xref: /linux/crypto/Kconfig (revision 5b2efa2bb865eb784e06987c7ce98c3c835b495b)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER
565cde0af2SHerbert Xu	tristate
57b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1088cd579d2SBart Van Assche	select SGL_ALLOC
1092ebda74fSGiovanni Cabiddu
1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1112ebda74fSGiovanni Cabiddu	tristate
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1142ebda74fSGiovanni Cabiddu
1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1162b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1176a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1182b8c19dbSHerbert Xu	help
1192b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1202b8c19dbSHerbert Xu	  cbc(aes).
1212b8c19dbSHerbert Xu
1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1236a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1246a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1256a0fcbb4SHerbert Xu	select CRYPTO_HASH2
126b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
127946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1284e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1306a0fcbb4SHerbert Xu
131a38f7907SSteffen Klassertconfig CRYPTO_USER
132a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1335db017aaSHerbert Xu	depends on NET
134a38f7907SSteffen Klassert	select CRYPTO_MANAGER
135a38f7907SSteffen Klassert	help
136d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
137a38f7907SSteffen Klassert	  cbc(aes).
138a38f7907SSteffen Klassert
139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
140326a6346SHerbert Xu	bool "Disable run-time self tests"
14100ca28a5SHerbert Xu	default y
1420b767f96SAlexander Shishkin	help
143326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
144326a6346SHerbert Xu	  algorithm registration.
1450b767f96SAlexander Shishkin
1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1475b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1486569e309SJason A. Donenfeld	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
1495b2706a4SEric Biggers	help
1505b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1515b2706a4SEric Biggers	  including randomized fuzz tests.
1525b2706a4SEric Biggers
1535b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1545b2706a4SEric Biggers	  longer to run than the normal self tests.
1555b2706a4SEric Biggers
156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
157e590e132SEric Biggers	tristate
158584fffc8SSebastian Siewior
159584fffc8SSebastian Siewiorconfig CRYPTO_NULL
160584fffc8SSebastian Siewior	tristate "Null algorithms"
161149a3971SHerbert Xu	select CRYPTO_NULL2
162584fffc8SSebastian Siewior	help
163584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
164584fffc8SSebastian Siewior
165149a3971SHerbert Xuconfig CRYPTO_NULL2
166dd43c4e9SHerbert Xu	tristate
167149a3971SHerbert Xu	select CRYPTO_ALGAPI2
168b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
169149a3971SHerbert Xu	select CRYPTO_HASH2
170149a3971SHerbert Xu
1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1723b4afaf2SKees Cook	tristate "Parallel crypto engine"
1733b4afaf2SKees Cook	depends on SMP
1745068c7a8SSteffen Klassert	select PADATA
1755068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1765068c7a8SSteffen Klassert	select CRYPTO_AEAD
1775068c7a8SSteffen Klassert	help
1785068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1795068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1805068c7a8SSteffen Klassert
181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
182584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
183b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
184b8a28251SLoc Ho	select CRYPTO_HASH
185584fffc8SSebastian Siewior	select CRYPTO_MANAGER
186584fffc8SSebastian Siewior	help
187584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
188584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
189584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
190584fffc8SSebastian Siewior
191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
192584fffc8SSebastian Siewior	tristate "Authenc support"
193584fffc8SSebastian Siewior	select CRYPTO_AEAD
194b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
195584fffc8SSebastian Siewior	select CRYPTO_MANAGER
196584fffc8SSebastian Siewior	select CRYPTO_HASH
197e94c6a7aSHerbert Xu	select CRYPTO_NULL
198584fffc8SSebastian Siewior	help
199584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
200584fffc8SSebastian Siewior	  This is required for IPSec.
201584fffc8SSebastian Siewior
202584fffc8SSebastian Siewiorconfig CRYPTO_TEST
203584fffc8SSebastian Siewior	tristate "Testing module"
20400ea27f1SArd Biesheuvel	depends on m || EXPERT
205da7f033dSHerbert Xu	select CRYPTO_MANAGER
206584fffc8SSebastian Siewior	help
207584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
208584fffc8SSebastian Siewior
209266d0516SHerbert Xuconfig CRYPTO_SIMD
210266d0516SHerbert Xu	tristate
211266d0516SHerbert Xu	select CRYPTO_CRYPTD
212266d0516SHerbert Xu
213735d37b5SBaolin Wangconfig CRYPTO_ENGINE
214735d37b5SBaolin Wang	tristate
215735d37b5SBaolin Wang
2163d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2173d6228a5SVitaly Chikunov
2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2193d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2203d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2213d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2223d6228a5SVitaly Chikunov	select MPILIB
2233d6228a5SVitaly Chikunov	select ASN1
2243d6228a5SVitaly Chikunov	help
2253d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2263d6228a5SVitaly Chikunov
2273d6228a5SVitaly Chikunovconfig CRYPTO_DH
2283d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2293d6228a5SVitaly Chikunov	select CRYPTO_KPP
2303d6228a5SVitaly Chikunov	select MPILIB
2313d6228a5SVitaly Chikunov	help
2323d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2333d6228a5SVitaly Chikunov
2344a2289daSVitaly Chikunovconfig CRYPTO_ECC
2354a2289daSVitaly Chikunov	tristate
2364a2289daSVitaly Chikunov
2373d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2383d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2394a2289daSVitaly Chikunov	select CRYPTO_ECC
2403d6228a5SVitaly Chikunov	select CRYPTO_KPP
2413d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2423d6228a5SVitaly Chikunov	help
2433d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2443d6228a5SVitaly Chikunov
2454e660291SStefan Bergerconfig CRYPTO_ECDSA
2464e660291SStefan Berger	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
2474e660291SStefan Berger	select CRYPTO_ECC
2484e660291SStefan Berger	select CRYPTO_AKCIPHER
2494e660291SStefan Berger	select ASN1
2504e660291SStefan Berger	help
2514e660291SStefan Berger	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
2524e660291SStefan Berger	  is A NIST cryptographic standard algorithm. Only signature verification
2534e660291SStefan Berger	  is implemented.
2544e660291SStefan Berger
2550d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2560d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2570d7a7864SVitaly Chikunov	select CRYPTO_ECC
2580d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2590d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2601036633eSVitaly Chikunov	select OID_REGISTRY
2611036633eSVitaly Chikunov	select ASN1
2620d7a7864SVitaly Chikunov	help
2630d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2640d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2650d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2660d7a7864SVitaly Chikunov	  is implemented.
2670d7a7864SVitaly Chikunov
268ea7ecb66STianjia Zhangconfig CRYPTO_SM2
269ea7ecb66STianjia Zhang	tristate "SM2 algorithm"
270ea7ecb66STianjia Zhang	select CRYPTO_SM3
271ea7ecb66STianjia Zhang	select CRYPTO_AKCIPHER
272ea7ecb66STianjia Zhang	select CRYPTO_MANAGER
273ea7ecb66STianjia Zhang	select MPILIB
274ea7ecb66STianjia Zhang	select ASN1
275ea7ecb66STianjia Zhang	help
276ea7ecb66STianjia Zhang	  Generic implementation of the SM2 public key algorithm. It was
277ea7ecb66STianjia Zhang	  published by State Encryption Management Bureau, China.
