xref: /linux/crypto/Kconfig (revision 6a490a4e8b4c015113045d045dc1ae94735211bb)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
187033b937SEric Biggers	select CRYPTO_LIB_UTILS
191da177e4SLinus Torvalds	help
201da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
211da177e4SLinus Torvalds
22cce9e06dSHerbert Xuif CRYPTO
23cce9e06dSHerbert Xu
24584fffc8SSebastian Siewiorcomment "Crypto core or helper"
25584fffc8SSebastian Siewior
26ccb778e1SNeil Hormanconfig CRYPTO_FIPS
27ccb778e1SNeil Horman	bool "FIPS 200 compliance"
28f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
291f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
30ccb778e1SNeil Horman	help
31d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
32d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
33ccb778e1SNeil Horman	  certification.  You should say no unless you know what
34e84c5480SChuck Ebbert	  this is.
35ccb778e1SNeil Horman
365a44749fSVladis Dronovconfig CRYPTO_FIPS_NAME
375a44749fSVladis Dronov	string "FIPS Module Name"
385a44749fSVladis Dronov	default "Linux Kernel Cryptographic API"
395a44749fSVladis Dronov	depends on CRYPTO_FIPS
405a44749fSVladis Dronov	help
415a44749fSVladis Dronov	  This option sets the FIPS Module name reported by the Crypto API via
425a44749fSVladis Dronov	  the /proc/sys/crypto/fips_name file.
435a44749fSVladis Dronov
445a44749fSVladis Dronovconfig CRYPTO_FIPS_CUSTOM_VERSION
455a44749fSVladis Dronov	bool "Use Custom FIPS Module Version"
465a44749fSVladis Dronov	depends on CRYPTO_FIPS
475a44749fSVladis Dronov	default n
485a44749fSVladis Dronov
495a44749fSVladis Dronovconfig CRYPTO_FIPS_VERSION
505a44749fSVladis Dronov	string "FIPS Module Version"
515a44749fSVladis Dronov	default "(none)"
525a44749fSVladis Dronov	depends on CRYPTO_FIPS_CUSTOM_VERSION
535a44749fSVladis Dronov	help
545a44749fSVladis Dronov	  This option provides the ability to override the FIPS Module Version.
555a44749fSVladis Dronov	  By default the KERNELRELEASE value is used.
565a44749fSVladis Dronov
57cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
58cce9e06dSHerbert Xu	tristate
596a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
60cce9e06dSHerbert Xu	help
61cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
62cce9e06dSHerbert Xu
636a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
646a0fcbb4SHerbert Xu	tristate
656a0fcbb4SHerbert Xu
661ae97820SHerbert Xuconfig CRYPTO_AEAD
671ae97820SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
691ae97820SHerbert Xu	select CRYPTO_ALGAPI
701ae97820SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
74149a3971SHerbert Xu	select CRYPTO_NULL2
75149a3971SHerbert Xu	select CRYPTO_RNG2
766a0fcbb4SHerbert Xu
77b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER
785cde0af2SHerbert Xu	tristate
79b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
805cde0af2SHerbert Xu	select CRYPTO_ALGAPI
816a0fcbb4SHerbert Xu
82b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2
836a0fcbb4SHerbert Xu	tristate
846a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
856a0fcbb4SHerbert Xu	select CRYPTO_RNG2
865cde0af2SHerbert Xu
87055bcee3SHerbert Xuconfig CRYPTO_HASH
88055bcee3SHerbert Xu	tristate
896a0fcbb4SHerbert Xu	select CRYPTO_HASH2
90055bcee3SHerbert Xu	select CRYPTO_ALGAPI
91055bcee3SHerbert Xu
926a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
936a0fcbb4SHerbert Xu	tristate
946a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
956a0fcbb4SHerbert Xu
9617f0f4a4SNeil Hormanconfig CRYPTO_RNG
9717f0f4a4SNeil Horman	tristate
986a0fcbb4SHerbert Xu	select CRYPTO_RNG2
9917f0f4a4SNeil Horman	select CRYPTO_ALGAPI
10017f0f4a4SNeil Horman
1016a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
1026a0fcbb4SHerbert Xu	tristate
1036a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
1046a0fcbb4SHerbert Xu
105401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
106401e4238SHerbert Xu	tristate
107401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
108401e4238SHerbert Xu
1093c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
1103c339ab8STadeusz Struk	tristate
1113c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
1123c339ab8STadeusz Struk
1133c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
1143c339ab8STadeusz Struk	tristate
1153c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
1163c339ab8STadeusz Struk	select CRYPTO_ALGAPI
1173c339ab8STadeusz Struk
1184e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
1194e5f2c40SSalvatore Benedetto	tristate
1204e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1214e5f2c40SSalvatore Benedetto
1224e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1234e5f2c40SSalvatore Benedetto	tristate
1244e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1254e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1264e5f2c40SSalvatore Benedetto
1272ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1282ebda74fSGiovanni Cabiddu	tristate
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1308cd579d2SBart Van Assche	select SGL_ALLOC
1312ebda74fSGiovanni Cabiddu
1322ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1332ebda74fSGiovanni Cabiddu	tristate
1342ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1352ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1362ebda74fSGiovanni Cabiddu
1372b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1382b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1396a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1402b8c19dbSHerbert Xu	help
1412b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1422b8c19dbSHerbert Xu	  cbc(aes).
1432b8c19dbSHerbert Xu
1446a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1456a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1476a0fcbb4SHerbert Xu	select CRYPTO_HASH2
148b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
149946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1504e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1512ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1526a0fcbb4SHerbert Xu
153a38f7907SSteffen Klassertconfig CRYPTO_USER
154a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1555db017aaSHerbert Xu	depends on NET
156a38f7907SSteffen Klassert	select CRYPTO_MANAGER
157a38f7907SSteffen Klassert	help
158d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
159a38f7907SSteffen Klassert	  cbc(aes).
160a38f7907SSteffen Klassert
161326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
162326a6346SHerbert Xu	bool "Disable run-time self tests"
16300ca28a5SHerbert Xu	default y
1640b767f96SAlexander Shishkin	help
165326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
166326a6346SHerbert Xu	  algorithm registration.
1670b767f96SAlexander Shishkin
1685b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1695b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1706569e309SJason A. Donenfeld	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
1715b2706a4SEric Biggers	help
1725b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1735b2706a4SEric Biggers	  including randomized fuzz tests.
1745b2706a4SEric Biggers
1755b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1765b2706a4SEric Biggers	  longer to run than the normal self tests.
1775b2706a4SEric Biggers
178584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
179e590e132SEric Biggers	tristate
180584fffc8SSebastian Siewior
181584fffc8SSebastian Siewiorconfig CRYPTO_NULL
182584fffc8SSebastian Siewior	tristate "Null algorithms"
183149a3971SHerbert Xu	select CRYPTO_NULL2
184584fffc8SSebastian Siewior	help
185584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
186584fffc8SSebastian Siewior
187149a3971SHerbert Xuconfig CRYPTO_NULL2
188dd43c4e9SHerbert Xu	tristate
189149a3971SHerbert Xu	select CRYPTO_ALGAPI2
190b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
191149a3971SHerbert Xu	select CRYPTO_HASH2
192149a3971SHerbert Xu
1935068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1943b4afaf2SKees Cook	tristate "Parallel crypto engine"
1953b4afaf2SKees Cook	depends on SMP
1965068c7a8SSteffen Klassert	select PADATA
1975068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1985068c7a8SSteffen Klassert	select CRYPTO_AEAD
1995068c7a8SSteffen Klassert	help
2005068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2015068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2025068c7a8SSteffen Klassert
203584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
204584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
205b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
206b8a28251SLoc Ho	select CRYPTO_HASH
207584fffc8SSebastian Siewior	select CRYPTO_MANAGER
208584fffc8SSebastian Siewior	help
209584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
210584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
211584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
212584fffc8SSebastian Siewior
213584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
214584fffc8SSebastian Siewior	tristate "Authenc support"
215584fffc8SSebastian Siewior	select CRYPTO_AEAD
216b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
217584fffc8SSebastian Siewior	select CRYPTO_MANAGER
218584fffc8SSebastian Siewior	select CRYPTO_HASH
219e94c6a7aSHerbert Xu	select CRYPTO_NULL
220584fffc8SSebastian Siewior	help
221584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
222584fffc8SSebastian Siewior	  This is required for IPSec.
