11da177e4SLinus Torvalds# 2685784aaSDan Williams# Generic algorithms support 3685784aaSDan Williams# 4685784aaSDan Williamsconfig XOR_BLOCKS 5685784aaSDan Williams tristate 6685784aaSDan Williams 7685784aaSDan Williams# 89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 99bc89cd8SDan Williams# 109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 119bc89cd8SDan Williams 129bc89cd8SDan Williams# 131da177e4SLinus Torvalds# Cryptographic API Configuration 141da177e4SLinus Torvalds# 152e290f43SJan Engelhardtmenuconfig CRYPTO 16c3715cb9SSebastian Siewior tristate "Cryptographic API" 171da177e4SLinus Torvalds help 181da177e4SLinus Torvalds This option provides the core Cryptographic API. 191da177e4SLinus Torvalds 20cce9e06dSHerbert Xuif CRYPTO 21cce9e06dSHerbert Xu 22584fffc8SSebastian Siewiorcomment "Crypto core or helper" 23584fffc8SSebastian Siewior 24ccb778e1SNeil Hormanconfig CRYPTO_FIPS 25ccb778e1SNeil Horman bool "FIPS 200 compliance" 26f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 271f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 28ccb778e1SNeil Horman help 29ccb778e1SNeil Horman This options enables the fips boot option which is 30ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 31ccb778e1SNeil Horman certification. You should say no unless you know what 32e84c5480SChuck Ebbert this is. 33ccb778e1SNeil Horman 34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 35cce9e06dSHerbert Xu tristate 366a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 37cce9e06dSHerbert Xu help 38cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 39cce9e06dSHerbert Xu 406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 416a0fcbb4SHerbert Xu tristate 426a0fcbb4SHerbert Xu 431ae97820SHerbert Xuconfig CRYPTO_AEAD 441ae97820SHerbert Xu tristate 456a0fcbb4SHerbert Xu select CRYPTO_AEAD2 461ae97820SHerbert Xu select CRYPTO_ALGAPI 471ae97820SHerbert Xu 486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 496a0fcbb4SHerbert Xu tristate 506a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 51149a3971SHerbert Xu select CRYPTO_NULL2 52149a3971SHerbert Xu select CRYPTO_RNG2 536a0fcbb4SHerbert Xu 545cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 555cde0af2SHerbert Xu tristate 566a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 575cde0af2SHerbert Xu select CRYPTO_ALGAPI 586a0fcbb4SHerbert Xu 596a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 606a0fcbb4SHerbert Xu tristate 616a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 626a0fcbb4SHerbert Xu select CRYPTO_RNG2 630a2e821dSHuang Ying select CRYPTO_WORKQUEUE 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1082ebda74fSGiovanni Cabiddu 1092ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1102ebda74fSGiovanni Cabiddu tristate 1112ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1122ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1132ebda74fSGiovanni Cabiddu 114cfc2bb32STadeusz Strukconfig CRYPTO_RSA 115cfc2bb32STadeusz Struk tristate "RSA algorithm" 116425e0172STadeusz Struk select CRYPTO_AKCIPHER 11758446fefSTadeusz Struk select CRYPTO_MANAGER 118cfc2bb32STadeusz Struk select MPILIB 119cfc2bb32STadeusz Struk select ASN1 120cfc2bb32STadeusz Struk help 121cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 122cfc2bb32STadeusz Struk 123802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 124802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 125802c7f1cSSalvatore Benedetto select CRYPTO_KPP 126802c7f1cSSalvatore Benedetto select MPILIB 127802c7f1cSSalvatore Benedetto help 128802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 129802c7f1cSSalvatore Benedetto 1303c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1313c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 1323c4b2390SSalvatore Benedetto select CRYTPO_KPP 133*6755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1343c4b2390SSalvatore Benedetto help 1353c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 136802c7f1cSSalvatore Benedetto 1372b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1382b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1396a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1402b8c19dbSHerbert Xu help 1412b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1422b8c19dbSHerbert Xu cbc(aes). 1432b8c19dbSHerbert Xu 1446a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1456a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1476a0fcbb4SHerbert Xu select CRYPTO_HASH2 1486a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 149946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1504e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1512ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1526a0fcbb4SHerbert Xu 153a38f7907SSteffen Klassertconfig CRYPTO_USER 154a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1555db017aaSHerbert Xu depends on NET 156a38f7907SSteffen Klassert select CRYPTO_MANAGER 157a38f7907SSteffen Klassert help 158d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 159a38f7907SSteffen Klassert cbc(aes). 160a38f7907SSteffen Klassert 161326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 162326a6346SHerbert Xu bool "Disable run-time self tests" 16300ca28a5SHerbert Xu default y 16400ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1650b767f96SAlexander Shishkin help 166326a6346SHerbert Xu Disable run-time self tests that normally take place at 167326a6346SHerbert Xu algorithm registration. 1680b767f96SAlexander Shishkin 169584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17008c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 171584fffc8SSebastian Siewior help 172584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 173584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 174584fffc8SSebastian Siewior option will be selected automatically if you select such a 175584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 176584fffc8SSebastian Siewior an external module that requires these functions. 177584fffc8SSebastian Siewior 178584fffc8SSebastian Siewiorconfig CRYPTO_NULL 179584fffc8SSebastian Siewior tristate "Null algorithms" 180149a3971SHerbert Xu select CRYPTO_NULL2 181584fffc8SSebastian Siewior help 182584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 183584fffc8SSebastian Siewior 184149a3971SHerbert Xuconfig CRYPTO_NULL2 185dd43c4e9SHerbert Xu tristate 186149a3971SHerbert Xu select CRYPTO_ALGAPI2 187149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 188149a3971SHerbert Xu select CRYPTO_HASH2 189149a3971SHerbert Xu 1905068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1913b4afaf2SKees Cook tristate "Parallel crypto engine" 1923b4afaf2SKees Cook depends on SMP 1935068c7a8SSteffen Klassert select PADATA 1945068c7a8SSteffen Klassert select CRYPTO_MANAGER 1955068c7a8SSteffen Klassert select CRYPTO_AEAD 1965068c7a8SSteffen Klassert help 1975068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1985068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1995068c7a8SSteffen Klassert 20025c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20125c38d3fSHuang Ying tristate 20225c38d3fSHuang Ying 203584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 204584fffc8SSebastian Siewior tristate "Software async crypto daemon" 205584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 206b8a28251SLoc Ho select CRYPTO_HASH 207584fffc8SSebastian Siewior select CRYPTO_MANAGER 208254eff77SHuang Ying select CRYPTO_WORKQUEUE 209584fffc8SSebastian Siewior help 210584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 211584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 212584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 213584fffc8SSebastian Siewior 2141e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2151e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2161e65b81aSTim Chen select CRYPTO_BLKCIPHER 2171e65b81aSTim Chen select CRYPTO_HASH 2181e65b81aSTim Chen select CRYPTO_MANAGER 2191e65b81aSTim Chen select CRYPTO_WORKQUEUE 2201e65b81aSTim Chen help 2211e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2221e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2231e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2241e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2251e65b81aSTim Chen in the context of this kernel thread and drivers can post 2260e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2271e65b81aSTim Chen 228584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 229584fffc8SSebastian Siewior tristate "Authenc support" 230584fffc8SSebastian Siewior select CRYPTO_AEAD 231584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 232584fffc8SSebastian Siewior select CRYPTO_MANAGER 233584fffc8SSebastian Siewior select CRYPTO_HASH 234e94c6a7aSHerbert Xu select CRYPTO_NULL 235584fffc8SSebastian Siewior help 236584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 237584fffc8SSebastian Siewior This is required for IPSec. 238584fffc8SSebastian Siewior 239584fffc8SSebastian Siewiorconfig CRYPTO_TEST 240584fffc8SSebastian Siewior tristate "Testing module" 241584fffc8SSebastian Siewior depends on m 242da7f033dSHerbert Xu select CRYPTO_MANAGER 243584fffc8SSebastian Siewior help 244584fffc8SSebastian Siewior Quick & dirty crypto test module. 245584fffc8SSebastian Siewior 246a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER 247ffaf9156SJussi Kivilinna tristate 248ffaf9156SJussi Kivilinna select CRYPTO_CRYPTD 249ffaf9156SJussi Kivilinna 250266d0516SHerbert Xuconfig CRYPTO_SIMD 251266d0516SHerbert Xu tristate 252266d0516SHerbert Xu select CRYPTO_CRYPTD 253266d0516SHerbert Xu 254596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 255596d8750SJussi Kivilinna tristate 256596d8750SJussi Kivilinna depends on X86 257065ce327SHerbert Xu select CRYPTO_BLKCIPHER 258596d8750SJussi Kivilinna 259735d37b5SBaolin Wangconfig CRYPTO_ENGINE 260735d37b5SBaolin Wang tristate 261735d37b5SBaolin Wang 262584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 263584fffc8SSebastian Siewior 264584fffc8SSebastian Siewiorconfig CRYPTO_CCM 265584fffc8SSebastian Siewior tristate "CCM support" 266584fffc8SSebastian Siewior select CRYPTO_CTR 267f15f05b0SArd Biesheuvel select CRYPTO_HASH 268584fffc8SSebastian Siewior select CRYPTO_AEAD 269584fffc8SSebastian Siewior help 270584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 271584fffc8SSebastian Siewior 272584fffc8SSebastian Siewiorconfig CRYPTO_GCM 273584fffc8SSebastian Siewior tristate "GCM/GMAC support" 274584fffc8SSebastian Siewior select CRYPTO_CTR 275584fffc8SSebastian Siewior select CRYPTO_AEAD 2769382d97aSHuang Ying select CRYPTO_GHASH 2779489667dSJussi Kivilinna select CRYPTO_NULL 278584fffc8SSebastian Siewior help 279584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 280584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 281584fffc8SSebastian Siewior 28271ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28371ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28471ebc4d1SMartin Willi select CRYPTO_CHACHA20 28571ebc4d1SMartin Willi select CRYPTO_POLY1305 28671ebc4d1SMartin Willi select CRYPTO_AEAD 28771ebc4d1SMartin Willi help 28871ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28971ebc4d1SMartin Willi 29071ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29171ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29271ebc4d1SMartin Willi IETF protocols. 