278ea7ecb66STianjia Zhang	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
279ea7ecb66STianjia Zhang
280ea7ecb66STianjia Zhang	  References:
281ea7ecb66STianjia Zhang	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
282ea7ecb66STianjia Zhang	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
283ea7ecb66STianjia Zhang	  http://www.gmbz.org.cn/main/bzlb.html
284ea7ecb66STianjia Zhang
285ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519
286ee772cb6SArd Biesheuvel	tristate "Curve25519 algorithm"
287ee772cb6SArd Biesheuvel	select CRYPTO_KPP
288ee772cb6SArd Biesheuvel	select CRYPTO_LIB_CURVE25519_GENERIC
289ee772cb6SArd Biesheuvel
290bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86
291bb611bdfSJason A. Donenfeld	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
292bb611bdfSJason A. Donenfeld	depends on X86 && 64BIT
293bb611bdfSJason A. Donenfeld	select CRYPTO_LIB_CURVE25519_GENERIC
294bb611bdfSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
295bb611bdfSJason A. Donenfeld
296584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
297584fffc8SSebastian Siewior
298584fffc8SSebastian Siewiorconfig CRYPTO_CCM
299584fffc8SSebastian Siewior	tristate "CCM support"
300584fffc8SSebastian Siewior	select CRYPTO_CTR
301f15f05b0SArd Biesheuvel	select CRYPTO_HASH
302584fffc8SSebastian Siewior	select CRYPTO_AEAD
303c8a3315aSEric Biggers	select CRYPTO_MANAGER
304584fffc8SSebastian Siewior	help
305584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
306584fffc8SSebastian Siewior
307584fffc8SSebastian Siewiorconfig CRYPTO_GCM
308584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
309584fffc8SSebastian Siewior	select CRYPTO_CTR
310584fffc8SSebastian Siewior	select CRYPTO_AEAD
3119382d97aSHuang Ying	select CRYPTO_GHASH
3129489667dSJussi Kivilinna	select CRYPTO_NULL
313c8a3315aSEric Biggers	select CRYPTO_MANAGER
314584fffc8SSebastian Siewior	help
315584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
316584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
317584fffc8SSebastian Siewior
31871ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
31971ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
32071ebc4d1SMartin Willi	select CRYPTO_CHACHA20
32171ebc4d1SMartin Willi	select CRYPTO_POLY1305
32271ebc4d1SMartin Willi	select CRYPTO_AEAD
323c8a3315aSEric Biggers	select CRYPTO_MANAGER
32471ebc4d1SMartin Willi	help
32571ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
32671ebc4d1SMartin Willi
32771ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
32871ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
32971ebc4d1SMartin Willi	  IETF protocols.
33071ebc4d1SMartin Willi
331f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
332f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
333f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
334f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
335f606a88eSOndrej Mosnacek	help
336f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
337f606a88eSOndrej Mosnacek
338a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
339a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
340a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
341a4397635SArd Biesheuvel	default y
342a4397635SArd Biesheuvel
3431d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3441d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3451d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3461d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
347de272ca7SEric Biggers	select CRYPTO_SIMD
3481d373d4eSOndrej Mosnacek	help
3494e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3501d373d4eSOndrej Mosnacek
351584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
352584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
353584fffc8SSebastian Siewior	select CRYPTO_AEAD
354b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
355856e3f40SHerbert Xu	select CRYPTO_NULL
356401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
357c8a3315aSEric Biggers	select CRYPTO_MANAGER
358584fffc8SSebastian Siewior	help
359584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
360584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
361584fffc8SSebastian Siewior
362a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
363a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
364a10f554fSHerbert Xu	select CRYPTO_AEAD
365a10f554fSHerbert Xu	select CRYPTO_NULL
366401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
367c8a3315aSEric Biggers	select CRYPTO_MANAGER
368a10f554fSHerbert Xu	help
369a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
370a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
371a10f554fSHerbert Xu	  algorithm for CBC.
372a10f554fSHerbert Xu
373584fffc8SSebastian Siewiorcomment "Block modes"
374584fffc8SSebastian Siewior
375584fffc8SSebastian Siewiorconfig CRYPTO_CBC
376584fffc8SSebastian Siewior	tristate "CBC support"
377b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
378584fffc8SSebastian Siewior	select CRYPTO_MANAGER
379584fffc8SSebastian Siewior	help
380584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
381584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
382584fffc8SSebastian Siewior
383a7d85e06SJames Bottomleyconfig CRYPTO_CFB
384a7d85e06SJames Bottomley	tristate "CFB support"
385b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
386a7d85e06SJames Bottomley	select CRYPTO_MANAGER
387a7d85e06SJames Bottomley	help
388a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
389a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
390a7d85e06SJames Bottomley
391584fffc8SSebastian Siewiorconfig CRYPTO_CTR
392584fffc8SSebastian Siewior	tristate "CTR support"
393b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
394584fffc8SSebastian Siewior	select CRYPTO_MANAGER
395584fffc8SSebastian Siewior	help
396584fffc8SSebastian Siewior	  CTR: Counter mode
397584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
398584fffc8SSebastian Siewior
399584fffc8SSebastian Siewiorconfig CRYPTO_CTS
400584fffc8SSebastian Siewior	tristate "CTS support"
401b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
402c8a3315aSEric Biggers	select CRYPTO_MANAGER
403584fffc8SSebastian Siewior	help
404584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
405584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
406ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
407ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
408ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
409584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
410584fffc8SSebastian Siewior	  for AES encryption.
411584fffc8SSebastian Siewior
412ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
413ecd6d5c9SGilad Ben-Yossef
414584fffc8SSebastian Siewiorconfig CRYPTO_ECB
415584fffc8SSebastian Siewior	tristate "ECB support"
416b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
417584fffc8SSebastian Siewior	select CRYPTO_MANAGER
418584fffc8SSebastian Siewior	help
419584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
420584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
421584fffc8SSebastian Siewior	  the input block by block.
422584fffc8SSebastian Siewior
423584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4242470a2b2SJussi Kivilinna	tristate "LRW support"
425b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
426584fffc8SSebastian Siewior	select CRYPTO_MANAGER
427584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
428584fffc8SSebastian Siewior	help
429584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
430584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
431584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
432584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
433584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
434584fffc8SSebastian Siewior
435e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
436e497c518SGilad Ben-Yossef	tristate "OFB support"
437b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
438e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
439e497c518SGilad Ben-Yossef	help
440e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
441e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
442e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
443e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
444e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
445e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
446e497c518SGilad Ben-Yossef
447584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
448584fffc8SSebastian Siewior	tristate "PCBC support"
449b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
450584fffc8SSebastian Siewior	select CRYPTO_MANAGER
451584fffc8SSebastian Siewior	help
452584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
453584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
454584fffc8SSebastian Siewior
455584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4565bcf8e6dSJussi Kivilinna	tristate "XTS support"
457b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
458584fffc8SSebastian Siewior	select CRYPTO_MANAGER
45912cb3a1cSMilan Broz	select CRYPTO_ECB
460584fffc8SSebastian Siewior	help
461584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
462584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
463584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
464584fffc8SSebastian Siewior
4651c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4661c49678eSStephan Mueller	tristate "Key wrapping support"
467b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
468c8a3315aSEric Biggers	select CRYPTO_MANAGER
4691c49678eSStephan Mueller	help
4701c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4711c49678eSStephan Mueller	  padding.
4721c49678eSStephan Mueller
47326609a21SEric Biggersconfig CRYPTO_NHPOLY1305
47426609a21SEric Biggers	tristate
47526609a21SEric Biggers	select CRYPTO_HASH
47648ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
47726609a21SEric Biggers
478012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
479012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
480012c8238SEric Biggers	depends on X86 && 64BIT
481012c8238SEric Biggers	select CRYPTO_NHPOLY1305
482012c8238SEric Biggers	help
483012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
484012c8238SEric Biggers	  Adiantum encryption mode.
485012c8238SEric Biggers
4860f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
4870f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
4880f961f9fSEric Biggers	depends on X86 && 64BIT
4890f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
4900f961f9fSEric Biggers	help
4910f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
4920f961f9fSEric Biggers	  Adiantum encryption mode.
