3315aSEric Biggers select CRYPTO_MANAGER 5081c49678eSStephan Mueller help 5091c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 5101c49678eSStephan Mueller padding. 5111c49678eSStephan Mueller 51226609a21SEric Biggersconfig CRYPTO_NHPOLY1305 51326609a21SEric Biggers tristate 51426609a21SEric Biggers select CRYPTO_HASH 51548ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 51626609a21SEric Biggers 517012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 518012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 519012c8238SEric Biggers depends on X86 && 64BIT 520012c8238SEric Biggers select CRYPTO_NHPOLY1305 521012c8238SEric Biggers help 522012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 523012c8238SEric Biggers Adiantum encryption mode. 524012c8238SEric Biggers 5250f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5260f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5270f961f9fSEric Biggers depends on X86 && 64BIT 5280f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5290f961f9fSEric Biggers help 5300f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5310f961f9fSEric Biggers Adiantum encryption mode. 5320f961f9fSEric Biggers 533059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 534059c2a4dSEric Biggers tristate "Adiantum support" 535059c2a4dSEric Biggers select CRYPTO_CHACHA20 53648ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 537059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 538c8a3315aSEric Biggers select CRYPTO_MANAGER 539059c2a4dSEric Biggers help 540059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 541059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 542059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 543059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 544059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 545059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 546059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 547059c2a4dSEric Biggers AES-XTS. 548059c2a4dSEric Biggers 549059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 550059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 551059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 552059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 553059c2a4dSEric Biggers security than XTS, subject to the security bound. 554059c2a4dSEric Biggers 555059c2a4dSEric Biggers If unsure, say N. 556059c2a4dSEric Biggers 5577ff554ceSNathan Huckleberryconfig CRYPTO_HCTR2 5587ff554ceSNathan Huckleberry tristate "HCTR2 support" 5597ff554ceSNathan Huckleberry select CRYPTO_XCTR 5607ff554ceSNathan Huckleberry select CRYPTO_POLYVAL 5617ff554ceSNathan Huckleberry select CRYPTO_MANAGER 5627ff554ceSNathan Huckleberry help 5637ff554ceSNathan Huckleberry HCTR2 is a length-preserving encryption mode for storage encryption that 5647ff554ceSNathan Huckleberry is efficient on processors with instructions to accelerate AES and 5657ff554ceSNathan Huckleberry carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and 5667ff554ceSNathan Huckleberry ARM processors with the ARMv8 crypto extensions. 5677ff554ceSNathan Huckleberry 568be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 569be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 570be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 571be1eb7f7SArd Biesheuvel help 572be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 573be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 574be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 575be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 576be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 577be1eb7f7SArd Biesheuvel encryption. 578be1eb7f7SArd Biesheuvel 579be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 580ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 581be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 582be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 583ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 584be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 585be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 586be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 587be1eb7f7SArd Biesheuvel 588be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 589be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 590be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 591be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 592be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 593be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 594be1eb7f7SArd Biesheuvel block encryption) 595be1eb7f7SArd Biesheuvel 596584fffc8SSebastian Siewiorcomment "Hash modes" 597584fffc8SSebastian Siewior 59893b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 59993b5e86aSJussi Kivilinna tristate "CMAC support" 60093b5e86aSJussi Kivilinna select CRYPTO_HASH 60193b5e86aSJussi Kivilinna select CRYPTO_MANAGER 60293b5e86aSJussi Kivilinna help 60393b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 60493b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 60593b5e86aSJussi Kivilinna 60693b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 60793b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 60893b5e86aSJussi Kivilinna 6091da177e4SLinus Torvaldsconfig CRYPTO_HMAC 6108425165dSHerbert Xu tristate "HMAC support" 6110796ae06SHerbert Xu select CRYPTO_HASH 61243518407SHerbert Xu select CRYPTO_MANAGER 6131da177e4SLinus Torvalds help 6141da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 6151da177e4SLinus Torvalds This is required for IPSec. 6161da177e4SLinus Torvalds 617333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 618333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 619333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 620333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 621333b0d7eSKazunori MIYAZAWA help 622333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 6239332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 624333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 625333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 626333b0d7eSKazunori MIYAZAWA 627f1939f7cSShane Wangconfig CRYPTO_VMAC 628f1939f7cSShane Wang tristate "VMAC support" 629f1939f7cSShane Wang select CRYPTO_HASH 630f1939f7cSShane Wang select CRYPTO_MANAGER 631f1939f7cSShane Wang help 632f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 633f1939f7cSShane Wang very high speed on 64-bit architectures. 634f1939f7cSShane Wang 635f1939f7cSShane Wang See also: 6369332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 637f1939f7cSShane Wang 638584fffc8SSebastian Siewiorcomment "Digest" 639584fffc8SSebastian Siewior 640584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 641584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6425773a3e6SHerbert Xu select CRYPTO_HASH 6436a0962b2SDarrick J. Wong select CRC32 6441da177e4SLinus Torvalds help 645584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 646584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 64769c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6481da177e4SLinus Torvalds 6498cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6508cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6518cb51ba8SAustin Zhang depends on X86 6528cb51ba8SAustin Zhang select CRYPTO_HASH 6538cb51ba8SAustin Zhang help 6548cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6558cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6568cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6578cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6588cb51ba8SAustin Zhang gain performance compared with software implementation. 6598cb51ba8SAustin Zhang Module will be crc32c-intel. 6608cb51ba8SAustin Zhang 6617cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6626dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 663c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6646dd7a82cSAnton Blanchard select CRYPTO_HASH 6656dd7a82cSAnton Blanchard select CRC32 6666dd7a82cSAnton Blanchard help 6676dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6686dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6696dd7a82cSAnton Blanchard and newer processors for improved performance. 6706dd7a82cSAnton Blanchard 6716dd7a82cSAnton Blanchard 672442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 673442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 674442a7c40SDavid S. Miller depends on SPARC64 675442a7c40SDavid S. Miller select CRYPTO_HASH 676442a7c40SDavid S. Miller select CRC32 677442a7c40SDavid S. Miller help 678442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 679442a7c40SDavid S. Miller when available. 680442a7c40SDavid S. Miller 68178c37d19SAlexander Boykoconfig CRYPTO_CRC32 68278c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 68378c37d19SAlexander Boyko select CRYPTO_HASH 68478c37d19SAlexander Boyko select CRC32 68578c37d19SAlexander Boyko help 68678c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 68778c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 68878c37d19SAlexander Boyko 68978c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 69078c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 69178c37d19SAlexander Boyko depends on X86 69278c37d19SAlexander Boyko select CRYPTO_HASH 69378c37d19SAlexander Boyko select CRC32 69478c37d19SAlexander Boyko help 69578c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 69678c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 69778c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 698af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 69978c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 70078c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 70178c37d19SAlexander Boyko 7024a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 7034a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 7044a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 7054a5dc51eSMarcin Nowakowski select CRYPTO_HASH 7064a5dc51eSMarcin Nowakowski help 7074a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 7084a5dc51eSMarcin Nowakowski instructions, when available. 