223584fffc8SSebastian Siewior
224584fffc8SSebastian Siewiorconfig CRYPTO_TEST
225584fffc8SSebastian Siewior	tristate "Testing module"
22600ea27f1SArd Biesheuvel	depends on m || EXPERT
227da7f033dSHerbert Xu	select CRYPTO_MANAGER
228584fffc8SSebastian Siewior	help
229584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
230584fffc8SSebastian Siewior
231266d0516SHerbert Xuconfig CRYPTO_SIMD
232266d0516SHerbert Xu	tristate
233266d0516SHerbert Xu	select CRYPTO_CRYPTD
234266d0516SHerbert Xu
235735d37b5SBaolin Wangconfig CRYPTO_ENGINE
236735d37b5SBaolin Wang	tristate
237735d37b5SBaolin Wang
2383d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2393d6228a5SVitaly Chikunov
2403d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2413d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2423d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2433d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2443d6228a5SVitaly Chikunov	select MPILIB
2453d6228a5SVitaly Chikunov	select ASN1
2463d6228a5SVitaly Chikunov	help
2473d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2483d6228a5SVitaly Chikunov
2493d6228a5SVitaly Chikunovconfig CRYPTO_DH
2503d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2513d6228a5SVitaly Chikunov	select CRYPTO_KPP
2523d6228a5SVitaly Chikunov	select MPILIB
2533d6228a5SVitaly Chikunov	help
2543d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2553d6228a5SVitaly Chikunov
2567dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS
2577dce5981SNicolai Stange	bool "Support for RFC 7919 FFDHE group parameters"
2587dce5981SNicolai Stange	depends on CRYPTO_DH
2591e207964SNicolai Stange	select CRYPTO_RNG_DEFAULT
2607dce5981SNicolai Stange	help
2617dce5981SNicolai Stange	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
2627dce5981SNicolai Stange
2634a2289daSVitaly Chikunovconfig CRYPTO_ECC
2644a2289daSVitaly Chikunov	tristate
26538aa192aSArnd Bergmann	select CRYPTO_RNG_DEFAULT
2664a2289daSVitaly Chikunov
2673d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2683d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2694a2289daSVitaly Chikunov	select CRYPTO_ECC
2703d6228a5SVitaly Chikunov	select CRYPTO_KPP
2713d6228a5SVitaly Chikunov	help
2723d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2733d6228a5SVitaly Chikunov
2744e660291SStefan Bergerconfig CRYPTO_ECDSA
2754e660291SStefan Berger	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
2764e660291SStefan Berger	select CRYPTO_ECC
2774e660291SStefan Berger	select CRYPTO_AKCIPHER
2784e660291SStefan Berger	select ASN1
2794e660291SStefan Berger	help
2804e660291SStefan Berger	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
2814e660291SStefan Berger	  is A NIST cryptographic standard algorithm. Only signature verification
2824e660291SStefan Berger	  is implemented.
2834e660291SStefan Berger
2840d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2850d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2860d7a7864SVitaly Chikunov	select CRYPTO_ECC
2870d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2880d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2891036633eSVitaly Chikunov	select OID_REGISTRY
2901036633eSVitaly Chikunov	select ASN1
2910d7a7864SVitaly Chikunov	help
2920d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2930d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2940d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2950d7a7864SVitaly Chikunov	  is implemented.
2960d7a7864SVitaly Chikunov
297ea7ecb66STianjia Zhangconfig CRYPTO_SM2
298ea7ecb66STianjia Zhang	tristate "SM2 algorithm"
299d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
300ea7ecb66STianjia Zhang	select CRYPTO_AKCIPHER
301ea7ecb66STianjia Zhang	select CRYPTO_MANAGER
302ea7ecb66STianjia Zhang	select MPILIB
303ea7ecb66STianjia Zhang	select ASN1
304ea7ecb66STianjia Zhang	help
305ea7ecb66STianjia Zhang	  Generic implementation of the SM2 public key algorithm. It was
306ea7ecb66STianjia Zhang	  published by State Encryption Management Bureau, China.
307ea7ecb66STianjia Zhang	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
308ea7ecb66STianjia Zhang
309ea7ecb66STianjia Zhang	  References:
310ea7ecb66STianjia Zhang	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
311ea7ecb66STianjia Zhang	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
312ea7ecb66STianjia Zhang	  http://www.gmbz.org.cn/main/bzlb.html
313ea7ecb66STianjia Zhang
314ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519
315ee772cb6SArd Biesheuvel	tristate "Curve25519 algorithm"
316ee772cb6SArd Biesheuvel	select CRYPTO_KPP
317ee772cb6SArd Biesheuvel	select CRYPTO_LIB_CURVE25519_GENERIC
318ee772cb6SArd Biesheuvel
319bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86
320bb611bdfSJason A. Donenfeld	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
321bb611bdfSJason A. Donenfeld	depends on X86 && 64BIT
322bb611bdfSJason A. Donenfeld	select CRYPTO_LIB_CURVE25519_GENERIC
323bb611bdfSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
324bb611bdfSJason A. Donenfeld
325584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
326584fffc8SSebastian Siewior
327584fffc8SSebastian Siewiorconfig CRYPTO_CCM
328584fffc8SSebastian Siewior	tristate "CCM support"
329584fffc8SSebastian Siewior	select CRYPTO_CTR
330f15f05b0SArd Biesheuvel	select CRYPTO_HASH
331584fffc8SSebastian Siewior	select CRYPTO_AEAD
332c8a3315aSEric Biggers	select CRYPTO_MANAGER
333584fffc8SSebastian Siewior	help
334584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
335584fffc8SSebastian Siewior
336584fffc8SSebastian Siewiorconfig CRYPTO_GCM
337584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
338584fffc8SSebastian Siewior	select CRYPTO_CTR
339584fffc8SSebastian Siewior	select CRYPTO_AEAD
3409382d97aSHuang Ying	select CRYPTO_GHASH
3419489667dSJussi Kivilinna	select CRYPTO_NULL
342c8a3315aSEric Biggers	select CRYPTO_MANAGER
343584fffc8SSebastian Siewior	help
344584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
345584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
346584fffc8SSebastian Siewior
34771ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
34871ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
34971ebc4d1SMartin Willi	select CRYPTO_CHACHA20
35071ebc4d1SMartin Willi	select CRYPTO_POLY1305
35171ebc4d1SMartin Willi	select CRYPTO_AEAD
352c8a3315aSEric Biggers	select CRYPTO_MANAGER
35371ebc4d1SMartin Willi	help
35471ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
35571ebc4d1SMartin Willi
35671ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
35771ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
35871ebc4d1SMartin Willi	  IETF protocols.
35971ebc4d1SMartin Willi
360f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
361f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
362f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
363f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
364f606a88eSOndrej Mosnacek	help
365f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
366f606a88eSOndrej Mosnacek
367a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
368a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
369a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
370a4397635SArd Biesheuvel	default y
371a4397635SArd Biesheuvel
3721d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3731d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3741d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3751d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
376de272ca7SEric Biggers	select CRYPTO_SIMD
3771d373d4eSOndrej Mosnacek	help
3784e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3791d373d4eSOndrej Mosnacek
380584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
381584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
382584fffc8SSebastian Siewior	select CRYPTO_AEAD
383b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
384856e3f40SHerbert Xu	select CRYPTO_NULL
385401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
386c8a3315aSEric Biggers	select CRYPTO_MANAGER
387584fffc8SSebastian Siewior	help
388584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
389584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
390584fffc8SSebastian Siewior
391a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
392a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
393a10f554fSHerbert Xu	select CRYPTO_AEAD
394a10f554fSHerbert Xu	select CRYPTO_NULL
395401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
396c8a3315aSEric Biggers	select CRYPTO_MANAGER
397a10f554fSHerbert Xu	help
398a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
399a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
400a10f554fSHerbert Xu	  algorithm for CBC.
401a10f554fSHerbert Xu
402584fffc8SSebastian Siewiorcomment "Block modes"
403584fffc8SSebastian Siewior
404584fffc8SSebastian Siewiorconfig CRYPTO_CBC
405584fffc8SSebastian Siewior	tristate "CBC support"
406b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
407584fffc8SSebastian Siewior	select CRYPTO_MANAGER
408584fffc8SSebastian Siewior	help
409584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
410584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
411584fffc8SSebastian Siewior
412a7d85e06SJames Bottomleyconfig CRYPTO_CFB
413a7d85e06SJames Bottomley	tristate "CFB support"
414b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
415a7d85e06SJames Bottomley	select CRYPTO_MANAGER
416a7d85e06SJames Bottomley	help
417a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
418a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
419a7d85e06SJames Bottomley
420584fffc8SSebastian Siewiorconfig CRYPTO_CTR
421584fffc8SSebastian Siewior	tristate "CTR support"
422b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
423584fffc8SSebastian Siewior	select CRYPTO_MANAGER
424584fffc8SSebastian Siewior	help
425584fffc8SSebastian Siewior	  CTR: Counter mode
426584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
427584fffc8SSebastian Siewior
428584fffc8SSebastian Siewiorconfig CRYPTO_CTS
429584fffc8SSebastian Siewior	tristate "CTS support"
430b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
431c8a3315aSEric Biggers	select CRYPTO_MANAGER
432584fffc8SSebastian Siewior	help
433584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
434584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
435ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
436ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
437ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
438584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
439584fffc8SSebastian Siewior	  for AES encryption.
440584fffc8SSebastian Siewior
441ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
442ecd6d5c9SGilad Ben-Yossef
443584fffc8SSebastian Siewiorconfig CRYPTO_ECB
444584fffc8SSebastian Siewior	tristate "ECB support"
445b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
446584fffc8SSebastian Siewior	select CRYPTO_MANAGER
447584fffc8SSebastian Siewior	help
448584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
449584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
450584fffc8SSebastian Siewior	  the input block by block.