29371ebc4d1SMartin Willi 294584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 295584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 296584fffc8SSebastian Siewior select CRYPTO_AEAD 297584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 298856e3f40SHerbert Xu select CRYPTO_NULL 299401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 300584fffc8SSebastian Siewior help 301584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 302584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 303584fffc8SSebastian Siewior 304a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 305a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 306a10f554fSHerbert Xu select CRYPTO_AEAD 307a10f554fSHerbert Xu select CRYPTO_NULL 308401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3093491244cSHerbert Xu default m 310a10f554fSHerbert Xu help 311a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 312a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 313a10f554fSHerbert Xu algorithm for CBC. 314a10f554fSHerbert Xu 315584fffc8SSebastian Siewiorcomment "Block modes" 316584fffc8SSebastian Siewior 317584fffc8SSebastian Siewiorconfig CRYPTO_CBC 318584fffc8SSebastian Siewior tristate "CBC support" 319584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 320584fffc8SSebastian Siewior select CRYPTO_MANAGER 321584fffc8SSebastian Siewior help 322584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 323584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 324584fffc8SSebastian Siewior 325584fffc8SSebastian Siewiorconfig CRYPTO_CTR 326584fffc8SSebastian Siewior tristate "CTR support" 327584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 328584fffc8SSebastian Siewior select CRYPTO_SEQIV 329584fffc8SSebastian Siewior select CRYPTO_MANAGER 330584fffc8SSebastian Siewior help 331584fffc8SSebastian Siewior CTR: Counter mode 332584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 333584fffc8SSebastian Siewior 334584fffc8SSebastian Siewiorconfig CRYPTO_CTS 335584fffc8SSebastian Siewior tristate "CTS support" 336584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 337584fffc8SSebastian Siewior help 338584fffc8SSebastian Siewior CTS: Cipher Text Stealing 339584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 340584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 341584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 342584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 343584fffc8SSebastian Siewior for AES encryption. 344584fffc8SSebastian Siewior 345584fffc8SSebastian Siewiorconfig CRYPTO_ECB 346584fffc8SSebastian Siewior tristate "ECB support" 347584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 348584fffc8SSebastian Siewior select CRYPTO_MANAGER 349584fffc8SSebastian Siewior help 350584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 351584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 352584fffc8SSebastian Siewior the input block by block. 353584fffc8SSebastian Siewior 354584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3552470a2b2SJussi Kivilinna tristate "LRW support" 356584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 357584fffc8SSebastian Siewior select CRYPTO_MANAGER 358584fffc8SSebastian Siewior select CRYPTO_GF128MUL 359584fffc8SSebastian Siewior help 360584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 361584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 362584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 363584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 364584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 365584fffc8SSebastian Siewior 366584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 367584fffc8SSebastian Siewior tristate "PCBC support" 368584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 369584fffc8SSebastian Siewior select CRYPTO_MANAGER 370584fffc8SSebastian Siewior help 371584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 372584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 373584fffc8SSebastian Siewior 374584fffc8SSebastian Siewiorconfig CRYPTO_XTS 3755bcf8e6dSJussi Kivilinna tristate "XTS support" 376584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 377584fffc8SSebastian Siewior select CRYPTO_MANAGER 37812cb3a1cSMilan Broz select CRYPTO_ECB 379584fffc8SSebastian Siewior help 380584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 381584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 382584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 383584fffc8SSebastian Siewior 3841c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 3851c49678eSStephan Mueller tristate "Key wrapping support" 3861c49678eSStephan Mueller select CRYPTO_BLKCIPHER 3871c49678eSStephan Mueller help 3881c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 3891c49678eSStephan Mueller padding. 3901c49678eSStephan Mueller 391584fffc8SSebastian Siewiorcomment "Hash modes" 392584fffc8SSebastian Siewior 39393b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 39493b5e86aSJussi Kivilinna tristate "CMAC support" 39593b5e86aSJussi Kivilinna select CRYPTO_HASH 39693b5e86aSJussi Kivilinna select CRYPTO_MANAGER 39793b5e86aSJussi Kivilinna help 39893b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 39993b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 40093b5e86aSJussi Kivilinna 40193b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 40293b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 40393b5e86aSJussi Kivilinna 4041da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4058425165dSHerbert Xu tristate "HMAC support" 4060796ae06SHerbert Xu select CRYPTO_HASH 40743518407SHerbert Xu select CRYPTO_MANAGER 4081da177e4SLinus Torvalds help 4091da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4101da177e4SLinus Torvalds This is required for IPSec. 4111da177e4SLinus Torvalds 412333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 413333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 414333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 415333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 416333b0d7eSKazunori MIYAZAWA help 417333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 418333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 419333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 420333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 421333b0d7eSKazunori MIYAZAWA 422f1939f7cSShane Wangconfig CRYPTO_VMAC 423f1939f7cSShane Wang tristate "VMAC support" 424f1939f7cSShane Wang select CRYPTO_HASH 425f1939f7cSShane Wang select CRYPTO_MANAGER 426f1939f7cSShane Wang help 427f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 428f1939f7cSShane Wang very high speed on 64-bit architectures. 429f1939f7cSShane Wang 430f1939f7cSShane Wang See also: 431f1939f7cSShane Wang <http://fastcrypto.org/vmac> 432f1939f7cSShane Wang 433584fffc8SSebastian Siewiorcomment "Digest" 434584fffc8SSebastian Siewior 435584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 436584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4375773a3e6SHerbert Xu select CRYPTO_HASH 4386a0962b2SDarrick J. Wong select CRC32 4391da177e4SLinus Torvalds help 440584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 441584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 44269c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4431da177e4SLinus Torvalds 4448cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4458cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4468cb51ba8SAustin Zhang depends on X86 4478cb51ba8SAustin Zhang select CRYPTO_HASH 4488cb51ba8SAustin Zhang help 4498cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4508cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4518cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4528cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4538cb51ba8SAustin Zhang gain performance compared with software implementation. 4548cb51ba8SAustin Zhang Module will be crc32c-intel. 4558cb51ba8SAustin Zhang 4567cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4576dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 458c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4596dd7a82cSAnton Blanchard select CRYPTO_HASH 4606dd7a82cSAnton Blanchard select CRC32 4616dd7a82cSAnton Blanchard help 4626dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4636dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4646dd7a82cSAnton Blanchard and newer processors for improved performance. 4656dd7a82cSAnton Blanchard 4666dd7a82cSAnton Blanchard 467442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 468442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 469442a7c40SDavid S. Miller depends on SPARC64 470442a7c40SDavid S. Miller select CRYPTO_HASH 471442a7c40SDavid S. Miller select CRC32 472442a7c40SDavid S. Miller help 473442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 474442a7c40SDavid S. Miller when available. 475442a7c40SDavid S. Miller 47678c37d19SAlexander Boykoconfig CRYPTO_CRC32 47778c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 47878c37d19SAlexander Boyko select CRYPTO_HASH 47978c37d19SAlexander Boyko select CRC32 48078c37d19SAlexander Boyko help 48178c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 48278c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 48378c37d19SAlexander Boyko 48478c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 48578c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 48678c37d19SAlexander Boyko depends on X86 48778c37d19SAlexander Boyko select CRYPTO_HASH 48878c37d19SAlexander Boyko select CRC32 48978c37d19SAlexander Boyko help 49078c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 49178c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 49278c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 49378c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 49478c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 49578c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 49678c37d19SAlexander Boyko 49768411521SHerbert Xuconfig CRYPTO_CRCT10DIF 49868411521SHerbert Xu tristate "CRCT10DIF algorithm" 49968411521SHerbert Xu select CRYPTO_HASH 50068411521SHerbert Xu help 50168411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 50268411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 50368411521SHerbert Xu transforms to be used if they are available. 