1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139929d34caSEric Biggersif CRYPTO_MANAGER2 140929d34caSEric Biggers 141326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 142326a6346SHerbert Xu bool "Disable run-time self tests" 14300ca28a5SHerbert Xu default y 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158929d34caSEric Biggersendif # if CRYPTO_MANAGER2 159929d34caSEric Biggers 160584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 161e590e132SEric Biggers tristate 162584fffc8SSebastian Siewior 163584fffc8SSebastian Siewiorconfig CRYPTO_NULL 164584fffc8SSebastian Siewior tristate "Null algorithms" 165149a3971SHerbert Xu select CRYPTO_NULL2 166584fffc8SSebastian Siewior help 167584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 168584fffc8SSebastian Siewior 169149a3971SHerbert Xuconfig CRYPTO_NULL2 170dd43c4e9SHerbert Xu tristate 171149a3971SHerbert Xu select CRYPTO_ALGAPI2 172b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 173149a3971SHerbert Xu select CRYPTO_HASH2 174149a3971SHerbert Xu 1755068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1763b4afaf2SKees Cook tristate "Parallel crypto engine" 1773b4afaf2SKees Cook depends on SMP 1785068c7a8SSteffen Klassert select PADATA 1795068c7a8SSteffen Klassert select CRYPTO_MANAGER 1805068c7a8SSteffen Klassert select CRYPTO_AEAD 1815068c7a8SSteffen Klassert help 1825068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1835068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1845068c7a8SSteffen Klassert 185584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 186584fffc8SSebastian Siewior tristate "Software async crypto daemon" 187b95bba5dSEric Biggers select CRYPTO_SKCIPHER 188b8a28251SLoc Ho select CRYPTO_HASH 189584fffc8SSebastian Siewior select CRYPTO_MANAGER 190584fffc8SSebastian Siewior help 191584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 192584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 193584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 194584fffc8SSebastian Siewior 195584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 196584fffc8SSebastian Siewior tristate "Authenc support" 197584fffc8SSebastian Siewior select CRYPTO_AEAD 198b95bba5dSEric Biggers select CRYPTO_SKCIPHER 199584fffc8SSebastian Siewior select CRYPTO_MANAGER 200584fffc8SSebastian Siewior select CRYPTO_HASH 201e94c6a7aSHerbert Xu select CRYPTO_NULL 202584fffc8SSebastian Siewior help 203584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 204584fffc8SSebastian Siewior This is required for IPSec. 205584fffc8SSebastian Siewior 206584fffc8SSebastian Siewiorconfig CRYPTO_TEST 207584fffc8SSebastian Siewior tristate "Testing module" 208584fffc8SSebastian Siewior depends on m 209da7f033dSHerbert Xu select CRYPTO_MANAGER 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Quick & dirty crypto test module. 212584fffc8SSebastian Siewior 213266d0516SHerbert Xuconfig CRYPTO_SIMD 214266d0516SHerbert Xu tristate 215266d0516SHerbert Xu select CRYPTO_CRYPTD 216266d0516SHerbert Xu 217596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 218596d8750SJussi Kivilinna tristate 219596d8750SJussi Kivilinna depends on X86 220b95bba5dSEric Biggers select CRYPTO_SKCIPHER 221596d8750SJussi Kivilinna 222735d37b5SBaolin Wangconfig CRYPTO_ENGINE 223735d37b5SBaolin Wang tristate 224735d37b5SBaolin Wang 2253d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2283d6228a5SVitaly Chikunov tristate "RSA algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2303d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2313d6228a5SVitaly Chikunov select MPILIB 2323d6228a5SVitaly Chikunov select ASN1 2333d6228a5SVitaly Chikunov help 2343d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2353d6228a5SVitaly Chikunov 2363d6228a5SVitaly Chikunovconfig CRYPTO_DH 2373d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2383d6228a5SVitaly Chikunov select CRYPTO_KPP 2393d6228a5SVitaly Chikunov select MPILIB 2403d6228a5SVitaly Chikunov help 2413d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2423d6228a5SVitaly Chikunov 2434a2289daSVitaly Chikunovconfig CRYPTO_ECC 2444a2289daSVitaly Chikunov tristate 2454a2289daSVitaly Chikunov 2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2473d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2484a2289daSVitaly Chikunov select CRYPTO_ECC 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 2513d6228a5SVitaly Chikunov help 2523d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2533d6228a5SVitaly Chikunov 2540d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2550d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2560d7a7864SVitaly Chikunov select CRYPTO_ECC 2570d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2580d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2591036633eSVitaly Chikunov select OID_REGISTRY 2601036633eSVitaly Chikunov select ASN1 2610d7a7864SVitaly Chikunov help 2620d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2630d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2640d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2650d7a7864SVitaly Chikunov is implemented. 2660d7a7864SVitaly Chikunov 267ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 268ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 269ee772cb6SArd Biesheuvel select CRYPTO_KPP 270ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 271ee772cb6SArd Biesheuvel 272bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 273bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 274bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 275bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 276bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 277bb611bdfSJason A. Donenfeld 278584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 279584fffc8SSebastian Siewior 280584fffc8SSebastian Siewiorconfig CRYPTO_CCM 281584fffc8SSebastian Siewior tristate "CCM support" 282584fffc8SSebastian Siewior select CRYPTO_CTR 283f15f05b0SArd Biesheuvel select CRYPTO_HASH 284584fffc8SSebastian Siewior select CRYPTO_AEAD 285c8a3315aSEric Biggers select CRYPTO_MANAGER 286584fffc8SSebastian Siewior help 287584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 288584fffc8SSebastian Siewior 289584fffc8SSebastian Siewiorconfig CRYPTO_GCM 290584fffc8SSebastian Siewior tristate "GCM/GMAC support" 291584fffc8SSebastian Siewior select CRYPTO_CTR 292584fffc8SSebastian Siewior select CRYPTO_AEAD 2939382d97aSHuang Ying select CRYPTO_GHASH 2949489667dSJussi Kivilinna select CRYPTO_NULL 295c8a3315aSEric Biggers select CRYPTO_MANAGER 296584fffc8SSebastian Siewior help 297584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 298584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 299584fffc8SSebastian Siewior 30071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 30171ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 30271ebc4d1SMartin Willi select CRYPTO_CHACHA20 30371ebc4d1SMartin Willi select CRYPTO_POLY1305 30471ebc4d1SMartin Willi select CRYPTO_AEAD 305c8a3315aSEric Biggers select CRYPTO_MANAGER 30671ebc4d1SMartin Willi help 30771ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 30871ebc4d1SMartin Willi 30971ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 31071ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 31171ebc4d1SMartin Willi IETF protocols. 31271ebc4d1SMartin Willi 313f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 314f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 315f606a88eSOndrej Mosnacek select CRYPTO_AEAD 316f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 317f606a88eSOndrej Mosnacek help 318f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 319f606a88eSOndrej Mosnacek 320a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 321a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 322a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 32383053677SArd Biesheuvel depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800 324a4397635SArd Biesheuvel default y 325a4397635SArd Biesheuvel 3261d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3271d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3281d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3291d373d4eSOndrej Mosnacek select CRYPTO_AEAD 330de272ca7SEric Biggers select CRYPTO_SIMD 3311d373d4eSOndrej Mosnacek help 3324e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3331d373d4eSOndrej Mosnacek 334584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 335584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 336584fffc8SSebastian Siewior select CRYPTO_AEAD 337b95bba5dSEric Biggers select CRYPTO_SKCIPHER 338856e3f40SHerbert Xu select CRYPTO_NULL 339401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 340c8a3315aSEric Biggers select CRYPTO_MANAGER 341584fffc8SSebastian Siewior help 342584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 343584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 344584fffc8SSebastian Siewior 345a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 346a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 347a10f554fSHerbert Xu select CRYPTO_AEAD 348a10f554fSHerbert Xu select CRYPTO_NULL 349401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 350c8a3315aSEric Biggers select CRYPTO_MANAGER 351a10f554fSHerbert Xu help 352a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 353a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 354a10f554fSHerbert Xu algorithm for CBC. 355a10f554fSHerbert Xu 356584fffc8SSebastian Siewiorcomment "Block modes" 357584fffc8SSebastian Siewior 358584fffc8SSebastian Siewiorconfig CRYPTO_CBC 359584fffc8SSebastian Siewior tristate "CBC support" 360b95bba5dSEric Biggers select CRYPTO_SKCIPHER 361584fffc8SSebastian Siewior select CRYPTO_MANAGER 362584fffc8SSebastian Siewior help 363584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 364584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 365584fffc8SSebastian Siewior 366a7d85e06SJames Bottomleyconfig CRYPTO_CFB 367a7d85e06SJames Bottomley tristate "CFB support" 368b95bba5dSEric Biggers select CRYPTO_SKCIPHER 369a7d85e06SJames Bottomley select CRYPTO_MANAGER 370a7d85e06SJames Bottomley help 371a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 372a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 373a7d85e06SJames Bottomley 374584fffc8SSebastian Siewiorconfig CRYPTO_CTR 375584fffc8SSebastian Siewior tristate "CTR support" 376b95bba5dSEric Biggers select CRYPTO_SKCIPHER 377584fffc8SSebastian Siewior select CRYPTO_SEQIV 378584fffc8SSebastian Siewior select CRYPTO_MANAGER 379584fffc8SSebastian Siewior help 380584fffc8SSebastian Siewior CTR: Counter mode 381584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 382584fffc8SSebastian Siewior 383584fffc8SSebastian Siewiorconfig CRYPTO_CTS 384584fffc8SSebastian Siewior tristate "CTS support" 385b95bba5dSEric Biggers select CRYPTO_SKCIPHER 386c8a3315aSEric Biggers select CRYPTO_MANAGER 387584fffc8SSebastian Siewior help 388584fffc8SSebastian Siewior CTS: Cipher Text Stealing 389584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 390ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 391ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 392ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 393584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 394584fffc8SSebastian Siewior for AES encryption. 