451584fffc8SSebastian Siewior
452584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4532470a2b2SJussi Kivilinna	tristate "LRW support"
454b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
455584fffc8SSebastian Siewior	select CRYPTO_MANAGER
456584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
457f60bbbbeSHerbert Xu	select CRYPTO_ECB
458584fffc8SSebastian Siewior	help
459584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
460584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
461584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
462584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
463584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
464584fffc8SSebastian Siewior
465e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
466e497c518SGilad Ben-Yossef	tristate "OFB support"
467b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
468e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
469e497c518SGilad Ben-Yossef	help
470e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
471e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
472e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
473e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
474e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
475e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
476e497c518SGilad Ben-Yossef
477584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
478584fffc8SSebastian Siewior	tristate "PCBC support"
479b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
480584fffc8SSebastian Siewior	select CRYPTO_MANAGER
481584fffc8SSebastian Siewior	help
482584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
483584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
484584fffc8SSebastian Siewior
48517fee07aSNathan Huckleberryconfig CRYPTO_XCTR
48617fee07aSNathan Huckleberry	tristate
48717fee07aSNathan Huckleberry	select CRYPTO_SKCIPHER
48817fee07aSNathan Huckleberry	select CRYPTO_MANAGER
48917fee07aSNathan Huckleberry	help
49017fee07aSNathan Huckleberry	  XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode
49117fee07aSNathan Huckleberry	  using XORs and little-endian addition rather than big-endian arithmetic.
49217fee07aSNathan Huckleberry	  XCTR mode is used to implement HCTR2.
49317fee07aSNathan Huckleberry
494584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4955bcf8e6dSJussi Kivilinna	tristate "XTS support"
496b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
497584fffc8SSebastian Siewior	select CRYPTO_MANAGER
49812cb3a1cSMilan Broz	select CRYPTO_ECB
499584fffc8SSebastian Siewior	help
500584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
501584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
502584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
503584fffc8SSebastian Siewior
5041c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5051c49678eSStephan Mueller	tristate "Key wrapping support"
506b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
507c8a3315aSEric Biggers	select CRYPTO_MANAGER
5081c49678eSStephan Mueller	help
5091c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5101c49678eSStephan Mueller	  padding.
5111c49678eSStephan Mueller
51226609a21SEric Biggersconfig CRYPTO_NHPOLY1305
51326609a21SEric Biggers	tristate
51426609a21SEric Biggers	select CRYPTO_HASH
51548ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
51626609a21SEric Biggers
517012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
518012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
519012c8238SEric Biggers	depends on X86 && 64BIT
520012c8238SEric Biggers	select CRYPTO_NHPOLY1305
521012c8238SEric Biggers	help
522012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
523012c8238SEric Biggers	  Adiantum encryption mode.
524012c8238SEric Biggers
5250f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5260f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5270f961f9fSEric Biggers	depends on X86 && 64BIT
5280f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5290f961f9fSEric Biggers	help
5300f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5310f961f9fSEric Biggers	  Adiantum encryption mode.
5320f961f9fSEric Biggers
533059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
534059c2a4dSEric Biggers	tristate "Adiantum support"
535059c2a4dSEric Biggers	select CRYPTO_CHACHA20
53648ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
537059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
538c8a3315aSEric Biggers	select CRYPTO_MANAGER
539059c2a4dSEric Biggers	help
540059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
541059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
542059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
543059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
544059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
545059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
546059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
547059c2a4dSEric Biggers	  AES-XTS.
548059c2a4dSEric Biggers
549059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
550059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
551059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
552059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
553059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
554059c2a4dSEric Biggers
555059c2a4dSEric Biggers	  If unsure, say N.
556059c2a4dSEric Biggers
5577ff554ceSNathan Huckleberryconfig CRYPTO_HCTR2
5587ff554ceSNathan Huckleberry	tristate "HCTR2 support"
5597ff554ceSNathan Huckleberry	select CRYPTO_XCTR
5607ff554ceSNathan Huckleberry	select CRYPTO_POLYVAL
5617ff554ceSNathan Huckleberry	select CRYPTO_MANAGER
5627ff554ceSNathan Huckleberry	help
5637ff554ceSNathan Huckleberry	  HCTR2 is a length-preserving encryption mode for storage encryption that
5647ff554ceSNathan Huckleberry	  is efficient on processors with instructions to accelerate AES and
5657ff554ceSNathan Huckleberry	  carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and
5667ff554ceSNathan Huckleberry	  ARM processors with the ARMv8 crypto extensions.
5677ff554ceSNathan Huckleberry
568be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
569be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
570be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
571be1eb7f7SArd Biesheuvel	help
572be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
573be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
574be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
575be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
576be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
577be1eb7f7SArd Biesheuvel	  encryption.
578be1eb7f7SArd Biesheuvel
579be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
580ab3d436bSGeert Uytterhoeven	  instantiated either as an skcipher or as an AEAD (depending on the
581be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
582be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
583ab3d436bSGeert Uytterhoeven	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
584be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
585be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
586be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
587be1eb7f7SArd Biesheuvel
588be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
589be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
590be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
591be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
592be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
593be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
594be1eb7f7SArd Biesheuvel	  block encryption)
595be1eb7f7SArd Biesheuvel
596584fffc8SSebastian Siewiorcomment "Hash modes"
597584fffc8SSebastian Siewior
59893b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
59993b5e86aSJussi Kivilinna	tristate "CMAC support"
60093b5e86aSJussi Kivilinna	select CRYPTO_HASH
60193b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
60293b5e86aSJussi Kivilinna	help
60393b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
60493b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
60593b5e86aSJussi Kivilinna
60693b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
60793b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
60893b5e86aSJussi Kivilinna
6091da177e4SLinus Torvaldsconfig CRYPTO_HMAC
6108425165dSHerbert Xu	tristate "HMAC support"
6110796ae06SHerbert Xu	select CRYPTO_HASH
61243518407SHerbert Xu	select CRYPTO_MANAGER
6131da177e4SLinus Torvalds	help
6141da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
6151da177e4SLinus Torvalds	  This is required for IPSec.
6161da177e4SLinus Torvalds
617333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
618333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
619333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
620333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
621333b0d7eSKazunori MIYAZAWA	help
622333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
6239332a9e7SAlexander A. Klimov		https://www.ietf.org/rfc/rfc3566.txt
624333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
625333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
626333b0d7eSKazunori MIYAZAWA
627f1939f7cSShane Wangconfig CRYPTO_VMAC
628f1939f7cSShane Wang	tristate "VMAC support"
629f1939f7cSShane Wang	select CRYPTO_HASH
630f1939f7cSShane Wang	select CRYPTO_MANAGER
631f1939f7cSShane Wang	help
632f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
633f1939f7cSShane Wang	  very high speed on 64-bit architectures.
634f1939f7cSShane Wang
635f1939f7cSShane Wang	  See also:
6369332a9e7SAlexander A. Klimov	  <https://fastcrypto.org/vmac>
637f1939f7cSShane Wang
638584fffc8SSebastian Siewiorcomment "Digest"
639584fffc8SSebastian Siewior
640584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
641584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6425773a3e6SHerbert Xu	select CRYPTO_HASH
6436a0962b2SDarrick J. Wong	select CRC32
6441da177e4SLinus Torvalds	help
645584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
646584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
64769c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6481da177e4SLinus Torvalds
6498cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6508cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6518cb51ba8SAustin Zhang	depends on X86
6528cb51ba8SAustin Zhang	select CRYPTO_HASH
6538cb51ba8SAustin Zhang	help
6548cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6558cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6568cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6578cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6588cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6598cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6608cb51ba8SAustin Zhang
661442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
662442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
663442a7c40SDavid S. Miller	depends on SPARC64
664442a7c40SDavid S. Miller	select CRYPTO_HASH
665442a7c40SDavid S. Miller	select CRC32
666442a7c40SDavid S. Miller	help
667442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
668442a7c40SDavid S. Miller	  when available.
669442a7c40SDavid S. Miller
67078c37d19SAlexander Boykoconfig CRYPTO_CRC32
67178c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
67278c37d19SAlexander Boyko	select CRYPTO_HASH
67378c37d19SAlexander Boyko	select CRC32
67478c37d19SAlexander Boyko	help
67578c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
67678c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
67778c37d19SAlexander Boyko
67878c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
67978c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
68078c37d19SAlexander Boyko	depends on X86
68178c37d19SAlexander Boyko	select CRYPTO_HASH
68278c37d19SAlexander Boyko	select CRC32
68378c37d19SAlexander Boyko	help
68478c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
68578c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
68678c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
687af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
68878c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
68978c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
69078c37d19SAlexander Boyko
691b7133757SJason A. Donenfeldconfig CRYPTO_CRC32_S390
692b7133757SJason A. Donenfeld	tristate "CRC-32 algorithms"
693b7133757SJason A. Donenfeld	depends on S390
694b7133757SJason A. Donenfeld	select CRYPTO_HASH
695b7133757SJason A. Donenfeld	select CRC32
696b7133757SJason A. Donenfeld	help
697b7133757SJason A. Donenfeld	  Select this option if you want to use hardware accelerated
698b7133757SJason A. Donenfeld	  implementations of CRC algorithms.  With this option, you
699b7133757SJason A. Donenfeld	  can optimize the computation of CRC-32 (IEEE 802.3 Ethernet)
700b7133757SJason A. Donenfeld	  and CRC-32C (Castagnoli).
701b7133757SJason A. Donenfeld
702b7133757SJason A. Donenfeld	  It is available with IBM z13 or later.
7034a5dc51eSMarcin Nowakowski
70467882e76SNikolay Borisovconfig CRYPTO_XXHASH
70567882e76SNikolay Borisov	tristate "xxHash hash algorithm"
70667882e76SNikolay Borisov	select CRYPTO_HASH
70767882e76SNikolay Borisov	select XXHASH
70867882e76SNikolay Borisov	help
70967882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
71067882e76SNikolay Borisov	  speeds close to RAM limits.