4930f961f9fSEric Biggers
494059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
495059c2a4dSEric Biggers	tristate "Adiantum support"
496059c2a4dSEric Biggers	select CRYPTO_CHACHA20
49748ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
498059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
499c8a3315aSEric Biggers	select CRYPTO_MANAGER
500059c2a4dSEric Biggers	help
501059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
502059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
503059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
504059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
505059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
506059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
507059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
508059c2a4dSEric Biggers	  AES-XTS.
509059c2a4dSEric Biggers
510059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
511059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
512059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
513059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
514059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
515059c2a4dSEric Biggers
516059c2a4dSEric Biggers	  If unsure, say N.
517059c2a4dSEric Biggers
518be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
519be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
520be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
521be1eb7f7SArd Biesheuvel	help
522be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
523be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
524be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
525be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
526be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
527be1eb7f7SArd Biesheuvel	  encryption.
528be1eb7f7SArd Biesheuvel
529be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
530ab3d436bSGeert Uytterhoeven	  instantiated either as an skcipher or as an AEAD (depending on the
531be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
532be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
533ab3d436bSGeert Uytterhoeven	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
534be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
535be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
536be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
537be1eb7f7SArd Biesheuvel
538be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
539be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
540be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
541be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
542be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
543be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
544be1eb7f7SArd Biesheuvel	  block encryption)
545be1eb7f7SArd Biesheuvel
546584fffc8SSebastian Siewiorcomment "Hash modes"
547584fffc8SSebastian Siewior
54893b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
54993b5e86aSJussi Kivilinna	tristate "CMAC support"
55093b5e86aSJussi Kivilinna	select CRYPTO_HASH
55193b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
55293b5e86aSJussi Kivilinna	help
55393b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
55493b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
55593b5e86aSJussi Kivilinna
55693b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
55793b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
55893b5e86aSJussi Kivilinna
5591da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5608425165dSHerbert Xu	tristate "HMAC support"
5610796ae06SHerbert Xu	select CRYPTO_HASH
56243518407SHerbert Xu	select CRYPTO_MANAGER
5631da177e4SLinus Torvalds	help
5641da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5651da177e4SLinus Torvalds	  This is required for IPSec.
5661da177e4SLinus Torvalds
567333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
568333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
569333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
570333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
571333b0d7eSKazunori MIYAZAWA	help
572333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
5739332a9e7SAlexander A. Klimov		https://www.ietf.org/rfc/rfc3566.txt
574333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
575333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
576333b0d7eSKazunori MIYAZAWA
577f1939f7cSShane Wangconfig CRYPTO_VMAC
578f1939f7cSShane Wang	tristate "VMAC support"
579f1939f7cSShane Wang	select CRYPTO_HASH
580f1939f7cSShane Wang	select CRYPTO_MANAGER
581f1939f7cSShane Wang	help
582f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
583f1939f7cSShane Wang	  very high speed on 64-bit architectures.
584f1939f7cSShane Wang
585f1939f7cSShane Wang	  See also:
5869332a9e7SAlexander A. Klimov	  <https://fastcrypto.org/vmac>
587f1939f7cSShane Wang
588584fffc8SSebastian Siewiorcomment "Digest"
589584fffc8SSebastian Siewior
590584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
591584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5925773a3e6SHerbert Xu	select CRYPTO_HASH
5936a0962b2SDarrick J. Wong	select CRC32
5941da177e4SLinus Torvalds	help
595584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
596584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
59769c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5981da177e4SLinus Torvalds
5998cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6008cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6018cb51ba8SAustin Zhang	depends on X86
6028cb51ba8SAustin Zhang	select CRYPTO_HASH
6038cb51ba8SAustin Zhang	help
6048cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6058cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6068cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6078cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6088cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6098cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6108cb51ba8SAustin Zhang
6117cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6126dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
613c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6146dd7a82cSAnton Blanchard	select CRYPTO_HASH
6156dd7a82cSAnton Blanchard	select CRC32
6166dd7a82cSAnton Blanchard	help
6176dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6186dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6196dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6206dd7a82cSAnton Blanchard
6216dd7a82cSAnton Blanchard
622442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
623442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
624442a7c40SDavid S. Miller	depends on SPARC64
625442a7c40SDavid S. Miller	select CRYPTO_HASH
626442a7c40SDavid S. Miller	select CRC32
627442a7c40SDavid S. Miller	help
628442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
629442a7c40SDavid S. Miller	  when available.
630442a7c40SDavid S. Miller
63178c37d19SAlexander Boykoconfig CRYPTO_CRC32
63278c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
63378c37d19SAlexander Boyko	select CRYPTO_HASH
63478c37d19SAlexander Boyko	select CRC32
63578c37d19SAlexander Boyko	help
63678c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
63778c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
63878c37d19SAlexander Boyko
63978c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
64078c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
64178c37d19SAlexander Boyko	depends on X86
64278c37d19SAlexander Boyko	select CRYPTO_HASH
64378c37d19SAlexander Boyko	select CRC32
64478c37d19SAlexander Boyko	help
64578c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
64678c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
64778c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
648af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
64978c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
65078c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
65178c37d19SAlexander Boyko
6524a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6534a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6544a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6554a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6564a5dc51eSMarcin Nowakowski	help
6574a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6584a5dc51eSMarcin Nowakowski	  instructions, when available.
6594a5dc51eSMarcin Nowakowski
6604a5dc51eSMarcin Nowakowski
66167882e76SNikolay Borisovconfig CRYPTO_XXHASH
66267882e76SNikolay Borisov	tristate "xxHash hash algorithm"
66367882e76SNikolay Borisov	select CRYPTO_HASH
66467882e76SNikolay Borisov	select XXHASH
66567882e76SNikolay Borisov	help
66667882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
66767882e76SNikolay Borisov	  speeds close to RAM limits.
66867882e76SNikolay Borisov
66991d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
67091d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
67191d68933SDavid Sterba	select CRYPTO_HASH
67291d68933SDavid Sterba	help
67391d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
67491d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
67591d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
67691d68933SDavid Sterba
67791d68933SDavid Sterba	  This module provides the following algorithms:
67891d68933SDavid Sterba
67991d68933SDavid Sterba	  - blake2b-160
68091d68933SDavid Sterba	  - blake2b-256
68191d68933SDavid Sterba	  - blake2b-384
68291d68933SDavid Sterba	  - blake2b-512
68391d68933SDavid Sterba
68491d68933SDavid Sterba	  See https://blake2.net for further information.
68591d68933SDavid Sterba
6867f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S
6877f9b0880SArd Biesheuvel	tristate "BLAKE2s digest algorithm"
6887f9b0880SArd Biesheuvel	select CRYPTO_LIB_BLAKE2S_GENERIC
6897f9b0880SArd Biesheuvel	select CRYPTO_HASH
6907f9b0880SArd Biesheuvel	help
6917f9b0880SArd Biesheuvel	  Implementation of cryptographic hash function BLAKE2s
6927f9b0880SArd Biesheuvel	  optimized for 8-32bit platforms and can produce digests of any size
6937f9b0880SArd Biesheuvel	  between 1 to 32.  The keyed hash is also implemented.
6947f9b0880SArd Biesheuvel
6957f9b0880SArd Biesheuvel	  This module provides the following algorithms:
6967f9b0880SArd Biesheuvel
6977f9b0880SArd Biesheuvel	  - blake2s-128
6987f9b0880SArd Biesheuvel	  - blake2s-160
6997f9b0880SArd Biesheuvel	  - blake2s-224
7007f9b0880SArd Biesheuvel	  - blake2s-256
7017f9b0880SArd Biesheuvel
7027f9b0880SArd Biesheuvel	  See https://blake2.net for further information.