395584fffc8SSebastian Siewior 396ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 397ecd6d5c9SGilad Ben-Yossef 398584fffc8SSebastian Siewiorconfig CRYPTO_ECB 399584fffc8SSebastian Siewior tristate "ECB support" 400b95bba5dSEric Biggers select CRYPTO_SKCIPHER 401584fffc8SSebastian Siewior select CRYPTO_MANAGER 402584fffc8SSebastian Siewior help 403584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 404584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 405584fffc8SSebastian Siewior the input block by block. 406584fffc8SSebastian Siewior 407584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4082470a2b2SJussi Kivilinna tristate "LRW support" 409b95bba5dSEric Biggers select CRYPTO_SKCIPHER 410584fffc8SSebastian Siewior select CRYPTO_MANAGER 411584fffc8SSebastian Siewior select CRYPTO_GF128MUL 412584fffc8SSebastian Siewior help 413584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 414584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 415584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 416584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 417584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 418584fffc8SSebastian Siewior 419e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 420e497c518SGilad Ben-Yossef tristate "OFB support" 421b95bba5dSEric Biggers select CRYPTO_SKCIPHER 422e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 423e497c518SGilad Ben-Yossef help 424e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 425e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 426e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 427e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 428e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 429e497c518SGilad Ben-Yossef normally even when applied before encryption. 430e497c518SGilad Ben-Yossef 431584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 432584fffc8SSebastian Siewior tristate "PCBC support" 433b95bba5dSEric Biggers select CRYPTO_SKCIPHER 434584fffc8SSebastian Siewior select CRYPTO_MANAGER 435584fffc8SSebastian Siewior help 436584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 437584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 438584fffc8SSebastian Siewior 439584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4405bcf8e6dSJussi Kivilinna tristate "XTS support" 441b95bba5dSEric Biggers select CRYPTO_SKCIPHER 442584fffc8SSebastian Siewior select CRYPTO_MANAGER 44312cb3a1cSMilan Broz select CRYPTO_ECB 444584fffc8SSebastian Siewior help 445584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 446584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 447584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 448584fffc8SSebastian Siewior 4491c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4501c49678eSStephan Mueller tristate "Key wrapping support" 451b95bba5dSEric Biggers select CRYPTO_SKCIPHER 452c8a3315aSEric Biggers select CRYPTO_MANAGER 4531c49678eSStephan Mueller help 4541c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4551c49678eSStephan Mueller padding. 4561c49678eSStephan Mueller 45726609a21SEric Biggersconfig CRYPTO_NHPOLY1305 45826609a21SEric Biggers tristate 45926609a21SEric Biggers select CRYPTO_HASH 46048ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 46126609a21SEric Biggers 462012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 463012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 464012c8238SEric Biggers depends on X86 && 64BIT 465012c8238SEric Biggers select CRYPTO_NHPOLY1305 466012c8238SEric Biggers help 467012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 468012c8238SEric Biggers Adiantum encryption mode. 469012c8238SEric Biggers 4700f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4710f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4720f961f9fSEric Biggers depends on X86 && 64BIT 4730f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4740f961f9fSEric Biggers help 4750f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 4760f961f9fSEric Biggers Adiantum encryption mode. 4770f961f9fSEric Biggers 478059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 479059c2a4dSEric Biggers tristate "Adiantum support" 480059c2a4dSEric Biggers select CRYPTO_CHACHA20 48148ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 482059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 483c8a3315aSEric Biggers select CRYPTO_MANAGER 484059c2a4dSEric Biggers help 485059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 486059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 487059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 488059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 489059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 490059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 491059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 492059c2a4dSEric Biggers AES-XTS. 493059c2a4dSEric Biggers 494059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 495059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 496059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 497059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 498059c2a4dSEric Biggers security than XTS, subject to the security bound. 499059c2a4dSEric Biggers 500059c2a4dSEric Biggers If unsure, say N. 501059c2a4dSEric Biggers 502be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 503be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 504be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 505be1eb7f7SArd Biesheuvel help 506be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 507be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 508be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 509be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 510be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 511be1eb7f7SArd Biesheuvel encryption. 512be1eb7f7SArd Biesheuvel 513be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 514be1eb7f7SArd Biesheuvel instantiated either as a skcipher or as a aead (depending on the 515be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 516be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 517be1eb7f7SArd Biesheuvel ESSIV to the input IV. Note that in the aead case, it is assumed 518be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 519be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 520be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 521be1eb7f7SArd Biesheuvel 522be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 523be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 524be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 525be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 526be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 527be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 528be1eb7f7SArd Biesheuvel block encryption) 529be1eb7f7SArd Biesheuvel 530584fffc8SSebastian Siewiorcomment "Hash modes" 531584fffc8SSebastian Siewior 53293b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 53393b5e86aSJussi Kivilinna tristate "CMAC support" 53493b5e86aSJussi Kivilinna select CRYPTO_HASH 53593b5e86aSJussi Kivilinna select CRYPTO_MANAGER 53693b5e86aSJussi Kivilinna help 53793b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 53893b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 53993b5e86aSJussi Kivilinna 54093b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 54193b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 54293b5e86aSJussi Kivilinna 5431da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5448425165dSHerbert Xu tristate "HMAC support" 5450796ae06SHerbert Xu select CRYPTO_HASH 54643518407SHerbert Xu select CRYPTO_MANAGER 5471da177e4SLinus Torvalds help 5481da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5491da177e4SLinus Torvalds This is required for IPSec. 5501da177e4SLinus Torvalds 551333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 552333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 553333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 554333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 555333b0d7eSKazunori MIYAZAWA help 556333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 557333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 558333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 559333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 560333b0d7eSKazunori MIYAZAWA 561f1939f7cSShane Wangconfig CRYPTO_VMAC 562f1939f7cSShane Wang tristate "VMAC support" 563f1939f7cSShane Wang select CRYPTO_HASH 564f1939f7cSShane Wang select CRYPTO_MANAGER 565f1939f7cSShane Wang help 566f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 567f1939f7cSShane Wang very high speed on 64-bit architectures. 568f1939f7cSShane Wang 569f1939f7cSShane Wang See also: 570f1939f7cSShane Wang <http://fastcrypto.org/vmac> 571f1939f7cSShane Wang 572584fffc8SSebastian Siewiorcomment "Digest" 573584fffc8SSebastian Siewior 574584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 575584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5765773a3e6SHerbert Xu select CRYPTO_HASH 5776a0962b2SDarrick J. Wong select CRC32 5781da177e4SLinus Torvalds help 579584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 580584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 58169c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5821da177e4SLinus Torvalds 5838cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5848cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5858cb51ba8SAustin Zhang depends on X86 5868cb51ba8SAustin Zhang select CRYPTO_HASH 5878cb51ba8SAustin Zhang help 5888cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5898cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5908cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5918cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5928cb51ba8SAustin Zhang gain performance compared with software implementation. 5938cb51ba8SAustin Zhang Module will be crc32c-intel. 5948cb51ba8SAustin Zhang 5957cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5966dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 597c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5986dd7a82cSAnton Blanchard select CRYPTO_HASH 5996dd7a82cSAnton Blanchard select CRC32 6006dd7a82cSAnton Blanchard help 6016dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6026dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6036dd7a82cSAnton Blanchard and newer processors for improved performance. 