xref: /linux/crypto/Kconfig (revision 6ecc9d9ff91ff26769e58164b6216c6189cb8302)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2171e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2181e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2191e65b81aSTim Chen	select CRYPTO_HASH
2201e65b81aSTim Chen	select CRYPTO_MANAGER
2211e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2221e65b81aSTim Chen	help
2231e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2241e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2251e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2261e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2271e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2280e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2291e65b81aSTim Chen
230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
231584fffc8SSebastian Siewior	tristate "Authenc support"
232584fffc8SSebastian Siewior	select CRYPTO_AEAD
233584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
234584fffc8SSebastian Siewior	select CRYPTO_MANAGER
235584fffc8SSebastian Siewior	select CRYPTO_HASH
236e94c6a7aSHerbert Xu	select CRYPTO_NULL
237584fffc8SSebastian Siewior	help
238584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
239584fffc8SSebastian Siewior	  This is required for IPSec.
240584fffc8SSebastian Siewior
241584fffc8SSebastian Siewiorconfig CRYPTO_TEST
242584fffc8SSebastian Siewior	tristate "Testing module"
243584fffc8SSebastian Siewior	depends on m
244da7f033dSHerbert Xu	select CRYPTO_MANAGER
245584fffc8SSebastian Siewior	help
246584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
247584fffc8SSebastian Siewior
248266d0516SHerbert Xuconfig CRYPTO_SIMD
249266d0516SHerbert Xu	tristate
250266d0516SHerbert Xu	select CRYPTO_CRYPTD
251266d0516SHerbert Xu
252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
253596d8750SJussi Kivilinna	tristate
254596d8750SJussi Kivilinna	depends on X86
255065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
256596d8750SJussi Kivilinna
257735d37b5SBaolin Wangconfig CRYPTO_ENGINE
258735d37b5SBaolin Wang	tristate
259735d37b5SBaolin Wang
260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
261584fffc8SSebastian Siewior
262584fffc8SSebastian Siewiorconfig CRYPTO_CCM
263584fffc8SSebastian Siewior	tristate "CCM support"
264584fffc8SSebastian Siewior	select CRYPTO_CTR
265f15f05b0SArd Biesheuvel	select CRYPTO_HASH
266584fffc8SSebastian Siewior	select CRYPTO_AEAD
267584fffc8SSebastian Siewior	help
268584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
269584fffc8SSebastian Siewior
270584fffc8SSebastian Siewiorconfig CRYPTO_GCM
271584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
272584fffc8SSebastian Siewior	select CRYPTO_CTR
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
2749382d97aSHuang Ying	select CRYPTO_GHASH
2759489667dSJussi Kivilinna	select CRYPTO_NULL
276584fffc8SSebastian Siewior	help
277584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
278584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
279584fffc8SSebastian Siewior
28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28171ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28271ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28371ebc4d1SMartin Willi	select CRYPTO_POLY1305
28471ebc4d1SMartin Willi	select CRYPTO_AEAD
28571ebc4d1SMartin Willi	help
28671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28771ebc4d1SMartin Willi
28871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29071ebc4d1SMartin Willi	  IETF protocols.
29171ebc4d1SMartin Willi
292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
293f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
294f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
295f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
296f606a88eSOndrej Mosnacek	help
297f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
298f606a88eSOndrej Mosnacek
299f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
300f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
301f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
302f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
303f606a88eSOndrej Mosnacek	help
304f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
305f606a88eSOndrej Mosnacek
306f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
307f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
308f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
309f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
310f606a88eSOndrej Mosnacek	help
311f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
312f606a88eSOndrej Mosnacek
3131d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3141d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3151d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3161d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3171d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3181d373d4eSOndrej Mosnacek	help
3191d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
3201d373d4eSOndrej Mosnacek
3211d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3221d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3231d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3241d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3251d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3261d373d4eSOndrej Mosnacek	help
3271d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
3281d373d4eSOndrej Mosnacek
3291d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3301d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3311d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3321d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3331d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3341d373d4eSOndrej Mosnacek	help
3351d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
3361d373d4eSOndrej Mosnacek
337396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
338396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
339396be41fSOndrej Mosnacek	select CRYPTO_AEAD
340396be41fSOndrej Mosnacek	help
341396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
342396be41fSOndrej Mosnacek
34356e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
34456e8e57fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (glue for SIMD optimizations)"
34556e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
34656e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
34756e8e57fSOndrej Mosnacek	help
34856e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
34956e8e57fSOndrej Mosnacek	  algorithm.
35056e8e57fSOndrej Mosnacek
351*6ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
352*6ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
353*6ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
354*6ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
355*6ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
356*6ecc9d9fSOndrej Mosnacek	help
357*6ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
358*6ecc9d9fSOndrej Mosnacek
359396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
360396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
361396be41fSOndrej Mosnacek	select CRYPTO_AEAD
362396be41fSOndrej Mosnacek	help
363396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
364396be41fSOndrej Mosnacek
36556e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
36656e8e57fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (glue for SIMD optimizations)"
36756e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
36856e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
36956e8e57fSOndrej Mosnacek	help
37056e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
37156e8e57fSOndrej Mosnacek	  algorithm.
37256e8e57fSOndrej Mosnacek
373*6ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
374*6ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
375*6ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
376*6ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
377*6ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
378*6ecc9d9fSOndrej Mosnacek	help
379*6ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
380*6ecc9d9fSOndrej Mosnacek	  algorithm.
381*6ecc9d9fSOndrej Mosnacek
382*6ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
383*6ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
384*6ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
385*6ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
386*6ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
387*6ecc9d9fSOndrej Mosnacek	help
388*6ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
389*6ecc9d9fSOndrej Mosnacek	  algorithm.
390*6ecc9d9fSOndrej Mosnacek
391584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
392584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
393584fffc8SSebastian Siewior	select CRYPTO_AEAD
394584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
395856e3f40SHerbert Xu	select CRYPTO_NULL
396401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
397584fffc8SSebastian Siewior	help
398584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
399584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
400584fffc8SSebastian Siewior
401a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
402a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
403a10f554fSHerbert Xu	select CRYPTO_AEAD
404a10f554fSHerbert Xu	select CRYPTO_NULL
405401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
4063491244cSHerbert Xu	default m
407a10f554fSHerbert Xu	help
408a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
409a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
410a10f554fSHerbert Xu	  algorithm for CBC.