7094a5dc51eSMarcin Nowakowski 710b7133757SJason A. Donenfeldconfig CRYPTO_CRC32_S390 711b7133757SJason A. Donenfeld tristate "CRC-32 algorithms" 712b7133757SJason A. Donenfeld depends on S390 713b7133757SJason A. Donenfeld select CRYPTO_HASH 714b7133757SJason A. Donenfeld select CRC32 715b7133757SJason A. Donenfeld help 716b7133757SJason A. Donenfeld Select this option if you want to use hardware accelerated 717b7133757SJason A. Donenfeld implementations of CRC algorithms. With this option, you 718b7133757SJason A. Donenfeld can optimize the computation of CRC-32 (IEEE 802.3 Ethernet) 719b7133757SJason A. Donenfeld and CRC-32C (Castagnoli). 720b7133757SJason A. Donenfeld 721b7133757SJason A. Donenfeld It is available with IBM z13 or later. 7224a5dc51eSMarcin Nowakowski 72367882e76SNikolay Borisovconfig CRYPTO_XXHASH 72467882e76SNikolay Borisov tristate "xxHash hash algorithm" 72567882e76SNikolay Borisov select CRYPTO_HASH 72667882e76SNikolay Borisov select XXHASH 72767882e76SNikolay Borisov help 72867882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 72967882e76SNikolay Borisov speeds close to RAM limits. 73067882e76SNikolay Borisov 73191d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 73291d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 73391d68933SDavid Sterba select CRYPTO_HASH 73491d68933SDavid Sterba help 73591d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 73691d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 73791d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 73891d68933SDavid Sterba 73991d68933SDavid Sterba This module provides the following algorithms: 74091d68933SDavid Sterba 74191d68933SDavid Sterba - blake2b-160 74291d68933SDavid Sterba - blake2b-256 74391d68933SDavid Sterba - blake2b-384 74491d68933SDavid Sterba - blake2b-512 74591d68933SDavid Sterba 74691d68933SDavid Sterba See https://blake2.net for further information. 74791d68933SDavid Sterba 748ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 7492d16803cSJason A. Donenfeld bool "BLAKE2s digest algorithm (x86 accelerated version)" 750ed0356edSJason A. Donenfeld depends on X86 && 64BIT 751ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 752ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 753ed0356edSJason A. Donenfeld 75468411521SHerbert Xuconfig CRYPTO_CRCT10DIF 75568411521SHerbert Xu tristate "CRCT10DIF algorithm" 75668411521SHerbert Xu select CRYPTO_HASH 75768411521SHerbert Xu help 75868411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 75968411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 76068411521SHerbert Xu transforms to be used if they are available. 76168411521SHerbert Xu 76268411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 76368411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 76468411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 76568411521SHerbert Xu select CRYPTO_HASH 76668411521SHerbert Xu help 76768411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 76868411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 76968411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 770af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 77168411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 77268411521SHerbert Xu 773b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 774b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 775b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 776b01df1c1SDaniel Axtens select CRYPTO_HASH 777b01df1c1SDaniel Axtens help 778b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 779b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 780b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 781b01df1c1SDaniel Axtens 782f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT 783f3813f4bSKeith Busch tristate "Rocksoft Model CRC64 algorithm" 784f3813f4bSKeith Busch depends on CRC64 785f3813f4bSKeith Busch select CRYPTO_HASH 786f3813f4bSKeith Busch 787146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 788146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 789146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 790146c8688SDaniel Axtens help 791146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 792146c8688SDaniel Axtens POWER8 vpmsum instructions. 793146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 794146c8688SDaniel Axtens 7952cdc6899SHuang Yingconfig CRYPTO_GHASH 7968dfa20fcSEric Biggers tristate "GHASH hash function" 7972cdc6899SHuang Ying select CRYPTO_GF128MUL 798578c60fbSArnd Bergmann select CRYPTO_HASH 7992cdc6899SHuang Ying help 8008dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 8018dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 8022cdc6899SHuang Ying 803f3c923a0SNathan Huckleberryconfig CRYPTO_POLYVAL 804f3c923a0SNathan Huckleberry tristate 805f3c923a0SNathan Huckleberry select CRYPTO_GF128MUL 806f3c923a0SNathan Huckleberry select CRYPTO_HASH 807f3c923a0SNathan Huckleberry help 808f3c923a0SNathan Huckleberry POLYVAL is the hash function used in HCTR2. It is not a general-purpose 809f3c923a0SNathan Huckleberry cryptographic hash function. 810f3c923a0SNathan Huckleberry 81134f7f6c3SNathan Huckleberryconfig CRYPTO_POLYVAL_CLMUL_NI 81234f7f6c3SNathan Huckleberry tristate "POLYVAL hash function (CLMUL-NI accelerated)" 81334f7f6c3SNathan Huckleberry depends on X86 && 64BIT 81434f7f6c3SNathan Huckleberry select CRYPTO_POLYVAL 81534f7f6c3SNathan Huckleberry help 81634f7f6c3SNathan Huckleberry This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is 81734f7f6c3SNathan Huckleberry used to efficiently implement HCTR2 on x86-64 processors that support 81834f7f6c3SNathan Huckleberry carry-less multiplication instructions. 81934f7f6c3SNathan Huckleberry 820f979e014SMartin Williconfig CRYPTO_POLY1305 821f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 822578c60fbSArnd Bergmann select CRYPTO_HASH 82348ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 824f979e014SMartin Willi help 825f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 826f979e014SMartin Willi 827f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 828f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 829f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 830f979e014SMartin Willi 831c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 832b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 833c70f4abeSMartin Willi depends on X86 && 64BIT 8341b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 835f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 836c70f4abeSMartin Willi help 837c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 838c70f4abeSMartin Willi 839c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 840c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 841c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 842c70f4abeSMartin Willi instructions. 843c70f4abeSMartin Willi 844a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 845a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 8466c810cf2SMaciej W. Rozycki depends on MIPS 847a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 848a11d055eSArd Biesheuvel 8491da177e4SLinus Torvaldsconfig CRYPTO_MD4 8501da177e4SLinus Torvalds tristate "MD4 digest algorithm" 851808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 8521da177e4SLinus Torvalds help 8531da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 8541da177e4SLinus Torvalds 8551da177e4SLinus Torvaldsconfig CRYPTO_MD5 8561da177e4SLinus Torvalds tristate "MD5 digest algorithm" 85714b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 8581da177e4SLinus Torvalds help 8591da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 8601da177e4SLinus Torvalds 861d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 862d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 863d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 864d69e75deSAaro Koskinen select CRYPTO_MD5 865d69e75deSAaro Koskinen select CRYPTO_HASH 866d69e75deSAaro Koskinen help 867d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 868d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 869d69e75deSAaro Koskinen 870e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 871e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 872e8e59953SMarkus Stockhausen depends on PPC 873e8e59953SMarkus Stockhausen select CRYPTO_HASH 874e8e59953SMarkus Stockhausen help 875e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 876e8e59953SMarkus Stockhausen in PPC assembler. 877e8e59953SMarkus Stockhausen 878fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 879fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 880fa4dfedcSDavid S. Miller depends on SPARC64 881fa4dfedcSDavid S. Miller select CRYPTO_MD5 882fa4dfedcSDavid S. Miller select CRYPTO_HASH 883fa4dfedcSDavid S. Miller help 884fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 885fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 886fa4dfedcSDavid S. Miller 887584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 888584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 88919e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 890584fffc8SSebastian Siewior help 891584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 892584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 893584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 894584fffc8SSebastian Siewior of the algorithm. 895584fffc8SSebastian Siewior 89682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 89782798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 898e5835fbaSHerbert Xu select CRYPTO_HASH 89982798f90SAdrian-Ken Rueegsegger help 90082798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 90182798f90SAdrian-Ken Rueegsegger 90282798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 90382798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 9044cbdecd0SRandy Dunlap MD4, MD5 and its predecessor RIPEMD 905b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 90682798f90SAdrian-Ken Rueegsegger 907b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 908b6d44341SAdrian Bunk against RIPEMD-160. 