6046dd7a82cSAnton Blanchard 6056dd7a82cSAnton Blanchard 606442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 607442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 608442a7c40SDavid S. Miller depends on SPARC64 609442a7c40SDavid S. Miller select CRYPTO_HASH 610442a7c40SDavid S. Miller select CRC32 611442a7c40SDavid S. Miller help 612442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 613442a7c40SDavid S. Miller when available. 614442a7c40SDavid S. Miller 61578c37d19SAlexander Boykoconfig CRYPTO_CRC32 61678c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 61778c37d19SAlexander Boyko select CRYPTO_HASH 61878c37d19SAlexander Boyko select CRC32 61978c37d19SAlexander Boyko help 62078c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 62178c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 62278c37d19SAlexander Boyko 62378c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 62478c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 62578c37d19SAlexander Boyko depends on X86 62678c37d19SAlexander Boyko select CRYPTO_HASH 62778c37d19SAlexander Boyko select CRC32 62878c37d19SAlexander Boyko help 62978c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 63078c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 63178c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 632af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 63378c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 63478c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 63578c37d19SAlexander Boyko 6364a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6374a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6384a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6394a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6404a5dc51eSMarcin Nowakowski help 6414a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6424a5dc51eSMarcin Nowakowski instructions, when available. 6434a5dc51eSMarcin Nowakowski 6444a5dc51eSMarcin Nowakowski 64567882e76SNikolay Borisovconfig CRYPTO_XXHASH 64667882e76SNikolay Borisov tristate "xxHash hash algorithm" 64767882e76SNikolay Borisov select CRYPTO_HASH 64867882e76SNikolay Borisov select XXHASH 64967882e76SNikolay Borisov help 65067882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 65167882e76SNikolay Borisov speeds close to RAM limits. 65267882e76SNikolay Borisov 65391d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 65491d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 65591d68933SDavid Sterba select CRYPTO_HASH 65691d68933SDavid Sterba help 65791d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 65891d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 65991d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 66091d68933SDavid Sterba 66191d68933SDavid Sterba This module provides the following algorithms: 66291d68933SDavid Sterba 66391d68933SDavid Sterba - blake2b-160 66491d68933SDavid Sterba - blake2b-256 66591d68933SDavid Sterba - blake2b-384 66691d68933SDavid Sterba - blake2b-512 66791d68933SDavid Sterba 66891d68933SDavid Sterba See https://blake2.net for further information. 66991d68933SDavid Sterba 6707f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 6717f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 6727f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 6737f9b0880SArd Biesheuvel select CRYPTO_HASH 6747f9b0880SArd Biesheuvel help 6757f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 6767f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 6777f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 6787f9b0880SArd Biesheuvel 6797f9b0880SArd Biesheuvel This module provides the following algorithms: 6807f9b0880SArd Biesheuvel 6817f9b0880SArd Biesheuvel - blake2s-128 6827f9b0880SArd Biesheuvel - blake2s-160 6837f9b0880SArd Biesheuvel - blake2s-224 6847f9b0880SArd Biesheuvel - blake2s-256 6857f9b0880SArd Biesheuvel 6867f9b0880SArd Biesheuvel See https://blake2.net for further information. 6877f9b0880SArd Biesheuvel 688ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 689ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 690ed0356edSJason A. Donenfeld depends on X86 && 64BIT 691ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 692ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 693ed0356edSJason A. Donenfeld 69468411521SHerbert Xuconfig CRYPTO_CRCT10DIF 69568411521SHerbert Xu tristate "CRCT10DIF algorithm" 69668411521SHerbert Xu select CRYPTO_HASH 69768411521SHerbert Xu help 69868411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 69968411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 70068411521SHerbert Xu transforms to be used if they are available. 70168411521SHerbert Xu 70268411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 70368411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 70468411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 70568411521SHerbert Xu select CRYPTO_HASH 70668411521SHerbert Xu help 70768411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 70868411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 70968411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 710af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 71168411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 71268411521SHerbert Xu 713b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 714b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 715b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 716b01df1c1SDaniel Axtens select CRYPTO_HASH 717b01df1c1SDaniel Axtens help 718b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 719b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 720b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 721b01df1c1SDaniel Axtens 722146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 723146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 724146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 725146c8688SDaniel Axtens help 726146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 727146c8688SDaniel Axtens POWER8 vpmsum instructions. 728146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 729146c8688SDaniel Axtens 7302cdc6899SHuang Yingconfig CRYPTO_GHASH 7318dfa20fcSEric Biggers tristate "GHASH hash function" 7322cdc6899SHuang Ying select CRYPTO_GF128MUL 733578c60fbSArnd Bergmann select CRYPTO_HASH 7342cdc6899SHuang Ying help 7358dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7368dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7372cdc6899SHuang Ying 738f979e014SMartin Williconfig CRYPTO_POLY1305 739f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 740578c60fbSArnd Bergmann select CRYPTO_HASH 74148ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 742f979e014SMartin Willi help 743f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 744f979e014SMartin Willi 745f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 746f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 747f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 748f979e014SMartin Willi 749c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 750b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 751c70f4abeSMartin Willi depends on X86 && 64BIT 7521b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 753f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 754c70f4abeSMartin Willi help 755c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 756c70f4abeSMartin Willi 757c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 758c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 759c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 760c70f4abeSMartin Willi instructions. 761c70f4abeSMartin Willi 762a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 763a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 764a11d055eSArd Biesheuvel depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT) 765a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 766a11d055eSArd Biesheuvel 7671da177e4SLinus Torvaldsconfig CRYPTO_MD4 7681da177e4SLinus Torvalds tristate "MD4 digest algorithm" 769808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7701da177e4SLinus Torvalds help 7711da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7721da177e4SLinus Torvalds 7731da177e4SLinus Torvaldsconfig CRYPTO_MD5 7741da177e4SLinus Torvalds tristate "MD5 digest algorithm" 77514b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7761da177e4SLinus Torvalds help 7771da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7781da177e4SLinus Torvalds 779d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 780d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 781d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 782d69e75deSAaro Koskinen select CRYPTO_MD5 783d69e75deSAaro Koskinen select CRYPTO_HASH 784d69e75deSAaro Koskinen help 785d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 786d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 787d69e75deSAaro Koskinen 788e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 789e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 790e8e59953SMarkus Stockhausen depends on PPC 791e8e59953SMarkus Stockhausen select CRYPTO_HASH 792e8e59953SMarkus Stockhausen help 793e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 794e8e59953SMarkus Stockhausen in PPC assembler. 795e8e59953SMarkus Stockhausen 796fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 797fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 798fa4dfedcSDavid S. Miller depends on SPARC64 799fa4dfedcSDavid S. Miller select CRYPTO_MD5 800fa4dfedcSDavid S. Miller select CRYPTO_HASH 801fa4dfedcSDavid S. Miller help 802fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 803fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 804fa4dfedcSDavid S. Miller 805584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 806584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 80719e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 808584fffc8SSebastian Siewior help 809584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 810584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 811584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 812584fffc8SSebastian Siewior of the algorithm. 