411a10f554fSHerbert Xu
412584fffc8SSebastian Siewiorcomment "Block modes"
413584fffc8SSebastian Siewior
414584fffc8SSebastian Siewiorconfig CRYPTO_CBC
415584fffc8SSebastian Siewior	tristate "CBC support"
416584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
417584fffc8SSebastian Siewior	select CRYPTO_MANAGER
418584fffc8SSebastian Siewior	help
419584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
420584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
421584fffc8SSebastian Siewior
422a7d85e06SJames Bottomleyconfig CRYPTO_CFB
423a7d85e06SJames Bottomley	tristate "CFB support"
424a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
425a7d85e06SJames Bottomley	select CRYPTO_MANAGER
426a7d85e06SJames Bottomley	help
427a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
428a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
429a7d85e06SJames Bottomley
430584fffc8SSebastian Siewiorconfig CRYPTO_CTR
431584fffc8SSebastian Siewior	tristate "CTR support"
432584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
433584fffc8SSebastian Siewior	select CRYPTO_SEQIV
434584fffc8SSebastian Siewior	select CRYPTO_MANAGER
435584fffc8SSebastian Siewior	help
436584fffc8SSebastian Siewior	  CTR: Counter mode
437584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
438584fffc8SSebastian Siewior
439584fffc8SSebastian Siewiorconfig CRYPTO_CTS
440584fffc8SSebastian Siewior	tristate "CTS support"
441584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
442584fffc8SSebastian Siewior	help
443584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
444584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
445584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
446584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
447584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
448584fffc8SSebastian Siewior	  for AES encryption.
449584fffc8SSebastian Siewior
450584fffc8SSebastian Siewiorconfig CRYPTO_ECB
451584fffc8SSebastian Siewior	tristate "ECB support"
452584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
453584fffc8SSebastian Siewior	select CRYPTO_MANAGER
454584fffc8SSebastian Siewior	help
455584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
456584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
457584fffc8SSebastian Siewior	  the input block by block.
458584fffc8SSebastian Siewior
459584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4602470a2b2SJussi Kivilinna	tristate "LRW support"
461584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
462584fffc8SSebastian Siewior	select CRYPTO_MANAGER
463584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
464584fffc8SSebastian Siewior	help
465584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
466584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
467584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
468584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
469584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
470584fffc8SSebastian Siewior
471584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
472584fffc8SSebastian Siewior	tristate "PCBC support"
473584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
474584fffc8SSebastian Siewior	select CRYPTO_MANAGER
475584fffc8SSebastian Siewior	help
476584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
477584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
478584fffc8SSebastian Siewior
479584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4805bcf8e6dSJussi Kivilinna	tristate "XTS support"
481584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
482584fffc8SSebastian Siewior	select CRYPTO_MANAGER
48312cb3a1cSMilan Broz	select CRYPTO_ECB
484584fffc8SSebastian Siewior	help
485584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
486584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
487584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
488584fffc8SSebastian Siewior
4891c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4901c49678eSStephan Mueller	tristate "Key wrapping support"
4911c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
4921c49678eSStephan Mueller	help
4931c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4941c49678eSStephan Mueller	  padding.
4951c49678eSStephan Mueller
496584fffc8SSebastian Siewiorcomment "Hash modes"
497584fffc8SSebastian Siewior
49893b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
49993b5e86aSJussi Kivilinna	tristate "CMAC support"
50093b5e86aSJussi Kivilinna	select CRYPTO_HASH
50193b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
50293b5e86aSJussi Kivilinna	help
50393b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
50493b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
50593b5e86aSJussi Kivilinna
50693b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
50793b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
50893b5e86aSJussi Kivilinna
5091da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5108425165dSHerbert Xu	tristate "HMAC support"
5110796ae06SHerbert Xu	select CRYPTO_HASH
51243518407SHerbert Xu	select CRYPTO_MANAGER
5131da177e4SLinus Torvalds	help
5141da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5151da177e4SLinus Torvalds	  This is required for IPSec.
5161da177e4SLinus Torvalds
517333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
518333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
519333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
520333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
521333b0d7eSKazunori MIYAZAWA	help
522333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
523333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
524333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
525333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
526333b0d7eSKazunori MIYAZAWA
527f1939f7cSShane Wangconfig CRYPTO_VMAC
528f1939f7cSShane Wang	tristate "VMAC support"
529f1939f7cSShane Wang	select CRYPTO_HASH
530f1939f7cSShane Wang	select CRYPTO_MANAGER
531f1939f7cSShane Wang	help
532f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
533f1939f7cSShane Wang	  very high speed on 64-bit architectures.
534f1939f7cSShane Wang
535f1939f7cSShane Wang	  See also:
536f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
537f1939f7cSShane Wang
538584fffc8SSebastian Siewiorcomment "Digest"
539584fffc8SSebastian Siewior
540584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
541584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5425773a3e6SHerbert Xu	select CRYPTO_HASH
5436a0962b2SDarrick J. Wong	select CRC32
5441da177e4SLinus Torvalds	help
545584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
546584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
54769c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5481da177e4SLinus Torvalds
5498cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5508cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5518cb51ba8SAustin Zhang	depends on X86
5528cb51ba8SAustin Zhang	select CRYPTO_HASH
5538cb51ba8SAustin Zhang	help
5548cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5558cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5568cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5578cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5588cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5598cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5608cb51ba8SAustin Zhang
5617cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5626dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
563c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5646dd7a82cSAnton Blanchard	select CRYPTO_HASH
5656dd7a82cSAnton Blanchard	select CRC32
5666dd7a82cSAnton Blanchard	help
5676dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5686dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5696dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5706dd7a82cSAnton Blanchard
5716dd7a82cSAnton Blanchard
572442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
573442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
574442a7c40SDavid S. Miller	depends on SPARC64
575442a7c40SDavid S. Miller	select CRYPTO_HASH
576442a7c40SDavid S. Miller	select CRC32
577442a7c40SDavid S. Miller	help
578442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
579442a7c40SDavid S. Miller	  when available.
580442a7c40SDavid S. Miller
58178c37d19SAlexander Boykoconfig CRYPTO_CRC32
58278c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
58378c37d19SAlexander Boyko	select CRYPTO_HASH
58478c37d19SAlexander Boyko	select CRC32
58578c37d19SAlexander Boyko	help
58678c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
58778c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
58878c37d19SAlexander Boyko
58978c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
59078c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
59178c37d19SAlexander Boyko	depends on X86
59278c37d19SAlexander Boyko	select CRYPTO_HASH
59378c37d19SAlexander Boyko	select CRC32
59478c37d19SAlexander Boyko	help
59578c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
59678c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
59778c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
59878c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
59978c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
60078c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
60178c37d19SAlexander Boyko
6024a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6034a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6044a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6054a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6064a5dc51eSMarcin Nowakowski	help
6074a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6084a5dc51eSMarcin Nowakowski	  instructions, when available.