909534fe2c1SAdrian-Ken Rueegsegger 910534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 9119332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 912534fe2c1SAdrian-Ken Rueegsegger 9131da177e4SLinus Torvaldsconfig CRYPTO_SHA1 9141da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 91554ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 916ec8f7f48SEric Biggers select CRYPTO_LIB_SHA1 9171da177e4SLinus Torvalds help 9181da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 9191da177e4SLinus Torvalds 92066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 921e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 92266be8951SMathias Krause depends on X86 && 64BIT 92366be8951SMathias Krause select CRYPTO_SHA1 92466be8951SMathias Krause select CRYPTO_HASH 92566be8951SMathias Krause help 92666be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 92766be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 928e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 929e38b6b7fStim when available. 93066be8951SMathias Krause 9318275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 932e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 9338275d1aaSTim Chen depends on X86 && 64BIT 9348275d1aaSTim Chen select CRYPTO_SHA256 9358275d1aaSTim Chen select CRYPTO_HASH 9368275d1aaSTim Chen help 9378275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 9388275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 9398275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 940e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 941e38b6b7fStim Instructions) when available. 9428275d1aaSTim Chen 94387de4579STim Chenconfig CRYPTO_SHA512_SSSE3 94487de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 94587de4579STim Chen depends on X86 && 64BIT 94687de4579STim Chen select CRYPTO_SHA512 94787de4579STim Chen select CRYPTO_HASH 94887de4579STim Chen help 94987de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 95087de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 95187de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 95287de4579STim Chen version 2 (AVX2) instructions, when available. 95387de4579STim Chen 954b7133757SJason A. Donenfeldconfig CRYPTO_SHA512_S390 955b7133757SJason A. Donenfeld tristate "SHA384 and SHA512 digest algorithm" 956b7133757SJason A. Donenfeld depends on S390 957b7133757SJason A. Donenfeld select CRYPTO_HASH 958b7133757SJason A. Donenfeld help 959b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 960b7133757SJason A. Donenfeld SHA512 secure hash standard. 961b7133757SJason A. Donenfeld 962b7133757SJason A. Donenfeld It is available as of z10. 963b7133757SJason A. Donenfeld 964efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 965efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 966efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 967efdb6f6eSAaro Koskinen select CRYPTO_SHA1 968efdb6f6eSAaro Koskinen select CRYPTO_HASH 969efdb6f6eSAaro Koskinen help 970efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 971efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 972efdb6f6eSAaro Koskinen 9734ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9744ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9754ff28d4cSDavid S. Miller depends on SPARC64 9764ff28d4cSDavid S. Miller select CRYPTO_SHA1 9774ff28d4cSDavid S. Miller select CRYPTO_HASH 9784ff28d4cSDavid S. Miller help 9794ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9804ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9814ff28d4cSDavid S. Miller 982323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 983323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 984323a6bf1SMichael Ellerman depends on PPC 985323a6bf1SMichael Ellerman help 986323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 987323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 988323a6bf1SMichael Ellerman 989d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 990d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 991d9850fc5SMarkus Stockhausen depends on PPC && SPE 992d9850fc5SMarkus Stockhausen help 993d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 994d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 995d9850fc5SMarkus Stockhausen 996b7133757SJason A. Donenfeldconfig CRYPTO_SHA1_S390 997b7133757SJason A. Donenfeld tristate "SHA1 digest algorithm" 998b7133757SJason A. Donenfeld depends on S390 999b7133757SJason A. Donenfeld select CRYPTO_HASH 1000b7133757SJason A. Donenfeld help 1001b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1002b7133757SJason A. Donenfeld SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 1003b7133757SJason A. Donenfeld 1004b7133757SJason A. Donenfeld It is available as of z990. 1005b7133757SJason A. Donenfeld 10061da177e4SLinus Torvaldsconfig CRYPTO_SHA256 1007cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 100850e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 100908c327f6SHans de Goede select CRYPTO_LIB_SHA256 10101da177e4SLinus Torvalds help 10111da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 10121da177e4SLinus Torvalds 10131da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 10141da177e4SLinus Torvalds security against collision attacks. 10151da177e4SLinus Torvalds 1016cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 1017cd12fb90SJonathan Lynch of security against collision attacks. 1018cd12fb90SJonathan Lynch 10192ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 10202ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 10212ecc1e95SMarkus Stockhausen depends on PPC && SPE 10222ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 10232ecc1e95SMarkus Stockhausen select CRYPTO_HASH 10242ecc1e95SMarkus Stockhausen help 10252ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 10262ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 10272ecc1e95SMarkus Stockhausen 1028efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 1029efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 1030efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 1031efdb6f6eSAaro Koskinen select CRYPTO_SHA256 1032efdb6f6eSAaro Koskinen select CRYPTO_HASH 1033efdb6f6eSAaro Koskinen help 1034efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 1035efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 1036efdb6f6eSAaro Koskinen 103786c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 103886c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 103986c93b24SDavid S. Miller depends on SPARC64 104086c93b24SDavid S. Miller select CRYPTO_SHA256 104186c93b24SDavid S. Miller select CRYPTO_HASH 104286c93b24SDavid S. Miller help 104386c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 104486c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 104586c93b24SDavid S. Miller 1046b7133757SJason A. Donenfeldconfig CRYPTO_SHA256_S390 1047b7133757SJason A. Donenfeld tristate "SHA256 digest algorithm" 1048b7133757SJason A. Donenfeld depends on S390 1049b7133757SJason A. Donenfeld select CRYPTO_HASH 1050b7133757SJason A. Donenfeld help 1051b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1052b7133757SJason A. Donenfeld SHA256 secure hash standard (DFIPS 180-2). 1053b7133757SJason A. Donenfeld 1054b7133757SJason A. Donenfeld It is available as of z9. 1055b7133757SJason A. Donenfeld 10561da177e4SLinus Torvaldsconfig CRYPTO_SHA512 10571da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 1058bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 10591da177e4SLinus Torvalds help 10601da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 10611da177e4SLinus Torvalds 10621da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 10631da177e4SLinus Torvalds security against collision attacks. 10641da177e4SLinus Torvalds 10651da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 10661da177e4SLinus Torvalds of security against collision attacks. 10671da177e4SLinus Torvalds 1068efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 1069efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 1070efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 1071efdb6f6eSAaro Koskinen select CRYPTO_SHA512 1072efdb6f6eSAaro Koskinen select CRYPTO_HASH 1073efdb6f6eSAaro Koskinen help 1074efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 1075efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 1076efdb6f6eSAaro Koskinen 1077775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 1078775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1079775e0c69SDavid S. Miller depends on SPARC64 1080775e0c69SDavid S. Miller select CRYPTO_SHA512 1081775e0c69SDavid S. Miller select CRYPTO_HASH 1082775e0c69SDavid S. Miller help 1083775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 1084775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1085775e0c69SDavid S. Miller 108653964b9eSJeff Garzikconfig CRYPTO_SHA3 108753964b9eSJeff Garzik tristate "SHA3 digest algorithm" 108853964b9eSJeff Garzik select CRYPTO_HASH 108953964b9eSJeff Garzik help 109053964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 109153964b9eSJeff Garzik cryptographic sponge function family called Keccak. 109253964b9eSJeff Garzik 109353964b9eSJeff Garzik References: 109453964b9eSJeff Garzik http://keccak.noekeon.org/ 109553964b9eSJeff Garzik 1096b7133757SJason A. Donenfeldconfig CRYPTO_SHA3_256_S390 1097b7133757SJason A. Donenfeld tristate "SHA3_224 and SHA3_256 digest algorithm" 1098b7133757SJason A. Donenfeld depends on S390 1099b7133757SJason A. Donenfeld select CRYPTO_HASH 1100b7133757SJason A. Donenfeld help 1101b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1102b7133757SJason A. Donenfeld SHA3_256 secure hash standard. 1103b7133757SJason A. Donenfeld 1104b7133757SJason A. Donenfeld It is available as of z14. 1105b7133757SJason A. Donenfeld 1106b7133757SJason A. Donenfeldconfig CRYPTO_SHA3_512_S390 1107b7133757SJason A. Donenfeld tristate "SHA3_384 and SHA3_512 digest algorithm" 1108b7133757SJason A. Donenfeld depends on S390 1109b7133757SJason A. Donenfeld select CRYPTO_HASH 1110b7133757SJason A. Donenfeld help 1111b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1112b7133757SJason A. Donenfeld SHA3_512 secure hash standard. 1113b7133757SJason A. Donenfeld 1114b7133757SJason A. Donenfeld It is available as of z14. 