7037f9b0880SArd Biesheuvel
704ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86
705ed0356edSJason A. Donenfeld	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
706ed0356edSJason A. Donenfeld	depends on X86 && 64BIT
707ed0356edSJason A. Donenfeld	select CRYPTO_LIB_BLAKE2S_GENERIC
708ed0356edSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
709ed0356edSJason A. Donenfeld
71068411521SHerbert Xuconfig CRYPTO_CRCT10DIF
71168411521SHerbert Xu	tristate "CRCT10DIF algorithm"
71268411521SHerbert Xu	select CRYPTO_HASH
71368411521SHerbert Xu	help
71468411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
71568411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
71668411521SHerbert Xu	  transforms to be used if they are available.
71768411521SHerbert Xu
71868411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
71968411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
72068411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
72168411521SHerbert Xu	select CRYPTO_HASH
72268411521SHerbert Xu	help
72368411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
72468411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
72568411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
726af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
72768411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
72868411521SHerbert Xu
729b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
730b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
731b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
732b01df1c1SDaniel Axtens	select CRYPTO_HASH
733b01df1c1SDaniel Axtens	help
734b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
735b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
736b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
737b01df1c1SDaniel Axtens
738146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
739146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
740146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
741146c8688SDaniel Axtens	help
742146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
743146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
744146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
745146c8688SDaniel Axtens
7462cdc6899SHuang Yingconfig CRYPTO_GHASH
7478dfa20fcSEric Biggers	tristate "GHASH hash function"
7482cdc6899SHuang Ying	select CRYPTO_GF128MUL
749578c60fbSArnd Bergmann	select CRYPTO_HASH
7502cdc6899SHuang Ying	help
7518dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
7528dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
7532cdc6899SHuang Ying
754f979e014SMartin Williconfig CRYPTO_POLY1305
755f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
756578c60fbSArnd Bergmann	select CRYPTO_HASH
75748ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
758f979e014SMartin Willi	help
759f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
760f979e014SMartin Willi
761f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
762f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
763f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
764f979e014SMartin Willi
765c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
766b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
767c70f4abeSMartin Willi	depends on X86 && 64BIT
7681b2c6a51SArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
769f0e89bcfSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
770c70f4abeSMartin Willi	help
771c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
772c70f4abeSMartin Willi
773c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
774c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
775c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
776c70f4abeSMartin Willi	  instructions.
777c70f4abeSMartin Willi
778a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS
779a11d055eSArd Biesheuvel	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
7806c810cf2SMaciej W. Rozycki	depends on MIPS
781a11d055eSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
782a11d055eSArd Biesheuvel
7831da177e4SLinus Torvaldsconfig CRYPTO_MD4
7841da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
785808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7861da177e4SLinus Torvalds	help
7871da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7881da177e4SLinus Torvalds
7891da177e4SLinus Torvaldsconfig CRYPTO_MD5
7901da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
79114b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7921da177e4SLinus Torvalds	help
7931da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7941da177e4SLinus Torvalds
795d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
796d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
797d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
798d69e75deSAaro Koskinen	select CRYPTO_MD5
799d69e75deSAaro Koskinen	select CRYPTO_HASH
800d69e75deSAaro Koskinen	help
801d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
802d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
803d69e75deSAaro Koskinen
804e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
805e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
806e8e59953SMarkus Stockhausen	depends on PPC
807e8e59953SMarkus Stockhausen	select CRYPTO_HASH
808e8e59953SMarkus Stockhausen	help
809e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
810e8e59953SMarkus Stockhausen	  in PPC assembler.
811e8e59953SMarkus Stockhausen
812fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
813fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
814fa4dfedcSDavid S. Miller	depends on SPARC64
815fa4dfedcSDavid S. Miller	select CRYPTO_MD5
816fa4dfedcSDavid S. Miller	select CRYPTO_HASH
817fa4dfedcSDavid S. Miller	help
818fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
819fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
820fa4dfedcSDavid S. Miller
821584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
822584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
82319e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
824584fffc8SSebastian Siewior	help
825584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
826584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
827584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
828584fffc8SSebastian Siewior	  of the algorithm.
829584fffc8SSebastian Siewior
83082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
83182798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
832e5835fbaSHerbert Xu	select CRYPTO_HASH
83382798f90SAdrian-Ken Rueegsegger	help
83482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
83582798f90SAdrian-Ken Rueegsegger
83682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
83782798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
838b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
839b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
84082798f90SAdrian-Ken Rueegsegger
841b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
842b6d44341SAdrian Bunk	  against RIPEMD-160.
843534fe2c1SAdrian-Ken Rueegsegger
844534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8459332a9e7SAlexander A. Klimov	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
846534fe2c1SAdrian-Ken Rueegsegger
8471da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8481da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
84954ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8501da177e4SLinus Torvalds	help
8511da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8521da177e4SLinus Torvalds
85366be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
854e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
85566be8951SMathias Krause	depends on X86 && 64BIT
85666be8951SMathias Krause	select CRYPTO_SHA1
85766be8951SMathias Krause	select CRYPTO_HASH
85866be8951SMathias Krause	help
85966be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
86066be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
861e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
862e38b6b7fStim	  when available.
86366be8951SMathias Krause
8648275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
865e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8668275d1aaSTim Chen	depends on X86 && 64BIT
8678275d1aaSTim Chen	select CRYPTO_SHA256
8688275d1aaSTim Chen	select CRYPTO_HASH
8698275d1aaSTim Chen	help
8708275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8718275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8728275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
873e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
874e38b6b7fStim	  Instructions) when available.
8758275d1aaSTim Chen
87687de4579STim Chenconfig CRYPTO_SHA512_SSSE3
87787de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
87887de4579STim Chen	depends on X86 && 64BIT
87987de4579STim Chen	select CRYPTO_SHA512
88087de4579STim Chen	select CRYPTO_HASH
88187de4579STim Chen	help
88287de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
88387de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
88487de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
88587de4579STim Chen	  version 2 (AVX2) instructions, when available.
88687de4579STim Chen
887efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
888efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
889efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
890efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
891efdb6f6eSAaro Koskinen	select CRYPTO_HASH
892efdb6f6eSAaro Koskinen	help
893efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
894efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
895efdb6f6eSAaro Koskinen
8964ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8974ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8984ff28d4cSDavid S. Miller	depends on SPARC64
8994ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9004ff28d4cSDavid S. Miller	select CRYPTO_HASH
9014ff28d4cSDavid S. Miller	help
9024ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9034ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9044ff28d4cSDavid S. Miller
905323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
906323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
907323a6bf1SMichael Ellerman	depends on PPC
908323a6bf1SMichael Ellerman	help
909323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
910323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
911323a6bf1SMichael Ellerman
912d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
913d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
914d9850fc5SMarkus Stockhausen	depends on PPC && SPE
915d9850fc5SMarkus Stockhausen	help
916d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
917d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
918d9850fc5SMarkus Stockhausen
9191da177e4SLinus Torvaldsconfig CRYPTO_SHA256
920cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
92150e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
92208c327f6SHans de Goede	select CRYPTO_LIB_SHA256
9231da177e4SLinus Torvalds	help
9241da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9251da177e4SLinus Torvalds
9261da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9271da177e4SLinus Torvalds	  security against collision attacks.
9281da177e4SLinus Torvalds
929cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
930cd12fb90SJonathan Lynch	  of security against collision attacks.
