1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 140326a6346SHerbert Xu bool "Disable run-time self tests" 14100ca28a5SHerbert Xu default y 1420b767f96SAlexander Shishkin help 143326a6346SHerbert Xu Disable run-time self tests that normally take place at 144326a6346SHerbert Xu algorithm registration. 1450b767f96SAlexander Shishkin 1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1475b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1486569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1495b2706a4SEric Biggers help 1505b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1515b2706a4SEric Biggers including randomized fuzz tests. 1525b2706a4SEric Biggers 1535b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1545b2706a4SEric Biggers longer to run than the normal self tests. 1555b2706a4SEric Biggers 156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 157e590e132SEric Biggers tristate 158584fffc8SSebastian Siewior 159584fffc8SSebastian Siewiorconfig CRYPTO_NULL 160584fffc8SSebastian Siewior tristate "Null algorithms" 161149a3971SHerbert Xu select CRYPTO_NULL2 162584fffc8SSebastian Siewior help 163584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 164584fffc8SSebastian Siewior 165149a3971SHerbert Xuconfig CRYPTO_NULL2 166dd43c4e9SHerbert Xu tristate 167149a3971SHerbert Xu select CRYPTO_ALGAPI2 168b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 169149a3971SHerbert Xu select CRYPTO_HASH2 170149a3971SHerbert Xu 1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1723b4afaf2SKees Cook tristate "Parallel crypto engine" 1733b4afaf2SKees Cook depends on SMP 1745068c7a8SSteffen Klassert select PADATA 1755068c7a8SSteffen Klassert select CRYPTO_MANAGER 1765068c7a8SSteffen Klassert select CRYPTO_AEAD 1775068c7a8SSteffen Klassert help 1785068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1795068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1805068c7a8SSteffen Klassert 181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 182584fffc8SSebastian Siewior tristate "Software async crypto daemon" 183b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184b8a28251SLoc Ho select CRYPTO_HASH 185584fffc8SSebastian Siewior select CRYPTO_MANAGER 186584fffc8SSebastian Siewior help 187584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 188584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 189584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 190584fffc8SSebastian Siewior 191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 192584fffc8SSebastian Siewior tristate "Authenc support" 193584fffc8SSebastian Siewior select CRYPTO_AEAD 194b95bba5dSEric Biggers select CRYPTO_SKCIPHER 195584fffc8SSebastian Siewior select CRYPTO_MANAGER 196584fffc8SSebastian Siewior select CRYPTO_HASH 197e94c6a7aSHerbert Xu select CRYPTO_NULL 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 200584fffc8SSebastian Siewior This is required for IPSec. 201584fffc8SSebastian Siewior 202584fffc8SSebastian Siewiorconfig CRYPTO_TEST 203584fffc8SSebastian Siewior tristate "Testing module" 20400ea27f1SArd Biesheuvel depends on m || EXPERT 205da7f033dSHerbert Xu select CRYPTO_MANAGER 206584fffc8SSebastian Siewior help 207584fffc8SSebastian Siewior Quick & dirty crypto test module. 208584fffc8SSebastian Siewior 209266d0516SHerbert Xuconfig CRYPTO_SIMD 210266d0516SHerbert Xu tristate 211266d0516SHerbert Xu select CRYPTO_CRYPTD 212266d0516SHerbert Xu 213735d37b5SBaolin Wangconfig CRYPTO_ENGINE 214735d37b5SBaolin Wang tristate 215735d37b5SBaolin Wang 2163d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2173d6228a5SVitaly Chikunov 2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2193d6228a5SVitaly Chikunov tristate "RSA algorithm" 2203d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2213d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2223d6228a5SVitaly Chikunov select MPILIB 2233d6228a5SVitaly Chikunov select ASN1 2243d6228a5SVitaly Chikunov help 2253d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_DH 2283d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_KPP 2303d6228a5SVitaly Chikunov select MPILIB 2313d6228a5SVitaly Chikunov help 2323d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2333d6228a5SVitaly Chikunov 2344a2289daSVitaly Chikunovconfig CRYPTO_ECC 2354a2289daSVitaly Chikunov tristate 2364a2289daSVitaly Chikunov 2373d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2383d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2394a2289daSVitaly Chikunov select CRYPTO_ECC 2403d6228a5SVitaly Chikunov select CRYPTO_KPP 2413d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2423d6228a5SVitaly Chikunov help 2433d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2443d6228a5SVitaly Chikunov 2450d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2460d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2470d7a7864SVitaly Chikunov select CRYPTO_ECC 2480d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2490d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2501036633eSVitaly Chikunov select OID_REGISTRY 2511036633eSVitaly Chikunov select ASN1 2520d7a7864SVitaly Chikunov help 2530d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2540d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2550d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2560d7a7864SVitaly Chikunov is implemented. 2570d7a7864SVitaly Chikunov 258ea7ecb66STianjia Zhangconfig CRYPTO_SM2 259ea7ecb66STianjia Zhang tristate "SM2 algorithm" 260ea7ecb66STianjia Zhang select CRYPTO_SM3 261ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 262ea7ecb66STianjia Zhang select CRYPTO_MANAGER 263ea7ecb66STianjia Zhang select MPILIB 264ea7ecb66STianjia Zhang select ASN1 265ea7ecb66STianjia Zhang help 266ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 267ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 268ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 269ea7ecb66STianjia Zhang 270ea7ecb66STianjia Zhang References: 271ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 272ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 273ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 274ea7ecb66STianjia Zhang 275ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 276ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 277ee772cb6SArd Biesheuvel select CRYPTO_KPP 278ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 279ee772cb6SArd Biesheuvel 280bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 281bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 282bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 283bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 284bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 285bb611bdfSJason A. Donenfeld 286584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 287584fffc8SSebastian Siewior 288584fffc8SSebastian Siewiorconfig CRYPTO_CCM 289584fffc8SSebastian Siewior tristate "CCM support" 290584fffc8SSebastian Siewior select CRYPTO_CTR 291f15f05b0SArd Biesheuvel select CRYPTO_HASH 292584fffc8SSebastian Siewior select CRYPTO_AEAD 293c8a3315aSEric Biggers select CRYPTO_MANAGER 294584fffc8SSebastian Siewior help 295584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 296584fffc8SSebastian Siewior 297584fffc8SSebastian Siewiorconfig CRYPTO_GCM 298584fffc8SSebastian Siewior tristate "GCM/GMAC support" 299584fffc8SSebastian Siewior select CRYPTO_CTR 300584fffc8SSebastian Siewior select CRYPTO_AEAD 3019382d97aSHuang Ying select CRYPTO_GHASH 3029489667dSJussi Kivilinna select CRYPTO_NULL 303c8a3315aSEric Biggers select CRYPTO_MANAGER 304584fffc8SSebastian Siewior help 305584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 306584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 307584fffc8SSebastian Siewior 30871ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 30971ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 31071ebc4d1SMartin Willi select CRYPTO_CHACHA20 31171ebc4d1SMartin Willi select CRYPTO_POLY1305 31271ebc4d1SMartin Willi select CRYPTO_AEAD 313c8a3315aSEric Biggers select CRYPTO_MANAGER 31471ebc4d1SMartin Willi help 31571ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 31671ebc4d1SMartin Willi 31771ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 31871ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 31971ebc4d1SMartin Willi IETF protocols. 32071ebc4d1SMartin Willi 321f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 322f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 323f606a88eSOndrej Mosnacek select CRYPTO_AEAD 324f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 325f606a88eSOndrej Mosnacek help 326f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 327f606a88eSOndrej Mosnacek 328a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 329a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 330a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 331a4397635SArd Biesheuvel default y 332a4397635SArd Biesheuvel 3331d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3341d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3351d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3361d373d4eSOndrej Mosnacek select CRYPTO_AEAD 337de272ca7SEric Biggers select CRYPTO_SIMD 3381d373d4eSOndrej Mosnacek help 3394e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3401d373d4eSOndrej Mosnacek 341584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 342584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 343584fffc8SSebastian Siewior select CRYPTO_AEAD 344b95bba5dSEric Biggers select CRYPTO_SKCIPHER 345856e3f40SHerbert Xu select CRYPTO_NULL 346401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 347c8a3315aSEric Biggers select CRYPTO_MANAGER 348584fffc8SSebastian Siewior help 349584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 350584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 351584fffc8SSebastian Siewior 352a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 353a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 354a10f554fSHerbert Xu select CRYPTO_AEAD 355a10f554fSHerbert Xu select CRYPTO_NULL 356401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 357c8a3315aSEric Biggers select CRYPTO_MANAGER 358a10f554fSHerbert Xu help 359a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 360a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 361a10f554fSHerbert Xu algorithm for CBC. 362a10f554fSHerbert Xu 363584fffc8SSebastian Siewiorcomment "Block modes" 364584fffc8SSebastian Siewior 365584fffc8SSebastian Siewiorconfig CRYPTO_CBC 366584fffc8SSebastian Siewior tristate "CBC support" 367b95bba5dSEric Biggers select CRYPTO_SKCIPHER 368584fffc8SSebastian Siewior select CRYPTO_MANAGER 369584fffc8SSebastian Siewior help 370584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 371584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 372584fffc8SSebastian Siewior 373a7d85e06SJames Bottomleyconfig CRYPTO_CFB 374a7d85e06SJames Bottomley tristate "CFB support" 375b95bba5dSEric Biggers select CRYPTO_SKCIPHER 376a7d85e06SJames Bottomley select CRYPTO_MANAGER 377a7d85e06SJames Bottomley help 378a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 379a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 380a7d85e06SJames Bottomley 381584fffc8SSebastian Siewiorconfig CRYPTO_CTR 382584fffc8SSebastian Siewior tristate "CTR support" 383b95bba5dSEric Biggers select CRYPTO_SKCIPHER 384584fffc8SSebastian Siewior select CRYPTO_MANAGER 385584fffc8SSebastian Siewior help 386584fffc8SSebastian Siewior CTR: Counter mode 387584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 388584fffc8SSebastian Siewior 389584fffc8SSebastian Siewiorconfig CRYPTO_CTS 390584fffc8SSebastian Siewior tristate "CTS support" 391b95bba5dSEric Biggers select CRYPTO_SKCIPHER 392c8a3315aSEric Biggers select CRYPTO_MANAGER 393584fffc8SSebastian Siewior help 394584fffc8SSebastian Siewior CTS: Cipher Text Stealing 395584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 396ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 397ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 398ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 399584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 400584fffc8SSebastian Siewior for AES encryption. 