1115b7133757SJason A. Donenfeld 11164f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 1117d2825fa9SJason A. Donenfeld tristate 1118d2825fa9SJason A. Donenfeld 1119d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC 11204f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 11214f0fc160SGilad Ben-Yossef select CRYPTO_HASH 1122d2825fa9SJason A. Donenfeld select CRYPTO_SM3 11234f0fc160SGilad Ben-Yossef help 11244f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 11254f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 11264f0fc160SGilad Ben-Yossef 11274f0fc160SGilad Ben-Yossef References: 11284f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 11294f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 11304f0fc160SGilad Ben-Yossef 1131930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64 1132930ab34dSTianjia Zhang tristate "SM3 digest algorithm (x86_64/AVX)" 1133930ab34dSTianjia Zhang depends on X86 && 64BIT 1134930ab34dSTianjia Zhang select CRYPTO_HASH 1135d2825fa9SJason A. Donenfeld select CRYPTO_SM3 1136930ab34dSTianjia Zhang help 1137930ab34dSTianjia Zhang SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1138930ab34dSTianjia Zhang It is part of the Chinese Commercial Cryptography suite. This is 1139930ab34dSTianjia Zhang SM3 optimized implementation using Advanced Vector Extensions (AVX) 1140930ab34dSTianjia Zhang when available. 1141930ab34dSTianjia Zhang 1142930ab34dSTianjia Zhang If unsure, say N. 1143930ab34dSTianjia Zhang 1144fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1145fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1146fe18957eSVitaly Chikunov select CRYPTO_HASH 1147fe18957eSVitaly Chikunov help 1148fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1149fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1150fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1151fe18957eSVitaly Chikunov 1152fe18957eSVitaly Chikunov References: 1153fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1154fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1155fe18957eSVitaly Chikunov 1156584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1157584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 11584946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 11591da177e4SLinus Torvalds help 1160584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 11611da177e4SLinus Torvalds 1162584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1163584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 11641da177e4SLinus Torvalds 11651da177e4SLinus Torvalds See also: 11666d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 11671da177e4SLinus Torvalds 11680e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 11698dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 11708af00860SRichard Weinberger depends on X86 && 64BIT 11710e1227d3SHuang Ying select CRYPTO_CRYPTD 11720e1227d3SHuang Ying help 11738dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 11748dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 11750e1227d3SHuang Ying 1176b7133757SJason A. Donenfeldconfig CRYPTO_GHASH_S390 1177b7133757SJason A. Donenfeld tristate "GHASH hash function" 1178b7133757SJason A. Donenfeld depends on S390 1179b7133757SJason A. Donenfeld select CRYPTO_HASH 1180b7133757SJason A. Donenfeld help 1181b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of GHASH, 1182b7133757SJason A. Donenfeld the hash function used in GCM (Galois/Counter mode). 1183b7133757SJason A. Donenfeld 1184b7133757SJason A. Donenfeld It is available as of z196. 1185b7133757SJason A. Donenfeld 1186584fffc8SSebastian Siewiorcomment "Ciphers" 11871da177e4SLinus Torvalds 11881da177e4SLinus Torvaldsconfig CRYPTO_AES 11891da177e4SLinus Torvalds tristate "AES cipher algorithms" 1190cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11915bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 11921da177e4SLinus Torvalds help 11931da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11941da177e4SLinus Torvalds algorithm. 11951da177e4SLinus Torvalds 11961da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11971da177e4SLinus Torvalds both hardware and software across a wide range of computing 11981da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11991da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 12001da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 12011da177e4SLinus Torvalds suited for restricted-space environments, in which it also 12021da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 12031da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 12041da177e4SLinus Torvalds 12051da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 12061da177e4SLinus Torvalds 12071da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 12081da177e4SLinus Torvalds 1209b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1210b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1211b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1212e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1213b5e0b032SArd Biesheuvel help 1214b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1215b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1216b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1217b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1218b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1219b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1220b5e0b032SArd Biesheuvel 1221b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1222b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1223b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1224b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 12250a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 12260a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1227b5e0b032SArd Biesheuvel 122854b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 122954b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 12308af00860SRichard Weinberger depends on X86 123185671860SHerbert Xu select CRYPTO_AEAD 12322c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 123354b6a1bdSHuang Ying select CRYPTO_ALGAPI 1234b95bba5dSEric Biggers select CRYPTO_SKCIPHER 123585671860SHerbert Xu select CRYPTO_SIMD 123654b6a1bdSHuang Ying help 123754b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 123854b6a1bdSHuang Ying 123954b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 124054b6a1bdSHuang Ying algorithm. 124154b6a1bdSHuang Ying 124254b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 124354b6a1bdSHuang Ying both hardware and software across a wide range of computing 124454b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 124554b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 124654b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 124754b6a1bdSHuang Ying suited for restricted-space environments, in which it also 124854b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 124954b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 125054b6a1bdSHuang Ying 125154b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 125254b6a1bdSHuang Ying 125354b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 125454b6a1bdSHuang Ying 12550d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 12560d258efbSMathias Krause for some popular block cipher mode is supported too, including 1257944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 1258fd94fcf0SNathan Huckleberry acceleration for CTR and XCTR. 12592cf4ac8bSHuang Ying 12609bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 12619bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 12629bf4852dSDavid S. Miller depends on SPARC64 1263b95bba5dSEric Biggers select CRYPTO_SKCIPHER 12649bf4852dSDavid S. Miller help 12659bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 12669bf4852dSDavid S. Miller 12679bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 12689bf4852dSDavid S. Miller algorithm. 12699bf4852dSDavid S. Miller 12709bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 12719bf4852dSDavid S. Miller both hardware and software across a wide range of computing 12729bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 12739bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 12749bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 12759bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 12769bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 12779bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 12789bf4852dSDavid S. Miller 12799bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 12809bf4852dSDavid S. Miller 12819bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 12829bf4852dSDavid S. Miller 12839bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 12849bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 12859bf4852dSDavid S. Miller ECB and CBC. 12869bf4852dSDavid S. Miller 1287504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1288504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1289504c6143SMarkus Stockhausen depends on PPC && SPE 1290b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1291504c6143SMarkus Stockhausen help 1292504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1293504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1294504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1295504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1296504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1297504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1298504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1299504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1300504c6143SMarkus Stockhausen 1301b7133757SJason A. Donenfeldconfig CRYPTO_AES_S390 1302b7133757SJason A. Donenfeld tristate "AES cipher algorithms" 1303b7133757SJason A. Donenfeld depends on S390 1304b7133757SJason A. Donenfeld select CRYPTO_ALGAPI 1305b7133757SJason A. Donenfeld select CRYPTO_SKCIPHER 1306b7133757SJason A. Donenfeld help 1307b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1308b7133757SJason A. Donenfeld AES cipher algorithms (FIPS-197). 1309b7133757SJason A. Donenfeld 1310b7133757SJason A. Donenfeld As of z9 the ECB and CBC modes are hardware accelerated 1311b7133757SJason A. Donenfeld for 128 bit keys. 1312b7133757SJason A. Donenfeld As of z10 the ECB and CBC modes are hardware accelerated 1313b7133757SJason A. Donenfeld for all AES key sizes. 