931cd12fb90SJonathan Lynch
9322ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9332ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9342ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9352ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9362ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9372ecc1e95SMarkus Stockhausen	help
9382ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9392ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9402ecc1e95SMarkus Stockhausen
941efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
942efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
943efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
944efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
945efdb6f6eSAaro Koskinen	select CRYPTO_HASH
946efdb6f6eSAaro Koskinen	help
947efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
948efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
949efdb6f6eSAaro Koskinen
95086c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
95186c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
95286c93b24SDavid S. Miller	depends on SPARC64
95386c93b24SDavid S. Miller	select CRYPTO_SHA256
95486c93b24SDavid S. Miller	select CRYPTO_HASH
95586c93b24SDavid S. Miller	help
95686c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
95786c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
95886c93b24SDavid S. Miller
9591da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9601da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
961bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9621da177e4SLinus Torvalds	help
9631da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9641da177e4SLinus Torvalds
9651da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9661da177e4SLinus Torvalds	  security against collision attacks.
9671da177e4SLinus Torvalds
9681da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9691da177e4SLinus Torvalds	  of security against collision attacks.
9701da177e4SLinus Torvalds
971efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
972efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
973efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
974efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
975efdb6f6eSAaro Koskinen	select CRYPTO_HASH
976efdb6f6eSAaro Koskinen	help
977efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
978efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
979efdb6f6eSAaro Koskinen
980775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
981775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
982775e0c69SDavid S. Miller	depends on SPARC64
983775e0c69SDavid S. Miller	select CRYPTO_SHA512
984775e0c69SDavid S. Miller	select CRYPTO_HASH
985775e0c69SDavid S. Miller	help
986775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
987775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
988775e0c69SDavid S. Miller
98953964b9eSJeff Garzikconfig CRYPTO_SHA3
99053964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
99153964b9eSJeff Garzik	select CRYPTO_HASH
99253964b9eSJeff Garzik	help
99353964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
99453964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
99553964b9eSJeff Garzik
99653964b9eSJeff Garzik	  References:
99753964b9eSJeff Garzik	  http://keccak.noekeon.org/
99853964b9eSJeff Garzik
9994f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
10004f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10014f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
10024f0fc160SGilad Ben-Yossef	help
10034f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10044f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10054f0fc160SGilad Ben-Yossef
10064f0fc160SGilad Ben-Yossef	  References:
10074f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10084f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10094f0fc160SGilad Ben-Yossef
1010fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1011fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1012fe18957eSVitaly Chikunov	select CRYPTO_HASH
1013fe18957eSVitaly Chikunov	help
1014fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1015fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1016fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1017fe18957eSVitaly Chikunov
1018fe18957eSVitaly Chikunov	  References:
1019fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1020fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1021fe18957eSVitaly Chikunov
1022584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1023584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10244946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10251da177e4SLinus Torvalds	help
1026584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10271da177e4SLinus Torvalds
1028584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1029584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10301da177e4SLinus Torvalds
10311da177e4SLinus Torvalds	  See also:
10326d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10331da177e4SLinus Torvalds
10340e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10358dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
10368af00860SRichard Weinberger	depends on X86 && 64BIT
10370e1227d3SHuang Ying	select CRYPTO_CRYPTD
10380e1227d3SHuang Ying	help
10398dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
10408dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
10410e1227d3SHuang Ying
1042584fffc8SSebastian Siewiorcomment "Ciphers"
10431da177e4SLinus Torvalds
10441da177e4SLinus Torvaldsconfig CRYPTO_AES
10451da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1046cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10475bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
10481da177e4SLinus Torvalds	help
10491da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10501da177e4SLinus Torvalds	  algorithm.
10511da177e4SLinus Torvalds
10521da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10531da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10541da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10551da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10561da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10571da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10581da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10591da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10601da177e4SLinus Torvalds
10611da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10621da177e4SLinus Torvalds
10631da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10641da177e4SLinus Torvalds
1065b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1066b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1067b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1068e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1069b5e0b032SArd Biesheuvel	help
1070b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1071b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1072b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1073b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1074b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1075b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1076b5e0b032SArd Biesheuvel
1077b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1078b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1079b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1080b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10810a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10820a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1083b5e0b032SArd Biesheuvel
108454b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
108554b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
10868af00860SRichard Weinberger	depends on X86
108785671860SHerbert Xu	select CRYPTO_AEAD
10882c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
108954b6a1bdSHuang Ying	select CRYPTO_ALGAPI
1090b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
109185671860SHerbert Xu	select CRYPTO_SIMD
109254b6a1bdSHuang Ying	help
109354b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
109454b6a1bdSHuang Ying
109554b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
109654b6a1bdSHuang Ying	  algorithm.
109754b6a1bdSHuang Ying
109854b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
109954b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
110054b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
110154b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
110254b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
110354b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
110454b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
110554b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
110654b6a1bdSHuang Ying
110754b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
110854b6a1bdSHuang Ying
110954b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
111054b6a1bdSHuang Ying
11110d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11120d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1113944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11140d258efbSMathias Krause	  acceleration for CTR.
11152cf4ac8bSHuang Ying
11169bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11179bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11189bf4852dSDavid S. Miller	depends on SPARC64
1119b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
11209bf4852dSDavid S. Miller	help
11219bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11229bf4852dSDavid S. Miller
11239bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11249bf4852dSDavid S. Miller	  algorithm.
11259bf4852dSDavid S. Miller
11269bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11279bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11289bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11299bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11309bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11319bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11329bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11339bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11349bf4852dSDavid S. Miller
11359bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11369bf4852dSDavid S. Miller
11379bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11389bf4852dSDavid S. Miller
11399bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11409bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11419bf4852dSDavid S. Miller	  ECB and CBC.
11429bf4852dSDavid S. Miller
1143504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1144504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1145504c6143SMarkus Stockhausen	depends on PPC && SPE
1146b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1147504c6143SMarkus Stockhausen	help
1148504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1149504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1150504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1151504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1152504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1153504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1154504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1155504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1156504c6143SMarkus Stockhausen
11571da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11581da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
11591674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1160cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11611da177e4SLinus Torvalds	help
11621da177e4SLinus Torvalds	  Anubis cipher algorithm.
11631da177e4SLinus Torvalds
11641da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11651da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11661da177e4SLinus Torvalds	  in the NESSIE competition.
11671da177e4SLinus Torvalds
11681da177e4SLinus Torvalds	  See also:
11696d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11706d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11711da177e4SLinus Torvalds
1172584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1173584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
11749ace6771SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1175b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1176dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1177e2ee95b8SHye-Shik Chang	help
1178584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1179e2ee95b8SHye-Shik Chang
1180584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1181584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1182584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1183584fffc8SSebastian Siewior	  weakness of the algorithm.
1184584fffc8SSebastian Siewior
1185584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1186584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1187584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
118852ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1189584fffc8SSebastian Siewior	help
1190584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1191584fffc8SSebastian Siewior
1192584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1193584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1194584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1195e2ee95b8SHye-Shik Chang
1196e2ee95b8SHye-Shik Chang	  See also:
11979332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
1198584fffc8SSebastian Siewior
119952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
120052ba867cSJussi Kivilinna	tristate
120152ba867cSJussi Kivilinna	help
120252ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
120352ba867cSJussi Kivilinna	  generic c and the assembler implementations.