401584fffc8SSebastian Siewior 402ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 403ecd6d5c9SGilad Ben-Yossef 404584fffc8SSebastian Siewiorconfig CRYPTO_ECB 405584fffc8SSebastian Siewior tristate "ECB support" 406b95bba5dSEric Biggers select CRYPTO_SKCIPHER 407584fffc8SSebastian Siewior select CRYPTO_MANAGER 408584fffc8SSebastian Siewior help 409584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 410584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 411584fffc8SSebastian Siewior the input block by block. 412584fffc8SSebastian Siewior 413584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4142470a2b2SJussi Kivilinna tristate "LRW support" 415b95bba5dSEric Biggers select CRYPTO_SKCIPHER 416584fffc8SSebastian Siewior select CRYPTO_MANAGER 417584fffc8SSebastian Siewior select CRYPTO_GF128MUL 418584fffc8SSebastian Siewior help 419584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 420584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 421584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 422584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 423584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 424584fffc8SSebastian Siewior 425e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 426e497c518SGilad Ben-Yossef tristate "OFB support" 427b95bba5dSEric Biggers select CRYPTO_SKCIPHER 428e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 429e497c518SGilad Ben-Yossef help 430e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 431e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 432e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 433e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 434e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 435e497c518SGilad Ben-Yossef normally even when applied before encryption. 436e497c518SGilad Ben-Yossef 437584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 438584fffc8SSebastian Siewior tristate "PCBC support" 439b95bba5dSEric Biggers select CRYPTO_SKCIPHER 440584fffc8SSebastian Siewior select CRYPTO_MANAGER 441584fffc8SSebastian Siewior help 442584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 443584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 444584fffc8SSebastian Siewior 445584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4465bcf8e6dSJussi Kivilinna tristate "XTS support" 447b95bba5dSEric Biggers select CRYPTO_SKCIPHER 448584fffc8SSebastian Siewior select CRYPTO_MANAGER 44912cb3a1cSMilan Broz select CRYPTO_ECB 450584fffc8SSebastian Siewior help 451584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 452584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 453584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 454584fffc8SSebastian Siewior 4551c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4561c49678eSStephan Mueller tristate "Key wrapping support" 457b95bba5dSEric Biggers select CRYPTO_SKCIPHER 458c8a3315aSEric Biggers select CRYPTO_MANAGER 4591c49678eSStephan Mueller help 4601c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4611c49678eSStephan Mueller padding. 4621c49678eSStephan Mueller 46326609a21SEric Biggersconfig CRYPTO_NHPOLY1305 46426609a21SEric Biggers tristate 46526609a21SEric Biggers select CRYPTO_HASH 46648ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 46726609a21SEric Biggers 468012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 469012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 470012c8238SEric Biggers depends on X86 && 64BIT 471012c8238SEric Biggers select CRYPTO_NHPOLY1305 472012c8238SEric Biggers help 473012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 474012c8238SEric Biggers Adiantum encryption mode. 475012c8238SEric Biggers 4760f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4770f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4780f961f9fSEric Biggers depends on X86 && 64BIT 4790f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4800f961f9fSEric Biggers help 4810f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4820f961f9fSEric Biggers Adiantum encryption mode. 4830f961f9fSEric Biggers 484059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 485059c2a4dSEric Biggers tristate "Adiantum support" 486059c2a4dSEric Biggers select CRYPTO_CHACHA20 48748ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 488059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 489c8a3315aSEric Biggers select CRYPTO_MANAGER 490059c2a4dSEric Biggers help 491059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 492059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 493059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 494059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 495059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 496059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 497059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 498059c2a4dSEric Biggers AES-XTS. 499059c2a4dSEric Biggers 500059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 501059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 502059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 503059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 504059c2a4dSEric Biggers security than XTS, subject to the security bound. 505059c2a4dSEric Biggers 506059c2a4dSEric Biggers If unsure, say N. 507059c2a4dSEric Biggers 508be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 509be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 510be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 511be1eb7f7SArd Biesheuvel help 512be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 513be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 514be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 515be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 516be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 517be1eb7f7SArd Biesheuvel encryption. 518be1eb7f7SArd Biesheuvel 519be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 520ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 521be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 522be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 523ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 524be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 525be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 526be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 527be1eb7f7SArd Biesheuvel 528be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 529be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 530be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 531be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 532be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 533be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 534be1eb7f7SArd Biesheuvel block encryption) 535be1eb7f7SArd Biesheuvel 536584fffc8SSebastian Siewiorcomment "Hash modes" 537584fffc8SSebastian Siewior 53893b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 53993b5e86aSJussi Kivilinna tristate "CMAC support" 54093b5e86aSJussi Kivilinna select CRYPTO_HASH 54193b5e86aSJussi Kivilinna select CRYPTO_MANAGER 54293b5e86aSJussi Kivilinna help 54393b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 54493b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 54593b5e86aSJussi Kivilinna 54693b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 54793b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 54893b5e86aSJussi Kivilinna 5491da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5508425165dSHerbert Xu tristate "HMAC support" 5510796ae06SHerbert Xu select CRYPTO_HASH 55243518407SHerbert Xu select CRYPTO_MANAGER 5531da177e4SLinus Torvalds help 5541da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5551da177e4SLinus Torvalds This is required for IPSec. 5561da177e4SLinus Torvalds 557333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 558333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 559333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 560333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 561333b0d7eSKazunori MIYAZAWA help 562333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 5639332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 564333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 565333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 566333b0d7eSKazunori MIYAZAWA 567f1939f7cSShane Wangconfig CRYPTO_VMAC 568f1939f7cSShane Wang tristate "VMAC support" 569f1939f7cSShane Wang select CRYPTO_HASH 570f1939f7cSShane Wang select CRYPTO_MANAGER 571f1939f7cSShane Wang help 572f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 573f1939f7cSShane Wang very high speed on 64-bit architectures. 