813584fffc8SSebastian Siewior 81482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 81582798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 8167c4468bcSHerbert Xu select CRYPTO_HASH 81782798f90SAdrian-Ken Rueegsegger help 81882798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 81982798f90SAdrian-Ken Rueegsegger 82082798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 82135ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 82282798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 82382798f90SAdrian-Ken Rueegsegger 82482798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8256d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 82682798f90SAdrian-Ken Rueegsegger 82782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 82882798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 829e5835fbaSHerbert Xu select CRYPTO_HASH 83082798f90SAdrian-Ken Rueegsegger help 83182798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 83282798f90SAdrian-Ken Rueegsegger 83382798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 83482798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 835b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 836b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 83782798f90SAdrian-Ken Rueegsegger 838b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 839b6d44341SAdrian Bunk against RIPEMD-160. 840534fe2c1SAdrian-Ken Rueegsegger 841534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8426d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 843534fe2c1SAdrian-Ken Rueegsegger 844534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 845534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 846d8a5e2e9SHerbert Xu select CRYPTO_HASH 847534fe2c1SAdrian-Ken Rueegsegger help 848b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 849b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 850b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 851b6d44341SAdrian Bunk (than RIPEMD-128). 852534fe2c1SAdrian-Ken Rueegsegger 853534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8546d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 855534fe2c1SAdrian-Ken Rueegsegger 856534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 857534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8583b8efb4cSHerbert Xu select CRYPTO_HASH 859534fe2c1SAdrian-Ken Rueegsegger help 860b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 861b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 862b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 863b6d44341SAdrian Bunk (than RIPEMD-160). 864534fe2c1SAdrian-Ken Rueegsegger 86582798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8666d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 86782798f90SAdrian-Ken Rueegsegger 8681da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8691da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 87054ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8711da177e4SLinus Torvalds help 8721da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8731da177e4SLinus Torvalds 87466be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 875e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 87666be8951SMathias Krause depends on X86 && 64BIT 87766be8951SMathias Krause select CRYPTO_SHA1 87866be8951SMathias Krause select CRYPTO_HASH 87966be8951SMathias Krause help 88066be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 88166be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 882e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 883e38b6b7fStim when available. 88466be8951SMathias Krause 8858275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 886e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8878275d1aaSTim Chen depends on X86 && 64BIT 8888275d1aaSTim Chen select CRYPTO_SHA256 8898275d1aaSTim Chen select CRYPTO_HASH 8908275d1aaSTim Chen help 8918275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8928275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8938275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 894e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 895e38b6b7fStim Instructions) when available. 8968275d1aaSTim Chen 89787de4579STim Chenconfig CRYPTO_SHA512_SSSE3 89887de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 89987de4579STim Chen depends on X86 && 64BIT 90087de4579STim Chen select CRYPTO_SHA512 90187de4579STim Chen select CRYPTO_HASH 90287de4579STim Chen help 90387de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 90487de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 90587de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 90687de4579STim Chen version 2 (AVX2) instructions, when available. 90787de4579STim Chen 908efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 909efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 910efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 911efdb6f6eSAaro Koskinen select CRYPTO_SHA1 912efdb6f6eSAaro Koskinen select CRYPTO_HASH 913efdb6f6eSAaro Koskinen help 914efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 915efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 916efdb6f6eSAaro Koskinen 9174ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9184ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9194ff28d4cSDavid S. Miller depends on SPARC64 9204ff28d4cSDavid S. Miller select CRYPTO_SHA1 9214ff28d4cSDavid S. Miller select CRYPTO_HASH 9224ff28d4cSDavid S. Miller help 9234ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9244ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9254ff28d4cSDavid S. Miller 926323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 927323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 928323a6bf1SMichael Ellerman depends on PPC 929323a6bf1SMichael Ellerman help 930323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 931323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 932323a6bf1SMichael Ellerman 933d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 934d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 935d9850fc5SMarkus Stockhausen depends on PPC && SPE 936d9850fc5SMarkus Stockhausen help 937d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 938d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 939d9850fc5SMarkus Stockhausen 9401da177e4SLinus Torvaldsconfig CRYPTO_SHA256 941cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 94250e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 94308c327f6SHans de Goede select CRYPTO_LIB_SHA256 9441da177e4SLinus Torvalds help 9451da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9461da177e4SLinus Torvalds 9471da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9481da177e4SLinus Torvalds security against collision attacks. 9491da177e4SLinus Torvalds 950cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 951cd12fb90SJonathan Lynch of security against collision attacks. 952cd12fb90SJonathan Lynch 9532ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9542ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9552ecc1e95SMarkus Stockhausen depends on PPC && SPE 9562ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9572ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9582ecc1e95SMarkus Stockhausen help 9592ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9602ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9612ecc1e95SMarkus Stockhausen 962efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 963efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 964efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 965efdb6f6eSAaro Koskinen select CRYPTO_SHA256 966efdb6f6eSAaro Koskinen select CRYPTO_HASH 967efdb6f6eSAaro Koskinen help 968efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 969efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 970efdb6f6eSAaro Koskinen 97186c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 97286c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 97386c93b24SDavid S. Miller depends on SPARC64 97486c93b24SDavid S. Miller select CRYPTO_SHA256 97586c93b24SDavid S. Miller select CRYPTO_HASH 97686c93b24SDavid S. Miller help 97786c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 97886c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 97986c93b24SDavid S. Miller 9801da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9811da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 982bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9831da177e4SLinus Torvalds help 9841da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9851da177e4SLinus Torvalds 9861da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9871da177e4SLinus Torvalds security against collision attacks. 9881da177e4SLinus Torvalds 9891da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9901da177e4SLinus Torvalds of security against collision attacks. 9911da177e4SLinus Torvalds 992efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 993efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 994efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 995efdb6f6eSAaro Koskinen select CRYPTO_SHA512 996efdb6f6eSAaro Koskinen select CRYPTO_HASH 997efdb6f6eSAaro Koskinen help 998efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 999efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 1000efdb6f6eSAaro Koskinen 1001775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 1002775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1003775e0c69SDavid S. Miller depends on SPARC64 1004775e0c69SDavid S. Miller select CRYPTO_SHA512 1005775e0c69SDavid S. Miller select CRYPTO_HASH 1006775e0c69SDavid S. Miller help 1007775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 1008775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1009775e0c69SDavid S. Miller 101053964b9eSJeff Garzikconfig CRYPTO_SHA3 101153964b9eSJeff Garzik tristate "SHA3 digest algorithm" 101253964b9eSJeff Garzik select CRYPTO_HASH 101353964b9eSJeff Garzik help 101453964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 101553964b9eSJeff Garzik cryptographic sponge function family called Keccak. 