50468411521SHerbert Xu 50568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 50668411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 50768411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 50868411521SHerbert Xu select CRYPTO_HASH 50968411521SHerbert Xu help 51068411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 51168411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 51268411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 51368411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 51468411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 51568411521SHerbert Xu 516b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 517b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 518b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 519b01df1c1SDaniel Axtens select CRYPTO_HASH 520b01df1c1SDaniel Axtens help 521b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 522b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 523b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 524b01df1c1SDaniel Axtens 525146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 526146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 527146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 528146c8688SDaniel Axtens help 529146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 530146c8688SDaniel Axtens POWER8 vpmsum instructions. 531146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 532146c8688SDaniel Axtens 5332cdc6899SHuang Yingconfig CRYPTO_GHASH 5342cdc6899SHuang Ying tristate "GHASH digest algorithm" 5352cdc6899SHuang Ying select CRYPTO_GF128MUL 536578c60fbSArnd Bergmann select CRYPTO_HASH 5372cdc6899SHuang Ying help 5382cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5392cdc6899SHuang Ying 540f979e014SMartin Williconfig CRYPTO_POLY1305 541f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 542578c60fbSArnd Bergmann select CRYPTO_HASH 543f979e014SMartin Willi help 544f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 545f979e014SMartin Willi 546f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 547f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 548f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 549f979e014SMartin Willi 550c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 551b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 552c70f4abeSMartin Willi depends on X86 && 64BIT 553c70f4abeSMartin Willi select CRYPTO_POLY1305 554c70f4abeSMartin Willi help 555c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 556c70f4abeSMartin Willi 557c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 558c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 559c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 560c70f4abeSMartin Willi instructions. 561c70f4abeSMartin Willi 5621da177e4SLinus Torvaldsconfig CRYPTO_MD4 5631da177e4SLinus Torvalds tristate "MD4 digest algorithm" 564808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 5651da177e4SLinus Torvalds help 5661da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 5671da177e4SLinus Torvalds 5681da177e4SLinus Torvaldsconfig CRYPTO_MD5 5691da177e4SLinus Torvalds tristate "MD5 digest algorithm" 57014b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 5711da177e4SLinus Torvalds help 5721da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 5731da177e4SLinus Torvalds 574d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 575d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 576d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 577d69e75deSAaro Koskinen select CRYPTO_MD5 578d69e75deSAaro Koskinen select CRYPTO_HASH 579d69e75deSAaro Koskinen help 580d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 581d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 582d69e75deSAaro Koskinen 583e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 584e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 585e8e59953SMarkus Stockhausen depends on PPC 586e8e59953SMarkus Stockhausen select CRYPTO_HASH 587e8e59953SMarkus Stockhausen help 588e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 589e8e59953SMarkus Stockhausen in PPC assembler. 590e8e59953SMarkus Stockhausen 591fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 592fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 593fa4dfedcSDavid S. Miller depends on SPARC64 594fa4dfedcSDavid S. Miller select CRYPTO_MD5 595fa4dfedcSDavid S. Miller select CRYPTO_HASH 596fa4dfedcSDavid S. Miller help 597fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 598fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 599fa4dfedcSDavid S. Miller 600584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 601584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 60219e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 603584fffc8SSebastian Siewior help 604584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 605584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 606584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 607584fffc8SSebastian Siewior of the algorithm. 608584fffc8SSebastian Siewior 60982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 61082798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 6117c4468bcSHerbert Xu select CRYPTO_HASH 61282798f90SAdrian-Ken Rueegsegger help 61382798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 61482798f90SAdrian-Ken Rueegsegger 61582798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 61635ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 61782798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 61882798f90SAdrian-Ken Rueegsegger 61982798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6206d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 62182798f90SAdrian-Ken Rueegsegger 62282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 62382798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 624e5835fbaSHerbert Xu select CRYPTO_HASH 62582798f90SAdrian-Ken Rueegsegger help 62682798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 62782798f90SAdrian-Ken Rueegsegger 62882798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 62982798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 630b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 631b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 63282798f90SAdrian-Ken Rueegsegger 633b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 634b6d44341SAdrian Bunk against RIPEMD-160. 635534fe2c1SAdrian-Ken Rueegsegger 636534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6376d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 638534fe2c1SAdrian-Ken Rueegsegger 639534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 640534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 641d8a5e2e9SHerbert Xu select CRYPTO_HASH 642534fe2c1SAdrian-Ken Rueegsegger help 643b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 644b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 645b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 646b6d44341SAdrian Bunk (than RIPEMD-128). 647534fe2c1SAdrian-Ken Rueegsegger 648534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6496d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 650534fe2c1SAdrian-Ken Rueegsegger 651534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 652534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6533b8efb4cSHerbert Xu select CRYPTO_HASH 654534fe2c1SAdrian-Ken Rueegsegger help 655b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 656b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 657b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 658b6d44341SAdrian Bunk (than RIPEMD-160). 659534fe2c1SAdrian-Ken Rueegsegger 66082798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6616d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 66282798f90SAdrian-Ken Rueegsegger 6631da177e4SLinus Torvaldsconfig CRYPTO_SHA1 6641da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 66554ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 6661da177e4SLinus Torvalds help 6671da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 6681da177e4SLinus Torvalds 66966be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 670e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 67166be8951SMathias Krause depends on X86 && 64BIT 67266be8951SMathias Krause select CRYPTO_SHA1 67366be8951SMathias Krause select CRYPTO_HASH 67466be8951SMathias Krause help 67566be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 67666be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 677e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 678e38b6b7fStim when available. 67966be8951SMathias Krause 6808275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 681e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 6828275d1aaSTim Chen depends on X86 && 64BIT 6838275d1aaSTim Chen select CRYPTO_SHA256 6848275d1aaSTim Chen select CRYPTO_HASH 6858275d1aaSTim Chen help 6868275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 6878275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 6888275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 689e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 690e38b6b7fStim Instructions) when available. 6918275d1aaSTim Chen 69287de4579STim Chenconfig CRYPTO_SHA512_SSSE3 69387de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 69487de4579STim Chen depends on X86 && 64BIT 69587de4579STim Chen select CRYPTO_SHA512 69687de4579STim Chen select CRYPTO_HASH 69787de4579STim Chen help 69887de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 69987de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 70087de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 70187de4579STim Chen version 2 (AVX2) instructions, when available. 