574f1939f7cSShane Wang 575f1939f7cSShane Wang See also: 5769332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 577f1939f7cSShane Wang 578584fffc8SSebastian Siewiorcomment "Digest" 579584fffc8SSebastian Siewior 580584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 581584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5825773a3e6SHerbert Xu select CRYPTO_HASH 5836a0962b2SDarrick J. Wong select CRC32 5841da177e4SLinus Torvalds help 585584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 586584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 58769c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5881da177e4SLinus Torvalds 5898cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5908cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5918cb51ba8SAustin Zhang depends on X86 5928cb51ba8SAustin Zhang select CRYPTO_HASH 5938cb51ba8SAustin Zhang help 5948cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5958cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5968cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5978cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5988cb51ba8SAustin Zhang gain performance compared with software implementation. 5998cb51ba8SAustin Zhang Module will be crc32c-intel. 6008cb51ba8SAustin Zhang 6017cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6026dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 603c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6046dd7a82cSAnton Blanchard select CRYPTO_HASH 6056dd7a82cSAnton Blanchard select CRC32 6066dd7a82cSAnton Blanchard help 6076dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6086dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6096dd7a82cSAnton Blanchard and newer processors for improved performance. 6106dd7a82cSAnton Blanchard 6116dd7a82cSAnton Blanchard 612442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 613442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 614442a7c40SDavid S. Miller depends on SPARC64 615442a7c40SDavid S. Miller select CRYPTO_HASH 616442a7c40SDavid S. Miller select CRC32 617442a7c40SDavid S. Miller help 618442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 619442a7c40SDavid S. Miller when available. 620442a7c40SDavid S. Miller 62178c37d19SAlexander Boykoconfig CRYPTO_CRC32 62278c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 62378c37d19SAlexander Boyko select CRYPTO_HASH 62478c37d19SAlexander Boyko select CRC32 62578c37d19SAlexander Boyko help 62678c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 62778c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 62878c37d19SAlexander Boyko 62978c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 63078c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 63178c37d19SAlexander Boyko depends on X86 63278c37d19SAlexander Boyko select CRYPTO_HASH 63378c37d19SAlexander Boyko select CRC32 63478c37d19SAlexander Boyko help 63578c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 63678c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 63778c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 638af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 63978c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 64078c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 64178c37d19SAlexander Boyko 6424a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6434a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6444a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6454a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6464a5dc51eSMarcin Nowakowski help 6474a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6484a5dc51eSMarcin Nowakowski instructions, when available. 6494a5dc51eSMarcin Nowakowski 6504a5dc51eSMarcin Nowakowski 65167882e76SNikolay Borisovconfig CRYPTO_XXHASH 65267882e76SNikolay Borisov tristate "xxHash hash algorithm" 65367882e76SNikolay Borisov select CRYPTO_HASH 65467882e76SNikolay Borisov select XXHASH 65567882e76SNikolay Borisov help 65667882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 65767882e76SNikolay Borisov speeds close to RAM limits. 65867882e76SNikolay Borisov 65991d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 66091d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 66191d68933SDavid Sterba select CRYPTO_HASH 66291d68933SDavid Sterba help 66391d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 66491d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 66591d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 66691d68933SDavid Sterba 66791d68933SDavid Sterba This module provides the following algorithms: 66891d68933SDavid Sterba 66991d68933SDavid Sterba - blake2b-160 67091d68933SDavid Sterba - blake2b-256 67191d68933SDavid Sterba - blake2b-384 67291d68933SDavid Sterba - blake2b-512 67391d68933SDavid Sterba 67491d68933SDavid Sterba See https://blake2.net for further information. 67591d68933SDavid Sterba 6767f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 6777f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 6787f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 6797f9b0880SArd Biesheuvel select CRYPTO_HASH 6807f9b0880SArd Biesheuvel help 6817f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 6827f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 6837f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 6847f9b0880SArd Biesheuvel 6857f9b0880SArd Biesheuvel This module provides the following algorithms: 6867f9b0880SArd Biesheuvel 6877f9b0880SArd Biesheuvel - blake2s-128 6887f9b0880SArd Biesheuvel - blake2s-160 6897f9b0880SArd Biesheuvel - blake2s-224 6907f9b0880SArd Biesheuvel - blake2s-256 6917f9b0880SArd Biesheuvel 6927f9b0880SArd Biesheuvel See https://blake2.net for further information. 6937f9b0880SArd Biesheuvel 694ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 695ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 696ed0356edSJason A. Donenfeld depends on X86 && 64BIT 697ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 698ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 699ed0356edSJason A. Donenfeld 70068411521SHerbert Xuconfig CRYPTO_CRCT10DIF 70168411521SHerbert Xu tristate "CRCT10DIF algorithm" 70268411521SHerbert Xu select CRYPTO_HASH 70368411521SHerbert Xu help 70468411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 70568411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 70668411521SHerbert Xu transforms to be used if they are available. 70768411521SHerbert Xu 70868411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 70968411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 71068411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 71168411521SHerbert Xu select CRYPTO_HASH 71268411521SHerbert Xu help 71368411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 71468411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 71568411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 716af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 71768411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 71868411521SHerbert Xu 719b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 720b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 721b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 722b01df1c1SDaniel Axtens select CRYPTO_HASH 723b01df1c1SDaniel Axtens help 724b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 725b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 726b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 727b01df1c1SDaniel Axtens 728146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 729146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 730146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 731146c8688SDaniel Axtens help 732146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 733146c8688SDaniel Axtens POWER8 vpmsum instructions. 734146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 735146c8688SDaniel Axtens 7362cdc6899SHuang Yingconfig CRYPTO_GHASH 7378dfa20fcSEric Biggers tristate "GHASH hash function" 7382cdc6899SHuang Ying select CRYPTO_GF128MUL 739578c60fbSArnd Bergmann select CRYPTO_HASH 7402cdc6899SHuang Ying help 7418dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7428dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7432cdc6899SHuang Ying 744f979e014SMartin Williconfig CRYPTO_POLY1305 745f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 746578c60fbSArnd Bergmann select CRYPTO_HASH 74748ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 748f979e014SMartin Willi help 749f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 750f979e014SMartin Willi 751f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 752f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 753f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 754f979e014SMartin Willi 755c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 756b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 757c70f4abeSMartin Willi depends on X86 && 64BIT 7581b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 759f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 760c70f4abeSMartin Willi help 761c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 762c70f4abeSMartin Willi 763c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 764c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 765c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 766c70f4abeSMartin Willi instructions. 767c70f4abeSMartin Willi 768a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 769a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 770*6c810cf2SMaciej W. Rozycki depends on MIPS 771a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 772a11d055eSArd Biesheuvel 7731da177e4SLinus Torvaldsconfig CRYPTO_MD4 7741da177e4SLinus Torvalds tristate "MD4 digest algorithm" 775808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7761da177e4SLinus Torvalds help 7771da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7781da177e4SLinus Torvalds 7791da177e4SLinus Torvaldsconfig CRYPTO_MD5 7801da177e4SLinus Torvalds tristate "MD5 digest algorithm" 78114b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7821da177e4SLinus Torvalds help 7831da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7841da177e4SLinus Torvalds 785d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 786d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 787d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 788d69e75deSAaro Koskinen select CRYPTO_MD5 789d69e75deSAaro Koskinen select CRYPTO_HASH 790d69e75deSAaro Koskinen help 791d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 792d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 793d69e75deSAaro Koskinen 794e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 795e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 796e8e59953SMarkus Stockhausen depends on PPC 797e8e59953SMarkus Stockhausen select CRYPTO_HASH 798e8e59953SMarkus Stockhausen help 799e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 800e8e59953SMarkus Stockhausen in PPC assembler. 