71167882e76SNikolay Borisov
71291d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
71391d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
71491d68933SDavid Sterba	select CRYPTO_HASH
71591d68933SDavid Sterba	help
71691d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
71791d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
71891d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
71991d68933SDavid Sterba
72091d68933SDavid Sterba	  This module provides the following algorithms:
72191d68933SDavid Sterba
72291d68933SDavid Sterba	  - blake2b-160
72391d68933SDavid Sterba	  - blake2b-256
72491d68933SDavid Sterba	  - blake2b-384
72591d68933SDavid Sterba	  - blake2b-512
72691d68933SDavid Sterba
72791d68933SDavid Sterba	  See https://blake2.net for further information.
72891d68933SDavid Sterba
729ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86
7302d16803cSJason A. Donenfeld	bool "BLAKE2s digest algorithm (x86 accelerated version)"
731ed0356edSJason A. Donenfeld	depends on X86 && 64BIT
732ed0356edSJason A. Donenfeld	select CRYPTO_LIB_BLAKE2S_GENERIC
733ed0356edSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
734ed0356edSJason A. Donenfeld
73568411521SHerbert Xuconfig CRYPTO_CRCT10DIF
73668411521SHerbert Xu	tristate "CRCT10DIF algorithm"
73768411521SHerbert Xu	select CRYPTO_HASH
73868411521SHerbert Xu	help
73968411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
74068411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
74168411521SHerbert Xu	  transforms to be used if they are available.
74268411521SHerbert Xu
74368411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
74468411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
74568411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
74668411521SHerbert Xu	select CRYPTO_HASH
74768411521SHerbert Xu	help
74868411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
74968411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
75068411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
751af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
75268411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
75368411521SHerbert Xu
754f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT
755f3813f4bSKeith Busch	tristate "Rocksoft Model CRC64 algorithm"
756f3813f4bSKeith Busch	depends on CRC64
757f3813f4bSKeith Busch	select CRYPTO_HASH
758f3813f4bSKeith Busch
7592cdc6899SHuang Yingconfig CRYPTO_GHASH
7608dfa20fcSEric Biggers	tristate "GHASH hash function"
7612cdc6899SHuang Ying	select CRYPTO_GF128MUL
762578c60fbSArnd Bergmann	select CRYPTO_HASH
7632cdc6899SHuang Ying	help
7648dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
7658dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
7662cdc6899SHuang Ying
767f3c923a0SNathan Huckleberryconfig CRYPTO_POLYVAL
768f3c923a0SNathan Huckleberry	tristate
769f3c923a0SNathan Huckleberry	select CRYPTO_GF128MUL
770f3c923a0SNathan Huckleberry	select CRYPTO_HASH
771f3c923a0SNathan Huckleberry	help
772f3c923a0SNathan Huckleberry	  POLYVAL is the hash function used in HCTR2.  It is not a general-purpose
773f3c923a0SNathan Huckleberry	  cryptographic hash function.
774f3c923a0SNathan Huckleberry
77534f7f6c3SNathan Huckleberryconfig CRYPTO_POLYVAL_CLMUL_NI
77634f7f6c3SNathan Huckleberry	tristate "POLYVAL hash function (CLMUL-NI accelerated)"
77734f7f6c3SNathan Huckleberry	depends on X86 && 64BIT
77834f7f6c3SNathan Huckleberry	select CRYPTO_POLYVAL
77934f7f6c3SNathan Huckleberry	help
78034f7f6c3SNathan Huckleberry	  This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is
78134f7f6c3SNathan Huckleberry	  used to efficiently implement HCTR2 on x86-64 processors that support
78234f7f6c3SNathan Huckleberry	  carry-less multiplication instructions.
78334f7f6c3SNathan Huckleberry
784f979e014SMartin Williconfig CRYPTO_POLY1305
785f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
786578c60fbSArnd Bergmann	select CRYPTO_HASH
78748ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
788f979e014SMartin Willi	help
789f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
790f979e014SMartin Willi
791f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
792f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
793f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
794f979e014SMartin Willi
795c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
796b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
797c70f4abeSMartin Willi	depends on X86 && 64BIT
7981b2c6a51SArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
799f0e89bcfSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
800c70f4abeSMartin Willi	help
801c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
802c70f4abeSMartin Willi
803c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
804c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
805c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
806c70f4abeSMartin Willi	  instructions.
807c70f4abeSMartin Willi
8081da177e4SLinus Torvaldsconfig CRYPTO_MD4
8091da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
810808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8111da177e4SLinus Torvalds	help
8121da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
8131da177e4SLinus Torvalds
8141da177e4SLinus Torvaldsconfig CRYPTO_MD5
8151da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
81614b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8171da177e4SLinus Torvalds	help
8181da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
8191da177e4SLinus Torvalds
820fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
821fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
822fa4dfedcSDavid S. Miller	depends on SPARC64
823fa4dfedcSDavid S. Miller	select CRYPTO_MD5
824fa4dfedcSDavid S. Miller	select CRYPTO_HASH
825fa4dfedcSDavid S. Miller	help
826fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
827fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
828fa4dfedcSDavid S. Miller
829584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
830584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
83119e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
832584fffc8SSebastian Siewior	help
833584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
834584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
835584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
836584fffc8SSebastian Siewior	  of the algorithm.
837584fffc8SSebastian Siewior
83882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
83982798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
840e5835fbaSHerbert Xu	select CRYPTO_HASH
84182798f90SAdrian-Ken Rueegsegger	help
84282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
84382798f90SAdrian-Ken Rueegsegger
84482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
84582798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
8464cbdecd0SRandy Dunlap	  MD4, MD5 and its predecessor RIPEMD
847b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
84882798f90SAdrian-Ken Rueegsegger
849b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
850b6d44341SAdrian Bunk	  against RIPEMD-160.
851534fe2c1SAdrian-Ken Rueegsegger
852534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8539332a9e7SAlexander A. Klimov	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
854534fe2c1SAdrian-Ken Rueegsegger
8551da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8561da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
85754ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
858ec8f7f48SEric Biggers	select CRYPTO_LIB_SHA1
8591da177e4SLinus Torvalds	help
8601da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8611da177e4SLinus Torvalds
86266be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
863e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
86466be8951SMathias Krause	depends on X86 && 64BIT
86566be8951SMathias Krause	select CRYPTO_SHA1
86666be8951SMathias Krause	select CRYPTO_HASH
86766be8951SMathias Krause	help
86866be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
86966be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
870e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
871e38b6b7fStim	  when available.
87266be8951SMathias Krause
8738275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
874e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8758275d1aaSTim Chen	depends on X86 && 64BIT
8768275d1aaSTim Chen	select CRYPTO_SHA256
8778275d1aaSTim Chen	select CRYPTO_HASH
8788275d1aaSTim Chen	help
8798275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8808275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8818275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
882e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
883e38b6b7fStim	  Instructions) when available.
8848275d1aaSTim Chen
88587de4579STim Chenconfig CRYPTO_SHA512_SSSE3
88687de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
88787de4579STim Chen	depends on X86 && 64BIT
88887de4579STim Chen	select CRYPTO_SHA512
88987de4579STim Chen	select CRYPTO_HASH
89087de4579STim Chen	help
89187de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
89287de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
89387de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
89487de4579STim Chen	  version 2 (AVX2) instructions, when available.
89587de4579STim Chen
896b7133757SJason A. Donenfeldconfig CRYPTO_SHA512_S390
897b7133757SJason A. Donenfeld	tristate "SHA384 and SHA512 digest algorithm"
898b7133757SJason A. Donenfeld	depends on S390
899b7133757SJason A. Donenfeld	select CRYPTO_HASH
900b7133757SJason A. Donenfeld	help
901b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
902b7133757SJason A. Donenfeld	  SHA512 secure hash standard.
903b7133757SJason A. Donenfeld
904b7133757SJason A. Donenfeld	  It is available as of z10.
905b7133757SJason A. Donenfeld
9064ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9074ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9084ff28d4cSDavid S. Miller	depends on SPARC64
9094ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9104ff28d4cSDavid S. Miller	select CRYPTO_HASH
9114ff28d4cSDavid S. Miller	help
9124ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9134ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9144ff28d4cSDavid S. Miller
915b7133757SJason A. Donenfeldconfig CRYPTO_SHA1_S390
916b7133757SJason A. Donenfeld	tristate "SHA1 digest algorithm"
917b7133757SJason A. Donenfeld	depends on S390
918b7133757SJason A. Donenfeld	select CRYPTO_HASH
919b7133757SJason A. Donenfeld	help
920b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
921b7133757SJason A. Donenfeld	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
922b7133757SJason A. Donenfeld
923b7133757SJason A. Donenfeld	  It is available as of z990.
924b7133757SJason A. Donenfeld
9251da177e4SLinus Torvaldsconfig CRYPTO_SHA256
926cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
92750e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
92808c327f6SHans de Goede	select CRYPTO_LIB_SHA256
9291da177e4SLinus Torvalds	help
9301da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9311da177e4SLinus Torvalds
9321da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9331da177e4SLinus Torvalds	  security against collision attacks.
9341da177e4SLinus Torvalds
935cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
936cd12fb90SJonathan Lynch	  of security against collision attacks.