6094a5dc51eSMarcin Nowakowski
6104a5dc51eSMarcin Nowakowski
61168411521SHerbert Xuconfig CRYPTO_CRCT10DIF
61268411521SHerbert Xu	tristate "CRCT10DIF algorithm"
61368411521SHerbert Xu	select CRYPTO_HASH
61468411521SHerbert Xu	help
61568411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
61668411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
61768411521SHerbert Xu	  transforms to be used if they are available.
61868411521SHerbert Xu
61968411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
62068411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
62168411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
62268411521SHerbert Xu	select CRYPTO_HASH
62368411521SHerbert Xu	help
62468411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
62568411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
62668411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
62768411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
62868411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
62968411521SHerbert Xu
630b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
631b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
632b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
633b01df1c1SDaniel Axtens	select CRYPTO_HASH
634b01df1c1SDaniel Axtens	help
635b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
636b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
637b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
638b01df1c1SDaniel Axtens
639146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
640146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
641146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
642146c8688SDaniel Axtens	help
643146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
644146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
645146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
646146c8688SDaniel Axtens
6472cdc6899SHuang Yingconfig CRYPTO_GHASH
6482cdc6899SHuang Ying	tristate "GHASH digest algorithm"
6492cdc6899SHuang Ying	select CRYPTO_GF128MUL
650578c60fbSArnd Bergmann	select CRYPTO_HASH
6512cdc6899SHuang Ying	help
6522cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
6532cdc6899SHuang Ying
654f979e014SMartin Williconfig CRYPTO_POLY1305
655f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
656578c60fbSArnd Bergmann	select CRYPTO_HASH
657f979e014SMartin Willi	help
658f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
659f979e014SMartin Willi
660f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
661f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
662f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
663f979e014SMartin Willi
664c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
665b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
666c70f4abeSMartin Willi	depends on X86 && 64BIT
667c70f4abeSMartin Willi	select CRYPTO_POLY1305
668c70f4abeSMartin Willi	help
669c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
670c70f4abeSMartin Willi
671c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
672c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
673c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
674c70f4abeSMartin Willi	  instructions.
675c70f4abeSMartin Willi
6761da177e4SLinus Torvaldsconfig CRYPTO_MD4
6771da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
678808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6791da177e4SLinus Torvalds	help
6801da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
6811da177e4SLinus Torvalds
6821da177e4SLinus Torvaldsconfig CRYPTO_MD5
6831da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
68414b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6851da177e4SLinus Torvalds	help
6861da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
6871da177e4SLinus Torvalds
688d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
689d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
690d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
691d69e75deSAaro Koskinen	select CRYPTO_MD5
692d69e75deSAaro Koskinen	select CRYPTO_HASH
693d69e75deSAaro Koskinen	help
694d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
695d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
696d69e75deSAaro Koskinen
697e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
698e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
699e8e59953SMarkus Stockhausen	depends on PPC
700e8e59953SMarkus Stockhausen	select CRYPTO_HASH
701e8e59953SMarkus Stockhausen	help
702e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
703e8e59953SMarkus Stockhausen	  in PPC assembler.
704e8e59953SMarkus Stockhausen
705fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
706fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
707fa4dfedcSDavid S. Miller	depends on SPARC64
708fa4dfedcSDavid S. Miller	select CRYPTO_MD5
709fa4dfedcSDavid S. Miller	select CRYPTO_HASH
710fa4dfedcSDavid S. Miller	help
711fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
712fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
713fa4dfedcSDavid S. Miller
714584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
715584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
71619e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
717584fffc8SSebastian Siewior	help
718584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
719584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
720584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
721584fffc8SSebastian Siewior	  of the algorithm.
722584fffc8SSebastian Siewior
72382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
72482798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7257c4468bcSHerbert Xu	select CRYPTO_HASH
72682798f90SAdrian-Ken Rueegsegger	help
72782798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
72882798f90SAdrian-Ken Rueegsegger
72982798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
73035ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
73182798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
73282798f90SAdrian-Ken Rueegsegger
73382798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7346d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
73582798f90SAdrian-Ken Rueegsegger
73682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
73782798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
738e5835fbaSHerbert Xu	select CRYPTO_HASH
73982798f90SAdrian-Ken Rueegsegger	help
74082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
74182798f90SAdrian-Ken Rueegsegger
74282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
74382798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
744b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
745b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
74682798f90SAdrian-Ken Rueegsegger
747b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
748b6d44341SAdrian Bunk	  against RIPEMD-160.
749534fe2c1SAdrian-Ken Rueegsegger
750534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7516d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
752534fe2c1SAdrian-Ken Rueegsegger
753534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
754534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
755d8a5e2e9SHerbert Xu	select CRYPTO_HASH
756534fe2c1SAdrian-Ken Rueegsegger	help
757b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
758b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
759b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
760b6d44341SAdrian Bunk	  (than RIPEMD-128).
761534fe2c1SAdrian-Ken Rueegsegger
762534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7636d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
764534fe2c1SAdrian-Ken Rueegsegger
765534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
766534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
7673b8efb4cSHerbert Xu	select CRYPTO_HASH
768534fe2c1SAdrian-Ken Rueegsegger	help
769b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
770b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
771b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
772b6d44341SAdrian Bunk	  (than RIPEMD-160).
773534fe2c1SAdrian-Ken Rueegsegger
77482798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7756d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
77682798f90SAdrian-Ken Rueegsegger
7771da177e4SLinus Torvaldsconfig CRYPTO_SHA1
7781da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
77954ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7801da177e4SLinus Torvalds	help
7811da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
7821da177e4SLinus Torvalds
78366be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
784e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
78566be8951SMathias Krause	depends on X86 && 64BIT
78666be8951SMathias Krause	select CRYPTO_SHA1
78766be8951SMathias Krause	select CRYPTO_HASH
78866be8951SMathias Krause	help
78966be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
79066be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
791e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
792e38b6b7fStim	  when available.
79366be8951SMathias Krause
7948275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
795e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
7968275d1aaSTim Chen	depends on X86 && 64BIT
7978275d1aaSTim Chen	select CRYPTO_SHA256
7988275d1aaSTim Chen	select CRYPTO_HASH
7998275d1aaSTim Chen	help
8008275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8018275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8028275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
803e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
804e38b6b7fStim	  Instructions) when available.