801e8e59953SMarkus Stockhausen 802fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 803fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 804fa4dfedcSDavid S. Miller depends on SPARC64 805fa4dfedcSDavid S. Miller select CRYPTO_MD5 806fa4dfedcSDavid S. Miller select CRYPTO_HASH 807fa4dfedcSDavid S. Miller help 808fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 809fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 810fa4dfedcSDavid S. Miller 811584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 812584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 81319e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 814584fffc8SSebastian Siewior help 815584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 816584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 817584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 818584fffc8SSebastian Siewior of the algorithm. 819584fffc8SSebastian Siewior 82082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 82182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 822e5835fbaSHerbert Xu select CRYPTO_HASH 82382798f90SAdrian-Ken Rueegsegger help 82482798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 82582798f90SAdrian-Ken Rueegsegger 82682798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 82782798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 828b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 829b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 83082798f90SAdrian-Ken Rueegsegger 831b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 832b6d44341SAdrian Bunk against RIPEMD-160. 833534fe2c1SAdrian-Ken Rueegsegger 834534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8359332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 836534fe2c1SAdrian-Ken Rueegsegger 8371da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8381da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 83954ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8401da177e4SLinus Torvalds help 8411da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8421da177e4SLinus Torvalds 84366be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 844e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 84566be8951SMathias Krause depends on X86 && 64BIT 84666be8951SMathias Krause select CRYPTO_SHA1 84766be8951SMathias Krause select CRYPTO_HASH 84866be8951SMathias Krause help 84966be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 85066be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 851e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 852e38b6b7fStim when available. 85366be8951SMathias Krause 8548275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 855e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8568275d1aaSTim Chen depends on X86 && 64BIT 8578275d1aaSTim Chen select CRYPTO_SHA256 8588275d1aaSTim Chen select CRYPTO_HASH 8598275d1aaSTim Chen help 8608275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8618275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8628275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 863e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 864e38b6b7fStim Instructions) when available. 8658275d1aaSTim Chen 86687de4579STim Chenconfig CRYPTO_SHA512_SSSE3 86787de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 86887de4579STim Chen depends on X86 && 64BIT 86987de4579STim Chen select CRYPTO_SHA512 87087de4579STim Chen select CRYPTO_HASH 87187de4579STim Chen help 87287de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 87387de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 87487de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 87587de4579STim Chen version 2 (AVX2) instructions, when available. 87687de4579STim Chen 877efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 878efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 879efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 880efdb6f6eSAaro Koskinen select CRYPTO_SHA1 881efdb6f6eSAaro Koskinen select CRYPTO_HASH 882efdb6f6eSAaro Koskinen help 883efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 884efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 885efdb6f6eSAaro Koskinen 8864ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8874ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8884ff28d4cSDavid S. Miller depends on SPARC64 8894ff28d4cSDavid S. Miller select CRYPTO_SHA1 8904ff28d4cSDavid S. Miller select CRYPTO_HASH 8914ff28d4cSDavid S. Miller help 8924ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8934ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 8944ff28d4cSDavid S. Miller 895323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 896323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 897323a6bf1SMichael Ellerman depends on PPC 898323a6bf1SMichael Ellerman help 899323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 900323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 901323a6bf1SMichael Ellerman 902d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 903d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 904d9850fc5SMarkus Stockhausen depends on PPC && SPE 905d9850fc5SMarkus Stockhausen help 906d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 907d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 908d9850fc5SMarkus Stockhausen 9091da177e4SLinus Torvaldsconfig CRYPTO_SHA256 910cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 91150e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 91208c327f6SHans de Goede select CRYPTO_LIB_SHA256 9131da177e4SLinus Torvalds help 9141da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9151da177e4SLinus Torvalds 9161da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9171da177e4SLinus Torvalds security against collision attacks. 9181da177e4SLinus Torvalds 919cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 920cd12fb90SJonathan Lynch of security against collision attacks. 921cd12fb90SJonathan Lynch 9222ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9232ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9242ecc1e95SMarkus Stockhausen depends on PPC && SPE 9252ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9262ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9272ecc1e95SMarkus Stockhausen help 9282ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9292ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9302ecc1e95SMarkus Stockhausen 931efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 932efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 933efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 934efdb6f6eSAaro Koskinen select CRYPTO_SHA256 935efdb6f6eSAaro Koskinen select CRYPTO_HASH 936efdb6f6eSAaro Koskinen help 937efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 938efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 939efdb6f6eSAaro Koskinen 94086c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 94186c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 94286c93b24SDavid S. Miller depends on SPARC64 94386c93b24SDavid S. Miller select CRYPTO_SHA256 94486c93b24SDavid S. Miller select CRYPTO_HASH 94586c93b24SDavid S. Miller help 94686c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 94786c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 94886c93b24SDavid S. Miller 9491da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9501da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 951bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9521da177e4SLinus Torvalds help 9531da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9541da177e4SLinus Torvalds 9551da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9561da177e4SLinus Torvalds security against collision attacks. 9571da177e4SLinus Torvalds 9581da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9591da177e4SLinus Torvalds of security against collision attacks. 9601da177e4SLinus Torvalds 961efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 962efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 963efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 964efdb6f6eSAaro Koskinen select CRYPTO_SHA512 965efdb6f6eSAaro Koskinen select CRYPTO_HASH 966efdb6f6eSAaro Koskinen help 967efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 968efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 969efdb6f6eSAaro Koskinen 970775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 971775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 972775e0c69SDavid S. Miller depends on SPARC64 973775e0c69SDavid S. Miller select CRYPTO_SHA512 974775e0c69SDavid S. Miller select CRYPTO_HASH 975775e0c69SDavid S. Miller help 976775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 977775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 978775e0c69SDavid S. Miller 97953964b9eSJeff Garzikconfig CRYPTO_SHA3 98053964b9eSJeff Garzik tristate "SHA3 digest algorithm" 98153964b9eSJeff Garzik select CRYPTO_HASH 98253964b9eSJeff Garzik help 98353964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 98453964b9eSJeff Garzik cryptographic sponge function family called Keccak. 98553964b9eSJeff Garzik 98653964b9eSJeff Garzik References: 98753964b9eSJeff Garzik http://keccak.noekeon.org/ 98853964b9eSJeff Garzik 9894f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9904f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9914f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9924f0fc160SGilad Ben-Yossef help 9934f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9944f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9954f0fc160SGilad Ben-Yossef 9964f0fc160SGilad Ben-Yossef References: 9974f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9984f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9994f0fc160SGilad Ben-Yossef 1000fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1001fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1002fe18957eSVitaly Chikunov select CRYPTO_HASH 1003fe18957eSVitaly Chikunov help 1004fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1005fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1006fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1007fe18957eSVitaly Chikunov 1008fe18957eSVitaly Chikunov References: 1009fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1010fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1011fe18957eSVitaly Chikunov 1012584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1013584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10144946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10151da177e4SLinus Torvalds help 1016584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10171da177e4SLinus Torvalds 1018584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1019584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10201da177e4SLinus Torvalds 10211da177e4SLinus Torvalds See also: 10226d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10231da177e4SLinus Torvalds 10240e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10258dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10268af00860SRichard Weinberger depends on X86 && 64BIT 10270e1227d3SHuang Ying select CRYPTO_CRYPTD 10280e1227d3SHuang Ying help 10298dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10308dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10310e1227d3SHuang Ying 1032584fffc8SSebastian Siewiorcomment "Ciphers" 10331da177e4SLinus Torvalds 10341da177e4SLinus Torvaldsconfig CRYPTO_AES 10351da177e4SLinus Torvalds tristate "AES cipher algorithms" 1036cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10375bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10381da177e4SLinus Torvalds help 10391da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10401da177e4SLinus Torvalds algorithm. 