1314b7133757SJason A. Donenfeld As of z196 the CTR mode is hardware accelerated for all AES 1315b7133757SJason A. Donenfeld key sizes and XTS mode is hardware accelerated for 256 and 1316b7133757SJason A. Donenfeld 512 bit keys. 1317b7133757SJason A. Donenfeld 13181da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 13191da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 13201674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1321cce9e06dSHerbert Xu select CRYPTO_ALGAPI 13221da177e4SLinus Torvalds help 13231da177e4SLinus Torvalds Anubis cipher algorithm. 13241da177e4SLinus Torvalds 13251da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 13261da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 13271da177e4SLinus Torvalds in the NESSIE competition. 13281da177e4SLinus Torvalds 13291da177e4SLinus Torvalds See also: 13306d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 13316d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 13321da177e4SLinus Torvalds 1333584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1334584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 13359ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1336b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1337dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1338e2ee95b8SHye-Shik Chang help 1339584fffc8SSebastian Siewior ARC4 cipher algorithm. 1340e2ee95b8SHye-Shik Chang 1341584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1342584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1343584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1344584fffc8SSebastian Siewior weakness of the algorithm. 1345584fffc8SSebastian Siewior 1346584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1347584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1348584fffc8SSebastian Siewior select CRYPTO_ALGAPI 134952ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1350584fffc8SSebastian Siewior help 1351584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1352584fffc8SSebastian Siewior 1353584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1354584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1355584fffc8SSebastian Siewior designed for use on "large microprocessors". 1356e2ee95b8SHye-Shik Chang 1357e2ee95b8SHye-Shik Chang See also: 13589332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1359584fffc8SSebastian Siewior 136052ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 136152ba867cSJussi Kivilinna tristate 136252ba867cSJussi Kivilinna help 136352ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 136452ba867cSJussi Kivilinna generic c and the assembler implementations. 136552ba867cSJussi Kivilinna 136652ba867cSJussi Kivilinna See also: 13679332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 136852ba867cSJussi Kivilinna 136964b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 137064b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1371f21a7c19SAl Viro depends on X86 && 64BIT 1372b95bba5dSEric Biggers select CRYPTO_SKCIPHER 137364b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1374c0a64926SArd Biesheuvel imply CRYPTO_CTR 137564b94ceaSJussi Kivilinna help 137664b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 137764b94ceaSJussi Kivilinna 137864b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 137964b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 138064b94ceaSJussi Kivilinna designed for use on "large microprocessors". 138164b94ceaSJussi Kivilinna 138264b94ceaSJussi Kivilinna See also: 13839332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 138464b94ceaSJussi Kivilinna 1385584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1386584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1387584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1388584fffc8SSebastian Siewior help 1389584fffc8SSebastian Siewior Camellia cipher algorithms module. 1390584fffc8SSebastian Siewior 1391584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1392584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1393584fffc8SSebastian Siewior 1394584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1395584fffc8SSebastian Siewior 1396584fffc8SSebastian Siewior See also: 1397584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1398584fffc8SSebastian Siewior 13990b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 14000b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1401f21a7c19SAl Viro depends on X86 && 64BIT 1402b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1403a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 14040b95ec56SJussi Kivilinna help 14050b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 14060b95ec56SJussi Kivilinna 14070b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 14080b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 14090b95ec56SJussi Kivilinna 14100b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 14110b95ec56SJussi Kivilinna 14120b95ec56SJussi Kivilinna See also: 14130b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 14140b95ec56SJussi Kivilinna 1415d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1416d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1417d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1418b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1419d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 142044893bc2SEric Biggers select CRYPTO_SIMD 142155a7e88fSArd Biesheuvel imply CRYPTO_XTS 1422d9b1d2e7SJussi Kivilinna help 1423d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1424d9b1d2e7SJussi Kivilinna 1425d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1426d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1427d9b1d2e7SJussi Kivilinna 1428d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1429d9b1d2e7SJussi Kivilinna 1430d9b1d2e7SJussi Kivilinna See also: 1431d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1432d9b1d2e7SJussi Kivilinna 1433f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1434f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1435f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1436f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1437f3f935a7SJussi Kivilinna help 1438f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1439f3f935a7SJussi Kivilinna 1440f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1441f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1442f3f935a7SJussi Kivilinna 1443f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1444f3f935a7SJussi Kivilinna 1445f3f935a7SJussi Kivilinna See also: 1446f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1447f3f935a7SJussi Kivilinna 144881658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 144981658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 145081658ad0SDavid S. Miller depends on SPARC64 145181658ad0SDavid S. Miller select CRYPTO_ALGAPI 1452b95bba5dSEric Biggers select CRYPTO_SKCIPHER 145381658ad0SDavid S. Miller help 145481658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 145581658ad0SDavid S. Miller 145681658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 145781658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 145881658ad0SDavid S. Miller 145981658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 146081658ad0SDavid S. Miller 146181658ad0SDavid S. Miller See also: 146281658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 146381658ad0SDavid S. Miller 1464044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1465044ab525SJussi Kivilinna tristate 1466044ab525SJussi Kivilinna help 1467044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1468044ab525SJussi Kivilinna generic c and the assembler implementations. 1469044ab525SJussi Kivilinna 1470584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1471584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1472584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1473044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1474584fffc8SSebastian Siewior help 1475584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1476584fffc8SSebastian Siewior described in RFC2144. 1477584fffc8SSebastian Siewior 14784d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 14794d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 14804d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1481b95bba5dSEric Biggers select CRYPTO_SKCIPHER 14824d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 14831e63183aSEric Biggers select CRYPTO_CAST_COMMON 14841e63183aSEric Biggers select CRYPTO_SIMD 1485e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 14864d6d6a2cSJohannes Goetzfried help 14874d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 14884d6d6a2cSJohannes Goetzfried described in RFC2144. 14894d6d6a2cSJohannes Goetzfried 14904d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 14914d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 14924d6d6a2cSJohannes Goetzfried 1493584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1494584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1495584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1496044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1497584fffc8SSebastian Siewior help 1498584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1499584fffc8SSebastian Siewior described in RFC2612. 1500584fffc8SSebastian Siewior 15014ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 15024ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 15034ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1504b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15054ea1277dSJohannes Goetzfried select CRYPTO_CAST6 15064bd96924SEric Biggers select CRYPTO_CAST_COMMON 15074bd96924SEric Biggers select CRYPTO_SIMD 15082cc0fedbSArd Biesheuvel imply CRYPTO_XTS 15097a6623ccSArd Biesheuvel imply CRYPTO_CTR 15104ea1277dSJohannes Goetzfried help 15114ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 15124ea1277dSJohannes Goetzfried described in RFC2612. 