8058275d1aaSTim Chen
80687de4579STim Chenconfig CRYPTO_SHA512_SSSE3
80787de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
80887de4579STim Chen	depends on X86 && 64BIT
80987de4579STim Chen	select CRYPTO_SHA512
81087de4579STim Chen	select CRYPTO_HASH
81187de4579STim Chen	help
81287de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
81387de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
81487de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
81587de4579STim Chen	  version 2 (AVX2) instructions, when available.
81687de4579STim Chen
817efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
818efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
819efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
820efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
821efdb6f6eSAaro Koskinen	select CRYPTO_HASH
822efdb6f6eSAaro Koskinen	help
823efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
824efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
825efdb6f6eSAaro Koskinen
8264ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8274ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8284ff28d4cSDavid S. Miller	depends on SPARC64
8294ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8304ff28d4cSDavid S. Miller	select CRYPTO_HASH
8314ff28d4cSDavid S. Miller	help
8324ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8334ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8344ff28d4cSDavid S. Miller
835323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
836323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
837323a6bf1SMichael Ellerman	depends on PPC
838323a6bf1SMichael Ellerman	help
839323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
840323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
841323a6bf1SMichael Ellerman
842d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
843d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
844d9850fc5SMarkus Stockhausen	depends on PPC && SPE
845d9850fc5SMarkus Stockhausen	help
846d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
847d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
848d9850fc5SMarkus Stockhausen
8491e65b81aSTim Chenconfig CRYPTO_SHA1_MB
8501e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8511e65b81aSTim Chen	depends on X86 && 64BIT
8521e65b81aSTim Chen	select CRYPTO_SHA1
8531e65b81aSTim Chen	select CRYPTO_HASH
8541e65b81aSTim Chen	select CRYPTO_MCRYPTD
8551e65b81aSTim Chen	help
8561e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8571e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
8581e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
8591e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
8601e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
8611e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
8621e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
8631e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
8641e65b81aSTim Chen
8659be7e244SMegha Deyconfig CRYPTO_SHA256_MB
8669be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8679be7e244SMegha Dey	depends on X86 && 64BIT
8689be7e244SMegha Dey	select CRYPTO_SHA256
8699be7e244SMegha Dey	select CRYPTO_HASH
8709be7e244SMegha Dey	select CRYPTO_MCRYPTD
8719be7e244SMegha Dey	help
8729be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8739be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
8749be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
8759be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
8769be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
8779be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
8789be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
8799be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
8809be7e244SMegha Dey
881026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
882026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
883026bb8aaSMegha Dey        depends on X86 && 64BIT
884026bb8aaSMegha Dey        select CRYPTO_SHA512
885026bb8aaSMegha Dey        select CRYPTO_HASH
886026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
887026bb8aaSMegha Dey        help
888026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
889026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
890026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
891026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
892026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
893026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
894026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
895026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
896026bb8aaSMegha Dey
8971da177e4SLinus Torvaldsconfig CRYPTO_SHA256
898cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
89950e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9001da177e4SLinus Torvalds	help
9011da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9021da177e4SLinus Torvalds
9031da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9041da177e4SLinus Torvalds	  security against collision attacks.
9051da177e4SLinus Torvalds
906cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
907cd12fb90SJonathan Lynch	  of security against collision attacks.
908cd12fb90SJonathan Lynch
9092ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9102ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9112ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9122ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9132ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9142ecc1e95SMarkus Stockhausen	help
9152ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9162ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9172ecc1e95SMarkus Stockhausen
918efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
919efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
920efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
921efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
922efdb6f6eSAaro Koskinen	select CRYPTO_HASH
923efdb6f6eSAaro Koskinen	help
924efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
925efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
926efdb6f6eSAaro Koskinen
92786c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
92886c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
92986c93b24SDavid S. Miller	depends on SPARC64
93086c93b24SDavid S. Miller	select CRYPTO_SHA256
93186c93b24SDavid S. Miller	select CRYPTO_HASH
93286c93b24SDavid S. Miller	help
93386c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
93486c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
93586c93b24SDavid S. Miller
9361da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9371da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
938bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9391da177e4SLinus Torvalds	help
9401da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9411da177e4SLinus Torvalds
9421da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9431da177e4SLinus Torvalds	  security against collision attacks.
9441da177e4SLinus Torvalds
9451da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9461da177e4SLinus Torvalds	  of security against collision attacks.
9471da177e4SLinus Torvalds
948efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
949efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
950efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
951efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
952efdb6f6eSAaro Koskinen	select CRYPTO_HASH
953efdb6f6eSAaro Koskinen	help
954efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
955efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
956efdb6f6eSAaro Koskinen
957775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
958775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
959775e0c69SDavid S. Miller	depends on SPARC64
960775e0c69SDavid S. Miller	select CRYPTO_SHA512
961775e0c69SDavid S. Miller	select CRYPTO_HASH
962775e0c69SDavid S. Miller	help
963775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
964775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
965775e0c69SDavid S. Miller
96653964b9eSJeff Garzikconfig CRYPTO_SHA3
96753964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
96853964b9eSJeff Garzik	select CRYPTO_HASH
96953964b9eSJeff Garzik	help
97053964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
97153964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
97253964b9eSJeff Garzik
97353964b9eSJeff Garzik	  References:
97453964b9eSJeff Garzik	  http://keccak.noekeon.org/
97553964b9eSJeff Garzik
9764f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9774f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9784f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9794f0fc160SGilad Ben-Yossef	help
9804f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9814f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9824f0fc160SGilad Ben-Yossef
9834f0fc160SGilad Ben-Yossef	  References:
9844f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9854f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9864f0fc160SGilad Ben-Yossef
9871da177e4SLinus Torvaldsconfig CRYPTO_TGR192
9881da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
989f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9901da177e4SLinus Torvalds	help
9911da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
9921da177e4SLinus Torvalds
9931da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
9941da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
9951da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
9961da177e4SLinus Torvalds
9971da177e4SLinus Torvalds	  See also:
9981da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
9991da177e4SLinus Torvalds
1000584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1001584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10024946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10031da177e4SLinus Torvalds	help
1004584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10051da177e4SLinus Torvalds
1006584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1007584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10081da177e4SLinus Torvalds
10091da177e4SLinus Torvalds	  See also:
10106d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10111da177e4SLinus Torvalds
10120e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10130e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10148af00860SRichard Weinberger	depends on X86 && 64BIT
10150e1227d3SHuang Ying	select CRYPTO_CRYPTD
10160e1227d3SHuang Ying	help
10170e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10180e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10190e1227d3SHuang Ying
1020584fffc8SSebastian Siewiorcomment "Ciphers"
10211da177e4SLinus Torvalds
10221da177e4SLinus Torvaldsconfig CRYPTO_AES
10231da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1024cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10251da177e4SLinus Torvalds	help
10261da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10271da177e4SLinus Torvalds	  algorithm.