70287de4579STim Chen 703efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 704efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 705efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 706efdb6f6eSAaro Koskinen select CRYPTO_SHA1 707efdb6f6eSAaro Koskinen select CRYPTO_HASH 708efdb6f6eSAaro Koskinen help 709efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 710efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 711efdb6f6eSAaro Koskinen 7124ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 7134ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 7144ff28d4cSDavid S. Miller depends on SPARC64 7154ff28d4cSDavid S. Miller select CRYPTO_SHA1 7164ff28d4cSDavid S. Miller select CRYPTO_HASH 7174ff28d4cSDavid S. Miller help 7184ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7194ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7204ff28d4cSDavid S. Miller 721323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 722323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 723323a6bf1SMichael Ellerman depends on PPC 724323a6bf1SMichael Ellerman help 725323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 726323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 727323a6bf1SMichael Ellerman 728d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 729d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 730d9850fc5SMarkus Stockhausen depends on PPC && SPE 731d9850fc5SMarkus Stockhausen help 732d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 733d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 734d9850fc5SMarkus Stockhausen 7351e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7361e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7371e65b81aSTim Chen depends on X86 && 64BIT 7381e65b81aSTim Chen select CRYPTO_SHA1 7391e65b81aSTim Chen select CRYPTO_HASH 7401e65b81aSTim Chen select CRYPTO_MCRYPTD 7411e65b81aSTim Chen help 7421e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7431e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7441e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7451e65b81aSTim Chen better throughput. It should not be enabled by default but 7461e65b81aSTim Chen used when there is significant amount of work to keep the keep 7471e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7481e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7491e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7501e65b81aSTim Chen 7519be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7529be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7539be7e244SMegha Dey depends on X86 && 64BIT 7549be7e244SMegha Dey select CRYPTO_SHA256 7559be7e244SMegha Dey select CRYPTO_HASH 7569be7e244SMegha Dey select CRYPTO_MCRYPTD 7579be7e244SMegha Dey help 7589be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7599be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7609be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7619be7e244SMegha Dey better throughput. It should not be enabled by default but 7629be7e244SMegha Dey used when there is significant amount of work to keep the keep 7639be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 7649be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 7659be7e244SMegha Dey process the crypto jobs, adding a slight latency. 7669be7e244SMegha Dey 767026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 768026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 769026bb8aaSMegha Dey depends on X86 && 64BIT 770026bb8aaSMegha Dey select CRYPTO_SHA512 771026bb8aaSMegha Dey select CRYPTO_HASH 772026bb8aaSMegha Dey select CRYPTO_MCRYPTD 773026bb8aaSMegha Dey help 774026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 775026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 776026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 777026bb8aaSMegha Dey better throughput. It should not be enabled by default but 778026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 779026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 780026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 781026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 782026bb8aaSMegha Dey 7831da177e4SLinus Torvaldsconfig CRYPTO_SHA256 784cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 78550e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 7861da177e4SLinus Torvalds help 7871da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 7881da177e4SLinus Torvalds 7891da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 7901da177e4SLinus Torvalds security against collision attacks. 7911da177e4SLinus Torvalds 792cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 793cd12fb90SJonathan Lynch of security against collision attacks. 794cd12fb90SJonathan Lynch 7952ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 7962ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 7972ecc1e95SMarkus Stockhausen depends on PPC && SPE 7982ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 7992ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8002ecc1e95SMarkus Stockhausen help 8012ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8022ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 8032ecc1e95SMarkus Stockhausen 804efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 805efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 806efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 807efdb6f6eSAaro Koskinen select CRYPTO_SHA256 808efdb6f6eSAaro Koskinen select CRYPTO_HASH 809efdb6f6eSAaro Koskinen help 810efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 811efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 812efdb6f6eSAaro Koskinen 81386c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 81486c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 81586c93b24SDavid S. Miller depends on SPARC64 81686c93b24SDavid S. Miller select CRYPTO_SHA256 81786c93b24SDavid S. Miller select CRYPTO_HASH 81886c93b24SDavid S. Miller help 81986c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 82086c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 82186c93b24SDavid S. Miller 8221da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8231da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 824bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8251da177e4SLinus Torvalds help 8261da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8271da177e4SLinus Torvalds 8281da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8291da177e4SLinus Torvalds security against collision attacks. 8301da177e4SLinus Torvalds 8311da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8321da177e4SLinus Torvalds of security against collision attacks. 8331da177e4SLinus Torvalds 834efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 835efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 836efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 837efdb6f6eSAaro Koskinen select CRYPTO_SHA512 838efdb6f6eSAaro Koskinen select CRYPTO_HASH 839efdb6f6eSAaro Koskinen help 840efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 841efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 842efdb6f6eSAaro Koskinen 843775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 844775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 845775e0c69SDavid S. Miller depends on SPARC64 846775e0c69SDavid S. Miller select CRYPTO_SHA512 847775e0c69SDavid S. Miller select CRYPTO_HASH 848775e0c69SDavid S. Miller help 849775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 850775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 851775e0c69SDavid S. Miller 85253964b9eSJeff Garzikconfig CRYPTO_SHA3 85353964b9eSJeff Garzik tristate "SHA3 digest algorithm" 85453964b9eSJeff Garzik select CRYPTO_HASH 85553964b9eSJeff Garzik help 85653964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 85753964b9eSJeff Garzik cryptographic sponge function family called Keccak. 85853964b9eSJeff Garzik 85953964b9eSJeff Garzik References: 86053964b9eSJeff Garzik http://keccak.noekeon.org/ 86153964b9eSJeff Garzik 8621da177e4SLinus Torvaldsconfig CRYPTO_TGR192 8631da177e4SLinus Torvalds tristate "Tiger digest algorithms" 864f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 8651da177e4SLinus Torvalds help 8661da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 8671da177e4SLinus Torvalds 8681da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 8691da177e4SLinus Torvalds still having decent performance on 32-bit processors. 8701da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 8711da177e4SLinus Torvalds 8721da177e4SLinus Torvalds See also: 8731da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 8741da177e4SLinus Torvalds 875584fffc8SSebastian Siewiorconfig CRYPTO_WP512 876584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 8774946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 8781da177e4SLinus Torvalds help 879584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 8801da177e4SLinus Torvalds 881584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 882584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 8831da177e4SLinus Torvalds 8841da177e4SLinus Torvalds See also: 8856d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 8861da177e4SLinus Torvalds 8870e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 8880e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 8898af00860SRichard Weinberger depends on X86 && 64BIT 8900e1227d3SHuang Ying select CRYPTO_CRYPTD 8910e1227d3SHuang Ying help 8920e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 8930e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 8940e1227d3SHuang Ying 895584fffc8SSebastian Siewiorcomment "Ciphers" 8961da177e4SLinus Torvalds 8971da177e4SLinus Torvaldsconfig CRYPTO_AES 8981da177e4SLinus Torvalds tristate "AES cipher algorithms" 899cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9001da177e4SLinus Torvalds help 9011da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9021da177e4SLinus Torvalds algorithm. 9031da177e4SLinus Torvalds 9041da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9051da177e4SLinus Torvalds both hardware and software across a wide range of computing 9061da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9071da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9081da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9091da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9101da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9111da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9121da177e4SLinus Torvalds 9131da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9141da177e4SLinus Torvalds 9151da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 9161da177e4SLinus Torvalds 917b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 918b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 919b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 920b5e0b032SArd Biesheuvel help 921b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 922b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 923b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 924b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 925b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 926b5e0b032SArd Biesheuvel with a more dramatic performance hit) 927b5e0b032SArd Biesheuvel 928b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 929b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 930b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 931b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 932b5e0b032SArd Biesheuvel block. 