120452ba867cSJussi Kivilinna
120552ba867cSJussi Kivilinna	  See also:
12069332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
120752ba867cSJussi Kivilinna
120864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
120964b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1210f21a7c19SAl Viro	depends on X86 && 64BIT
1211b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
121264b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1213c0a64926SArd Biesheuvel	imply CRYPTO_CTR
121464b94ceaSJussi Kivilinna	help
121564b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
121664b94ceaSJussi Kivilinna
121764b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
121864b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
121964b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
122064b94ceaSJussi Kivilinna
122164b94ceaSJussi Kivilinna	  See also:
12229332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
122364b94ceaSJussi Kivilinna
1224584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1225584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1226584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1227584fffc8SSebastian Siewior	help
1228584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1229584fffc8SSebastian Siewior
1230584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1231584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1232584fffc8SSebastian Siewior
1233584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1234584fffc8SSebastian Siewior
1235584fffc8SSebastian Siewior	  See also:
1236584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1237584fffc8SSebastian Siewior
12380b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12390b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1240f21a7c19SAl Viro	depends on X86 && 64BIT
1241b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1242a1f91ecfSArd Biesheuvel	imply CRYPTO_CTR
12430b95ec56SJussi Kivilinna	help
12440b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12450b95ec56SJussi Kivilinna
12460b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12470b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12480b95ec56SJussi Kivilinna
12490b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12500b95ec56SJussi Kivilinna
12510b95ec56SJussi Kivilinna	  See also:
12520b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12530b95ec56SJussi Kivilinna
1254d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1255d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1256d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1257b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1258d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
125944893bc2SEric Biggers	select CRYPTO_SIMD
126055a7e88fSArd Biesheuvel	imply CRYPTO_XTS
1261d9b1d2e7SJussi Kivilinna	help
1262d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1263d9b1d2e7SJussi Kivilinna
1264d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1265d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1266d9b1d2e7SJussi Kivilinna
1267d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1268d9b1d2e7SJussi Kivilinna
1269d9b1d2e7SJussi Kivilinna	  See also:
1270d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1271d9b1d2e7SJussi Kivilinna
1272f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1273f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1274f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1275f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1276f3f935a7SJussi Kivilinna	help
1277f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1278f3f935a7SJussi Kivilinna
1279f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1280f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1281f3f935a7SJussi Kivilinna
1282f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1283f3f935a7SJussi Kivilinna
1284f3f935a7SJussi Kivilinna	  See also:
1285f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1286f3f935a7SJussi Kivilinna
128781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
128881658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
128981658ad0SDavid S. Miller	depends on SPARC64
129081658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1291b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
129281658ad0SDavid S. Miller	help
129381658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
129481658ad0SDavid S. Miller
129581658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
129681658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
129781658ad0SDavid S. Miller
129881658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
129981658ad0SDavid S. Miller
130081658ad0SDavid S. Miller	  See also:
130181658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
130281658ad0SDavid S. Miller
1303044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1304044ab525SJussi Kivilinna	tristate
1305044ab525SJussi Kivilinna	help
1306044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1307044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1308044ab525SJussi Kivilinna
1309584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1310584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1311584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1312044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1313584fffc8SSebastian Siewior	help
1314584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1315584fffc8SSebastian Siewior	  described in RFC2144.
1316584fffc8SSebastian Siewior
13174d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13184d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13194d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
1320b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13214d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13221e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13231e63183aSEric Biggers	select CRYPTO_SIMD
1324e2d60e2fSArd Biesheuvel	imply CRYPTO_CTR
13254d6d6a2cSJohannes Goetzfried	help
13264d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13274d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13284d6d6a2cSJohannes Goetzfried
13294d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13304d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13314d6d6a2cSJohannes Goetzfried
1332584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1333584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1334584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1335044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1336584fffc8SSebastian Siewior	help
1337584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1338584fffc8SSebastian Siewior	  described in RFC2612.
1339584fffc8SSebastian Siewior
13404ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13414ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13424ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1343b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13444ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13454bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13464bd96924SEric Biggers	select CRYPTO_SIMD
13472cc0fedbSArd Biesheuvel	imply CRYPTO_XTS
13487a6623ccSArd Biesheuvel	imply CRYPTO_CTR
13494ea1277dSJohannes Goetzfried	help
13504ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13514ea1277dSJohannes Goetzfried	  described in RFC2612.
13524ea1277dSJohannes Goetzfried
13534ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13544ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13554ea1277dSJohannes Goetzfried
1356584fffc8SSebastian Siewiorconfig CRYPTO_DES
1357584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1358584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
135904007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1360584fffc8SSebastian Siewior	help
1361584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1362584fffc8SSebastian Siewior
1363c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1364c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
136597da37b3SDave Jones	depends on SPARC64
1366c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
136704007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1368b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1369c5aac2dfSDavid S. Miller	help
1370c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1371c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1372c5aac2dfSDavid S. Miller
13736574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13746574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13756574e6c6SJussi Kivilinna	depends on X86 && 64BIT
1376b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
137704007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1378768db5feSArd Biesheuvel	imply CRYPTO_CTR
13796574e6c6SJussi Kivilinna	help
13806574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13816574e6c6SJussi Kivilinna
13826574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13836574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13846574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13856574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13866574e6c6SJussi Kivilinna
1387584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1388584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1389584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1390b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1391584fffc8SSebastian Siewior	help
1392584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1393584fffc8SSebastian Siewior
1394584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1395584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
13961674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1397584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1398584fffc8SSebastian Siewior	help
1399584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1400584fffc8SSebastian Siewior
1401584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1402584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1403584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1404584fffc8SSebastian Siewior
1405584fffc8SSebastian Siewior	  See also:
14066d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1407e2ee95b8SHye-Shik Chang
1408c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1409aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
14105fb8ef25SArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
1411b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1412c08d0e64SMartin Willi	help
1413aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1414c08d0e64SMartin Willi
1415c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1416c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1417de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
14189332a9e7SAlexander A. Klimov	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1419c08d0e64SMartin Willi
1420de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1421de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1422de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1423de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1424de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1425de61d7aeSEric Biggers
1426aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1427aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1428aa762409SEric Biggers	  in some performance-sensitive scenarios.
1429aa762409SEric Biggers
1430c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14314af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1432c9320b6dSMartin Willi	depends on X86 && 64BIT
1433b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
143428e8d89bSArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
143584e03fa3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1436c9320b6dSMartin Willi	help
14377a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14387a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1439c9320b6dSMartin Willi
14403a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS
14413a2f58f3SArd Biesheuvel	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
14423a2f58f3SArd Biesheuvel	depends on CPU_MIPS32_R2
1443660eda8dSEric Biggers	select CRYPTO_SKCIPHER
14443a2f58f3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
14453a2f58f3SArd Biesheuvel
1446584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1447584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
14481674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1449584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1450584fffc8SSebastian Siewior	help
1451584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1452584fffc8SSebastian Siewior
1453584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1454584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1455584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1456584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1457584fffc8SSebastian Siewior
1458584fffc8SSebastian Siewior	  See also:
1459584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1460584fffc8SSebastian Siewior
1461584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1462584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1463584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1464584fffc8SSebastian Siewior	help
1465584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1466584fffc8SSebastian Siewior
1467584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1468784506a1SArd Biesheuvel	  of 8 bits.
1469584fffc8SSebastian Siewior
1470584fffc8SSebastian Siewior	  See also:
14719332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1472584fffc8SSebastian Siewior
1473937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1474937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1475937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1476b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1477937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1478e0f409dcSEric Biggers	select CRYPTO_SIMD
14792e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1480937c30d7SJussi Kivilinna	help
1481937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1482937c30d7SJussi Kivilinna
1483937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1484937c30d7SJussi Kivilinna	  of 8 bits.
1485937c30d7SJussi Kivilinna
14861e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1487937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1488937c30d7SJussi Kivilinna
1489937c30d7SJussi Kivilinna	  See also:
14909332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1491937c30d7SJussi Kivilinna
1492251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1493251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1494251496dbSJussi Kivilinna	depends on X86 && !64BIT
1495b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1496251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1497e0f409dcSEric Biggers	select CRYPTO_SIMD
14982e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1499251496dbSJussi Kivilinna	help
1500251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1501251496dbSJussi Kivilinna
1502251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1503251496dbSJussi Kivilinna	  of 8 bits.