10281da177e4SLinus Torvalds
10291da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10301da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10311da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10321da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10331da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10341da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10351da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10361da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10371da177e4SLinus Torvalds
10381da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10391da177e4SLinus Torvalds
10401da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10411da177e4SLinus Torvalds
1042b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1043b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1044b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1045b5e0b032SArd Biesheuvel	help
1046b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1047b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1048b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1049b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1050b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1051b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1052b5e0b032SArd Biesheuvel
1053b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1054b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1055b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1056b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
1057b5e0b032SArd Biesheuvel	  block.
1058b5e0b032SArd Biesheuvel
10591da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10601da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1061cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1062cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10635157dea8SSebastian Siewior	select CRYPTO_AES
10641da177e4SLinus Torvalds	help
10651da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10661da177e4SLinus Torvalds	  algorithm.
10671da177e4SLinus Torvalds
10681da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10691da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10701da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10711da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10721da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10731da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10741da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10751da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10761da177e4SLinus Torvalds
10771da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10781da177e4SLinus Torvalds
10791da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10801da177e4SLinus Torvalds
1081a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1082a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1083cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1084cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
108581190b32SSebastian Siewior	select CRYPTO_AES
1086a2a892a2SAndreas Steinmetz	help
1087a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1088a2a892a2SAndreas Steinmetz	  algorithm.
1089a2a892a2SAndreas Steinmetz
1090a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1091a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1092a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1093a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1094a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1095a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1096a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1097a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1098a2a892a2SAndreas Steinmetz
1099a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1100a2a892a2SAndreas Steinmetz
1101a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1102a2a892a2SAndreas Steinmetz
110354b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
110454b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11058af00860SRichard Weinberger	depends on X86
110685671860SHerbert Xu	select CRYPTO_AEAD
11070d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11080d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
110954b6a1bdSHuang Ying	select CRYPTO_ALGAPI
111085671860SHerbert Xu	select CRYPTO_BLKCIPHER
11117643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
111285671860SHerbert Xu	select CRYPTO_SIMD
111354b6a1bdSHuang Ying	help
111454b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
111554b6a1bdSHuang Ying
111654b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
111754b6a1bdSHuang Ying	  algorithm.
111854b6a1bdSHuang Ying
111954b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
112054b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
112154b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
112254b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
112354b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
112454b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
112554b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
112654b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
112754b6a1bdSHuang Ying
112854b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
112954b6a1bdSHuang Ying
113054b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
113154b6a1bdSHuang Ying
11320d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11330d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
11340d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
11350d258efbSMathias Krause	  acceleration for CTR.
11362cf4ac8bSHuang Ying
11379bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11389bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11399bf4852dSDavid S. Miller	depends on SPARC64
11409bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11419bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11429bf4852dSDavid S. Miller	help
11439bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11449bf4852dSDavid S. Miller
11459bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11469bf4852dSDavid S. Miller	  algorithm.
11479bf4852dSDavid S. Miller
11489bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11499bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11509bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11519bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11529bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11539bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11549bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11559bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11569bf4852dSDavid S. Miller
11579bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11589bf4852dSDavid S. Miller
11599bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11609bf4852dSDavid S. Miller
11619bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11629bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11639bf4852dSDavid S. Miller	  ECB and CBC.
11649bf4852dSDavid S. Miller
1165504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1166504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1167504c6143SMarkus Stockhausen	depends on PPC && SPE
1168504c6143SMarkus Stockhausen	help
1169504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1170504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1171504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1172504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1173504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1174504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1175504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1176504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1177504c6143SMarkus Stockhausen
11781da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11791da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1180cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11811da177e4SLinus Torvalds	help
11821da177e4SLinus Torvalds	  Anubis cipher algorithm.
11831da177e4SLinus Torvalds
11841da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11851da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11861da177e4SLinus Torvalds	  in the NESSIE competition.
11871da177e4SLinus Torvalds
11881da177e4SLinus Torvalds	  See also:
11896d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11906d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11911da177e4SLinus Torvalds
1192584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1193584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1194b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1195e2ee95b8SHye-Shik Chang	help
1196584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1197e2ee95b8SHye-Shik Chang
1198584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1199584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1200584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1201584fffc8SSebastian Siewior	  weakness of the algorithm.
1202584fffc8SSebastian Siewior
1203584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1204584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1205584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
120652ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1207584fffc8SSebastian Siewior	help
1208584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1209584fffc8SSebastian Siewior
1210584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1211584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1212584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1213e2ee95b8SHye-Shik Chang
1214e2ee95b8SHye-Shik Chang	  See also:
1215584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1216584fffc8SSebastian Siewior
121752ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
121852ba867cSJussi Kivilinna	tristate
121952ba867cSJussi Kivilinna	help
122052ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
122152ba867cSJussi Kivilinna	  generic c and the assembler implementations.