933b5e0b032SArd Biesheuvel 9341da177e4SLinus Torvaldsconfig CRYPTO_AES_586 9351da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 936cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 937cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9385157dea8SSebastian Siewior select CRYPTO_AES 9391da177e4SLinus Torvalds help 9401da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9411da177e4SLinus Torvalds algorithm. 9421da177e4SLinus Torvalds 9431da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9441da177e4SLinus Torvalds both hardware and software across a wide range of computing 9451da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9461da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9471da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9481da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9491da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9501da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9511da177e4SLinus Torvalds 9521da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9531da177e4SLinus Torvalds 9541da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 9551da177e4SLinus Torvalds 956a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 957a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 958cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 959cce9e06dSHerbert Xu select CRYPTO_ALGAPI 96081190b32SSebastian Siewior select CRYPTO_AES 961a2a892a2SAndreas Steinmetz help 962a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 963a2a892a2SAndreas Steinmetz algorithm. 964a2a892a2SAndreas Steinmetz 965a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 966a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 967a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 968a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 969a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 970a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 971a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 972a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 973a2a892a2SAndreas Steinmetz 974a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 975a2a892a2SAndreas Steinmetz 976a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 977a2a892a2SAndreas Steinmetz 97854b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 97954b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 9808af00860SRichard Weinberger depends on X86 98185671860SHerbert Xu select CRYPTO_AEAD 9820d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 9830d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 98454b6a1bdSHuang Ying select CRYPTO_ALGAPI 98585671860SHerbert Xu select CRYPTO_BLKCIPHER 9867643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 98785671860SHerbert Xu select CRYPTO_SIMD 98854b6a1bdSHuang Ying help 98954b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 99054b6a1bdSHuang Ying 99154b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 99254b6a1bdSHuang Ying algorithm. 99354b6a1bdSHuang Ying 99454b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 99554b6a1bdSHuang Ying both hardware and software across a wide range of computing 99654b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 99754b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 99854b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 99954b6a1bdSHuang Ying suited for restricted-space environments, in which it also 100054b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 100154b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 100254b6a1bdSHuang Ying 100354b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 100454b6a1bdSHuang Ying 100554b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 100654b6a1bdSHuang Ying 10070d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10080d258efbSMathias Krause for some popular block cipher mode is supported too, including 10090d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 10100d258efbSMathias Krause acceleration for CTR. 10112cf4ac8bSHuang Ying 10129bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10139bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10149bf4852dSDavid S. Miller depends on SPARC64 10159bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10169bf4852dSDavid S. Miller select CRYPTO_ALGAPI 10179bf4852dSDavid S. Miller help 10189bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10199bf4852dSDavid S. Miller 10209bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10219bf4852dSDavid S. Miller algorithm. 10229bf4852dSDavid S. Miller 10239bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10249bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10259bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10269bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10279bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10289bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10299bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10309bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10319bf4852dSDavid S. Miller 10329bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10339bf4852dSDavid S. Miller 10349bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10359bf4852dSDavid S. Miller 10369bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10379bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10389bf4852dSDavid S. Miller ECB and CBC. 10399bf4852dSDavid S. Miller 1040504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1041504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1042504c6143SMarkus Stockhausen depends on PPC && SPE 1043504c6143SMarkus Stockhausen help 1044504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1045504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1046504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1047504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1048504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1049504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1050504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1051504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1052504c6143SMarkus Stockhausen 10531da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 10541da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1055cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10561da177e4SLinus Torvalds help 10571da177e4SLinus Torvalds Anubis cipher algorithm. 10581da177e4SLinus Torvalds 10591da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 10601da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 10611da177e4SLinus Torvalds in the NESSIE competition. 10621da177e4SLinus Torvalds 10631da177e4SLinus Torvalds See also: 10646d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 10656d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 10661da177e4SLinus Torvalds 1067584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1068584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1069b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1070e2ee95b8SHye-Shik Chang help 1071584fffc8SSebastian Siewior ARC4 cipher algorithm. 1072e2ee95b8SHye-Shik Chang 1073584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1074584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1075584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1076584fffc8SSebastian Siewior weakness of the algorithm. 1077584fffc8SSebastian Siewior 1078584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1079584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1080584fffc8SSebastian Siewior select CRYPTO_ALGAPI 108152ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1082584fffc8SSebastian Siewior help 1083584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1084584fffc8SSebastian Siewior 1085584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1086584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1087584fffc8SSebastian Siewior designed for use on "large microprocessors". 1088e2ee95b8SHye-Shik Chang 1089e2ee95b8SHye-Shik Chang See also: 1090584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1091584fffc8SSebastian Siewior 109252ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 109352ba867cSJussi Kivilinna tristate 109452ba867cSJussi Kivilinna help 109552ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 109652ba867cSJussi Kivilinna generic c and the assembler implementations. 109752ba867cSJussi Kivilinna 109852ba867cSJussi Kivilinna See also: 109952ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 110052ba867cSJussi Kivilinna 110164b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 110264b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1103f21a7c19SAl Viro depends on X86 && 64BIT 110464b94ceaSJussi Kivilinna select CRYPTO_ALGAPI 110564b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 110664b94ceaSJussi Kivilinna help 110764b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 110864b94ceaSJussi Kivilinna 110964b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 111064b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 111164b94ceaSJussi Kivilinna designed for use on "large microprocessors". 111264b94ceaSJussi Kivilinna 111364b94ceaSJussi Kivilinna See also: 111464b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 111564b94ceaSJussi Kivilinna 1116584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1117584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1118584fffc8SSebastian Siewior depends on CRYPTO 1119584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1120584fffc8SSebastian Siewior help 1121584fffc8SSebastian Siewior Camellia cipher algorithms module. 