xref: /linux/crypto/Kconfig (revision 56e8e57fc3a707bf4f23f88c4822e6cbc9a950dc)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2171e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2181e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2191e65b81aSTim Chen	select CRYPTO_HASH
2201e65b81aSTim Chen	select CRYPTO_MANAGER
2211e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2221e65b81aSTim Chen	help
2231e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2241e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2251e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2261e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2271e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2280e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2291e65b81aSTim Chen
230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
231584fffc8SSebastian Siewior	tristate "Authenc support"
232584fffc8SSebastian Siewior	select CRYPTO_AEAD
233584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
234584fffc8SSebastian Siewior	select CRYPTO_MANAGER
235584fffc8SSebastian Siewior	select CRYPTO_HASH
236e94c6a7aSHerbert Xu	select CRYPTO_NULL
237584fffc8SSebastian Siewior	help
238584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
239584fffc8SSebastian Siewior	  This is required for IPSec.
240584fffc8SSebastian Siewior
241584fffc8SSebastian Siewiorconfig CRYPTO_TEST
242584fffc8SSebastian Siewior	tristate "Testing module"
243584fffc8SSebastian Siewior	depends on m
244da7f033dSHerbert Xu	select CRYPTO_MANAGER
245584fffc8SSebastian Siewior	help
246584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
247584fffc8SSebastian Siewior
248266d0516SHerbert Xuconfig CRYPTO_SIMD
249266d0516SHerbert Xu	tristate
250266d0516SHerbert Xu	select CRYPTO_CRYPTD
251266d0516SHerbert Xu
252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
253596d8750SJussi Kivilinna	tristate
254596d8750SJussi Kivilinna	depends on X86
255065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
256596d8750SJussi Kivilinna
257735d37b5SBaolin Wangconfig CRYPTO_ENGINE
258735d37b5SBaolin Wang	tristate
259735d37b5SBaolin Wang
260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
261584fffc8SSebastian Siewior
262584fffc8SSebastian Siewiorconfig CRYPTO_CCM
263584fffc8SSebastian Siewior	tristate "CCM support"
264584fffc8SSebastian Siewior	select CRYPTO_CTR
265f15f05b0SArd Biesheuvel	select CRYPTO_HASH
266584fffc8SSebastian Siewior	select CRYPTO_AEAD
267584fffc8SSebastian Siewior	help
268584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
269584fffc8SSebastian Siewior
270584fffc8SSebastian Siewiorconfig CRYPTO_GCM
271584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
272584fffc8SSebastian Siewior	select CRYPTO_CTR
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
2749382d97aSHuang Ying	select CRYPTO_GHASH
2759489667dSJussi Kivilinna	select CRYPTO_NULL
276584fffc8SSebastian Siewior	help
277584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
278584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
279584fffc8SSebastian Siewior
28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28171ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28271ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28371ebc4d1SMartin Willi	select CRYPTO_POLY1305
28471ebc4d1SMartin Willi	select CRYPTO_AEAD
28571ebc4d1SMartin Willi	help
28671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28771ebc4d1SMartin Willi
28871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29071ebc4d1SMartin Willi	  IETF protocols.
29171ebc4d1SMartin Willi
292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
293f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
294f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
295f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
296f606a88eSOndrej Mosnacek	help
297f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
298f606a88eSOndrej Mosnacek
299f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
300f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
301f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
302f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
303f606a88eSOndrej Mosnacek	help
304f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
305f606a88eSOndrej Mosnacek
306f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
307f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
308f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
309f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
310f606a88eSOndrej Mosnacek	help
311f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
312f606a88eSOndrej Mosnacek
3131d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3141d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3151d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3161d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3171d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3181d373d4eSOndrej Mosnacek	help
3191d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
3201d373d4eSOndrej Mosnacek
3211d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3221d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3231d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3241d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3251d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3261d373d4eSOndrej Mosnacek	help
3271d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
3281d373d4eSOndrej Mosnacek
3291d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3301d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3311d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3321d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3331d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3341d373d4eSOndrej Mosnacek	help
3351d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
3361d373d4eSOndrej Mosnacek
337396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
338396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
339396be41fSOndrej Mosnacek	select CRYPTO_AEAD
340396be41fSOndrej Mosnacek	help
341396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
342396be41fSOndrej Mosnacek
343*56e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
344*56e8e57fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (glue for SIMD optimizations)"
345*56e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
346*56e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
347*56e8e57fSOndrej Mosnacek	help
348*56e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
349*56e8e57fSOndrej Mosnacek	  algorithm.