122252ba867cSJussi Kivilinna
122352ba867cSJussi Kivilinna	  See also:
122452ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
122552ba867cSJussi Kivilinna
122664b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
122764b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1228f21a7c19SAl Viro	depends on X86 && 64BIT
1229c1679171SEric Biggers	select CRYPTO_BLKCIPHER
123064b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
123164b94ceaSJussi Kivilinna	help
123264b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
123364b94ceaSJussi Kivilinna
123464b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
123564b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
123664b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
123764b94ceaSJussi Kivilinna
123864b94ceaSJussi Kivilinna	  See also:
123964b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
124064b94ceaSJussi Kivilinna
1241584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1242584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1243584fffc8SSebastian Siewior	depends on CRYPTO
1244584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1245584fffc8SSebastian Siewior	help
1246584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1247584fffc8SSebastian Siewior
1248584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1249584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1250584fffc8SSebastian Siewior
1251584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1252584fffc8SSebastian Siewior
1253584fffc8SSebastian Siewior	  See also:
1254584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1255584fffc8SSebastian Siewior
12560b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12570b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1258f21a7c19SAl Viro	depends on X86 && 64BIT
12590b95ec56SJussi Kivilinna	depends on CRYPTO
12601af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1261964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12620b95ec56SJussi Kivilinna	help
12630b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12640b95ec56SJussi Kivilinna
12650b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12660b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12670b95ec56SJussi Kivilinna
12680b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12690b95ec56SJussi Kivilinna
12700b95ec56SJussi Kivilinna	  See also:
12710b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12720b95ec56SJussi Kivilinna
1273d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1274d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1275d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1276d9b1d2e7SJussi Kivilinna	depends on CRYPTO
127744893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1278d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
127944893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
128044893bc2SEric Biggers	select CRYPTO_SIMD
1281d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1282d9b1d2e7SJussi Kivilinna	help
1283d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1284d9b1d2e7SJussi Kivilinna
1285d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1286d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1287d9b1d2e7SJussi Kivilinna
1288d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1289d9b1d2e7SJussi Kivilinna
1290d9b1d2e7SJussi Kivilinna	  See also:
1291d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1292d9b1d2e7SJussi Kivilinna
1293f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1294f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1295f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1296f3f935a7SJussi Kivilinna	depends on CRYPTO
1297f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1298f3f935a7SJussi Kivilinna	help
1299f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1300f3f935a7SJussi Kivilinna
1301f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1302f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1303f3f935a7SJussi Kivilinna
1304f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1305f3f935a7SJussi Kivilinna
1306f3f935a7SJussi Kivilinna	  See also:
1307f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1308f3f935a7SJussi Kivilinna
130981658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
131081658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
131181658ad0SDavid S. Miller	depends on SPARC64
131281658ad0SDavid S. Miller	depends on CRYPTO
131381658ad0SDavid S. Miller	select CRYPTO_ALGAPI
131481658ad0SDavid S. Miller	help
131581658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
131681658ad0SDavid S. Miller
131781658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
131881658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
131981658ad0SDavid S. Miller
132081658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
132181658ad0SDavid S. Miller
132281658ad0SDavid S. Miller	  See also:
132381658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
132481658ad0SDavid S. Miller
1325044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1326044ab525SJussi Kivilinna	tristate
1327044ab525SJussi Kivilinna	help
1328044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1329044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1330044ab525SJussi Kivilinna
1331584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1332584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1333584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1334044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1335584fffc8SSebastian Siewior	help
1336584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1337584fffc8SSebastian Siewior	  described in RFC2144.
1338584fffc8SSebastian Siewior
13394d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13404d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13414d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13421e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13434d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13441e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13451e63183aSEric Biggers	select CRYPTO_SIMD
13464d6d6a2cSJohannes Goetzfried	help
13474d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13484d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13494d6d6a2cSJohannes Goetzfried
13504d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13514d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13524d6d6a2cSJohannes Goetzfried
1353584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1354584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1355584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1356044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1357584fffc8SSebastian Siewior	help
1358584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1359584fffc8SSebastian Siewior	  described in RFC2612.
1360584fffc8SSebastian Siewior
13614ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13624ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13634ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13644bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13654ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13664bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13674bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13684bd96924SEric Biggers	select CRYPTO_SIMD
13694ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13704ea1277dSJohannes Goetzfried	help
13714ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13724ea1277dSJohannes Goetzfried	  described in RFC2612.
13734ea1277dSJohannes Goetzfried
13744ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13754ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13764ea1277dSJohannes Goetzfried
1377584fffc8SSebastian Siewiorconfig CRYPTO_DES
1378584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1379584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1380584fffc8SSebastian Siewior	help
1381584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1382584fffc8SSebastian Siewior
1383c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1384c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
138597da37b3SDave Jones	depends on SPARC64
1386c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1387c5aac2dfSDavid S. Miller	select CRYPTO_DES
1388c5aac2dfSDavid S. Miller	help
1389c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1390c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1391c5aac2dfSDavid S. Miller
13926574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13936574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13946574e6c6SJussi Kivilinna	depends on X86 && 64BIT
139509c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
13966574e6c6SJussi Kivilinna	select CRYPTO_DES
13976574e6c6SJussi Kivilinna	help
13986574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13996574e6c6SJussi Kivilinna
14006574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14016574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14026574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14036574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14046574e6c6SJussi Kivilinna
1405584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1406584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1407584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1408584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1409584fffc8SSebastian Siewior	help
1410584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1411584fffc8SSebastian Siewior
1412584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1413584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1414584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1415584fffc8SSebastian Siewior	help
1416584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1417584fffc8SSebastian Siewior
1418584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1419584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1420584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1421584fffc8SSebastian Siewior
1422584fffc8SSebastian Siewior	  See also:
14236d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1424e2ee95b8SHye-Shik Chang
14252407d608STan Swee Hengconfig CRYPTO_SALSA20
14263b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14272407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14282407d608STan Swee Heng	help
14292407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14302407d608STan Swee Heng
14312407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14322407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14332407d608STan Swee Heng
14342407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14352407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14361da177e4SLinus Torvalds
1437974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
14383b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1439974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1440974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1441c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
1442974e4b75STan Swee Heng	help
1443974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1444974e4b75STan Swee Heng
1445974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1446974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1447974e4b75STan Swee Heng
1448974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1449974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1450974e4b75STan Swee Heng
14519a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
14523b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
14539a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
14549a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
1455c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
14569a7dafbbSTan Swee Heng	help
14579a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
14589a7dafbbSTan Swee Heng
14599a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14609a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14619a7dafbbSTan Swee Heng
14629a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14639a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14649a7dafbbSTan Swee Heng
1465c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1466c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1467c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1468c08d0e64SMartin Willi	help
1469c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1470c08d0e64SMartin Willi
1471c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1472c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1473c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1474c08d0e64SMartin Willi
1475c08d0e64SMartin Willi	  See also:
1476c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1477c08d0e64SMartin Willi
1478c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14793d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1480c9320b6dSMartin Willi	depends on X86 && 64BIT
1481c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1482c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1483c9320b6dSMartin Willi	help
1484c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1485c9320b6dSMartin Willi
1486c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1487c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1488c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1489c9320b6dSMartin Willi
1490c9320b6dSMartin Willi	  See also:
1491c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1492c9320b6dSMartin Willi
1493584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1494584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1495584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1496584fffc8SSebastian Siewior	help
1497584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1498584fffc8SSebastian Siewior
1499584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1500584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1501584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1502584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1503584fffc8SSebastian Siewior
1504584fffc8SSebastian Siewior	  See also:
1505584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1506584fffc8SSebastian Siewior
1507584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1508584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1509584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1510584fffc8SSebastian Siewior	help
1511584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1512584fffc8SSebastian Siewior
1513584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1514584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1515584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1516584fffc8SSebastian Siewior
1517584fffc8SSebastian Siewior	  See also:
1518584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1519584fffc8SSebastian Siewior
1520937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1521937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1522937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1523e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1524596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1525937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1526e0f409dcSEric Biggers	select CRYPTO_SIMD
1527937c30d7SJussi Kivilinna	help
1528937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1529937c30d7SJussi Kivilinna
1530937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1531937c30d7SJussi Kivilinna	  of 8 bits.