15134ea1277dSJohannes Goetzfried 15144ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 15154ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15164ea1277dSJohannes Goetzfried 1517584fffc8SSebastian Siewiorconfig CRYPTO_DES 1518584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1519584fffc8SSebastian Siewior select CRYPTO_ALGAPI 152004007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1521584fffc8SSebastian Siewior help 1522584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1523584fffc8SSebastian Siewior 1524c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1525c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 152697da37b3SDave Jones depends on SPARC64 1527c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 152804007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1529b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1530c5aac2dfSDavid S. Miller help 1531c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1532c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1533c5aac2dfSDavid S. Miller 15346574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 15356574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 15366574e6c6SJussi Kivilinna depends on X86 && 64BIT 1537b95bba5dSEric Biggers select CRYPTO_SKCIPHER 153804007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1539768db5feSArd Biesheuvel imply CRYPTO_CTR 15406574e6c6SJussi Kivilinna help 15416574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 15426574e6c6SJussi Kivilinna 15436574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 15446574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 15456574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 15466574e6c6SJussi Kivilinna one that processes three blocks parallel. 15476574e6c6SJussi Kivilinna 1548b7133757SJason A. Donenfeldconfig CRYPTO_DES_S390 1549b7133757SJason A. Donenfeld tristate "DES and Triple DES cipher algorithms" 1550b7133757SJason A. Donenfeld depends on S390 1551b7133757SJason A. Donenfeld select CRYPTO_ALGAPI 1552b7133757SJason A. Donenfeld select CRYPTO_SKCIPHER 1553b7133757SJason A. Donenfeld select CRYPTO_LIB_DES 1554b7133757SJason A. Donenfeld help 1555b7133757SJason A. Donenfeld This is the s390 hardware accelerated implementation of the 1556b7133757SJason A. Donenfeld DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1557b7133757SJason A. Donenfeld 1558b7133757SJason A. Donenfeld As of z990 the ECB and CBC mode are hardware accelerated. 1559b7133757SJason A. Donenfeld As of z196 the CTR mode is hardware accelerated. 1560b7133757SJason A. Donenfeld 1561584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1562584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1563584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1564b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1565584fffc8SSebastian Siewior help 1566584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1567584fffc8SSebastian Siewior 1568584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1569584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 15701674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1571584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1572584fffc8SSebastian Siewior help 1573584fffc8SSebastian Siewior Khazad cipher algorithm. 1574584fffc8SSebastian Siewior 1575584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1576584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1577584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1578584fffc8SSebastian Siewior 1579584fffc8SSebastian Siewior See also: 15806d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1581e2ee95b8SHye-Shik Chang 1582c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1583aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 15845fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1585b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1586c08d0e64SMartin Willi help 1587aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1588c08d0e64SMartin Willi 1589c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1590c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1591de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 15929332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1593c08d0e64SMartin Willi 1594de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1595de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1596de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1597de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1598de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1599de61d7aeSEric Biggers 1600aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1601aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1602aa762409SEric Biggers in some performance-sensitive scenarios. 1603aa762409SEric Biggers 1604c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 16054af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1606c9320b6dSMartin Willi depends on X86 && 64BIT 1607b95bba5dSEric Biggers select CRYPTO_SKCIPHER 160828e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 160984e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1610c9320b6dSMartin Willi help 16117a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 16127a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1613c9320b6dSMartin Willi 16143a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 16153a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 16163a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1617660eda8dSEric Biggers select CRYPTO_SKCIPHER 16183a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 16193a2f58f3SArd Biesheuvel 1620b7133757SJason A. Donenfeldconfig CRYPTO_CHACHA_S390 1621b7133757SJason A. Donenfeld tristate "ChaCha20 stream cipher" 1622b7133757SJason A. Donenfeld depends on S390 1623b7133757SJason A. Donenfeld select CRYPTO_SKCIPHER 1624b7133757SJason A. Donenfeld select CRYPTO_LIB_CHACHA_GENERIC 1625b7133757SJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CHACHA 1626b7133757SJason A. Donenfeld help 1627b7133757SJason A. Donenfeld This is the s390 SIMD implementation of the ChaCha20 stream 1628b7133757SJason A. Donenfeld cipher (RFC 7539). 1629b7133757SJason A. Donenfeld 1630b7133757SJason A. Donenfeld It is available as of z13. 1631b7133757SJason A. Donenfeld 1632584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1633584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 16341674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1635584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1636584fffc8SSebastian Siewior help 1637584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1638584fffc8SSebastian Siewior 1639584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1640584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1641584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1642584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1643584fffc8SSebastian Siewior 1644584fffc8SSebastian Siewior See also: 1645584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1646584fffc8SSebastian Siewior 1647e4e712bbSTaehee Yooconfig CRYPTO_ARIA 1648e4e712bbSTaehee Yoo tristate "ARIA cipher algorithm" 1649e4e712bbSTaehee Yoo select CRYPTO_ALGAPI 1650e4e712bbSTaehee Yoo help 1651e4e712bbSTaehee Yoo ARIA cipher algorithm (RFC5794). 1652e4e712bbSTaehee Yoo 1653e4e712bbSTaehee Yoo ARIA is a standard encryption algorithm of the Republic of Korea. 1654e4e712bbSTaehee Yoo The ARIA specifies three key sizes and rounds. 1655e4e712bbSTaehee Yoo 128-bit: 12 rounds. 1656e4e712bbSTaehee Yoo 192-bit: 14 rounds. 1657e4e712bbSTaehee Yoo 256-bit: 16 rounds. 1658e4e712bbSTaehee Yoo 1659e4e712bbSTaehee Yoo See also: 1660e4e712bbSTaehee Yoo <https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do> 1661e4e712bbSTaehee Yoo 1662584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1663584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1664584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1665584fffc8SSebastian Siewior help 1666584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1667584fffc8SSebastian Siewior 1668584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1669784506a1SArd Biesheuvel of 8 bits. 1670584fffc8SSebastian Siewior 1671584fffc8SSebastian Siewior See also: 16729332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1673584fffc8SSebastian Siewior 1674937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1675937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1676937c30d7SJussi Kivilinna depends on X86 && 64BIT 1677b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1678937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1679e0f409dcSEric Biggers select CRYPTO_SIMD 16802e9440aeSArd Biesheuvel imply CRYPTO_CTR 1681937c30d7SJussi Kivilinna help 1682937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1683937c30d7SJussi Kivilinna 1684937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1685937c30d7SJussi Kivilinna of 8 bits. 1686937c30d7SJussi Kivilinna 16871e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1688937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1689937c30d7SJussi Kivilinna 1690937c30d7SJussi Kivilinna See also: 16919332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1692937c30d7SJussi Kivilinna 1693251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1694251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1695251496dbSJussi Kivilinna depends on X86 && !64BIT 1696b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1697251496dbSJussi Kivilinna select CRYPTO_SERPENT 1698e0f409dcSEric Biggers select CRYPTO_SIMD 16992e9440aeSArd Biesheuvel imply CRYPTO_CTR 1700251496dbSJussi Kivilinna help 1701251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1702251496dbSJussi Kivilinna 1703251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1704251496dbSJussi Kivilinna of 8 bits. 1705251496dbSJussi Kivilinna 1706251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1707251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1708251496dbSJussi Kivilinna 1709251496dbSJussi Kivilinna See also: 17109332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1711251496dbSJussi Kivilinna 17127efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 17137efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 17147efe4076SJohannes Goetzfried depends on X86 && 64BIT 1715b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17167efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1717e16bf974SEric Biggers select CRYPTO_SIMD 17189ec0af8aSArd Biesheuvel imply CRYPTO_XTS 17192e9440aeSArd Biesheuvel imply CRYPTO_CTR 17207efe4076SJohannes Goetzfried help 