937cd12fb90SJonathan Lynch
93886c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
93986c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
94086c93b24SDavid S. Miller	depends on SPARC64
94186c93b24SDavid S. Miller	select CRYPTO_SHA256
94286c93b24SDavid S. Miller	select CRYPTO_HASH
94386c93b24SDavid S. Miller	help
94486c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
94586c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
94686c93b24SDavid S. Miller
947b7133757SJason A. Donenfeldconfig CRYPTO_SHA256_S390
948b7133757SJason A. Donenfeld	tristate "SHA256 digest algorithm"
949b7133757SJason A. Donenfeld	depends on S390
950b7133757SJason A. Donenfeld	select CRYPTO_HASH
951b7133757SJason A. Donenfeld	help
952b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
953b7133757SJason A. Donenfeld	  SHA256 secure hash standard (DFIPS 180-2).
954b7133757SJason A. Donenfeld
955b7133757SJason A. Donenfeld	  It is available as of z9.
956b7133757SJason A. Donenfeld
9571da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9581da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
959bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9601da177e4SLinus Torvalds	help
9611da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9621da177e4SLinus Torvalds
9631da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9641da177e4SLinus Torvalds	  security against collision attacks.
9651da177e4SLinus Torvalds
9661da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9671da177e4SLinus Torvalds	  of security against collision attacks.
9681da177e4SLinus Torvalds
969775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
970775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
971775e0c69SDavid S. Miller	depends on SPARC64
972775e0c69SDavid S. Miller	select CRYPTO_SHA512
973775e0c69SDavid S. Miller	select CRYPTO_HASH
974775e0c69SDavid S. Miller	help
975775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
976775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
977775e0c69SDavid S. Miller
97853964b9eSJeff Garzikconfig CRYPTO_SHA3
97953964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
98053964b9eSJeff Garzik	select CRYPTO_HASH
98153964b9eSJeff Garzik	help
98253964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
98353964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
98453964b9eSJeff Garzik
98553964b9eSJeff Garzik	  References:
98653964b9eSJeff Garzik	  http://keccak.noekeon.org/
98753964b9eSJeff Garzik
988b7133757SJason A. Donenfeldconfig CRYPTO_SHA3_256_S390
989b7133757SJason A. Donenfeld	tristate "SHA3_224 and SHA3_256 digest algorithm"
990b7133757SJason A. Donenfeld	depends on S390
991b7133757SJason A. Donenfeld	select CRYPTO_HASH
992b7133757SJason A. Donenfeld	help
993b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
994b7133757SJason A. Donenfeld	  SHA3_256 secure hash standard.
995b7133757SJason A. Donenfeld
996b7133757SJason A. Donenfeld	  It is available as of z14.
997b7133757SJason A. Donenfeld
998b7133757SJason A. Donenfeldconfig CRYPTO_SHA3_512_S390
999b7133757SJason A. Donenfeld	tristate "SHA3_384 and SHA3_512 digest algorithm"
1000b7133757SJason A. Donenfeld	depends on S390
1001b7133757SJason A. Donenfeld	select CRYPTO_HASH
1002b7133757SJason A. Donenfeld	help
1003b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1004b7133757SJason A. Donenfeld	  SHA3_512 secure hash standard.
1005b7133757SJason A. Donenfeld
1006b7133757SJason A. Donenfeld	  It is available as of z14.
1007b7133757SJason A. Donenfeld
10084f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
1009d2825fa9SJason A. Donenfeld	tristate
1010d2825fa9SJason A. Donenfeld
1011d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC
10124f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10134f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
1014d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
10154f0fc160SGilad Ben-Yossef	help
10164f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10174f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10184f0fc160SGilad Ben-Yossef
10194f0fc160SGilad Ben-Yossef	  References:
10204f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10214f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10224f0fc160SGilad Ben-Yossef
1023930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64
1024930ab34dSTianjia Zhang	tristate "SM3 digest algorithm (x86_64/AVX)"
1025930ab34dSTianjia Zhang	depends on X86 && 64BIT
1026930ab34dSTianjia Zhang	select CRYPTO_HASH
1027d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
1028930ab34dSTianjia Zhang	help
1029930ab34dSTianjia Zhang	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1030930ab34dSTianjia Zhang	  It is part of the Chinese Commercial Cryptography suite. This is
1031930ab34dSTianjia Zhang	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1032930ab34dSTianjia Zhang	  when available.
1033930ab34dSTianjia Zhang
1034930ab34dSTianjia Zhang	  If unsure, say N.
1035930ab34dSTianjia Zhang
1036fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1037fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1038fe18957eSVitaly Chikunov	select CRYPTO_HASH
1039fe18957eSVitaly Chikunov	help
1040fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1041fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1042fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1043fe18957eSVitaly Chikunov
1044fe18957eSVitaly Chikunov	  References:
1045fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1046fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1047fe18957eSVitaly Chikunov
1048584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1049584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10504946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10511da177e4SLinus Torvalds	help
1052584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10531da177e4SLinus Torvalds
1054584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1055584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10561da177e4SLinus Torvalds
10571da177e4SLinus Torvalds	  See also:
10586d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10591da177e4SLinus Torvalds
10600e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10618dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
10628af00860SRichard Weinberger	depends on X86 && 64BIT
10630e1227d3SHuang Ying	select CRYPTO_CRYPTD
10640e1227d3SHuang Ying	help
10658dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
10668dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
10670e1227d3SHuang Ying
1068b7133757SJason A. Donenfeldconfig CRYPTO_GHASH_S390
1069b7133757SJason A. Donenfeld	tristate "GHASH hash function"
1070b7133757SJason A. Donenfeld	depends on S390
1071b7133757SJason A. Donenfeld	select CRYPTO_HASH
1072b7133757SJason A. Donenfeld	help
1073b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of GHASH,
1074b7133757SJason A. Donenfeld	  the hash function used in GCM (Galois/Counter mode).
1075b7133757SJason A. Donenfeld
1076b7133757SJason A. Donenfeld	  It is available as of z196.
1077b7133757SJason A. Donenfeld
1078584fffc8SSebastian Siewiorcomment "Ciphers"
10791da177e4SLinus Torvalds
10801da177e4SLinus Torvaldsconfig CRYPTO_AES
10811da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1082cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10835bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
10841da177e4SLinus Torvalds	help
10851da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10861da177e4SLinus Torvalds	  algorithm.
10871da177e4SLinus Torvalds
10881da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10891da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10901da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10911da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10921da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10931da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10941da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10951da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10961da177e4SLinus Torvalds
10971da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10981da177e4SLinus Torvalds
10991da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
11001da177e4SLinus Torvalds
1101b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1102b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1103b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1104e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1105b5e0b032SArd Biesheuvel	help
1106b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1107b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1108b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1109b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1110b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1111b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1112b5e0b032SArd Biesheuvel
1113b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1114b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1115b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1116b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
11170a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
11180a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1119b5e0b032SArd Biesheuvel
112054b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
112154b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11228af00860SRichard Weinberger	depends on X86
112385671860SHerbert Xu	select CRYPTO_AEAD
11242c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
112554b6a1bdSHuang Ying	select CRYPTO_ALGAPI
1126b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
112785671860SHerbert Xu	select CRYPTO_SIMD
112854b6a1bdSHuang Ying	help
112954b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
113054b6a1bdSHuang Ying
113154b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
113254b6a1bdSHuang Ying	  algorithm.
113354b6a1bdSHuang Ying
113454b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
113554b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
113654b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
113754b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
113854b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
113954b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
114054b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
114154b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
114254b6a1bdSHuang Ying
114354b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
114454b6a1bdSHuang Ying
114554b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
114654b6a1bdSHuang Ying
11470d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11480d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1149944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1150fd94fcf0SNathan Huckleberry	  acceleration for CTR and XCTR.
11512cf4ac8bSHuang Ying
11529bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11539bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11549bf4852dSDavid S. Miller	depends on SPARC64
1155b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
11569bf4852dSDavid S. Miller	help
11579bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11589bf4852dSDavid S. Miller
11599bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11609bf4852dSDavid S. Miller	  algorithm.
11619bf4852dSDavid S. Miller
11629bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11639bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11649bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11659bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11669bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11679bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11689bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11699bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11709bf4852dSDavid S. Miller
11719bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11729bf4852dSDavid S. Miller
11739bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11749bf4852dSDavid S. Miller
11759bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11769bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11779bf4852dSDavid S. Miller	  ECB and CBC.
11789bf4852dSDavid S. Miller
1179b7133757SJason A. Donenfeldconfig CRYPTO_AES_S390
1180b7133757SJason A. Donenfeld	tristate "AES cipher algorithms"
1181b7133757SJason A. Donenfeld	depends on S390
1182b7133757SJason A. Donenfeld	select CRYPTO_ALGAPI
1183b7133757SJason A. Donenfeld	select CRYPTO_SKCIPHER
1184b7133757SJason A. Donenfeld	help
1185b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1186b7133757SJason A. Donenfeld	  AES cipher algorithms (FIPS-197).
1187b7133757SJason A. Donenfeld
1188b7133757SJason A. Donenfeld	  As of z9 the ECB and CBC modes are hardware accelerated
1189b7133757SJason A. Donenfeld	  for 128 bit keys.
1190b7133757SJason A. Donenfeld	  As of z10 the ECB and CBC modes are hardware accelerated
1191b7133757SJason A. Donenfeld	  for all AES key sizes.
1192b7133757SJason A. Donenfeld	  As of z196 the CTR mode is hardware accelerated for all AES
1193b7133757SJason A. Donenfeld	  key sizes and XTS mode is hardware accelerated for 256 and
1194b7133757SJason A. Donenfeld	  512 bit keys.