1532937c30d7SJussi Kivilinna
15331e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1534937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1535937c30d7SJussi Kivilinna
1536937c30d7SJussi Kivilinna	  See also:
1537937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1538937c30d7SJussi Kivilinna
1539251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1540251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1541251496dbSJussi Kivilinna	depends on X86 && !64BIT
1542e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1543596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1544251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1545e0f409dcSEric Biggers	select CRYPTO_SIMD
1546251496dbSJussi Kivilinna	help
1547251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1548251496dbSJussi Kivilinna
1549251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1550251496dbSJussi Kivilinna	  of 8 bits.
1551251496dbSJussi Kivilinna
1552251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1553251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1554251496dbSJussi Kivilinna
1555251496dbSJussi Kivilinna	  See also:
1556251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1557251496dbSJussi Kivilinna
15587efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15597efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15607efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1561e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15621d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15637efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1564e16bf974SEric Biggers	select CRYPTO_SIMD
15657efe4076SJohannes Goetzfried	select CRYPTO_XTS
15667efe4076SJohannes Goetzfried	help
15677efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15687efe4076SJohannes Goetzfried
15697efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15707efe4076SJohannes Goetzfried	  of 8 bits.
15717efe4076SJohannes Goetzfried
15727efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15737efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15747efe4076SJohannes Goetzfried
15757efe4076SJohannes Goetzfried	  See also:
15767efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15777efe4076SJohannes Goetzfried
157856d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
157956d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
158056d76c96SJussi Kivilinna	depends on X86 && 64BIT
158156d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
158256d76c96SJussi Kivilinna	help
158356d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
158456d76c96SJussi Kivilinna
158556d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
158656d76c96SJussi Kivilinna	  of 8 bits.
158756d76c96SJussi Kivilinna
158856d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
158956d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
159056d76c96SJussi Kivilinna
159156d76c96SJussi Kivilinna	  See also:
159256d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
159356d76c96SJussi Kivilinna
1594747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1595747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1596747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1597747c8ce4SGilad Ben-Yossef	help
1598747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1599747c8ce4SGilad Ben-Yossef
1600747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1601747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1602747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1603747c8ce4SGilad Ben-Yossef
1604747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1605747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1606747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1607747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1608747c8ce4SGilad Ben-Yossef
1609747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1610747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1611747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1612747c8ce4SGilad Ben-Yossef
1613747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1614747c8ce4SGilad Ben-Yossef
1615747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1616747c8ce4SGilad Ben-Yossef
1617747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1618747c8ce4SGilad Ben-Yossef
1619da7a0ab5SEric Biggersconfig CRYPTO_SPECK
1620da7a0ab5SEric Biggers	tristate "Speck cipher algorithm"
1621da7a0ab5SEric Biggers	select CRYPTO_ALGAPI
1622da7a0ab5SEric Biggers	help
1623da7a0ab5SEric Biggers	  Speck is a lightweight block cipher that is tuned for optimal
1624da7a0ab5SEric Biggers	  performance in software (rather than hardware).
1625da7a0ab5SEric Biggers
1626da7a0ab5SEric Biggers	  Speck may not be as secure as AES, and should only be used on systems
1627da7a0ab5SEric Biggers	  where AES is not fast enough.
1628da7a0ab5SEric Biggers
1629da7a0ab5SEric Biggers	  See also: <https://eprint.iacr.org/2013/404.pdf>
1630da7a0ab5SEric Biggers
1631da7a0ab5SEric Biggers	  If unsure, say N.
1632da7a0ab5SEric Biggers
1633584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1634584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1635584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1636584fffc8SSebastian Siewior	help
1637584fffc8SSebastian Siewior	  TEA cipher algorithm.
1638584fffc8SSebastian Siewior
1639584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1640584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1641584fffc8SSebastian Siewior	  little memory.
1642584fffc8SSebastian Siewior
1643584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1644584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1645584fffc8SSebastian Siewior	  in the TEA algorithm.
1646584fffc8SSebastian Siewior
1647584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1648584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1649584fffc8SSebastian Siewior
1650584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1651584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1652584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1653584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1654584fffc8SSebastian Siewior	help
1655584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1656584fffc8SSebastian Siewior
1657584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1658584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1659584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1660584fffc8SSebastian Siewior	  bits.
1661584fffc8SSebastian Siewior
1662584fffc8SSebastian Siewior	  See also:
1663584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1664584fffc8SSebastian Siewior
1665584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1666584fffc8SSebastian Siewior	tristate
1667584fffc8SSebastian Siewior	help
1668584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1669584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1670584fffc8SSebastian Siewior
1671584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1672584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1673584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1674584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1675584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1676584fffc8SSebastian Siewior	help
1677584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1678584fffc8SSebastian Siewior
1679584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1680584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1681584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1682584fffc8SSebastian Siewior	  bits.
1683584fffc8SSebastian Siewior
1684584fffc8SSebastian Siewior	  See also:
1685584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1686584fffc8SSebastian Siewior
1687584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1688584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1689584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1690584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1691584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1692584fffc8SSebastian Siewior	help
1693584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1694584fffc8SSebastian Siewior
1695584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1696584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1697584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1698584fffc8SSebastian Siewior	  bits.
1699584fffc8SSebastian Siewior
1700584fffc8SSebastian Siewior	  See also:
1701584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1702584fffc8SSebastian Siewior
17038280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17048280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1705f21a7c19SAl Viro	depends on X86 && 64BIT
170637992fa4SEric Biggers	select CRYPTO_BLKCIPHER
17078280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17088280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1709414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17108280daadSJussi Kivilinna	help
17118280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17128280daadSJussi Kivilinna
17138280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17148280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17158280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17168280daadSJussi Kivilinna	  bits.
17178280daadSJussi Kivilinna
17188280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17198280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17208280daadSJussi Kivilinna
17218280daadSJussi Kivilinna	  See also:
17228280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17238280daadSJussi Kivilinna
1724107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1725107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1726107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17270e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1728a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17290e6ab46dSEric Biggers	select CRYPTO_SIMD
1730107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1731107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1732107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1733107778b5SJohannes Goetzfried	help
1734107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1735107778b5SJohannes Goetzfried
1736107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1737107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1738107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1739107778b5SJohannes Goetzfried	  bits.