10411da177e4SLinus Torvalds 10421da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10431da177e4SLinus Torvalds both hardware and software across a wide range of computing 10441da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10451da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10461da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10471da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10481da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10491da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10501da177e4SLinus Torvalds 10511da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10521da177e4SLinus Torvalds 10531da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10541da177e4SLinus Torvalds 1055b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1056b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1057b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1058e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1059b5e0b032SArd Biesheuvel help 1060b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1061b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1062b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1063b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1064b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1065b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1066b5e0b032SArd Biesheuvel 1067b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1068b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1069b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1070b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10710a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10720a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1073b5e0b032SArd Biesheuvel 107454b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 107554b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 10768af00860SRichard Weinberger depends on X86 107785671860SHerbert Xu select CRYPTO_AEAD 10782c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 107954b6a1bdSHuang Ying select CRYPTO_ALGAPI 1080b95bba5dSEric Biggers select CRYPTO_SKCIPHER 108185671860SHerbert Xu select CRYPTO_SIMD 108254b6a1bdSHuang Ying help 108354b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 108454b6a1bdSHuang Ying 108554b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 108654b6a1bdSHuang Ying algorithm. 108754b6a1bdSHuang Ying 108854b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 108954b6a1bdSHuang Ying both hardware and software across a wide range of computing 109054b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 109154b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 109254b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 109354b6a1bdSHuang Ying suited for restricted-space environments, in which it also 109454b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 109554b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 109654b6a1bdSHuang Ying 109754b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 109854b6a1bdSHuang Ying 109954b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 110054b6a1bdSHuang Ying 11010d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11020d258efbSMathias Krause for some popular block cipher mode is supported too, including 1103944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11040d258efbSMathias Krause acceleration for CTR. 11052cf4ac8bSHuang Ying 11069bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11079bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11089bf4852dSDavid S. Miller depends on SPARC64 1109b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11109bf4852dSDavid S. Miller help 11119bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11129bf4852dSDavid S. Miller 11139bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11149bf4852dSDavid S. Miller algorithm. 11159bf4852dSDavid S. Miller 11169bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11179bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11189bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11199bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11209bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11219bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11229bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11239bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11249bf4852dSDavid S. Miller 11259bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11269bf4852dSDavid S. Miller 11279bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11289bf4852dSDavid S. Miller 11299bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11309bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11319bf4852dSDavid S. Miller ECB and CBC. 11329bf4852dSDavid S. Miller 1133504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1134504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1135504c6143SMarkus Stockhausen depends on PPC && SPE 1136b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1137504c6143SMarkus Stockhausen help 1138504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1139504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1140504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1141504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1142504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1143504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1144504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1145504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1146504c6143SMarkus Stockhausen 11471da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11481da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 11491674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1150cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11511da177e4SLinus Torvalds help 11521da177e4SLinus Torvalds Anubis cipher algorithm. 11531da177e4SLinus Torvalds 11541da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11551da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11561da177e4SLinus Torvalds in the NESSIE competition. 11571da177e4SLinus Torvalds 11581da177e4SLinus Torvalds See also: 11596d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11606d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11611da177e4SLinus Torvalds 1162584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1163584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 11649ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1165b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1166dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1167e2ee95b8SHye-Shik Chang help 1168584fffc8SSebastian Siewior ARC4 cipher algorithm. 1169e2ee95b8SHye-Shik Chang 1170584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1171584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1172584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1173584fffc8SSebastian Siewior weakness of the algorithm. 1174584fffc8SSebastian Siewior 1175584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1176584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1177584fffc8SSebastian Siewior select CRYPTO_ALGAPI 117852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1179584fffc8SSebastian Siewior help 1180584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1181584fffc8SSebastian Siewior 1182584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1183584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1184584fffc8SSebastian Siewior designed for use on "large microprocessors". 1185e2ee95b8SHye-Shik Chang 1186e2ee95b8SHye-Shik Chang See also: 11879332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1188584fffc8SSebastian Siewior 118952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 119052ba867cSJussi Kivilinna tristate 119152ba867cSJussi Kivilinna help 119252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 119352ba867cSJussi Kivilinna generic c and the assembler implementations. 119452ba867cSJussi Kivilinna 119552ba867cSJussi Kivilinna See also: 11969332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 119752ba867cSJussi Kivilinna 119864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 119964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1200f21a7c19SAl Viro depends on X86 && 64BIT 1201b95bba5dSEric Biggers select CRYPTO_SKCIPHER 120264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1203c0a64926SArd Biesheuvel imply CRYPTO_CTR 120464b94ceaSJussi Kivilinna help 120564b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 120664b94ceaSJussi Kivilinna 120764b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 120864b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 120964b94ceaSJussi Kivilinna designed for use on "large microprocessors". 121064b94ceaSJussi Kivilinna 121164b94ceaSJussi Kivilinna See also: 12129332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 121364b94ceaSJussi Kivilinna 1214584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1215584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1216584fffc8SSebastian Siewior depends on CRYPTO 1217584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1218584fffc8SSebastian Siewior help 1219584fffc8SSebastian Siewior Camellia cipher algorithms module. 