350*56e8e57fSOndrej Mosnacek
351396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
352396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
353396be41fSOndrej Mosnacek	select CRYPTO_AEAD
354396be41fSOndrej Mosnacek	help
355396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
356396be41fSOndrej Mosnacek
357*56e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
358*56e8e57fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (glue for SIMD optimizations)"
359*56e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
360*56e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
361*56e8e57fSOndrej Mosnacek	help
362*56e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
363*56e8e57fSOndrej Mosnacek	  algorithm.
364*56e8e57fSOndrej Mosnacek
365584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
366584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
367584fffc8SSebastian Siewior	select CRYPTO_AEAD
368584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
369856e3f40SHerbert Xu	select CRYPTO_NULL
370401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
371584fffc8SSebastian Siewior	help
372584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
373584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
374584fffc8SSebastian Siewior
375a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
376a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
377a10f554fSHerbert Xu	select CRYPTO_AEAD
378a10f554fSHerbert Xu	select CRYPTO_NULL
379401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3803491244cSHerbert Xu	default m
381a10f554fSHerbert Xu	help
382a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
383a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
384a10f554fSHerbert Xu	  algorithm for CBC.
385a10f554fSHerbert Xu
386584fffc8SSebastian Siewiorcomment "Block modes"
387584fffc8SSebastian Siewior
388584fffc8SSebastian Siewiorconfig CRYPTO_CBC
389584fffc8SSebastian Siewior	tristate "CBC support"
390584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
391584fffc8SSebastian Siewior	select CRYPTO_MANAGER
392584fffc8SSebastian Siewior	help
393584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
394584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
395584fffc8SSebastian Siewior
396a7d85e06SJames Bottomleyconfig CRYPTO_CFB
397a7d85e06SJames Bottomley	tristate "CFB support"
398a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
399a7d85e06SJames Bottomley	select CRYPTO_MANAGER
400a7d85e06SJames Bottomley	help
401a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
402a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
403a7d85e06SJames Bottomley
404584fffc8SSebastian Siewiorconfig CRYPTO_CTR
405584fffc8SSebastian Siewior	tristate "CTR support"
406584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
407584fffc8SSebastian Siewior	select CRYPTO_SEQIV
408584fffc8SSebastian Siewior	select CRYPTO_MANAGER
409584fffc8SSebastian Siewior	help
410584fffc8SSebastian Siewior	  CTR: Counter mode
411584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
412584fffc8SSebastian Siewior
413584fffc8SSebastian Siewiorconfig CRYPTO_CTS
414584fffc8SSebastian Siewior	tristate "CTS support"
415584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
416584fffc8SSebastian Siewior	help
417584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
418584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
419584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
420584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
421584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
422584fffc8SSebastian Siewior	  for AES encryption.
423584fffc8SSebastian Siewior
424584fffc8SSebastian Siewiorconfig CRYPTO_ECB
425584fffc8SSebastian Siewior	tristate "ECB support"
426584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
427584fffc8SSebastian Siewior	select CRYPTO_MANAGER
428584fffc8SSebastian Siewior	help
429584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
430584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
431584fffc8SSebastian Siewior	  the input block by block.
432584fffc8SSebastian Siewior
433584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4342470a2b2SJussi Kivilinna	tristate "LRW support"
435584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
436584fffc8SSebastian Siewior	select CRYPTO_MANAGER
437584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
438584fffc8SSebastian Siewior	help
439584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
440584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
441584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
442584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
443584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
444584fffc8SSebastian Siewior
445584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
446584fffc8SSebastian Siewior	tristate "PCBC support"
447584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
448584fffc8SSebastian Siewior	select CRYPTO_MANAGER
449584fffc8SSebastian Siewior	help
450584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
451584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
452584fffc8SSebastian Siewior
453584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4545bcf8e6dSJussi Kivilinna	tristate "XTS support"
455584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
456584fffc8SSebastian Siewior	select CRYPTO_MANAGER
45712cb3a1cSMilan Broz	select CRYPTO_ECB
458584fffc8SSebastian Siewior	help
459584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
460584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
461584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
462584fffc8SSebastian Siewior
4631c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4641c49678eSStephan Mueller	tristate "Key wrapping support"
4651c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
4661c49678eSStephan Mueller	help
4671c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4681c49678eSStephan Mueller	  padding.