1195b7133757SJason A. Donenfeld
11961da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11971da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
11981674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1199cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12001da177e4SLinus Torvalds	help
12011da177e4SLinus Torvalds	  Anubis cipher algorithm.
12021da177e4SLinus Torvalds
12031da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12041da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12051da177e4SLinus Torvalds	  in the NESSIE competition.
12061da177e4SLinus Torvalds
12071da177e4SLinus Torvalds	  See also:
12086d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12096d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12101da177e4SLinus Torvalds
1211584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1212584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
12139ace6771SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1214b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1215dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1216e2ee95b8SHye-Shik Chang	help
1217584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1218e2ee95b8SHye-Shik Chang
1219584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1220584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1221584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1222584fffc8SSebastian Siewior	  weakness of the algorithm.
1223584fffc8SSebastian Siewior
1224584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1225584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1226584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
122752ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1228584fffc8SSebastian Siewior	help
1229584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1230584fffc8SSebastian Siewior
1231584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1232584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1233584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1234e2ee95b8SHye-Shik Chang
1235e2ee95b8SHye-Shik Chang	  See also:
12369332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
1237584fffc8SSebastian Siewior
123852ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
123952ba867cSJussi Kivilinna	tristate
124052ba867cSJussi Kivilinna	help
124152ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
124252ba867cSJussi Kivilinna	  generic c and the assembler implementations.
124352ba867cSJussi Kivilinna
124452ba867cSJussi Kivilinna	  See also:
12459332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
124652ba867cSJussi Kivilinna
124764b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
124864b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1249f21a7c19SAl Viro	depends on X86 && 64BIT
1250b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
125164b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1252c0a64926SArd Biesheuvel	imply CRYPTO_CTR
125364b94ceaSJussi Kivilinna	help
125464b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
125564b94ceaSJussi Kivilinna
125664b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
125764b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
125864b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
125964b94ceaSJussi Kivilinna
126064b94ceaSJussi Kivilinna	  See also:
12619332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
126264b94ceaSJussi Kivilinna
1263584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1264584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1265584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1266584fffc8SSebastian Siewior	help
1267584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1268584fffc8SSebastian Siewior
1269584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1270584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1271584fffc8SSebastian Siewior
1272584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1273584fffc8SSebastian Siewior
1274584fffc8SSebastian Siewior	  See also:
1275584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1276584fffc8SSebastian Siewior
12770b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12780b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1279f21a7c19SAl Viro	depends on X86 && 64BIT
1280b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1281a1f91ecfSArd Biesheuvel	imply CRYPTO_CTR
12820b95ec56SJussi Kivilinna	help
12830b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12840b95ec56SJussi Kivilinna
12850b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12860b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12870b95ec56SJussi Kivilinna
12880b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12890b95ec56SJussi Kivilinna
12900b95ec56SJussi Kivilinna	  See also:
12910b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12920b95ec56SJussi Kivilinna
1293d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1294d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1295d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1296b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1297d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
129844893bc2SEric Biggers	select CRYPTO_SIMD
129955a7e88fSArd Biesheuvel	imply CRYPTO_XTS
1300d9b1d2e7SJussi Kivilinna	help
1301d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1302d9b1d2e7SJussi Kivilinna
1303d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1304d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1305d9b1d2e7SJussi Kivilinna
1306d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1307d9b1d2e7SJussi Kivilinna
1308d9b1d2e7SJussi Kivilinna	  See also:
1309d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1310d9b1d2e7SJussi Kivilinna
1311f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1312f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1313f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1314f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1315f3f935a7SJussi Kivilinna	help
1316f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1317f3f935a7SJussi Kivilinna
1318f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1319f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1320f3f935a7SJussi Kivilinna
1321f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1322f3f935a7SJussi Kivilinna
1323f3f935a7SJussi Kivilinna	  See also:
1324f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1325f3f935a7SJussi Kivilinna
132681658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
132781658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
132881658ad0SDavid S. Miller	depends on SPARC64
132981658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1330b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
133181658ad0SDavid S. Miller	help
133281658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
133381658ad0SDavid S. Miller
133481658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
133581658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
133681658ad0SDavid S. Miller
133781658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
133881658ad0SDavid S. Miller
133981658ad0SDavid S. Miller	  See also:
134081658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
134181658ad0SDavid S. Miller
1342044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1343044ab525SJussi Kivilinna	tristate
1344044ab525SJussi Kivilinna	help
1345044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1346044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1347044ab525SJussi Kivilinna
1348584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1349584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1350584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1351044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1352584fffc8SSebastian Siewior	help
1353584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1354584fffc8SSebastian Siewior	  described in RFC2144.
1355584fffc8SSebastian Siewior
13564d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13574d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13584d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
1359b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13604d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13611e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13621e63183aSEric Biggers	select CRYPTO_SIMD
1363e2d60e2fSArd Biesheuvel	imply CRYPTO_CTR
13644d6d6a2cSJohannes Goetzfried	help
13654d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13664d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13674d6d6a2cSJohannes Goetzfried
13684d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13694d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13704d6d6a2cSJohannes Goetzfried
1371584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1372584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1373584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1374044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1375584fffc8SSebastian Siewior	help
1376584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1377584fffc8SSebastian Siewior	  described in RFC2612.
1378584fffc8SSebastian Siewior
13794ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13804ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13814ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1382b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13834ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13844bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13854bd96924SEric Biggers	select CRYPTO_SIMD
13862cc0fedbSArd Biesheuvel	imply CRYPTO_XTS
13877a6623ccSArd Biesheuvel	imply CRYPTO_CTR
13884ea1277dSJohannes Goetzfried	help
13894ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13904ea1277dSJohannes Goetzfried	  described in RFC2612.
13914ea1277dSJohannes Goetzfried
13924ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13934ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13944ea1277dSJohannes Goetzfried
1395584fffc8SSebastian Siewiorconfig CRYPTO_DES
1396584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1397584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
139804007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1399584fffc8SSebastian Siewior	help
1400584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1401584fffc8SSebastian Siewior
1402c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1403c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
140497da37b3SDave Jones	depends on SPARC64
1405c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
140604007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1407b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1408c5aac2dfSDavid S. Miller	help
1409c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1410c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1411c5aac2dfSDavid S. Miller
14126574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14136574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14146574e6c6SJussi Kivilinna	depends on X86 && 64BIT
1415b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
141604007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1417768db5feSArd Biesheuvel	imply CRYPTO_CTR
14186574e6c6SJussi Kivilinna	help
14196574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14206574e6c6SJussi Kivilinna
14216574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14226574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14236574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14246574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14256574e6c6SJussi Kivilinna
1426b7133757SJason A. Donenfeldconfig CRYPTO_DES_S390
1427b7133757SJason A. Donenfeld	tristate "DES and Triple DES cipher algorithms"
1428b7133757SJason A. Donenfeld	depends on S390
1429b7133757SJason A. Donenfeld	select CRYPTO_ALGAPI
1430b7133757SJason A. Donenfeld	select CRYPTO_SKCIPHER
1431b7133757SJason A. Donenfeld	select CRYPTO_LIB_DES
1432b7133757SJason A. Donenfeld	help
1433b7133757SJason A. Donenfeld	  This is the s390 hardware accelerated implementation of the
1434b7133757SJason A. Donenfeld	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1435b7133757SJason A. Donenfeld
1436b7133757SJason A. Donenfeld	  As of z990 the ECB and CBC mode are hardware accelerated.
1437b7133757SJason A. Donenfeld	  As of z196 the CTR mode is hardware accelerated.
1438b7133757SJason A. Donenfeld
1439584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1440584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1441584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1442b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1443584fffc8SSebastian Siewior	help
1444584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1445584fffc8SSebastian Siewior
1446584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1447584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
14481674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1449584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1450584fffc8SSebastian Siewior	help
1451584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1452584fffc8SSebastian Siewior
1453584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1454584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1455584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1456584fffc8SSebastian Siewior
1457584fffc8SSebastian Siewior	  See also:
14586d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1459e2ee95b8SHye-Shik Chang
1460c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1461aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
14625fb8ef25SArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
1463b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1464c08d0e64SMartin Willi	help
1465aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1466c08d0e64SMartin Willi
1467c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1468c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1469de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
14709332a9e7SAlexander A. Klimov	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1471c08d0e64SMartin Willi
1472de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1473de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1474de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1475de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1476de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1477de61d7aeSEric Biggers
1478aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1479aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1480aa762409SEric Biggers	  in some performance-sensitive scenarios.
1481aa762409SEric Biggers
1482c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14834af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1484c9320b6dSMartin Willi	depends on X86 && 64BIT
1485b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
148628e8d89bSArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
148784e03fa3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1488c9320b6dSMartin Willi	help
14897a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14907a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1491c9320b6dSMartin Willi
1492b7133757SJason A. Donenfeldconfig CRYPTO_CHACHA_S390
1493b7133757SJason A. Donenfeld	tristate "ChaCha20 stream cipher"
1494b7133757SJason A. Donenfeld	depends on S390
1495b7133757SJason A. Donenfeld	select CRYPTO_SKCIPHER
1496b7133757SJason A. Donenfeld	select CRYPTO_LIB_CHACHA_GENERIC
1497b7133757SJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1498b7133757SJason A. Donenfeld	help
1499b7133757SJason A. Donenfeld	  This is the s390 SIMD implementation of the ChaCha20 stream
1500b7133757SJason A. Donenfeld	  cipher (RFC 7539).