101653964b9eSJeff Garzik 101753964b9eSJeff Garzik References: 101853964b9eSJeff Garzik http://keccak.noekeon.org/ 101953964b9eSJeff Garzik 10204f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10214f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10224f0fc160SGilad Ben-Yossef select CRYPTO_HASH 10234f0fc160SGilad Ben-Yossef help 10244f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10254f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10264f0fc160SGilad Ben-Yossef 10274f0fc160SGilad Ben-Yossef References: 10284f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10294f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10304f0fc160SGilad Ben-Yossef 1031fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1032fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1033fe18957eSVitaly Chikunov select CRYPTO_HASH 1034fe18957eSVitaly Chikunov help 1035fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1036fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1037fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1038fe18957eSVitaly Chikunov 1039fe18957eSVitaly Chikunov References: 1040fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1041fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1042fe18957eSVitaly Chikunov 10431da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10441da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1045f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10461da177e4SLinus Torvalds help 10471da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10481da177e4SLinus Torvalds 10491da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10501da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10511da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10521da177e4SLinus Torvalds 10531da177e4SLinus Torvalds See also: 10541da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10551da177e4SLinus Torvalds 1056584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1057584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10584946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10591da177e4SLinus Torvalds help 1060584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10611da177e4SLinus Torvalds 1062584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1063584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10641da177e4SLinus Torvalds 10651da177e4SLinus Torvalds See also: 10666d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10671da177e4SLinus Torvalds 10680e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10698dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10708af00860SRichard Weinberger depends on X86 && 64BIT 10710e1227d3SHuang Ying select CRYPTO_CRYPTD 10720e1227d3SHuang Ying help 10738dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10748dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10750e1227d3SHuang Ying 1076584fffc8SSebastian Siewiorcomment "Ciphers" 10771da177e4SLinus Torvalds 10781da177e4SLinus Torvaldsconfig CRYPTO_AES 10791da177e4SLinus Torvalds tristate "AES cipher algorithms" 1080cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10815bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10821da177e4SLinus Torvalds help 10831da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10841da177e4SLinus Torvalds algorithm. 10851da177e4SLinus Torvalds 10861da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10871da177e4SLinus Torvalds both hardware and software across a wide range of computing 10881da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10891da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10901da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10911da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10921da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10931da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10941da177e4SLinus Torvalds 10951da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10961da177e4SLinus Torvalds 10971da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10981da177e4SLinus Torvalds 1099b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1100b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1101b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1102e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1103b5e0b032SArd Biesheuvel help 1104b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1105b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1106b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1107b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1108b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1109b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1110b5e0b032SArd Biesheuvel 1111b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1112b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1113b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1114b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11150a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11160a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1117b5e0b032SArd Biesheuvel 111854b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 111954b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11208af00860SRichard Weinberger depends on X86 112185671860SHerbert Xu select CRYPTO_AEAD 11222c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 112354b6a1bdSHuang Ying select CRYPTO_ALGAPI 1124b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11257643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 112685671860SHerbert Xu select CRYPTO_SIMD 112754b6a1bdSHuang Ying help 112854b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 112954b6a1bdSHuang Ying 113054b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 113154b6a1bdSHuang Ying algorithm. 113254b6a1bdSHuang Ying 113354b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 113454b6a1bdSHuang Ying both hardware and software across a wide range of computing 113554b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 113654b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 113754b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 113854b6a1bdSHuang Ying suited for restricted-space environments, in which it also 113954b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 114054b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 114154b6a1bdSHuang Ying 114254b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 114354b6a1bdSHuang Ying 114454b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 114554b6a1bdSHuang Ying 11460d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11470d258efbSMathias Krause for some popular block cipher mode is supported too, including 1148944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11490d258efbSMathias Krause acceleration for CTR. 11502cf4ac8bSHuang Ying 11519bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11529bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11539bf4852dSDavid S. Miller depends on SPARC64 1154b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11559bf4852dSDavid S. Miller help 11569bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11579bf4852dSDavid S. Miller 11589bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11599bf4852dSDavid S. Miller algorithm. 11609bf4852dSDavid S. Miller 11619bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11629bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11639bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11649bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11659bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11669bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11679bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11689bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11699bf4852dSDavid S. Miller 11709bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11719bf4852dSDavid S. Miller 11729bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11739bf4852dSDavid S. Miller 11749bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11759bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11769bf4852dSDavid S. Miller ECB and CBC. 11779bf4852dSDavid S. Miller 1178504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1179504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1180504c6143SMarkus Stockhausen depends on PPC && SPE 1181b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1182504c6143SMarkus Stockhausen help 1183504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1184504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1185504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1186504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1187504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1188504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1189504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1190504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1191504c6143SMarkus Stockhausen 11921da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11931da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1194cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11951da177e4SLinus Torvalds help 11961da177e4SLinus Torvalds Anubis cipher algorithm. 11971da177e4SLinus Torvalds 11981da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11991da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12001da177e4SLinus Torvalds in the NESSIE competition. 12011da177e4SLinus Torvalds 12021da177e4SLinus Torvalds See also: 12036d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12046d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12051da177e4SLinus Torvalds 1206584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1207584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1208b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1209dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1210e2ee95b8SHye-Shik Chang help 1211584fffc8SSebastian Siewior ARC4 cipher algorithm. 1212e2ee95b8SHye-Shik Chang 1213584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1214584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1215584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1216584fffc8SSebastian Siewior weakness of the algorithm. 1217584fffc8SSebastian Siewior 1218584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1219584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1220584fffc8SSebastian Siewior select CRYPTO_ALGAPI 122152ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1222584fffc8SSebastian Siewior help 1223584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1224584fffc8SSebastian Siewior 1225584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1226584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1227584fffc8SSebastian Siewior designed for use on "large microprocessors". 1228e2ee95b8SHye-Shik Chang 1229e2ee95b8SHye-Shik Chang See also: 1230584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1231584fffc8SSebastian Siewior 123252ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 123352ba867cSJussi Kivilinna tristate 123452ba867cSJussi Kivilinna help 123552ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 123652ba867cSJussi Kivilinna generic c and the assembler implementations. 123752ba867cSJussi Kivilinna 123852ba867cSJussi Kivilinna See also: 123952ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 124052ba867cSJussi Kivilinna 124164b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 124264b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1243f21a7c19SAl Viro depends on X86 && 64BIT 1244b95bba5dSEric Biggers select CRYPTO_SKCIPHER 124564b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 124664b94ceaSJussi Kivilinna help 124764b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 124864b94ceaSJussi Kivilinna 124964b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 125064b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 125164b94ceaSJussi Kivilinna designed for use on "large microprocessors". 