1122584fffc8SSebastian Siewior 1123584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1124584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1125584fffc8SSebastian Siewior 1126584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1127584fffc8SSebastian Siewior 1128584fffc8SSebastian Siewior See also: 1129584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1130584fffc8SSebastian Siewior 11310b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11320b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1133f21a7c19SAl Viro depends on X86 && 64BIT 11340b95ec56SJussi Kivilinna depends on CRYPTO 11350b95ec56SJussi Kivilinna select CRYPTO_ALGAPI 1136964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11370b95ec56SJussi Kivilinna select CRYPTO_LRW 11380b95ec56SJussi Kivilinna select CRYPTO_XTS 11390b95ec56SJussi Kivilinna help 11400b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11410b95ec56SJussi Kivilinna 11420b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11430b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11440b95ec56SJussi Kivilinna 11450b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11460b95ec56SJussi Kivilinna 11470b95ec56SJussi Kivilinna See also: 11480b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11490b95ec56SJussi Kivilinna 1150d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1151d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1152d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1153d9b1d2e7SJussi Kivilinna depends on CRYPTO 1154d9b1d2e7SJussi Kivilinna select CRYPTO_ALGAPI 1155d9b1d2e7SJussi Kivilinna select CRYPTO_CRYPTD 1156801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1157d9b1d2e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1158d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1159d9b1d2e7SJussi Kivilinna select CRYPTO_LRW 1160d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1161d9b1d2e7SJussi Kivilinna help 1162d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1163d9b1d2e7SJussi Kivilinna 1164d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1165d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1166d9b1d2e7SJussi Kivilinna 1167d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1168d9b1d2e7SJussi Kivilinna 1169d9b1d2e7SJussi Kivilinna See also: 1170d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1171d9b1d2e7SJussi Kivilinna 1172f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1173f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1174f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1175f3f935a7SJussi Kivilinna depends on CRYPTO 1176f3f935a7SJussi Kivilinna select CRYPTO_ALGAPI 1177f3f935a7SJussi Kivilinna select CRYPTO_CRYPTD 1178801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1179f3f935a7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1180f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1181f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1182f3f935a7SJussi Kivilinna select CRYPTO_LRW 1183f3f935a7SJussi Kivilinna select CRYPTO_XTS 1184f3f935a7SJussi Kivilinna help 1185f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1186f3f935a7SJussi Kivilinna 1187f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1188f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1189f3f935a7SJussi Kivilinna 1190f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1191f3f935a7SJussi Kivilinna 1192f3f935a7SJussi Kivilinna See also: 1193f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1194f3f935a7SJussi Kivilinna 119581658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 119681658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 119781658ad0SDavid S. Miller depends on SPARC64 119881658ad0SDavid S. Miller depends on CRYPTO 119981658ad0SDavid S. Miller select CRYPTO_ALGAPI 120081658ad0SDavid S. Miller help 120181658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 120281658ad0SDavid S. Miller 120381658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 120481658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 120581658ad0SDavid S. Miller 120681658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 120781658ad0SDavid S. Miller 120881658ad0SDavid S. Miller See also: 120981658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 121081658ad0SDavid S. Miller 1211044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1212044ab525SJussi Kivilinna tristate 1213044ab525SJussi Kivilinna help 1214044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1215044ab525SJussi Kivilinna generic c and the assembler implementations. 1216044ab525SJussi Kivilinna 1217584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1218584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1219584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1220044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1221584fffc8SSebastian Siewior help 1222584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1223584fffc8SSebastian Siewior described in RFC2144. 1224584fffc8SSebastian Siewior 12254d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12264d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12274d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12284d6d6a2cSJohannes Goetzfried select CRYPTO_ALGAPI 12294d6d6a2cSJohannes Goetzfried select CRYPTO_CRYPTD 1230801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1231044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12324d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12334d6d6a2cSJohannes Goetzfried help 12344d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12354d6d6a2cSJohannes Goetzfried described in RFC2144. 12364d6d6a2cSJohannes Goetzfried 12374d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12384d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12394d6d6a2cSJohannes Goetzfried 1240584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1241584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1242584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1243044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1244584fffc8SSebastian Siewior help 1245584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1246584fffc8SSebastian Siewior described in RFC2612. 1247584fffc8SSebastian Siewior 12484ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12494ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12504ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12514ea1277dSJohannes Goetzfried select CRYPTO_ALGAPI 12524ea1277dSJohannes Goetzfried select CRYPTO_CRYPTD 1253801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 12544ea1277dSJohannes Goetzfried select CRYPTO_GLUE_HELPER_X86 1255044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12564ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12574ea1277dSJohannes Goetzfried select CRYPTO_LRW 12584ea1277dSJohannes Goetzfried select CRYPTO_XTS 12594ea1277dSJohannes Goetzfried help 12604ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12614ea1277dSJohannes Goetzfried described in RFC2612. 12624ea1277dSJohannes Goetzfried 12634ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12644ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12654ea1277dSJohannes Goetzfried 1266584fffc8SSebastian Siewiorconfig CRYPTO_DES 1267584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1268584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1269584fffc8SSebastian Siewior help 1270584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1271584fffc8SSebastian Siewior 1272c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1273c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 127497da37b3SDave Jones depends on SPARC64 1275c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1276c5aac2dfSDavid S. Miller select CRYPTO_DES 1277c5aac2dfSDavid S. Miller help 1278c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1279c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1280c5aac2dfSDavid S. Miller 12816574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 12826574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 12836574e6c6SJussi Kivilinna depends on X86 && 64BIT 12846574e6c6SJussi Kivilinna select CRYPTO_ALGAPI 12856574e6c6SJussi Kivilinna select CRYPTO_DES 12866574e6c6SJussi Kivilinna help 12876574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 12886574e6c6SJussi Kivilinna 12896574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 12906574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 12916574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 12926574e6c6SJussi Kivilinna one that processes three blocks parallel. 12936574e6c6SJussi Kivilinna 1294584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1295584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1296584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1297584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1298584fffc8SSebastian Siewior help 1299584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1300584fffc8SSebastian Siewior 1301584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1302584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1303584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1304584fffc8SSebastian Siewior help 1305584fffc8SSebastian Siewior Khazad cipher algorithm. 1306584fffc8SSebastian Siewior 1307584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1308584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1309584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1310584fffc8SSebastian Siewior 1311584fffc8SSebastian Siewior See also: 13126d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1313e2ee95b8SHye-Shik Chang 13142407d608STan Swee Hengconfig CRYPTO_SALSA20 13153b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13162407d608STan Swee Heng select CRYPTO_BLKCIPHER 13172407d608STan Swee Heng help 13182407d608STan Swee Heng Salsa20 stream cipher algorithm. 