1220584fffc8SSebastian Siewior 1221584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1222584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1223584fffc8SSebastian Siewior 1224584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1225584fffc8SSebastian Siewior 1226584fffc8SSebastian Siewior See also: 1227584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1228584fffc8SSebastian Siewior 12290b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12300b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1231f21a7c19SAl Viro depends on X86 && 64BIT 12320b95ec56SJussi Kivilinna depends on CRYPTO 1233b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1234a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 12350b95ec56SJussi Kivilinna help 12360b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12370b95ec56SJussi Kivilinna 12380b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12390b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12400b95ec56SJussi Kivilinna 12410b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12420b95ec56SJussi Kivilinna 12430b95ec56SJussi Kivilinna See also: 12440b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12450b95ec56SJussi Kivilinna 1246d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1247d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1248d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1249d9b1d2e7SJussi Kivilinna depends on CRYPTO 1250b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1251d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 125244893bc2SEric Biggers select CRYPTO_SIMD 125355a7e88fSArd Biesheuvel imply CRYPTO_XTS 1254d9b1d2e7SJussi Kivilinna help 1255d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1256d9b1d2e7SJussi Kivilinna 1257d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1258d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1259d9b1d2e7SJussi Kivilinna 1260d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1261d9b1d2e7SJussi Kivilinna 1262d9b1d2e7SJussi Kivilinna See also: 1263d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1264d9b1d2e7SJussi Kivilinna 1265f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1266f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1267f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1268f3f935a7SJussi Kivilinna depends on CRYPTO 1269f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1270f3f935a7SJussi Kivilinna help 1271f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1272f3f935a7SJussi Kivilinna 1273f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1274f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1275f3f935a7SJussi Kivilinna 1276f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1277f3f935a7SJussi Kivilinna 1278f3f935a7SJussi Kivilinna See also: 1279f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1280f3f935a7SJussi Kivilinna 128181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 128281658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 128381658ad0SDavid S. Miller depends on SPARC64 128481658ad0SDavid S. Miller depends on CRYPTO 128581658ad0SDavid S. Miller select CRYPTO_ALGAPI 1286b95bba5dSEric Biggers select CRYPTO_SKCIPHER 128781658ad0SDavid S. Miller help 128881658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 128981658ad0SDavid S. Miller 129081658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 129181658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 129281658ad0SDavid S. Miller 129381658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 129481658ad0SDavid S. Miller 129581658ad0SDavid S. Miller See also: 129681658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 129781658ad0SDavid S. Miller 1298044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1299044ab525SJussi Kivilinna tristate 1300044ab525SJussi Kivilinna help 1301044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1302044ab525SJussi Kivilinna generic c and the assembler implementations. 1303044ab525SJussi Kivilinna 1304584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1305584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1306584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1307044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1308584fffc8SSebastian Siewior help 1309584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1310584fffc8SSebastian Siewior described in RFC2144. 1311584fffc8SSebastian Siewior 13124d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13134d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13144d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1315b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13164d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13171e63183aSEric Biggers select CRYPTO_CAST_COMMON 13181e63183aSEric Biggers select CRYPTO_SIMD 1319e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 13204d6d6a2cSJohannes Goetzfried help 13214d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13224d6d6a2cSJohannes Goetzfried described in RFC2144. 13234d6d6a2cSJohannes Goetzfried 13244d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13254d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13264d6d6a2cSJohannes Goetzfried 1327584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1328584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1329584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1330044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1331584fffc8SSebastian Siewior help 1332584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1333584fffc8SSebastian Siewior described in RFC2612. 1334584fffc8SSebastian Siewior 13354ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13364ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13374ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1338b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13394ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13404bd96924SEric Biggers select CRYPTO_CAST_COMMON 13414bd96924SEric Biggers select CRYPTO_SIMD 13422cc0fedbSArd Biesheuvel imply CRYPTO_XTS 13437a6623ccSArd Biesheuvel imply CRYPTO_CTR 13444ea1277dSJohannes Goetzfried help 13454ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13464ea1277dSJohannes Goetzfried described in RFC2612. 13474ea1277dSJohannes Goetzfried 13484ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13494ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13504ea1277dSJohannes Goetzfried 1351584fffc8SSebastian Siewiorconfig CRYPTO_DES 1352584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1353584fffc8SSebastian Siewior select CRYPTO_ALGAPI 135404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1355584fffc8SSebastian Siewior help 1356584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1357584fffc8SSebastian Siewior 1358c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1359c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 136097da37b3SDave Jones depends on SPARC64 1361c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 136204007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1363b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1364c5aac2dfSDavid S. Miller help 1365c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1366c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1367c5aac2dfSDavid S. Miller 13686574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13696574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13706574e6c6SJussi Kivilinna depends on X86 && 64BIT 1371b95bba5dSEric Biggers select CRYPTO_SKCIPHER 137204007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1373768db5feSArd Biesheuvel imply CRYPTO_CTR 13746574e6c6SJussi Kivilinna help 13756574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13766574e6c6SJussi Kivilinna 13776574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13786574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13796574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13806574e6c6SJussi Kivilinna one that processes three blocks parallel. 13816574e6c6SJussi Kivilinna 1382584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1383584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1384584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1385b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1386584fffc8SSebastian Siewior help 1387584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1388584fffc8SSebastian Siewior 1389584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1390584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 13911674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1392584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1393584fffc8SSebastian Siewior help 1394584fffc8SSebastian Siewior Khazad cipher algorithm. 1395584fffc8SSebastian Siewior 1396584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1397584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1398584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1399584fffc8SSebastian Siewior 1400584fffc8SSebastian Siewior See also: 14016d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1402e2ee95b8SHye-Shik Chang 1403c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1404aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14055fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1406b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1407c08d0e64SMartin Willi help 1408aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1409c08d0e64SMartin Willi 1410c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1411c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1412de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 14139332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1414c08d0e64SMartin Willi 1415de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1416de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1417de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1418de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1419de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1420de61d7aeSEric Biggers 1421aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1422aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1423aa762409SEric Biggers in some performance-sensitive scenarios. 