125264b94ceaSJussi Kivilinna 125364b94ceaSJussi Kivilinna See also: 125464b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 125564b94ceaSJussi Kivilinna 1256584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1257584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1258584fffc8SSebastian Siewior depends on CRYPTO 1259584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1260584fffc8SSebastian Siewior help 1261584fffc8SSebastian Siewior Camellia cipher algorithms module. 1262584fffc8SSebastian Siewior 1263584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1264584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1265584fffc8SSebastian Siewior 1266584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1267584fffc8SSebastian Siewior 1268584fffc8SSebastian Siewior See also: 1269584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1270584fffc8SSebastian Siewior 12710b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12720b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1273f21a7c19SAl Viro depends on X86 && 64BIT 12740b95ec56SJussi Kivilinna depends on CRYPTO 1275b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1276964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12770b95ec56SJussi Kivilinna help 12780b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12790b95ec56SJussi Kivilinna 12800b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12810b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12820b95ec56SJussi Kivilinna 12830b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12840b95ec56SJussi Kivilinna 12850b95ec56SJussi Kivilinna See also: 12860b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12870b95ec56SJussi Kivilinna 1288d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1289d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1290d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1291d9b1d2e7SJussi Kivilinna depends on CRYPTO 1292b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1293d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 129444893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 129544893bc2SEric Biggers select CRYPTO_SIMD 1296d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1297d9b1d2e7SJussi Kivilinna help 1298d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1299d9b1d2e7SJussi Kivilinna 1300d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1301d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1302d9b1d2e7SJussi Kivilinna 1303d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1304d9b1d2e7SJussi Kivilinna 1305d9b1d2e7SJussi Kivilinna See also: 1306d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1307d9b1d2e7SJussi Kivilinna 1308f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1309f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1310f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1311f3f935a7SJussi Kivilinna depends on CRYPTO 1312f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1313f3f935a7SJussi Kivilinna help 1314f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1315f3f935a7SJussi Kivilinna 1316f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1317f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1318f3f935a7SJussi Kivilinna 1319f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1320f3f935a7SJussi Kivilinna 1321f3f935a7SJussi Kivilinna See also: 1322f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1323f3f935a7SJussi Kivilinna 132481658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 132581658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 132681658ad0SDavid S. Miller depends on SPARC64 132781658ad0SDavid S. Miller depends on CRYPTO 132881658ad0SDavid S. Miller select CRYPTO_ALGAPI 1329b95bba5dSEric Biggers select CRYPTO_SKCIPHER 133081658ad0SDavid S. Miller help 133181658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 133281658ad0SDavid S. Miller 133381658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 133481658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 133581658ad0SDavid S. Miller 133681658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 133781658ad0SDavid S. Miller 133881658ad0SDavid S. Miller See also: 133981658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 134081658ad0SDavid S. Miller 1341044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1342044ab525SJussi Kivilinna tristate 1343044ab525SJussi Kivilinna help 1344044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1345044ab525SJussi Kivilinna generic c and the assembler implementations. 1346044ab525SJussi Kivilinna 1347584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1348584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1349584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1350044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1351584fffc8SSebastian Siewior help 1352584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1353584fffc8SSebastian Siewior described in RFC2144. 1354584fffc8SSebastian Siewior 13554d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13564d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13574d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1358b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13594d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13601e63183aSEric Biggers select CRYPTO_CAST_COMMON 13611e63183aSEric Biggers select CRYPTO_SIMD 13624d6d6a2cSJohannes Goetzfried help 13634d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13644d6d6a2cSJohannes Goetzfried described in RFC2144. 13654d6d6a2cSJohannes Goetzfried 13664d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13674d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13684d6d6a2cSJohannes Goetzfried 1369584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1370584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1371584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1372044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1373584fffc8SSebastian Siewior help 1374584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1375584fffc8SSebastian Siewior described in RFC2612. 1376584fffc8SSebastian Siewior 13774ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13784ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13794ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1380b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13814ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13824bd96924SEric Biggers select CRYPTO_CAST_COMMON 13834bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13844bd96924SEric Biggers select CRYPTO_SIMD 13854ea1277dSJohannes Goetzfried select CRYPTO_XTS 13864ea1277dSJohannes Goetzfried help 13874ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13884ea1277dSJohannes Goetzfried described in RFC2612. 13894ea1277dSJohannes Goetzfried 13904ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13914ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13924ea1277dSJohannes Goetzfried 1393584fffc8SSebastian Siewiorconfig CRYPTO_DES 1394584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1395584fffc8SSebastian Siewior select CRYPTO_ALGAPI 139604007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1397584fffc8SSebastian Siewior help 1398584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1399584fffc8SSebastian Siewior 1400c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1401c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 140297da37b3SDave Jones depends on SPARC64 1403c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 140404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1405b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1406c5aac2dfSDavid S. Miller help 1407c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1408c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1409c5aac2dfSDavid S. Miller 14106574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14116574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14126574e6c6SJussi Kivilinna depends on X86 && 64BIT 1413b95bba5dSEric Biggers select CRYPTO_SKCIPHER 141404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 14156574e6c6SJussi Kivilinna help 14166574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14176574e6c6SJussi Kivilinna 14186574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14196574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14206574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14216574e6c6SJussi Kivilinna one that processes three blocks parallel. 14226574e6c6SJussi Kivilinna 1423584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1424584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1425584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1426b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1427584fffc8SSebastian Siewior help 1428584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1429584fffc8SSebastian Siewior 1430584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1431584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1432584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1433584fffc8SSebastian Siewior help 1434584fffc8SSebastian Siewior Khazad cipher algorithm. 1435584fffc8SSebastian Siewior 1436584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1437584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1438584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1439584fffc8SSebastian Siewior 1440584fffc8SSebastian Siewior See also: 14416d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1442e2ee95b8SHye-Shik Chang 14432407d608STan Swee Hengconfig CRYPTO_SALSA20 14443b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 1445b95bba5dSEric Biggers select CRYPTO_SKCIPHER 14462407d608STan Swee Heng help 14472407d608STan Swee Heng Salsa20 stream cipher algorithm. 14482407d608STan Swee Heng 14492407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14502407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14512407d608STan Swee Heng 14522407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14532407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14541da177e4SLinus Torvalds 1455c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1456aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14575fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1458b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1459c08d0e64SMartin Willi help 1460aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1461c08d0e64SMartin Willi 1462c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1463c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1464de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1465c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1466c08d0e64SMartin Willi 1467de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1468de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1469de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1470de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1471de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1472de61d7aeSEric Biggers 1473aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1474aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1475aa762409SEric Biggers in some performance-sensitive scenarios. 