13192407d608STan Swee Heng 13202407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13212407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13222407d608STan Swee Heng 13232407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13242407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13251da177e4SLinus Torvalds 1326974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13273b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1328974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1329974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1330974e4b75STan Swee Heng help 1331974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1332974e4b75STan Swee Heng 1333974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1334974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1335974e4b75STan Swee Heng 1336974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1337974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1338974e4b75STan Swee Heng 13399a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13403b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13419a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13429a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 13439a7dafbbSTan Swee Heng help 13449a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13459a7dafbbSTan Swee Heng 13469a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13479a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13489a7dafbbSTan Swee Heng 13499a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13509a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13519a7dafbbSTan Swee Heng 1352c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1353c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1354c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1355c08d0e64SMartin Willi help 1356c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1357c08d0e64SMartin Willi 1358c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1359c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1360c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1361c08d0e64SMartin Willi 1362c08d0e64SMartin Willi See also: 1363c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1364c08d0e64SMartin Willi 1365c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13663d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1367c9320b6dSMartin Willi depends on X86 && 64BIT 1368c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1369c9320b6dSMartin Willi select CRYPTO_CHACHA20 1370c9320b6dSMartin Willi help 1371c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1372c9320b6dSMartin Willi 1373c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1374c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1375c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1376c9320b6dSMartin Willi 1377c9320b6dSMartin Willi See also: 1378c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1379c9320b6dSMartin Willi 1380584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1381584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1382584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1383584fffc8SSebastian Siewior help 1384584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1385584fffc8SSebastian Siewior 1386584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1387584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1388584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1389584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1390584fffc8SSebastian Siewior 1391584fffc8SSebastian Siewior See also: 1392584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1393584fffc8SSebastian Siewior 1394584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1395584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1396584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1397584fffc8SSebastian Siewior help 1398584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1399584fffc8SSebastian Siewior 1400584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1401584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1402584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1403584fffc8SSebastian Siewior 1404584fffc8SSebastian Siewior See also: 1405584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1406584fffc8SSebastian Siewior 1407937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1408937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1409937c30d7SJussi Kivilinna depends on X86 && 64BIT 1410937c30d7SJussi Kivilinna select CRYPTO_ALGAPI 1411341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1412801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1413596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1414937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1415feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1416feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1417937c30d7SJussi Kivilinna help 1418937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1419937c30d7SJussi Kivilinna 1420937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1421937c30d7SJussi Kivilinna of 8 bits. 1422937c30d7SJussi Kivilinna 14231e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1424937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1425937c30d7SJussi Kivilinna 1426937c30d7SJussi Kivilinna See also: 1427937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1428937c30d7SJussi Kivilinna 1429251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1430251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1431251496dbSJussi Kivilinna depends on X86 && !64BIT 1432251496dbSJussi Kivilinna select CRYPTO_ALGAPI 1433341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1434801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1435596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1436251496dbSJussi Kivilinna select CRYPTO_SERPENT 1437feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1438feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1439251496dbSJussi Kivilinna help 1440251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1441251496dbSJussi Kivilinna 1442251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1443251496dbSJussi Kivilinna of 8 bits. 1444251496dbSJussi Kivilinna 1445251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1446251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1447251496dbSJussi Kivilinna 1448251496dbSJussi Kivilinna See also: 1449251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1450251496dbSJussi Kivilinna 14517efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14527efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14537efe4076SJohannes Goetzfried depends on X86 && 64BIT 14547efe4076SJohannes Goetzfried select CRYPTO_ALGAPI 14557efe4076SJohannes Goetzfried select CRYPTO_CRYPTD 1456801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 14571d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14587efe4076SJohannes Goetzfried select CRYPTO_SERPENT 14597efe4076SJohannes Goetzfried select CRYPTO_LRW 14607efe4076SJohannes Goetzfried select CRYPTO_XTS 14617efe4076SJohannes Goetzfried help 14627efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14637efe4076SJohannes Goetzfried 14647efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14657efe4076SJohannes Goetzfried of 8 bits. 14667efe4076SJohannes Goetzfried 14677efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14687efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14697efe4076SJohannes Goetzfried 14707efe4076SJohannes Goetzfried See also: 14717efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14727efe4076SJohannes Goetzfried 147356d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 147456d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 147556d76c96SJussi Kivilinna depends on X86 && 64BIT 147656d76c96SJussi Kivilinna select CRYPTO_ALGAPI 147756d76c96SJussi Kivilinna select CRYPTO_CRYPTD 1478801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 147956d76c96SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 148056d76c96SJussi Kivilinna select CRYPTO_SERPENT 148156d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 148256d76c96SJussi Kivilinna select CRYPTO_LRW 148356d76c96SJussi Kivilinna select CRYPTO_XTS 148456d76c96SJussi Kivilinna help 148556d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 148656d76c96SJussi Kivilinna 148756d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 148856d76c96SJussi Kivilinna of 8 bits. 148956d76c96SJussi Kivilinna 149056d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 149156d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 149256d76c96SJussi Kivilinna 149356d76c96SJussi Kivilinna See also: 149456d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 149556d76c96SJussi Kivilinna 1496584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1497584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1498584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1499584fffc8SSebastian Siewior help 1500584fffc8SSebastian Siewior TEA cipher algorithm. 1501584fffc8SSebastian Siewior 1502584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1503584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1504584fffc8SSebastian Siewior little memory. 1505584fffc8SSebastian Siewior 1506584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1507584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1508584fffc8SSebastian Siewior in the TEA algorithm. 1509584fffc8SSebastian Siewior 1510584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1511584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1512584fffc8SSebastian Siewior 1513584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1514584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1515584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1516584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1517584fffc8SSebastian Siewior help 1518584fffc8SSebastian Siewior Twofish cipher algorithm. 1519584fffc8SSebastian Siewior 1520584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1521584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1522584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1523584fffc8SSebastian Siewior bits. 1524584fffc8SSebastian Siewior 1525584fffc8SSebastian Siewior See also: 1526584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1527584fffc8SSebastian Siewior 1528584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1529584fffc8SSebastian Siewior tristate 1530584fffc8SSebastian Siewior help 1531584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1532584fffc8SSebastian Siewior generic c and the assembler implementations. 1533584fffc8SSebastian Siewior 1534584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1535584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1536584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1537584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1538584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1539584fffc8SSebastian Siewior help 1540584fffc8SSebastian Siewior Twofish cipher algorithm. 