1504251496dbSJussi Kivilinna
1505251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1506251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1507251496dbSJussi Kivilinna
1508251496dbSJussi Kivilinna	  See also:
15099332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1510251496dbSJussi Kivilinna
15117efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15127efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15137efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1514b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
15157efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1516e16bf974SEric Biggers	select CRYPTO_SIMD
15179ec0af8aSArd Biesheuvel	imply CRYPTO_XTS
15182e9440aeSArd Biesheuvel	imply CRYPTO_CTR
15197efe4076SJohannes Goetzfried	help
15207efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15217efe4076SJohannes Goetzfried
15227efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15237efe4076SJohannes Goetzfried	  of 8 bits.
15247efe4076SJohannes Goetzfried
15257efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15267efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15277efe4076SJohannes Goetzfried
15287efe4076SJohannes Goetzfried	  See also:
15299332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
15307efe4076SJohannes Goetzfried
153156d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
153256d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
153356d76c96SJussi Kivilinna	depends on X86 && 64BIT
153456d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
153556d76c96SJussi Kivilinna	help
153656d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
153756d76c96SJussi Kivilinna
153856d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
153956d76c96SJussi Kivilinna	  of 8 bits.
154056d76c96SJussi Kivilinna
154156d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
154256d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
154356d76c96SJussi Kivilinna
154456d76c96SJussi Kivilinna	  See also:
15459332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
154656d76c96SJussi Kivilinna
1547747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1548747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1549747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
15502b31277aSTianjia Zhang	select CRYPTO_LIB_SM4
1551747c8ce4SGilad Ben-Yossef	help
1552747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1553747c8ce4SGilad Ben-Yossef
1554747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1555747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1556747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1557747c8ce4SGilad Ben-Yossef
1558747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1559747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1560747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1561747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1562747c8ce4SGilad Ben-Yossef
1563747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1564747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1565747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1566747c8ce4SGilad Ben-Yossef
1567747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1568747c8ce4SGilad Ben-Yossef
1569747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1570747c8ce4SGilad Ben-Yossef
1571747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1572747c8ce4SGilad Ben-Yossef
1573a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64
1574a7ee22eeSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1575a7ee22eeSTianjia Zhang	depends on X86 && 64BIT
1576a7ee22eeSTianjia Zhang	select CRYPTO_SKCIPHER
1577a7ee22eeSTianjia Zhang	select CRYPTO_SIMD
1578a7ee22eeSTianjia Zhang	select CRYPTO_ALGAPI
1579a7ee22eeSTianjia Zhang	select CRYPTO_LIB_SM4
1580a7ee22eeSTianjia Zhang	help
1581a7ee22eeSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1582a7ee22eeSTianjia Zhang
1583a7ee22eeSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1584a7ee22eeSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
1585a7ee22eeSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
1586a7ee22eeSTianjia Zhang
1587a7ee22eeSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1588a7ee22eeSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
1589a7ee22eeSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1590a7ee22eeSTianjia Zhang	  effect of instruction acceleration.
1591a7ee22eeSTianjia Zhang
1592a7ee22eeSTianjia Zhang	  If unsure, say N.
1593a7ee22eeSTianjia Zhang
1594*5b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64
1595*5b2efa2bSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
1596*5b2efa2bSTianjia Zhang	depends on X86 && 64BIT
1597*5b2efa2bSTianjia Zhang	select CRYPTO_SKCIPHER
1598*5b2efa2bSTianjia Zhang	select CRYPTO_SIMD
1599*5b2efa2bSTianjia Zhang	select CRYPTO_ALGAPI
1600*5b2efa2bSTianjia Zhang	select CRYPTO_LIB_SM4
1601*5b2efa2bSTianjia Zhang	select CRYPTO_SM4_AESNI_AVX_X86_64
1602*5b2efa2bSTianjia Zhang	help
1603*5b2efa2bSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
1604*5b2efa2bSTianjia Zhang
1605*5b2efa2bSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1606*5b2efa2bSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
1607*5b2efa2bSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
1608*5b2efa2bSTianjia Zhang
1609*5b2efa2bSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
1610*5b2efa2bSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
1611*5b2efa2bSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1612*5b2efa2bSTianjia Zhang	  effect of instruction acceleration.
1613*5b2efa2bSTianjia Zhang
1614*5b2efa2bSTianjia Zhang	  If unsure, say N.
1615*5b2efa2bSTianjia Zhang
1616584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1617584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
16181674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1619584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1620584fffc8SSebastian Siewior	help
1621584fffc8SSebastian Siewior	  TEA cipher algorithm.
1622584fffc8SSebastian Siewior
1623584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1624584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1625584fffc8SSebastian Siewior	  little memory.
1626584fffc8SSebastian Siewior
1627584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1628584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1629584fffc8SSebastian Siewior	  in the TEA algorithm.
1630584fffc8SSebastian Siewior
1631584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1632584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1633584fffc8SSebastian Siewior
1634584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1635584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1636584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1637584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1638584fffc8SSebastian Siewior	help
1639584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1640584fffc8SSebastian Siewior
1641584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1642584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1643584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1644584fffc8SSebastian Siewior	  bits.
1645584fffc8SSebastian Siewior
1646584fffc8SSebastian Siewior	  See also:
16479332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1648584fffc8SSebastian Siewior
1649584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1650584fffc8SSebastian Siewior	tristate
1651584fffc8SSebastian Siewior	help
1652584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1653584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1654584fffc8SSebastian Siewior
1655584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1656584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1657584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1658584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1659584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1660f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1661584fffc8SSebastian Siewior	help
1662584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1663584fffc8SSebastian Siewior
1664584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1665584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1666584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1667584fffc8SSebastian Siewior	  bits.
1668584fffc8SSebastian Siewior
1669584fffc8SSebastian Siewior	  See also:
16709332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1671584fffc8SSebastian Siewior
1672584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1673584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1674584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1675584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1676584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1677f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1678584fffc8SSebastian Siewior	help
1679584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1680584fffc8SSebastian Siewior
1681584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1682584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1683584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1684584fffc8SSebastian Siewior	  bits.
1685584fffc8SSebastian Siewior
1686584fffc8SSebastian Siewior	  See also:
16879332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1688584fffc8SSebastian Siewior
16898280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16908280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1691f21a7c19SAl Viro	depends on X86 && 64BIT
1692b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
16938280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16948280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
16958280daadSJussi Kivilinna	help
16968280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16978280daadSJussi Kivilinna
16988280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16998280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17008280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17018280daadSJussi Kivilinna	  bits.
17028280daadSJussi Kivilinna
17038280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17048280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17058280daadSJussi Kivilinna
17068280daadSJussi Kivilinna	  See also:
17079332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
17088280daadSJussi Kivilinna
1709107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1710107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1711107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1712b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17130e6ab46dSEric Biggers	select CRYPTO_SIMD
1714107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1715107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1716107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1717da4df93aSArd Biesheuvel	imply CRYPTO_XTS
1718107778b5SJohannes Goetzfried	help
1719107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1720107778b5SJohannes Goetzfried
1721107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1722107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1723107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1724107778b5SJohannes Goetzfried	  bits.
1725107778b5SJohannes Goetzfried
1726107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1727107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1728107778b5SJohannes Goetzfried
1729107778b5SJohannes Goetzfried	  See also:
17309332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1731107778b5SJohannes Goetzfried
1732584fffc8SSebastian Siewiorcomment "Compression"
1733584fffc8SSebastian Siewior
17341da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17351da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1736cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1737f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17381da177e4SLinus Torvalds	select ZLIB_INFLATE
17391da177e4SLinus Torvalds	select ZLIB_DEFLATE
17401da177e4SLinus Torvalds	help
17411da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17421da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17431da177e4SLinus Torvalds
17441da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17451da177e4SLinus Torvalds
17460b77abb3SZoltan Sogorconfig CRYPTO_LZO
17470b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17480b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1749ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17500b77abb3SZoltan Sogor	select LZO_COMPRESS
17510b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17520b77abb3SZoltan Sogor	help
17530b77abb3SZoltan Sogor	  This is the LZO algorithm.