1476aa762409SEric Biggers 1477c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14784af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1479c9320b6dSMartin Willi depends on X86 && 64BIT 1480b95bba5dSEric Biggers select CRYPTO_SKCIPHER 148128e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 148284e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1483c9320b6dSMartin Willi help 14847a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14857a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1486c9320b6dSMartin Willi 14873a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14883a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14893a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1490*660eda8dSEric Biggers select CRYPTO_SKCIPHER 14913a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14923a2f58f3SArd Biesheuvel 1493584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1494584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1495584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1496584fffc8SSebastian Siewior help 1497584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1498584fffc8SSebastian Siewior 1499584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1500584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1501584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1502584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1503584fffc8SSebastian Siewior 1504584fffc8SSebastian Siewior See also: 1505584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1506584fffc8SSebastian Siewior 1507584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1508584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1509584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1510584fffc8SSebastian Siewior help 1511584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1512584fffc8SSebastian Siewior 1513584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1514584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1515584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1516584fffc8SSebastian Siewior 1517584fffc8SSebastian Siewior See also: 1518584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1519584fffc8SSebastian Siewior 1520937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1521937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1522937c30d7SJussi Kivilinna depends on X86 && 64BIT 1523b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1524596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1525937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1526e0f409dcSEric Biggers select CRYPTO_SIMD 1527937c30d7SJussi Kivilinna help 1528937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1529937c30d7SJussi Kivilinna 1530937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1531937c30d7SJussi Kivilinna of 8 bits. 1532937c30d7SJussi Kivilinna 15331e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1534937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1535937c30d7SJussi Kivilinna 1536937c30d7SJussi Kivilinna See also: 1537937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1538937c30d7SJussi Kivilinna 1539251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1540251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1541251496dbSJussi Kivilinna depends on X86 && !64BIT 1542b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1543596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1544251496dbSJussi Kivilinna select CRYPTO_SERPENT 1545e0f409dcSEric Biggers select CRYPTO_SIMD 1546251496dbSJussi Kivilinna help 1547251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1548251496dbSJussi Kivilinna 1549251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1550251496dbSJussi Kivilinna of 8 bits. 1551251496dbSJussi Kivilinna 1552251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1553251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1554251496dbSJussi Kivilinna 1555251496dbSJussi Kivilinna See also: 1556251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1557251496dbSJussi Kivilinna 15587efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15597efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15607efe4076SJohannes Goetzfried depends on X86 && 64BIT 1561b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15621d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15637efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1564e16bf974SEric Biggers select CRYPTO_SIMD 15657efe4076SJohannes Goetzfried select CRYPTO_XTS 15667efe4076SJohannes Goetzfried help 15677efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15687efe4076SJohannes Goetzfried 15697efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15707efe4076SJohannes Goetzfried of 8 bits. 15717efe4076SJohannes Goetzfried 15727efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15737efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15747efe4076SJohannes Goetzfried 15757efe4076SJohannes Goetzfried See also: 15767efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15777efe4076SJohannes Goetzfried 157856d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 157956d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 158056d76c96SJussi Kivilinna depends on X86 && 64BIT 158156d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 158256d76c96SJussi Kivilinna help 158356d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 158456d76c96SJussi Kivilinna 158556d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 158656d76c96SJussi Kivilinna of 8 bits. 158756d76c96SJussi Kivilinna 158856d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 158956d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 159056d76c96SJussi Kivilinna 159156d76c96SJussi Kivilinna See also: 159256d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 159356d76c96SJussi Kivilinna 1594747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1595747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1596747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1597747c8ce4SGilad Ben-Yossef help 1598747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1599747c8ce4SGilad Ben-Yossef 1600747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1601747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1602747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1603747c8ce4SGilad Ben-Yossef 1604747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1605747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1606747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1607747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1608747c8ce4SGilad Ben-Yossef 1609747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1610747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1611747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1612747c8ce4SGilad Ben-Yossef 1613747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1614747c8ce4SGilad Ben-Yossef 1615747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1616747c8ce4SGilad Ben-Yossef 1617747c8ce4SGilad Ben-Yossef If unsure, say N. 1618747c8ce4SGilad Ben-Yossef 1619584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1620584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1621584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1622584fffc8SSebastian Siewior help 1623584fffc8SSebastian Siewior TEA cipher algorithm. 1624584fffc8SSebastian Siewior 1625584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1626584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1627584fffc8SSebastian Siewior little memory. 1628584fffc8SSebastian Siewior 1629584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1630584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1631584fffc8SSebastian Siewior in the TEA algorithm. 1632584fffc8SSebastian Siewior 1633584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1634584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1635584fffc8SSebastian Siewior 1636584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1637584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1638584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1639584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1640584fffc8SSebastian Siewior help 1641584fffc8SSebastian Siewior Twofish cipher algorithm. 1642584fffc8SSebastian Siewior 1643584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1644584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1645584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1646584fffc8SSebastian Siewior bits. 1647584fffc8SSebastian Siewior 1648584fffc8SSebastian Siewior See also: 1649584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1650584fffc8SSebastian Siewior 1651584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1652584fffc8SSebastian Siewior tristate 1653584fffc8SSebastian Siewior help 1654584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1655584fffc8SSebastian Siewior generic c and the assembler implementations. 1656584fffc8SSebastian Siewior 1657584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1658584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1659584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1660584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1661584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1662584fffc8SSebastian Siewior help 1663584fffc8SSebastian Siewior Twofish cipher algorithm. 