1501b7133757SJason A. Donenfeld
1502b7133757SJason A. Donenfeld	  It is available as of z13.
1503b7133757SJason A. Donenfeld
1504584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1505584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
15061674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1507584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1508584fffc8SSebastian Siewior	help
1509584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1510584fffc8SSebastian Siewior
1511584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1512584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1513584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1514584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1515584fffc8SSebastian Siewior
1516584fffc8SSebastian Siewior	  See also:
1517584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1518584fffc8SSebastian Siewior
1519e4e712bbSTaehee Yooconfig CRYPTO_ARIA
1520e4e712bbSTaehee Yoo	tristate "ARIA cipher algorithm"
1521e4e712bbSTaehee Yoo	select CRYPTO_ALGAPI
1522e4e712bbSTaehee Yoo	help
1523e4e712bbSTaehee Yoo	  ARIA cipher algorithm (RFC5794).
1524e4e712bbSTaehee Yoo
1525e4e712bbSTaehee Yoo	  ARIA is a standard encryption algorithm of the Republic of Korea.
1526e4e712bbSTaehee Yoo	  The ARIA specifies three key sizes and rounds.
1527e4e712bbSTaehee Yoo	  128-bit: 12 rounds.
1528e4e712bbSTaehee Yoo	  192-bit: 14 rounds.
1529e4e712bbSTaehee Yoo	  256-bit: 16 rounds.
1530e4e712bbSTaehee Yoo
1531e4e712bbSTaehee Yoo	  See also:
1532e4e712bbSTaehee Yoo	  <https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do>
1533e4e712bbSTaehee Yoo
1534584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1535584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1536584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1537584fffc8SSebastian Siewior	help
1538584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1539584fffc8SSebastian Siewior
1540584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1541784506a1SArd Biesheuvel	  of 8 bits.
1542584fffc8SSebastian Siewior
1543584fffc8SSebastian Siewior	  See also:
15449332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1545584fffc8SSebastian Siewior
1546937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1547937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1548937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1549b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1550937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1551e0f409dcSEric Biggers	select CRYPTO_SIMD
15522e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1553937c30d7SJussi Kivilinna	help
1554937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1555937c30d7SJussi Kivilinna
1556937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1557937c30d7SJussi Kivilinna	  of 8 bits.
1558937c30d7SJussi Kivilinna
15591e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1560937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1561937c30d7SJussi Kivilinna
1562937c30d7SJussi Kivilinna	  See also:
15639332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1564937c30d7SJussi Kivilinna
1565251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1566251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1567251496dbSJussi Kivilinna	depends on X86 && !64BIT
1568b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1569251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1570e0f409dcSEric Biggers	select CRYPTO_SIMD
15712e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1572251496dbSJussi Kivilinna	help
1573251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1574251496dbSJussi Kivilinna
1575251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1576251496dbSJussi Kivilinna	  of 8 bits.
1577251496dbSJussi Kivilinna
1578251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1579251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1580251496dbSJussi Kivilinna
1581251496dbSJussi Kivilinna	  See also:
15829332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1583251496dbSJussi Kivilinna
15847efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15857efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15867efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1587b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
15887efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1589e16bf974SEric Biggers	select CRYPTO_SIMD
15909ec0af8aSArd Biesheuvel	imply CRYPTO_XTS
15912e9440aeSArd Biesheuvel	imply CRYPTO_CTR
15927efe4076SJohannes Goetzfried	help
15937efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15947efe4076SJohannes Goetzfried
15957efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15967efe4076SJohannes Goetzfried	  of 8 bits.
15977efe4076SJohannes Goetzfried
15987efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15997efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
16007efe4076SJohannes Goetzfried
16017efe4076SJohannes Goetzfried	  See also:
16029332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
16037efe4076SJohannes Goetzfried
160456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
160556d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
160656d76c96SJussi Kivilinna	depends on X86 && 64BIT
160756d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
160856d76c96SJussi Kivilinna	help
160956d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
161056d76c96SJussi Kivilinna
161156d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
161256d76c96SJussi Kivilinna	  of 8 bits.
161356d76c96SJussi Kivilinna
161456d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
161556d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
161656d76c96SJussi Kivilinna
161756d76c96SJussi Kivilinna	  See also:
16189332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
161956d76c96SJussi Kivilinna
1620747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1621d2825fa9SJason A. Donenfeld	tristate
1622d2825fa9SJason A. Donenfeld
1623d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC
1624747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1625747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1626d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1627747c8ce4SGilad Ben-Yossef	help
1628747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1629747c8ce4SGilad Ben-Yossef
1630747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1631747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1632747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1633747c8ce4SGilad Ben-Yossef
1634747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1635747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1636747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1637747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1638747c8ce4SGilad Ben-Yossef
1639747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1640747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1641747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1642747c8ce4SGilad Ben-Yossef
1643747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1644747c8ce4SGilad Ben-Yossef
1645747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1646747c8ce4SGilad Ben-Yossef
1647747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1648747c8ce4SGilad Ben-Yossef
1649a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64
1650a7ee22eeSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1651a7ee22eeSTianjia Zhang	depends on X86 && 64BIT
1652a7ee22eeSTianjia Zhang	select CRYPTO_SKCIPHER
1653a7ee22eeSTianjia Zhang	select CRYPTO_SIMD
1654a7ee22eeSTianjia Zhang	select CRYPTO_ALGAPI
1655d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1656a7ee22eeSTianjia Zhang	help
1657a7ee22eeSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1658a7ee22eeSTianjia Zhang
1659a7ee22eeSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1660a7ee22eeSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
1661a7ee22eeSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
1662a7ee22eeSTianjia Zhang
1663a7ee22eeSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1664a7ee22eeSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
1665a7ee22eeSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1666a7ee22eeSTianjia Zhang	  effect of instruction acceleration.
1667a7ee22eeSTianjia Zhang
1668a7ee22eeSTianjia Zhang	  If unsure, say N.
1669a7ee22eeSTianjia Zhang
16705b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64
16715b2efa2bSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
16725b2efa2bSTianjia Zhang	depends on X86 && 64BIT
16735b2efa2bSTianjia Zhang	select CRYPTO_SKCIPHER
16745b2efa2bSTianjia Zhang	select CRYPTO_SIMD
16755b2efa2bSTianjia Zhang	select CRYPTO_ALGAPI
1676d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
16775b2efa2bSTianjia Zhang	select CRYPTO_SM4_AESNI_AVX_X86_64
16785b2efa2bSTianjia Zhang	help
16795b2efa2bSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
16805b2efa2bSTianjia Zhang
16815b2efa2bSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
16825b2efa2bSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
16835b2efa2bSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
16845b2efa2bSTianjia Zhang
16855b2efa2bSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
16865b2efa2bSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
16875b2efa2bSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
16885b2efa2bSTianjia Zhang	  effect of instruction acceleration.
16895b2efa2bSTianjia Zhang
16905b2efa2bSTianjia Zhang	  If unsure, say N.
16915b2efa2bSTianjia Zhang
1692584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1693584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
16941674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1695584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1696584fffc8SSebastian Siewior	help
1697584fffc8SSebastian Siewior	  TEA cipher algorithm.
1698584fffc8SSebastian Siewior
1699584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1700584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1701584fffc8SSebastian Siewior	  little memory.
1702584fffc8SSebastian Siewior
1703584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1704584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1705584fffc8SSebastian Siewior	  in the TEA algorithm.
1706584fffc8SSebastian Siewior
1707584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1708584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1709584fffc8SSebastian Siewior
1710584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1711584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1712584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1713584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1714584fffc8SSebastian Siewior	help
1715584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1716584fffc8SSebastian Siewior
1717584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1718584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1719584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1720584fffc8SSebastian Siewior	  bits.
1721584fffc8SSebastian Siewior
1722584fffc8SSebastian Siewior	  See also:
17239332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1724584fffc8SSebastian Siewior
1725584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1726584fffc8SSebastian Siewior	tristate
1727584fffc8SSebastian Siewior	help
1728584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1729584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1730584fffc8SSebastian Siewior
1731584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1732584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1733584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1734584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1735584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1736f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1737584fffc8SSebastian Siewior	help
1738584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1739584fffc8SSebastian Siewior
1740584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1741584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1742584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1743584fffc8SSebastian Siewior	  bits.
1744584fffc8SSebastian Siewior
1745584fffc8SSebastian Siewior	  See also:
17469332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1747584fffc8SSebastian Siewior
1748584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1749584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1750584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1751584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1752584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1753f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1754584fffc8SSebastian Siewior	help
1755584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1756584fffc8SSebastian Siewior
1757584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1758584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1759584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1760584fffc8SSebastian Siewior	  bits.
1761584fffc8SSebastian Siewior
1762584fffc8SSebastian Siewior	  See also:
17639332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1764584fffc8SSebastian Siewior
17658280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17668280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1767f21a7c19SAl Viro	depends on X86 && 64BIT
1768b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17698280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17708280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
17718280daadSJussi Kivilinna	help
17728280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17738280daadSJussi Kivilinna
17748280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17758280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17768280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17778280daadSJussi Kivilinna	  bits.