17217efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 17227efe4076SJohannes Goetzfried 17237efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 17247efe4076SJohannes Goetzfried of 8 bits. 17257efe4076SJohannes Goetzfried 17267efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 17277efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 17287efe4076SJohannes Goetzfried 17297efe4076SJohannes Goetzfried See also: 17309332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 17317efe4076SJohannes Goetzfried 173256d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 173356d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 173456d76c96SJussi Kivilinna depends on X86 && 64BIT 173556d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 173656d76c96SJussi Kivilinna help 173756d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 173856d76c96SJussi Kivilinna 173956d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 174056d76c96SJussi Kivilinna of 8 bits. 174156d76c96SJussi Kivilinna 174256d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 174356d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 174456d76c96SJussi Kivilinna 174556d76c96SJussi Kivilinna See also: 17469332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 174756d76c96SJussi Kivilinna 1748747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1749d2825fa9SJason A. Donenfeld tristate 1750d2825fa9SJason A. Donenfeld 1751d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC 1752747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1753747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1754d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1755747c8ce4SGilad Ben-Yossef help 1756747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1757747c8ce4SGilad Ben-Yossef 1758747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1759747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1760747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1761747c8ce4SGilad Ben-Yossef 1762747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1763747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1764747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1765747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1766747c8ce4SGilad Ben-Yossef 1767747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1768747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1769747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1770747c8ce4SGilad Ben-Yossef 1771747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1772747c8ce4SGilad Ben-Yossef 1773747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1774747c8ce4SGilad Ben-Yossef 1775747c8ce4SGilad Ben-Yossef If unsure, say N. 1776747c8ce4SGilad Ben-Yossef 1777a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64 1778a7ee22eeSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1779a7ee22eeSTianjia Zhang depends on X86 && 64BIT 1780a7ee22eeSTianjia Zhang select CRYPTO_SKCIPHER 1781a7ee22eeSTianjia Zhang select CRYPTO_SIMD 1782a7ee22eeSTianjia Zhang select CRYPTO_ALGAPI 1783d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1784a7ee22eeSTianjia Zhang help 1785a7ee22eeSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1786a7ee22eeSTianjia Zhang 1787a7ee22eeSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1788a7ee22eeSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 1789a7ee22eeSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 1790a7ee22eeSTianjia Zhang 1791a7ee22eeSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX/x86_64 1792a7ee22eeSTianjia Zhang instruction set for block cipher. Through two affine transforms, 1793a7ee22eeSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1794a7ee22eeSTianjia Zhang effect of instruction acceleration. 1795a7ee22eeSTianjia Zhang 1796a7ee22eeSTianjia Zhang If unsure, say N. 1797a7ee22eeSTianjia Zhang 17985b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64 17995b2efa2bSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 18005b2efa2bSTianjia Zhang depends on X86 && 64BIT 18015b2efa2bSTianjia Zhang select CRYPTO_SKCIPHER 18025b2efa2bSTianjia Zhang select CRYPTO_SIMD 18035b2efa2bSTianjia Zhang select CRYPTO_ALGAPI 1804d2825fa9SJason A. Donenfeld select CRYPTO_SM4 18055b2efa2bSTianjia Zhang select CRYPTO_SM4_AESNI_AVX_X86_64 18065b2efa2bSTianjia Zhang help 18075b2efa2bSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 18085b2efa2bSTianjia Zhang 18095b2efa2bSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 18105b2efa2bSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 18115b2efa2bSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 18125b2efa2bSTianjia Zhang 18135b2efa2bSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX2/x86_64 18145b2efa2bSTianjia Zhang instruction set for block cipher. Through two affine transforms, 18155b2efa2bSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 18165b2efa2bSTianjia Zhang effect of instruction acceleration. 18175b2efa2bSTianjia Zhang 18185b2efa2bSTianjia Zhang If unsure, say N. 18195b2efa2bSTianjia Zhang 1820584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1821584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 18221674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1823584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1824584fffc8SSebastian Siewior help 1825584fffc8SSebastian Siewior TEA cipher algorithm. 1826584fffc8SSebastian Siewior 1827584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1828584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1829584fffc8SSebastian Siewior little memory. 1830584fffc8SSebastian Siewior 1831584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1832584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1833584fffc8SSebastian Siewior in the TEA algorithm. 1834584fffc8SSebastian Siewior 1835584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1836584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1837584fffc8SSebastian Siewior 1838584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1839584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1840584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1841584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1842584fffc8SSebastian Siewior help 1843584fffc8SSebastian Siewior Twofish cipher algorithm. 1844584fffc8SSebastian Siewior 1845584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1846584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1847584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1848584fffc8SSebastian Siewior bits. 1849584fffc8SSebastian Siewior 1850584fffc8SSebastian Siewior See also: 18519332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1852584fffc8SSebastian Siewior 1853584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1854584fffc8SSebastian Siewior tristate 1855584fffc8SSebastian Siewior help 1856584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1857584fffc8SSebastian Siewior generic c and the assembler implementations. 1858584fffc8SSebastian Siewior 1859584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1860584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1861584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1862584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1863584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1864f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1865584fffc8SSebastian Siewior help 1866584fffc8SSebastian Siewior Twofish cipher algorithm. 1867584fffc8SSebastian Siewior 1868584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1869584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1870584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1871584fffc8SSebastian Siewior bits. 1872584fffc8SSebastian Siewior 1873584fffc8SSebastian Siewior See also: 18749332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1875584fffc8SSebastian Siewior 1876584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1877584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1878584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1879584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1880584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1881f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1882584fffc8SSebastian Siewior help 1883584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1884584fffc8SSebastian Siewior 1885584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1886584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1887584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1888584fffc8SSebastian Siewior bits. 1889584fffc8SSebastian Siewior 1890584fffc8SSebastian Siewior See also: 18919332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1892584fffc8SSebastian Siewior 18938280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 18948280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1895f21a7c19SAl Viro depends on X86 && 64BIT 1896b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18978280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 18988280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 18998280daadSJussi Kivilinna help 19008280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 19018280daadSJussi Kivilinna 19028280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 19038280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 19048280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 19058280daadSJussi Kivilinna bits. 19068280daadSJussi Kivilinna 19078280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 19088280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 19098280daadSJussi Kivilinna 19108280daadSJussi Kivilinna See also: 19119332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 19128280daadSJussi Kivilinna 1913107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1914107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1915107778b5SJohannes Goetzfried depends on X86 && 64BIT 1916b95bba5dSEric Biggers select CRYPTO_SKCIPHER 19170e6ab46dSEric Biggers select CRYPTO_SIMD 1918107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1919107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1920107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1921da4df93aSArd Biesheuvel imply CRYPTO_XTS 1922107778b5SJohannes Goetzfried help 1923107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1924107778b5SJohannes Goetzfried 1925107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1926107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1927107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1928107778b5SJohannes Goetzfried bits. 1929107778b5SJohannes Goetzfried 1930107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1931107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1932107778b5SJohannes Goetzfried 1933107778b5SJohannes Goetzfried See also: 19349332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1935107778b5SJohannes Goetzfried 1936584fffc8SSebastian Siewiorcomment "Compression" 1937584fffc8SSebastian Siewior 19381da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 19391da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1940cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1941f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 19421da177e4SLinus Torvalds select ZLIB_INFLATE 19431da177e4SLinus Torvalds select ZLIB_DEFLATE 19441da177e4SLinus Torvalds help 19451da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 19461da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 19471da177e4SLinus Torvalds 19481da177e4SLinus Torvalds You will most probably want this if using IPSec. 