1664584fffc8SSebastian Siewior 1665584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1666584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1667584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1668584fffc8SSebastian Siewior bits. 1669584fffc8SSebastian Siewior 1670584fffc8SSebastian Siewior See also: 1671584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1672584fffc8SSebastian Siewior 1673584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1674584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1675584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1676584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1677584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1678584fffc8SSebastian Siewior help 1679584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1680584fffc8SSebastian Siewior 1681584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1682584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1683584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1684584fffc8SSebastian Siewior bits. 1685584fffc8SSebastian Siewior 1686584fffc8SSebastian Siewior See also: 1687584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1688584fffc8SSebastian Siewior 16898280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16908280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1691f21a7c19SAl Viro depends on X86 && 64BIT 1692b95bba5dSEric Biggers select CRYPTO_SKCIPHER 16938280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16948280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1695414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16968280daadSJussi Kivilinna help 16978280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16988280daadSJussi Kivilinna 16998280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17008280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17018280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17028280daadSJussi Kivilinna bits. 17038280daadSJussi Kivilinna 17048280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17058280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17068280daadSJussi Kivilinna 17078280daadSJussi Kivilinna See also: 17088280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 17098280daadSJussi Kivilinna 1710107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1711107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1712107778b5SJohannes Goetzfried depends on X86 && 64BIT 1713b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1714a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17150e6ab46dSEric Biggers select CRYPTO_SIMD 1716107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1717107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1718107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1719107778b5SJohannes Goetzfried help 1720107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1721107778b5SJohannes Goetzfried 1722107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1723107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1724107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1725107778b5SJohannes Goetzfried bits. 1726107778b5SJohannes Goetzfried 1727107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1728107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1729107778b5SJohannes Goetzfried 1730107778b5SJohannes Goetzfried See also: 1731107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1732107778b5SJohannes Goetzfried 1733584fffc8SSebastian Siewiorcomment "Compression" 1734584fffc8SSebastian Siewior 17351da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17361da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1737cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1738f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17391da177e4SLinus Torvalds select ZLIB_INFLATE 17401da177e4SLinus Torvalds select ZLIB_DEFLATE 17411da177e4SLinus Torvalds help 17421da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17431da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17441da177e4SLinus Torvalds 17451da177e4SLinus Torvalds You will most probably want this if using IPSec. 17461da177e4SLinus Torvalds 17470b77abb3SZoltan Sogorconfig CRYPTO_LZO 17480b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17490b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1750ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17510b77abb3SZoltan Sogor select LZO_COMPRESS 17520b77abb3SZoltan Sogor select LZO_DECOMPRESS 17530b77abb3SZoltan Sogor help 17540b77abb3SZoltan Sogor This is the LZO algorithm. 17550b77abb3SZoltan Sogor 175635a1fc18SSeth Jenningsconfig CRYPTO_842 175735a1fc18SSeth Jennings tristate "842 compression algorithm" 17582062c5b6SDan Streetman select CRYPTO_ALGAPI 17596a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17602062c5b6SDan Streetman select 842_COMPRESS 17612062c5b6SDan Streetman select 842_DECOMPRESS 176235a1fc18SSeth Jennings help 176335a1fc18SSeth Jennings This is the 842 algorithm. 176435a1fc18SSeth Jennings 17650ea8530dSChanho Minconfig CRYPTO_LZ4 17660ea8530dSChanho Min tristate "LZ4 compression algorithm" 17670ea8530dSChanho Min select CRYPTO_ALGAPI 17688cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17690ea8530dSChanho Min select LZ4_COMPRESS 17700ea8530dSChanho Min select LZ4_DECOMPRESS 17710ea8530dSChanho Min help 17720ea8530dSChanho Min This is the LZ4 algorithm. 17730ea8530dSChanho Min 17740ea8530dSChanho Minconfig CRYPTO_LZ4HC 17750ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17760ea8530dSChanho Min select CRYPTO_ALGAPI 177791d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17780ea8530dSChanho Min select LZ4HC_COMPRESS 17790ea8530dSChanho Min select LZ4_DECOMPRESS 17800ea8530dSChanho Min help 17810ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17820ea8530dSChanho Min 1783d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1784d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1785d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1786d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1787d28fc3dbSNick Terrell select ZSTD_COMPRESS 1788d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1789d28fc3dbSNick Terrell help 1790d28fc3dbSNick Terrell This is the zstd algorithm. 1791d28fc3dbSNick Terrell 179217f0f4a4SNeil Hormancomment "Random Number Generation" 179317f0f4a4SNeil Horman 179417f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 179517f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 179617f0f4a4SNeil Horman select CRYPTO_AES 179717f0f4a4SNeil Horman select CRYPTO_RNG 179817f0f4a4SNeil Horman help 179917f0f4a4SNeil Horman This option enables the generic pseudo random number generator 180017f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18017dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18027dd607e8SJiri Kosina CRYPTO_FIPS is selected 180317f0f4a4SNeil Horman 1804f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1805419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1806419090c6SStephan Mueller help 1807419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1808419090c6SStephan Mueller more of the DRBG types must be selected. 1809419090c6SStephan Mueller 1810f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1811419090c6SStephan Mueller 1812419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1813401e4238SHerbert Xu bool 1814419090c6SStephan Mueller default y 1815419090c6SStephan Mueller select CRYPTO_HMAC 1816826775bbSHerbert Xu select CRYPTO_SHA256 1817419090c6SStephan Mueller 1818419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1819419090c6SStephan Mueller bool "Enable Hash DRBG" 1820826775bbSHerbert Xu select CRYPTO_SHA256 1821419090c6SStephan Mueller help 1822419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1823419090c6SStephan Mueller 1824419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1825419090c6SStephan Mueller bool "Enable CTR DRBG" 1826419090c6SStephan Mueller select CRYPTO_AES 182735591285SStephan Mueller depends on CRYPTO_CTR 1828419090c6SStephan Mueller help 1829419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1830419090c6SStephan Mueller 1831f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1832f2c89a10SHerbert Xu tristate 1833401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1834f2c89a10SHerbert Xu select CRYPTO_RNG 1835bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1836f2c89a10SHerbert Xu 1837f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1838419090c6SStephan Mueller 1839bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1840bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18412f313e02SArnd Bergmann select CRYPTO_RNG 1842bb5530e4SStephan Mueller help 1843bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1844bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1845bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1846bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1847bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1848bb5530e4SStephan Mueller 184903c8efc1SHerbert Xuconfig CRYPTO_USER_API 185003c8efc1SHerbert Xu tristate 185103c8efc1SHerbert Xu 1852fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1853fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18547451708fSHerbert Xu depends on NET 1855fe869cdbSHerbert Xu select CRYPTO_HASH 1856fe869cdbSHerbert Xu select CRYPTO_USER_API 1857fe869cdbSHerbert Xu help 1858fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1859fe869cdbSHerbert Xu algorithms. 1860fe869cdbSHerbert Xu 18618ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18628ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18637451708fSHerbert Xu depends on NET 1864b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18658ff59090SHerbert Xu select CRYPTO_USER_API 18668ff59090SHerbert Xu help 18678ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18688ff59090SHerbert Xu key cipher algorithms. 18698ff59090SHerbert Xu 18702f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18712f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18722f375538SStephan Mueller depends on NET 18732f375538SStephan Mueller select CRYPTO_RNG 18742f375538SStephan Mueller select CRYPTO_USER_API 18752f375538SStephan Mueller help 18762f375538SStephan Mueller This option enables the user-spaces interface for random 18772f375538SStephan Mueller number generator algorithms. 18782f375538SStephan Mueller 1879b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1880b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1881b64a2d95SHerbert Xu depends on NET 1882b64a2d95SHerbert Xu select CRYPTO_AEAD 1883b95bba5dSEric Biggers select CRYPTO_SKCIPHER 188472548b09SStephan Mueller select CRYPTO_NULL 1885b64a2d95SHerbert Xu select CRYPTO_USER_API 1886b64a2d95SHerbert Xu help 1887b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1888b64a2d95SHerbert Xu cipher algorithms. 1889b64a2d95SHerbert Xu 1890cac5818cSCorentin Labbeconfig CRYPTO_STATS 1891cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1892a6a31385SCorentin Labbe depends on CRYPTO_USER 1893cac5818cSCorentin Labbe help 1894cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1895cac5818cSCorentin Labbe This will collect: 1896cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1897cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1898cac5818cSCorentin Labbe - size and numbers of hash operations 1899cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1900cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1901cac5818cSCorentin Labbe 1902ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1903ee08997fSDmitry Kasatkin bool 1904ee08997fSDmitry Kasatkin 1905746b2e02SArd Biesheuvelsource "lib/crypto/Kconfig" 19061da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19078636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19088636a1f9SMasahiro Yamadasource "certs/Kconfig" 19091da177e4SLinus Torvalds 1910cce9e06dSHerbert Xuendif # if CRYPTO 1911