1740107778b5SJohannes Goetzfried
1741107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1742107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1743107778b5SJohannes Goetzfried
1744107778b5SJohannes Goetzfried	  See also:
1745107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1746107778b5SJohannes Goetzfried
1747584fffc8SSebastian Siewiorcomment "Compression"
1748584fffc8SSebastian Siewior
17491da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17501da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1751cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1752f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17531da177e4SLinus Torvalds	select ZLIB_INFLATE
17541da177e4SLinus Torvalds	select ZLIB_DEFLATE
17551da177e4SLinus Torvalds	help
17561da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17571da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17581da177e4SLinus Torvalds
17591da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17601da177e4SLinus Torvalds
17610b77abb3SZoltan Sogorconfig CRYPTO_LZO
17620b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17630b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1764ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17650b77abb3SZoltan Sogor	select LZO_COMPRESS
17660b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17670b77abb3SZoltan Sogor	help
17680b77abb3SZoltan Sogor	  This is the LZO algorithm.
17690b77abb3SZoltan Sogor
177035a1fc18SSeth Jenningsconfig CRYPTO_842
177135a1fc18SSeth Jennings	tristate "842 compression algorithm"
17722062c5b6SDan Streetman	select CRYPTO_ALGAPI
17736a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17742062c5b6SDan Streetman	select 842_COMPRESS
17752062c5b6SDan Streetman	select 842_DECOMPRESS
177635a1fc18SSeth Jennings	help
177735a1fc18SSeth Jennings	  This is the 842 algorithm.
177835a1fc18SSeth Jennings
17790ea8530dSChanho Minconfig CRYPTO_LZ4
17800ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17810ea8530dSChanho Min	select CRYPTO_ALGAPI
17828cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17830ea8530dSChanho Min	select LZ4_COMPRESS
17840ea8530dSChanho Min	select LZ4_DECOMPRESS
17850ea8530dSChanho Min	help
17860ea8530dSChanho Min	  This is the LZ4 algorithm.
17870ea8530dSChanho Min
17880ea8530dSChanho Minconfig CRYPTO_LZ4HC
17890ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17900ea8530dSChanho Min	select CRYPTO_ALGAPI
179191d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17920ea8530dSChanho Min	select LZ4HC_COMPRESS
17930ea8530dSChanho Min	select LZ4_DECOMPRESS
17940ea8530dSChanho Min	help
17950ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17960ea8530dSChanho Min
1797d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1798d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1799d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1800d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1801d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1802d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1803d28fc3dbSNick Terrell	help
1804d28fc3dbSNick Terrell	  This is the zstd algorithm.
1805d28fc3dbSNick Terrell
180617f0f4a4SNeil Hormancomment "Random Number Generation"
180717f0f4a4SNeil Horman
180817f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
180917f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
181017f0f4a4SNeil Horman	select CRYPTO_AES
181117f0f4a4SNeil Horman	select CRYPTO_RNG
181217f0f4a4SNeil Horman	help
181317f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
181417f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18157dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18167dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
181717f0f4a4SNeil Horman
1818f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1819419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1820419090c6SStephan Mueller	help
1821419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1822419090c6SStephan Mueller	  more of the DRBG types must be selected.
1823419090c6SStephan Mueller
1824f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1825419090c6SStephan Mueller
1826419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1827401e4238SHerbert Xu	bool
1828419090c6SStephan Mueller	default y
1829419090c6SStephan Mueller	select CRYPTO_HMAC
1830826775bbSHerbert Xu	select CRYPTO_SHA256
1831419090c6SStephan Mueller
1832419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1833419090c6SStephan Mueller	bool "Enable Hash DRBG"
1834826775bbSHerbert Xu	select CRYPTO_SHA256
1835419090c6SStephan Mueller	help
1836419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1837419090c6SStephan Mueller
1838419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1839419090c6SStephan Mueller	bool "Enable CTR DRBG"
1840419090c6SStephan Mueller	select CRYPTO_AES
184135591285SStephan Mueller	depends on CRYPTO_CTR
1842419090c6SStephan Mueller	help
1843419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1844419090c6SStephan Mueller
1845f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1846f2c89a10SHerbert Xu	tristate
1847401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1848f2c89a10SHerbert Xu	select CRYPTO_RNG
1849bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1850f2c89a10SHerbert Xu
1851f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1852419090c6SStephan Mueller
1853bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1854bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18552f313e02SArnd Bergmann	select CRYPTO_RNG
1856bb5530e4SStephan Mueller	help
1857bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1858bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1859bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1860bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1861bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1862bb5530e4SStephan Mueller
186303c8efc1SHerbert Xuconfig CRYPTO_USER_API
186403c8efc1SHerbert Xu	tristate
186503c8efc1SHerbert Xu
1866fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1867fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18687451708fSHerbert Xu	depends on NET
1869fe869cdbSHerbert Xu	select CRYPTO_HASH
1870fe869cdbSHerbert Xu	select CRYPTO_USER_API
1871fe869cdbSHerbert Xu	help
1872fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1873fe869cdbSHerbert Xu	  algorithms.
1874fe869cdbSHerbert Xu
18758ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18768ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18777451708fSHerbert Xu	depends on NET
18788ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18798ff59090SHerbert Xu	select CRYPTO_USER_API
18808ff59090SHerbert Xu	help
18818ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18828ff59090SHerbert Xu	  key cipher algorithms.
18838ff59090SHerbert Xu
18842f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18852f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18862f375538SStephan Mueller	depends on NET
18872f375538SStephan Mueller	select CRYPTO_RNG
18882f375538SStephan Mueller	select CRYPTO_USER_API
18892f375538SStephan Mueller	help
18902f375538SStephan Mueller	  This option enables the user-spaces interface for random
18912f375538SStephan Mueller	  number generator algorithms.
18922f375538SStephan Mueller
1893b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1894b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1895b64a2d95SHerbert Xu	depends on NET
1896b64a2d95SHerbert Xu	select CRYPTO_AEAD
189772548b09SStephan Mueller	select CRYPTO_BLKCIPHER
189872548b09SStephan Mueller	select CRYPTO_NULL
1899b64a2d95SHerbert Xu	select CRYPTO_USER_API
1900b64a2d95SHerbert Xu	help
1901b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1902b64a2d95SHerbert Xu	  cipher algorithms.
1903b64a2d95SHerbert Xu
1904ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1905ee08997fSDmitry Kasatkin	bool
1906ee08997fSDmitry Kasatkin
19071da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1908964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1909cfc411e7SDavid Howellssource certs/Kconfig
19101da177e4SLinus Torvalds
1911cce9e06dSHerbert Xuendif	# if CRYPTO
1912