19491da177e4SLinus Torvalds 19500b77abb3SZoltan Sogorconfig CRYPTO_LZO 19510b77abb3SZoltan Sogor tristate "LZO compression algorithm" 19520b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1953ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 19540b77abb3SZoltan Sogor select LZO_COMPRESS 19550b77abb3SZoltan Sogor select LZO_DECOMPRESS 19560b77abb3SZoltan Sogor help 19570b77abb3SZoltan Sogor This is the LZO algorithm. 19580b77abb3SZoltan Sogor 195935a1fc18SSeth Jenningsconfig CRYPTO_842 196035a1fc18SSeth Jennings tristate "842 compression algorithm" 19612062c5b6SDan Streetman select CRYPTO_ALGAPI 19626a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 19632062c5b6SDan Streetman select 842_COMPRESS 19642062c5b6SDan Streetman select 842_DECOMPRESS 196535a1fc18SSeth Jennings help 196635a1fc18SSeth Jennings This is the 842 algorithm. 196735a1fc18SSeth Jennings 19680ea8530dSChanho Minconfig CRYPTO_LZ4 19690ea8530dSChanho Min tristate "LZ4 compression algorithm" 19700ea8530dSChanho Min select CRYPTO_ALGAPI 19718cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 19720ea8530dSChanho Min select LZ4_COMPRESS 19730ea8530dSChanho Min select LZ4_DECOMPRESS 19740ea8530dSChanho Min help 19750ea8530dSChanho Min This is the LZ4 algorithm. 19760ea8530dSChanho Min 19770ea8530dSChanho Minconfig CRYPTO_LZ4HC 19780ea8530dSChanho Min tristate "LZ4HC compression algorithm" 19790ea8530dSChanho Min select CRYPTO_ALGAPI 198091d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 19810ea8530dSChanho Min select LZ4HC_COMPRESS 19820ea8530dSChanho Min select LZ4_DECOMPRESS 19830ea8530dSChanho Min help 19840ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 19850ea8530dSChanho Min 1986d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1987d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1988d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1989d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1990d28fc3dbSNick Terrell select ZSTD_COMPRESS 1991d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1992d28fc3dbSNick Terrell help 1993d28fc3dbSNick Terrell This is the zstd algorithm. 1994d28fc3dbSNick Terrell 199517f0f4a4SNeil Hormancomment "Random Number Generation" 199617f0f4a4SNeil Horman 199717f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 199817f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 199917f0f4a4SNeil Horman select CRYPTO_AES 200017f0f4a4SNeil Horman select CRYPTO_RNG 200117f0f4a4SNeil Horman help 200217f0f4a4SNeil Horman This option enables the generic pseudo random number generator 200317f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 20047dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 20057dd607e8SJiri Kosina CRYPTO_FIPS is selected 200617f0f4a4SNeil Horman 2007f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 2008419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 2009419090c6SStephan Mueller help 2010419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 2011419090c6SStephan Mueller more of the DRBG types must be selected. 2012419090c6SStephan Mueller 2013f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 2014419090c6SStephan Mueller 2015419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 2016401e4238SHerbert Xu bool 2017419090c6SStephan Mueller default y 2018419090c6SStephan Mueller select CRYPTO_HMAC 20195261cdf4SStephan Mueller select CRYPTO_SHA512 2020419090c6SStephan Mueller 2021419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 2022419090c6SStephan Mueller bool "Enable Hash DRBG" 2023826775bbSHerbert Xu select CRYPTO_SHA256 2024419090c6SStephan Mueller help 2025419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 2026419090c6SStephan Mueller 2027419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 2028419090c6SStephan Mueller bool "Enable CTR DRBG" 2029419090c6SStephan Mueller select CRYPTO_AES 2030d6fc1a45SCorentin Labbe select CRYPTO_CTR 2031419090c6SStephan Mueller help 2032419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 2033419090c6SStephan Mueller 2034f2c89a10SHerbert Xuconfig CRYPTO_DRBG 2035f2c89a10SHerbert Xu tristate 2036401e4238SHerbert Xu default CRYPTO_DRBG_MENU 2037f2c89a10SHerbert Xu select CRYPTO_RNG 2038bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 2039f2c89a10SHerbert Xu 2040f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 2041419090c6SStephan Mueller 2042bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 2043bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 20442f313e02SArnd Bergmann select CRYPTO_RNG 2045bb5530e4SStephan Mueller help 2046bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 2047bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 2048bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 2049bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 2050bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 2051bb5530e4SStephan Mueller 2052026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR 2053026a733eSStephan Müller tristate 2054a88592ccSHerbert Xu select CRYPTO_HMAC 2055304b4aceSStephan Müller select CRYPTO_SHA256 2056026a733eSStephan Müller 205703c8efc1SHerbert Xuconfig CRYPTO_USER_API 205803c8efc1SHerbert Xu tristate 205903c8efc1SHerbert Xu 2060fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 2061fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 20627451708fSHerbert Xu depends on NET 2063fe869cdbSHerbert Xu select CRYPTO_HASH 2064fe869cdbSHerbert Xu select CRYPTO_USER_API 2065fe869cdbSHerbert Xu help 2066fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 2067fe869cdbSHerbert Xu algorithms. 2068fe869cdbSHerbert Xu 20698ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 20708ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 20717451708fSHerbert Xu depends on NET 2072b95bba5dSEric Biggers select CRYPTO_SKCIPHER 20738ff59090SHerbert Xu select CRYPTO_USER_API 20748ff59090SHerbert Xu help 20758ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 20768ff59090SHerbert Xu key cipher algorithms. 20778ff59090SHerbert Xu 20782f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 20792f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 20802f375538SStephan Mueller depends on NET 20812f375538SStephan Mueller select CRYPTO_RNG 20822f375538SStephan Mueller select CRYPTO_USER_API 20832f375538SStephan Mueller help 20842f375538SStephan Mueller This option enables the user-spaces interface for random 20852f375538SStephan Mueller number generator algorithms. 20862f375538SStephan Mueller 208777ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 208877ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 208977ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 209077ebdabeSElena Petrova help 209177ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 209277ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 209377ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 209477ebdabeSElena Petrova no unless you know what this is. 209577ebdabeSElena Petrova 2096b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 2097b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 2098b64a2d95SHerbert Xu depends on NET 2099b64a2d95SHerbert Xu select CRYPTO_AEAD 2100b95bba5dSEric Biggers select CRYPTO_SKCIPHER 210172548b09SStephan Mueller select CRYPTO_NULL 2102b64a2d95SHerbert Xu select CRYPTO_USER_API 2103b64a2d95SHerbert Xu help 2104b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 2105b64a2d95SHerbert Xu cipher algorithms. 2106b64a2d95SHerbert Xu 21079ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 21089ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 21099ace6771SArd Biesheuvel depends on CRYPTO_USER_API 21109ace6771SArd Biesheuvel default y 21119ace6771SArd Biesheuvel help 21129ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 21139ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 21149ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 21159ace6771SArd Biesheuvel 2116cac5818cSCorentin Labbeconfig CRYPTO_STATS 2117cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 2118a6a31385SCorentin Labbe depends on CRYPTO_USER 2119cac5818cSCorentin Labbe help 2120cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 2121cac5818cSCorentin Labbe This will collect: 2122cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 2123cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 2124cac5818cSCorentin Labbe - size and numbers of hash operations 2125cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 2126cac5818cSCorentin Labbe - generate/seed numbers for rng operations 2127cac5818cSCorentin Labbe 2128ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 2129ee08997fSDmitry Kasatkin bool 2130ee08997fSDmitry Kasatkin 21311da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 21328636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 21338636a1f9SMasahiro Yamadasource "certs/Kconfig" 21341da177e4SLinus Torvalds 2135cce9e06dSHerbert Xuendif # if CRYPTO 2136