1541584fffc8SSebastian Siewior 1542584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1543584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1544584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1545584fffc8SSebastian Siewior bits. 1546584fffc8SSebastian Siewior 1547584fffc8SSebastian Siewior See also: 1548584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1549584fffc8SSebastian Siewior 1550584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1551584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1552584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1553584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1554584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1555584fffc8SSebastian Siewior help 1556584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1557584fffc8SSebastian Siewior 1558584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1559584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1560584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1561584fffc8SSebastian Siewior bits. 1562584fffc8SSebastian Siewior 1563584fffc8SSebastian Siewior See also: 1564584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1565584fffc8SSebastian Siewior 15668280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 15678280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1568f21a7c19SAl Viro depends on X86 && 64BIT 15698280daadSJussi Kivilinna select CRYPTO_ALGAPI 15708280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 15718280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1572414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1573e7cda5d2SJussi Kivilinna select CRYPTO_LRW 1574e7cda5d2SJussi Kivilinna select CRYPTO_XTS 15758280daadSJussi Kivilinna help 15768280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 15778280daadSJussi Kivilinna 15788280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 15798280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 15808280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 15818280daadSJussi Kivilinna bits. 15828280daadSJussi Kivilinna 15838280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 15848280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 15858280daadSJussi Kivilinna 15868280daadSJussi Kivilinna See also: 15878280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 15888280daadSJussi Kivilinna 1589107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1590107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1591107778b5SJohannes Goetzfried depends on X86 && 64BIT 1592107778b5SJohannes Goetzfried select CRYPTO_ALGAPI 1593107778b5SJohannes Goetzfried select CRYPTO_CRYPTD 1594801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1595a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1596107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1597107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1598107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1599107778b5SJohannes Goetzfried select CRYPTO_LRW 1600107778b5SJohannes Goetzfried select CRYPTO_XTS 1601107778b5SJohannes Goetzfried help 1602107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1603107778b5SJohannes Goetzfried 1604107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1605107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1606107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1607107778b5SJohannes Goetzfried bits. 1608107778b5SJohannes Goetzfried 1609107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1610107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1611107778b5SJohannes Goetzfried 1612107778b5SJohannes Goetzfried See also: 1613107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1614107778b5SJohannes Goetzfried 1615584fffc8SSebastian Siewiorcomment "Compression" 1616584fffc8SSebastian Siewior 16171da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16181da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1619cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1620f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16211da177e4SLinus Torvalds select ZLIB_INFLATE 16221da177e4SLinus Torvalds select ZLIB_DEFLATE 16231da177e4SLinus Torvalds help 16241da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16251da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16261da177e4SLinus Torvalds 16271da177e4SLinus Torvalds You will most probably want this if using IPSec. 16281da177e4SLinus Torvalds 16290b77abb3SZoltan Sogorconfig CRYPTO_LZO 16300b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16310b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1632ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16330b77abb3SZoltan Sogor select LZO_COMPRESS 16340b77abb3SZoltan Sogor select LZO_DECOMPRESS 16350b77abb3SZoltan Sogor help 16360b77abb3SZoltan Sogor This is the LZO algorithm. 16370b77abb3SZoltan Sogor 163835a1fc18SSeth Jenningsconfig CRYPTO_842 163935a1fc18SSeth Jennings tristate "842 compression algorithm" 16402062c5b6SDan Streetman select CRYPTO_ALGAPI 16416a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16422062c5b6SDan Streetman select 842_COMPRESS 16432062c5b6SDan Streetman select 842_DECOMPRESS 164435a1fc18SSeth Jennings help 164535a1fc18SSeth Jennings This is the 842 algorithm. 164635a1fc18SSeth Jennings 16470ea8530dSChanho Minconfig CRYPTO_LZ4 16480ea8530dSChanho Min tristate "LZ4 compression algorithm" 16490ea8530dSChanho Min select CRYPTO_ALGAPI 16508cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16510ea8530dSChanho Min select LZ4_COMPRESS 16520ea8530dSChanho Min select LZ4_DECOMPRESS 16530ea8530dSChanho Min help 16540ea8530dSChanho Min This is the LZ4 algorithm. 16550ea8530dSChanho Min 16560ea8530dSChanho Minconfig CRYPTO_LZ4HC 16570ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16580ea8530dSChanho Min select CRYPTO_ALGAPI 165991d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16600ea8530dSChanho Min select LZ4HC_COMPRESS 16610ea8530dSChanho Min select LZ4_DECOMPRESS 16620ea8530dSChanho Min help 16630ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16640ea8530dSChanho Min 166517f0f4a4SNeil Hormancomment "Random Number Generation" 166617f0f4a4SNeil Horman 166717f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 166817f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 166917f0f4a4SNeil Horman select CRYPTO_AES 167017f0f4a4SNeil Horman select CRYPTO_RNG 167117f0f4a4SNeil Horman help 167217f0f4a4SNeil Horman This option enables the generic pseudo random number generator 167317f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 16747dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 16757dd607e8SJiri Kosina CRYPTO_FIPS is selected 167617f0f4a4SNeil Horman 1677f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1678419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1679419090c6SStephan Mueller help 1680419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1681419090c6SStephan Mueller more of the DRBG types must be selected. 1682419090c6SStephan Mueller 1683f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1684419090c6SStephan Mueller 1685419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1686401e4238SHerbert Xu bool 1687419090c6SStephan Mueller default y 1688419090c6SStephan Mueller select CRYPTO_HMAC 1689826775bbSHerbert Xu select CRYPTO_SHA256 1690419090c6SStephan Mueller 1691419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1692419090c6SStephan Mueller bool "Enable Hash DRBG" 1693826775bbSHerbert Xu select CRYPTO_SHA256 1694419090c6SStephan Mueller help 1695419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1696419090c6SStephan Mueller 1697419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1698419090c6SStephan Mueller bool "Enable CTR DRBG" 1699419090c6SStephan Mueller select CRYPTO_AES 170035591285SStephan Mueller depends on CRYPTO_CTR 1701419090c6SStephan Mueller help 1702419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1703419090c6SStephan Mueller 1704f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1705f2c89a10SHerbert Xu tristate 1706401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1707f2c89a10SHerbert Xu select CRYPTO_RNG 1708bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1709f2c89a10SHerbert Xu 1710f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1711419090c6SStephan Mueller 1712bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1713bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17142f313e02SArnd Bergmann select CRYPTO_RNG 1715bb5530e4SStephan Mueller help 1716bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1717bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1718bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1719bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1720bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1721bb5530e4SStephan Mueller 172203c8efc1SHerbert Xuconfig CRYPTO_USER_API 172303c8efc1SHerbert Xu tristate 172403c8efc1SHerbert Xu 1725fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1726fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17277451708fSHerbert Xu depends on NET 1728fe869cdbSHerbert Xu select CRYPTO_HASH 1729fe869cdbSHerbert Xu select CRYPTO_USER_API 1730fe869cdbSHerbert Xu help 1731fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1732fe869cdbSHerbert Xu algorithms. 1733fe869cdbSHerbert Xu 17348ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17358ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17367451708fSHerbert Xu depends on NET 17378ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17388ff59090SHerbert Xu select CRYPTO_USER_API 17398ff59090SHerbert Xu help 17408ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17418ff59090SHerbert Xu key cipher algorithms. 17428ff59090SHerbert Xu 17432f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17442f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17452f375538SStephan Mueller depends on NET 17462f375538SStephan Mueller select CRYPTO_RNG 17472f375538SStephan Mueller select CRYPTO_USER_API 17482f375538SStephan Mueller help 17492f375538SStephan Mueller This option enables the user-spaces interface for random 17502f375538SStephan Mueller number generator algorithms. 17512f375538SStephan Mueller 1752b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1753b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1754b64a2d95SHerbert Xu depends on NET 1755b64a2d95SHerbert Xu select CRYPTO_AEAD 1756b64a2d95SHerbert Xu select CRYPTO_USER_API 1757b64a2d95SHerbert Xu help 1758b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1759b64a2d95SHerbert Xu cipher algorithms. 1760b64a2d95SHerbert Xu 1761ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1762ee08997fSDmitry Kasatkin bool 1763ee08997fSDmitry Kasatkin 17641da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1765964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1766cfc411e7SDavid Howellssource certs/Kconfig 17671da177e4SLinus Torvalds 1768cce9e06dSHerbert Xuendif # if CRYPTO 1769