17540b77abb3SZoltan Sogor
175535a1fc18SSeth Jenningsconfig CRYPTO_842
175635a1fc18SSeth Jennings	tristate "842 compression algorithm"
17572062c5b6SDan Streetman	select CRYPTO_ALGAPI
17586a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17592062c5b6SDan Streetman	select 842_COMPRESS
17602062c5b6SDan Streetman	select 842_DECOMPRESS
176135a1fc18SSeth Jennings	help
176235a1fc18SSeth Jennings	  This is the 842 algorithm.
176335a1fc18SSeth Jennings
17640ea8530dSChanho Minconfig CRYPTO_LZ4
17650ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17660ea8530dSChanho Min	select CRYPTO_ALGAPI
17678cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17680ea8530dSChanho Min	select LZ4_COMPRESS
17690ea8530dSChanho Min	select LZ4_DECOMPRESS
17700ea8530dSChanho Min	help
17710ea8530dSChanho Min	  This is the LZ4 algorithm.
17720ea8530dSChanho Min
17730ea8530dSChanho Minconfig CRYPTO_LZ4HC
17740ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17750ea8530dSChanho Min	select CRYPTO_ALGAPI
177691d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17770ea8530dSChanho Min	select LZ4HC_COMPRESS
17780ea8530dSChanho Min	select LZ4_DECOMPRESS
17790ea8530dSChanho Min	help
17800ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17810ea8530dSChanho Min
1782d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1783d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1784d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1785d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1786d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1787d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1788d28fc3dbSNick Terrell	help
1789d28fc3dbSNick Terrell	  This is the zstd algorithm.
1790d28fc3dbSNick Terrell
179117f0f4a4SNeil Hormancomment "Random Number Generation"
179217f0f4a4SNeil Horman
179317f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
179417f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
179517f0f4a4SNeil Horman	select CRYPTO_AES
179617f0f4a4SNeil Horman	select CRYPTO_RNG
179717f0f4a4SNeil Horman	help
179817f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
179917f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18007dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18017dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
180217f0f4a4SNeil Horman
1803f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1804419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1805419090c6SStephan Mueller	help
1806419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1807419090c6SStephan Mueller	  more of the DRBG types must be selected.
1808419090c6SStephan Mueller
1809f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1810419090c6SStephan Mueller
1811419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1812401e4238SHerbert Xu	bool
1813419090c6SStephan Mueller	default y
1814419090c6SStephan Mueller	select CRYPTO_HMAC
18155261cdf4SStephan Mueller	select CRYPTO_SHA512
1816419090c6SStephan Mueller
1817419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1818419090c6SStephan Mueller	bool "Enable Hash DRBG"
1819826775bbSHerbert Xu	select CRYPTO_SHA256
1820419090c6SStephan Mueller	help
1821419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1822419090c6SStephan Mueller
1823419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1824419090c6SStephan Mueller	bool "Enable CTR DRBG"
1825419090c6SStephan Mueller	select CRYPTO_AES
1826d6fc1a45SCorentin Labbe	select CRYPTO_CTR
1827419090c6SStephan Mueller	help
1828419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1829419090c6SStephan Mueller
1830f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1831f2c89a10SHerbert Xu	tristate
1832401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1833f2c89a10SHerbert Xu	select CRYPTO_RNG
1834bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1835f2c89a10SHerbert Xu
1836f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1837419090c6SStephan Mueller
1838bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1839bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18402f313e02SArnd Bergmann	select CRYPTO_RNG
1841bb5530e4SStephan Mueller	help
1842bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1843bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1844bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1845bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1846bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1847bb5530e4SStephan Mueller
184803c8efc1SHerbert Xuconfig CRYPTO_USER_API
184903c8efc1SHerbert Xu	tristate
185003c8efc1SHerbert Xu
1851fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1852fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18537451708fSHerbert Xu	depends on NET
1854fe869cdbSHerbert Xu	select CRYPTO_HASH
1855fe869cdbSHerbert Xu	select CRYPTO_USER_API
1856fe869cdbSHerbert Xu	help
1857fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1858fe869cdbSHerbert Xu	  algorithms.
1859fe869cdbSHerbert Xu
18608ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18618ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18627451708fSHerbert Xu	depends on NET
1863b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
18648ff59090SHerbert Xu	select CRYPTO_USER_API
18658ff59090SHerbert Xu	help
18668ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18678ff59090SHerbert Xu	  key cipher algorithms.
18688ff59090SHerbert Xu
18692f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18702f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18712f375538SStephan Mueller	depends on NET
18722f375538SStephan Mueller	select CRYPTO_RNG
18732f375538SStephan Mueller	select CRYPTO_USER_API
18742f375538SStephan Mueller	help
18752f375538SStephan Mueller	  This option enables the user-spaces interface for random
18762f375538SStephan Mueller	  number generator algorithms.
18772f375538SStephan Mueller
187877ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP
187977ebdabeSElena Petrova	bool "Enable CAVP testing of DRBG"
188077ebdabeSElena Petrova	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
188177ebdabeSElena Petrova	help
188277ebdabeSElena Petrova	  This option enables extra API for CAVP testing via the user-space
188377ebdabeSElena Petrova	  interface: resetting of DRBG entropy, and providing Additional Data.
188477ebdabeSElena Petrova	  This should only be enabled for CAVP testing. You should say
188577ebdabeSElena Petrova	  no unless you know what this is.
188677ebdabeSElena Petrova
1887b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1888b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1889b64a2d95SHerbert Xu	depends on NET
1890b64a2d95SHerbert Xu	select CRYPTO_AEAD
1891b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
189272548b09SStephan Mueller	select CRYPTO_NULL
1893b64a2d95SHerbert Xu	select CRYPTO_USER_API
1894b64a2d95SHerbert Xu	help
1895b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1896b64a2d95SHerbert Xu	  cipher algorithms.
1897b64a2d95SHerbert Xu
18989ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE
18999ace6771SArd Biesheuvel	bool "Enable obsolete cryptographic algorithms for userspace"
19009ace6771SArd Biesheuvel	depends on CRYPTO_USER_API
19019ace6771SArd Biesheuvel	default y
19029ace6771SArd Biesheuvel	help
19039ace6771SArd Biesheuvel	  Allow obsolete cryptographic algorithms to be selected that have
19049ace6771SArd Biesheuvel	  already been phased out from internal use by the kernel, and are
19059ace6771SArd Biesheuvel	  only useful for userspace clients that still rely on them.
19069ace6771SArd Biesheuvel
1907cac5818cSCorentin Labbeconfig CRYPTO_STATS
1908cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1909a6a31385SCorentin Labbe	depends on CRYPTO_USER
1910cac5818cSCorentin Labbe	help
1911cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1912cac5818cSCorentin Labbe	  This will collect:
1913cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1914cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1915cac5818cSCorentin Labbe	  - size and numbers of hash operations
1916cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1917cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1918cac5818cSCorentin Labbe
1919ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1920ee08997fSDmitry Kasatkin	bool
1921ee08997fSDmitry Kasatkin
1922746b2e02SArd Biesheuvelsource "lib/crypto/Kconfig"
19231da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19248636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19258636a1f9SMasahiro Yamadasource "certs/Kconfig"
19261da177e4SLinus Torvalds
1927cce9e06dSHerbert Xuendif	# if CRYPTO
1928