1424aa762409SEric Biggers 1425c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14264af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1427c9320b6dSMartin Willi depends on X86 && 64BIT 1428b95bba5dSEric Biggers select CRYPTO_SKCIPHER 142928e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 143084e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1431c9320b6dSMartin Willi help 14327a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14337a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1434c9320b6dSMartin Willi 14353a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14363a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14373a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1438660eda8dSEric Biggers select CRYPTO_SKCIPHER 14393a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14403a2f58f3SArd Biesheuvel 1441584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1442584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 14431674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1444584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1445584fffc8SSebastian Siewior help 1446584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1447584fffc8SSebastian Siewior 1448584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1449584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1450584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1451584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1452584fffc8SSebastian Siewior 1453584fffc8SSebastian Siewior See also: 1454584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1455584fffc8SSebastian Siewior 1456584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1457584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1458584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1459584fffc8SSebastian Siewior help 1460584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1461584fffc8SSebastian Siewior 1462584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1463784506a1SArd Biesheuvel of 8 bits. 1464584fffc8SSebastian Siewior 1465584fffc8SSebastian Siewior See also: 14669332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1467584fffc8SSebastian Siewior 1468937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1469937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1470937c30d7SJussi Kivilinna depends on X86 && 64BIT 1471b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1472937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1473e0f409dcSEric Biggers select CRYPTO_SIMD 14742e9440aeSArd Biesheuvel imply CRYPTO_CTR 1475937c30d7SJussi Kivilinna help 1476937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1477937c30d7SJussi Kivilinna 1478937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1479937c30d7SJussi Kivilinna of 8 bits. 1480937c30d7SJussi Kivilinna 14811e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1482937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1483937c30d7SJussi Kivilinna 1484937c30d7SJussi Kivilinna See also: 14859332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1486937c30d7SJussi Kivilinna 1487251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1488251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1489251496dbSJussi Kivilinna depends on X86 && !64BIT 1490b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1491251496dbSJussi Kivilinna select CRYPTO_SERPENT 1492e0f409dcSEric Biggers select CRYPTO_SIMD 14932e9440aeSArd Biesheuvel imply CRYPTO_CTR 1494251496dbSJussi Kivilinna help 1495251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1496251496dbSJussi Kivilinna 1497251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1498251496dbSJussi Kivilinna of 8 bits. 1499251496dbSJussi Kivilinna 1500251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1501251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1502251496dbSJussi Kivilinna 1503251496dbSJussi Kivilinna See also: 15049332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1505251496dbSJussi Kivilinna 15067efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15077efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15087efe4076SJohannes Goetzfried depends on X86 && 64BIT 1509b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15107efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1511e16bf974SEric Biggers select CRYPTO_SIMD 15129ec0af8aSArd Biesheuvel imply CRYPTO_XTS 15132e9440aeSArd Biesheuvel imply CRYPTO_CTR 15147efe4076SJohannes Goetzfried help 15157efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15167efe4076SJohannes Goetzfried 15177efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15187efe4076SJohannes Goetzfried of 8 bits. 15197efe4076SJohannes Goetzfried 15207efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15217efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15227efe4076SJohannes Goetzfried 15237efe4076SJohannes Goetzfried See also: 15249332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 15257efe4076SJohannes Goetzfried 152656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 152756d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 152856d76c96SJussi Kivilinna depends on X86 && 64BIT 152956d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 153056d76c96SJussi Kivilinna help 153156d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 153256d76c96SJussi Kivilinna 153356d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 153456d76c96SJussi Kivilinna of 8 bits. 153556d76c96SJussi Kivilinna 153656d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 153756d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 153856d76c96SJussi Kivilinna 153956d76c96SJussi Kivilinna See also: 15409332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 154156d76c96SJussi Kivilinna 1542747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1543747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1544747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1545747c8ce4SGilad Ben-Yossef help 1546747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1547747c8ce4SGilad Ben-Yossef 1548747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1549747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1550747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1551747c8ce4SGilad Ben-Yossef 1552747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1553747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1554747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1555747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1556747c8ce4SGilad Ben-Yossef 1557747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1558747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1559747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1560747c8ce4SGilad Ben-Yossef 1561747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1562747c8ce4SGilad Ben-Yossef 1563747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1564747c8ce4SGilad Ben-Yossef 1565747c8ce4SGilad Ben-Yossef If unsure, say N. 1566747c8ce4SGilad Ben-Yossef 1567584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1568584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 15691674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1570584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1571584fffc8SSebastian Siewior help 1572584fffc8SSebastian Siewior TEA cipher algorithm. 1573584fffc8SSebastian Siewior 1574584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1575584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1576584fffc8SSebastian Siewior little memory. 1577584fffc8SSebastian Siewior 1578584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1579584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1580584fffc8SSebastian Siewior in the TEA algorithm. 1581584fffc8SSebastian Siewior 1582584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1583584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1584584fffc8SSebastian Siewior 1585584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1586584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1587584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1588584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1589584fffc8SSebastian Siewior help 1590584fffc8SSebastian Siewior Twofish cipher algorithm. 1591584fffc8SSebastian Siewior 1592584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1593584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1594584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1595584fffc8SSebastian Siewior bits. 1596584fffc8SSebastian Siewior 1597584fffc8SSebastian Siewior See also: 15989332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1599584fffc8SSebastian Siewior 1600584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1601584fffc8SSebastian Siewior tristate 1602584fffc8SSebastian Siewior help 1603584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1604584fffc8SSebastian Siewior generic c and the assembler implementations. 1605584fffc8SSebastian Siewior 1606584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1607584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1608584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1609584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1610584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1611f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1612584fffc8SSebastian Siewior help 1613584fffc8SSebastian Siewior Twofish cipher algorithm. 1614584fffc8SSebastian Siewior 1615584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1616584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1617584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1618584fffc8SSebastian Siewior bits. 1619584fffc8SSebastian Siewior 1620584fffc8SSebastian Siewior See also: 16219332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1622584fffc8SSebastian Siewior 1623584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1624584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1625584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1626584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1627584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1628f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1629584fffc8SSebastian Siewior help 1630584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1631584fffc8SSebastian Siewior 1632584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1633584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1634584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1635584fffc8SSebastian Siewior bits. 1636584fffc8SSebastian Siewior 1637584fffc8SSebastian Siewior See also: 16389332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1639584fffc8SSebastian Siewior 16408280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16418280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1642f21a7c19SAl Viro depends on X86 && 64BIT 1643b95bba5dSEric Biggers select CRYPTO_SKCIPHER 16448280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16458280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 16468280daadSJussi Kivilinna help 16478280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16488280daadSJussi Kivilinna 16498280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16508280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16518280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16528280daadSJussi Kivilinna bits. 16538280daadSJussi Kivilinna 16548280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16558280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16568280daadSJussi Kivilinna 16578280daadSJussi Kivilinna