17788280daadSJussi Kivilinna
17798280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17808280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17818280daadSJussi Kivilinna
17828280daadSJussi Kivilinna	  See also:
17839332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
17848280daadSJussi Kivilinna
1785107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1786107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1787107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1788b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17890e6ab46dSEric Biggers	select CRYPTO_SIMD
1790107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1791107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1792107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1793da4df93aSArd Biesheuvel	imply CRYPTO_XTS
1794107778b5SJohannes Goetzfried	help
1795107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1796107778b5SJohannes Goetzfried
1797107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1798107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1799107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1800107778b5SJohannes Goetzfried	  bits.
1801107778b5SJohannes Goetzfried
1802107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1803107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1804107778b5SJohannes Goetzfried
1805107778b5SJohannes Goetzfried	  See also:
18069332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1807107778b5SJohannes Goetzfried
1808584fffc8SSebastian Siewiorcomment "Compression"
1809584fffc8SSebastian Siewior
18101da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
18111da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1812cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1813f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
18141da177e4SLinus Torvalds	select ZLIB_INFLATE
18151da177e4SLinus Torvalds	select ZLIB_DEFLATE
18161da177e4SLinus Torvalds	help
18171da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
18181da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
18191da177e4SLinus Torvalds
18201da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
18211da177e4SLinus Torvalds
18220b77abb3SZoltan Sogorconfig CRYPTO_LZO
18230b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
18240b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1825ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
18260b77abb3SZoltan Sogor	select LZO_COMPRESS
18270b77abb3SZoltan Sogor	select LZO_DECOMPRESS
18280b77abb3SZoltan Sogor	help
18290b77abb3SZoltan Sogor	  This is the LZO algorithm.
18300b77abb3SZoltan Sogor
183135a1fc18SSeth Jenningsconfig CRYPTO_842
183235a1fc18SSeth Jennings	tristate "842 compression algorithm"
18332062c5b6SDan Streetman	select CRYPTO_ALGAPI
18346a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
18352062c5b6SDan Streetman	select 842_COMPRESS
18362062c5b6SDan Streetman	select 842_DECOMPRESS
183735a1fc18SSeth Jennings	help
183835a1fc18SSeth Jennings	  This is the 842 algorithm.
183935a1fc18SSeth Jennings
18400ea8530dSChanho Minconfig CRYPTO_LZ4
18410ea8530dSChanho Min	tristate "LZ4 compression algorithm"
18420ea8530dSChanho Min	select CRYPTO_ALGAPI
18438cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
18440ea8530dSChanho Min	select LZ4_COMPRESS
18450ea8530dSChanho Min	select LZ4_DECOMPRESS
18460ea8530dSChanho Min	help
18470ea8530dSChanho Min	  This is the LZ4 algorithm.
18480ea8530dSChanho Min
18490ea8530dSChanho Minconfig CRYPTO_LZ4HC
18500ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
18510ea8530dSChanho Min	select CRYPTO_ALGAPI
185291d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
18530ea8530dSChanho Min	select LZ4HC_COMPRESS
18540ea8530dSChanho Min	select LZ4_DECOMPRESS
18550ea8530dSChanho Min	help
18560ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
18570ea8530dSChanho Min
1858d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1859d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1860d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1861d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1862d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1863d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1864d28fc3dbSNick Terrell	help
1865d28fc3dbSNick Terrell	  This is the zstd algorithm.
1866d28fc3dbSNick Terrell
186717f0f4a4SNeil Hormancomment "Random Number Generation"
186817f0f4a4SNeil Horman
186917f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
187017f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
187117f0f4a4SNeil Horman	select CRYPTO_AES
187217f0f4a4SNeil Horman	select CRYPTO_RNG
187317f0f4a4SNeil Horman	help
187417f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
187517f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18767dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18777dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
187817f0f4a4SNeil Horman
1879f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1880419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1881419090c6SStephan Mueller	help
1882419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1883419090c6SStephan Mueller	  more of the DRBG types must be selected.
1884419090c6SStephan Mueller
1885f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1886419090c6SStephan Mueller
1887419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1888401e4238SHerbert Xu	bool
1889419090c6SStephan Mueller	default y
1890419090c6SStephan Mueller	select CRYPTO_HMAC
18915261cdf4SStephan Mueller	select CRYPTO_SHA512
1892419090c6SStephan Mueller
1893419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1894419090c6SStephan Mueller	bool "Enable Hash DRBG"
1895826775bbSHerbert Xu	select CRYPTO_SHA256
1896419090c6SStephan Mueller	help
1897419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1898419090c6SStephan Mueller
1899419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1900419090c6SStephan Mueller	bool "Enable CTR DRBG"
1901419090c6SStephan Mueller	select CRYPTO_AES
1902d6fc1a45SCorentin Labbe	select CRYPTO_CTR
1903419090c6SStephan Mueller	help
1904419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1905419090c6SStephan Mueller
1906f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1907f2c89a10SHerbert Xu	tristate
1908401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1909f2c89a10SHerbert Xu	select CRYPTO_RNG
1910bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1911f2c89a10SHerbert Xu
1912f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1913419090c6SStephan Mueller
1914bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1915bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
19162f313e02SArnd Bergmann	select CRYPTO_RNG
1917bb5530e4SStephan Mueller	help
1918bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1919bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1920bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1921bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1922bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1923bb5530e4SStephan Mueller
1924026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR
1925026a733eSStephan Müller	tristate
1926a88592ccSHerbert Xu	select CRYPTO_HMAC
1927304b4aceSStephan Müller	select CRYPTO_SHA256
1928026a733eSStephan Müller
192903c8efc1SHerbert Xuconfig CRYPTO_USER_API
193003c8efc1SHerbert Xu	tristate
193103c8efc1SHerbert Xu
1932fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1933fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
19347451708fSHerbert Xu	depends on NET
1935fe869cdbSHerbert Xu	select CRYPTO_HASH
1936fe869cdbSHerbert Xu	select CRYPTO_USER_API
1937fe869cdbSHerbert Xu	help
1938fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1939fe869cdbSHerbert Xu	  algorithms.
1940fe869cdbSHerbert Xu
19418ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
19428ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
19437451708fSHerbert Xu	depends on NET
1944b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
19458ff59090SHerbert Xu	select CRYPTO_USER_API
19468ff59090SHerbert Xu	help
19478ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
19488ff59090SHerbert Xu	  key cipher algorithms.
19498ff59090SHerbert Xu
19502f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
19512f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
19522f375538SStephan Mueller	depends on NET
19532f375538SStephan Mueller	select CRYPTO_RNG
19542f375538SStephan Mueller	select CRYPTO_USER_API
19552f375538SStephan Mueller	help
19562f375538SStephan Mueller	  This option enables the user-spaces interface for random
19572f375538SStephan Mueller	  number generator algorithms.
19582f375538SStephan Mueller
195977ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP
196077ebdabeSElena Petrova	bool "Enable CAVP testing of DRBG"
196177ebdabeSElena Petrova	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
196277ebdabeSElena Petrova	help
196377ebdabeSElena Petrova	  This option enables extra API for CAVP testing via the user-space
196477ebdabeSElena Petrova	  interface: resetting of DRBG entropy, and providing Additional Data.
196577ebdabeSElena Petrova	  This should only be enabled for CAVP testing. You should say
196677ebdabeSElena Petrova	  no unless you know what this is.
196777ebdabeSElena Petrova
1968b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1969b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1970b64a2d95SHerbert Xu	depends on NET
1971b64a2d95SHerbert Xu	select CRYPTO_AEAD
1972b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
197372548b09SStephan Mueller	select CRYPTO_NULL
1974b64a2d95SHerbert Xu	select CRYPTO_USER_API
1975b64a2d95SHerbert Xu	help
1976b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1977b64a2d95SHerbert Xu	  cipher algorithms.
1978b64a2d95SHerbert Xu
19799ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE
19809ace6771SArd Biesheuvel	bool "Enable obsolete cryptographic algorithms for userspace"
19819ace6771SArd Biesheuvel	depends on CRYPTO_USER_API
19829ace6771SArd Biesheuvel	default y
19839ace6771SArd Biesheuvel	help
19849ace6771SArd Biesheuvel	  Allow obsolete cryptographic algorithms to be selected that have
19859ace6771SArd Biesheuvel	  already been phased out from internal use by the kernel, and are
19869ace6771SArd Biesheuvel	  only useful for userspace clients that still rely on them.
19879ace6771SArd Biesheuvel
1988cac5818cSCorentin Labbeconfig CRYPTO_STATS
1989cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1990a6a31385SCorentin Labbe	depends on CRYPTO_USER
1991cac5818cSCorentin Labbe	help
1992cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1993cac5818cSCorentin Labbe	  This will collect:
1994cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1995cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1996cac5818cSCorentin Labbe	  - size and numbers of hash operations
1997cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1998cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1999cac5818cSCorentin Labbe
2000ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
2001ee08997fSDmitry Kasatkin	bool
2002ee08997fSDmitry Kasatkin
2003e45f710bSRobert Elliottif MIPS
2004e45f710bSRobert Elliottsource "arch/mips/crypto/Kconfig"
2005e45f710bSRobert Elliottendif
2006*6a490a4eSRobert Elliottif PPC
2007*6a490a4eSRobert Elliottsource "arch/powerpc/crypto/Kconfig"
2008*6a490a4eSRobert Elliottendif
2009e45f710bSRobert Elliott
20101da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
20118636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
20128636a1f9SMasahiro Yamadasource "certs/Kconfig"
20131da177e4SLinus Torvalds
2014cce9e06dSHerbert Xuendif	# if CRYPTO
2015