4691c49678eSStephan Mueller
470584fffc8SSebastian Siewiorcomment "Hash modes"
471584fffc8SSebastian Siewior
47293b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
47393b5e86aSJussi Kivilinna	tristate "CMAC support"
47493b5e86aSJussi Kivilinna	select CRYPTO_HASH
47593b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
47693b5e86aSJussi Kivilinna	help
47793b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
47893b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
47993b5e86aSJussi Kivilinna
48093b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
48193b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
48293b5e86aSJussi Kivilinna
4831da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4848425165dSHerbert Xu	tristate "HMAC support"
4850796ae06SHerbert Xu	select CRYPTO_HASH
48643518407SHerbert Xu	select CRYPTO_MANAGER
4871da177e4SLinus Torvalds	help
4881da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4891da177e4SLinus Torvalds	  This is required for IPSec.
4901da177e4SLinus Torvalds
491333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
492333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
493333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
494333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
495333b0d7eSKazunori MIYAZAWA	help
496333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
497333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
498333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
499333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
500333b0d7eSKazunori MIYAZAWA
501f1939f7cSShane Wangconfig CRYPTO_VMAC
502f1939f7cSShane Wang	tristate "VMAC support"
503f1939f7cSShane Wang	select CRYPTO_HASH
504f1939f7cSShane Wang	select CRYPTO_MANAGER
505f1939f7cSShane Wang	help
506f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
507f1939f7cSShane Wang	  very high speed on 64-bit architectures.
508f1939f7cSShane Wang
509f1939f7cSShane Wang	  See also:
510f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
511f1939f7cSShane Wang
512584fffc8SSebastian Siewiorcomment "Digest"
513584fffc8SSebastian Siewior
514584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
515584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5165773a3e6SHerbert Xu	select CRYPTO_HASH
5176a0962b2SDarrick J. Wong	select CRC32
5181da177e4SLinus Torvalds	help
519584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
520584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
52169c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5221da177e4SLinus Torvalds
5238cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5248cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5258cb51ba8SAustin Zhang	depends on X86
5268cb51ba8SAustin Zhang	select CRYPTO_HASH
5278cb51ba8SAustin Zhang	help
5288cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5298cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5308cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5318cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5328cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5338cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5348cb51ba8SAustin Zhang
5357cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5366dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
537c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5386dd7a82cSAnton Blanchard	select CRYPTO_HASH
5396dd7a82cSAnton Blanchard	select CRC32
5406dd7a82cSAnton Blanchard	help
5416dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5426dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5436dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5446dd7a82cSAnton Blanchard
5456dd7a82cSAnton Blanchard
546442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
547442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
548442a7c40SDavid S. Miller	depends on SPARC64
549442a7c40SDavid S. Miller	select CRYPTO_HASH
550442a7c40SDavid S. Miller	select CRC32
551442a7c40SDavid S. Miller	help
552442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
553442a7c40SDavid S. Miller	  when available.
554442a7c40SDavid S. Miller
55578c37d19SAlexander Boykoconfig CRYPTO_CRC32
55678c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
55778c37d19SAlexander Boyko	select CRYPTO_HASH
55878c37d19SAlexander Boyko	select CRC32
55978c37d19SAlexander Boyko	help
56078c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
56178c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
56278c37d19SAlexander Boyko
56378c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
56478c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
56578c37d19SAlexander Boyko	depends on X86
56678c37d19SAlexander Boyko	select CRYPTO_HASH
56778c37d19SAlexander Boyko	select CRC32
56878c37d19SAlexander Boyko	help
56978c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
57078c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
57178c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
57278c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
57378c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
57478c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
57578c37d19SAlexander Boyko
5764a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
5774a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
5784a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
5794a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
5804a5dc51eSMarcin Nowakowski	help
5814a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
5824a5dc51eSMarcin Nowakowski	  instructions, when available.