See also: 16589332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 16598280daadSJussi Kivilinna 1660107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1661107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1662107778b5SJohannes Goetzfried depends on X86 && 64BIT 1663b95bba5dSEric Biggers select CRYPTO_SKCIPHER 16640e6ab46dSEric Biggers select CRYPTO_SIMD 1665107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1666107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1667107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1668da4df93aSArd Biesheuvel imply CRYPTO_XTS 1669107778b5SJohannes Goetzfried help 1670107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1671107778b5SJohannes Goetzfried 1672107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1673107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1674107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1675107778b5SJohannes Goetzfried bits. 1676107778b5SJohannes Goetzfried 1677107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1678107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1679107778b5SJohannes Goetzfried 1680107778b5SJohannes Goetzfried See also: 16819332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1682107778b5SJohannes Goetzfried 1683584fffc8SSebastian Siewiorcomment "Compression" 1684584fffc8SSebastian Siewior 16851da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16861da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1687cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1688f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16891da177e4SLinus Torvalds select ZLIB_INFLATE 16901da177e4SLinus Torvalds select ZLIB_DEFLATE 16911da177e4SLinus Torvalds help 16921da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16931da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16941da177e4SLinus Torvalds 16951da177e4SLinus Torvalds You will most probably want this if using IPSec. 16961da177e4SLinus Torvalds 16970b77abb3SZoltan Sogorconfig CRYPTO_LZO 16980b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16990b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1700ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17010b77abb3SZoltan Sogor select LZO_COMPRESS 17020b77abb3SZoltan Sogor select LZO_DECOMPRESS 17030b77abb3SZoltan Sogor help 17040b77abb3SZoltan Sogor This is the LZO algorithm. 17050b77abb3SZoltan Sogor 170635a1fc18SSeth Jenningsconfig CRYPTO_842 170735a1fc18SSeth Jennings tristate "842 compression algorithm" 17082062c5b6SDan Streetman select CRYPTO_ALGAPI 17096a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17102062c5b6SDan Streetman select 842_COMPRESS 17112062c5b6SDan Streetman select 842_DECOMPRESS 171235a1fc18SSeth Jennings help 171335a1fc18SSeth Jennings This is the 842 algorithm. 171435a1fc18SSeth Jennings 17150ea8530dSChanho Minconfig CRYPTO_LZ4 17160ea8530dSChanho Min tristate "LZ4 compression algorithm" 17170ea8530dSChanho Min select CRYPTO_ALGAPI 17188cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17190ea8530dSChanho Min select LZ4_COMPRESS 17200ea8530dSChanho Min select LZ4_DECOMPRESS 17210ea8530dSChanho Min help 17220ea8530dSChanho Min This is the LZ4 algorithm. 17230ea8530dSChanho Min 17240ea8530dSChanho Minconfig CRYPTO_LZ4HC 17250ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17260ea8530dSChanho Min select CRYPTO_ALGAPI 172791d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17280ea8530dSChanho Min select LZ4HC_COMPRESS 17290ea8530dSChanho Min select LZ4_DECOMPRESS 17300ea8530dSChanho Min help 17310ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17320ea8530dSChanho Min 1733d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1734d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1735d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1736d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1737d28fc3dbSNick Terrell select ZSTD_COMPRESS 1738d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1739d28fc3dbSNick Terrell help 1740d28fc3dbSNick Terrell This is the zstd algorithm. 1741d28fc3dbSNick Terrell 174217f0f4a4SNeil Hormancomment "Random Number Generation" 174317f0f4a4SNeil Horman 174417f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 174517f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 174617f0f4a4SNeil Horman select CRYPTO_AES 174717f0f4a4SNeil Horman select CRYPTO_RNG 174817f0f4a4SNeil Horman help 174917f0f4a4SNeil Horman This option enables the generic pseudo random number generator 175017f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17517dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17527dd607e8SJiri Kosina CRYPTO_FIPS is selected 175317f0f4a4SNeil Horman 1754f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1755419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1756419090c6SStephan Mueller help 1757419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1758419090c6SStephan Mueller more of the DRBG types must be selected. 1759419090c6SStephan Mueller 1760f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1761419090c6SStephan Mueller 1762419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1763401e4238SHerbert Xu bool 1764419090c6SStephan Mueller default y 1765419090c6SStephan Mueller select CRYPTO_HMAC 1766826775bbSHerbert Xu select CRYPTO_SHA256 1767419090c6SStephan Mueller 1768419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1769419090c6SStephan Mueller bool "Enable Hash DRBG" 1770826775bbSHerbert Xu select CRYPTO_SHA256 1771419090c6SStephan Mueller help 1772419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1773419090c6SStephan Mueller 1774419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1775419090c6SStephan Mueller bool "Enable CTR DRBG" 1776419090c6SStephan Mueller select CRYPTO_AES 1777d6fc1a45SCorentin Labbe select CRYPTO_CTR 1778419090c6SStephan Mueller help 1779419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1780419090c6SStephan Mueller 1781f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1782f2c89a10SHerbert Xu tristate 1783401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1784f2c89a10SHerbert Xu select CRYPTO_RNG 1785bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1786f2c89a10SHerbert Xu 1787f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1788419090c6SStephan Mueller 1789bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1790bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17912f313e02SArnd Bergmann select CRYPTO_RNG 1792bb5530e4SStephan Mueller help 1793bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1794bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1795bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1796bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1797bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1798bb5530e4SStephan Mueller 179903c8efc1SHerbert Xuconfig CRYPTO_USER_API 180003c8efc1SHerbert Xu tristate 180103c8efc1SHerbert Xu 1802fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1803fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18047451708fSHerbert Xu depends on NET 1805fe869cdbSHerbert Xu select CRYPTO_HASH 1806fe869cdbSHerbert Xu select CRYPTO_USER_API 1807fe869cdbSHerbert Xu help 1808fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1809fe869cdbSHerbert Xu algorithms. 1810fe869cdbSHerbert Xu 18118ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18128ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18137451708fSHerbert Xu depends on NET 1814b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18158ff59090SHerbert Xu select CRYPTO_USER_API 18168ff59090SHerbert Xu help 18178ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18188ff59090SHerbert Xu key cipher algorithms. 18198ff59090SHerbert Xu 18202f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18212f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18222f375538SStephan Mueller depends on NET 18232f375538SStephan Mueller select CRYPTO_RNG 18242f375538SStephan Mueller select CRYPTO_USER_API 18252f375538SStephan Mueller help 18262f375538SStephan Mueller This option enables the user-spaces interface for random 18272f375538SStephan Mueller number generator algorithms. 18282f375538SStephan Mueller 182977ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 183077ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 183177ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 183277ebdabeSElena Petrova help 183377ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 183477ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 183577ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 183677ebdabeSElena Petrova no unless you know what this is. 183777ebdabeSElena Petrova 1838b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1839b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1840b64a2d95SHerbert Xu depends on NET 1841b64a2d95SHerbert Xu select CRYPTO_AEAD 1842b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184372548b09SStephan Mueller select CRYPTO_NULL 1844b64a2d95SHerbert Xu select CRYPTO_USER_API 1845b64a2d95SHerbert Xu help 1846b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1847b64a2d95SHerbert Xu cipher algorithms. 1848b64a2d95SHerbert Xu 18499ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 18509ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 18519ace6771SArd Biesheuvel depends on CRYPTO_USER_API 18529ace6771SArd Biesheuvel default y 18539ace6771SArd Biesheuvel help 18549ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 18559ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 18569ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 18579ace6771SArd Biesheuvel 1858cac5818cSCorentin Labbeconfig CRYPTO_STATS 1859cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1860a6a31385SCorentin Labbe depends on CRYPTO_USER 1861cac5818cSCorentin Labbe help 1862cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1863cac5818cSCorentin Labbe This will collect: 1864cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1865cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1866cac5818cSCorentin Labbe - size and numbers of hash operations 1867cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1868cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1869cac5818cSCorentin Labbe 1870ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1871ee08997fSDmitry Kasatkin bool 1872ee08997fSDmitry Kasatkin 1873746b2e02SArd Biesheuvelsource "lib/crypto/Kconfig" 18741da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 18758636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 18768636a1f9SMasahiro Yamadasource "certs/Kconfig" 18771da177e4SLinus Torvalds 1878cce9e06dSHerbert Xuendif # if CRYPTO 1879