5834a5dc51eSMarcin Nowakowski
5844a5dc51eSMarcin Nowakowski
58568411521SHerbert Xuconfig CRYPTO_CRCT10DIF
58668411521SHerbert Xu	tristate "CRCT10DIF algorithm"
58768411521SHerbert Xu	select CRYPTO_HASH
58868411521SHerbert Xu	help
58968411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
59068411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
59168411521SHerbert Xu	  transforms to be used if they are available.
59268411521SHerbert Xu
59368411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
59468411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
59568411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
59668411521SHerbert Xu	select CRYPTO_HASH
59768411521SHerbert Xu	help
59868411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
59968411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
60068411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
60168411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
60268411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
60368411521SHerbert Xu
604b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
605b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
606b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
607b01df1c1SDaniel Axtens	select CRYPTO_HASH
608b01df1c1SDaniel Axtens	help
609b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
610b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
611b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
612b01df1c1SDaniel Axtens
613146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
614146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
615146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
616146c8688SDaniel Axtens	help
617146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
618146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
619146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
620146c8688SDaniel Axtens
6212cdc6899SHuang Yingconfig CRYPTO_GHASH
6222cdc6899SHuang Ying	tristate "GHASH digest algorithm"
6232cdc6899SHuang Ying	select CRYPTO_GF128MUL
624578c60fbSArnd Bergmann	select CRYPTO_HASH
6252cdc6899SHuang Ying	help
6262cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
6272cdc6899SHuang Ying
628f979e014SMartin Williconfig CRYPTO_POLY1305
629f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
630578c60fbSArnd Bergmann	select CRYPTO_HASH
631f979e014SMartin Willi	help
632f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
633f979e014SMartin Willi
634f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
635f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
636f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
637f979e014SMartin Willi
638c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
639b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
640c70f4abeSMartin Willi	depends on X86 && 64BIT
641c70f4abeSMartin Willi	select CRYPTO_POLY1305
642c70f4abeSMartin Willi	help
643c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
644c70f4abeSMartin Willi
645c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
646c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
647c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
648c70f4abeSMartin Willi	  instructions.
649c70f4abeSMartin Willi
6501da177e4SLinus Torvaldsconfig CRYPTO_MD4
6511da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
652808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6531da177e4SLinus Torvalds	help
6541da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
6551da177e4SLinus Torvalds
6561da177e4SLinus Torvaldsconfig CRYPTO_MD5
6571da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
65814b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6591da177e4SLinus Torvalds	help
6601da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
6611da177e4SLinus Torvalds
662d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
663d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
664d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
665d69e75deSAaro Koskinen	select CRYPTO_MD5
666d69e75deSAaro Koskinen	select CRYPTO_HASH
667d69e75deSAaro Koskinen	help
668d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
669d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
670d69e75deSAaro Koskinen
671e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
672e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
673e8e59953SMarkus Stockhausen	depends on PPC
674e8e59953SMarkus Stockhausen	select CRYPTO_HASH
675e8e59953SMarkus Stockhausen	help
676e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
677e8e59953SMarkus Stockhausen	  in PPC assembler.
678e8e59953SMarkus Stockhausen
679fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
680fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
681fa4dfedcSDavid S. Miller	depends on SPARC64
682fa4dfedcSDavid S. Miller	select CRYPTO_MD5
683fa4dfedcSDavid S. Miller	select CRYPTO_HASH
684fa4dfedcSDavid S. Miller	help
685fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
686fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
687fa4dfedcSDavid S. Miller
688584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
689584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
69019e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
691584fffc8SSebastian Siewior	help
692584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
693584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
694584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
695584fffc8SSebastian Siewior	  of the algorithm.
696584fffc8SSebastian Siewior
69782798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
69882798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
6997c4468bcSHerbert Xu	select CRYPTO_HASH
70082798f90SAdrian-Ken Rueegsegger	help
70182798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
70282798f90SAdrian-Ken Rueegsegger
70382798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
70435ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
70582798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
70682798f90SAdrian-Ken Rueegsegger
70782798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7086d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
70982798f90SAdrian-Ken Rueegsegger
71082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
71182798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
712e5835fbaSHerbert Xu	select CRYPTO_HASH
71382798f90SAdrian-Ken Rueegsegger	help
71482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
71582798f90SAdrian-Ken Rueegsegger
71682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
71782798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
718b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
719b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
72082798f90SAdrian-Ken Rueegsegger
721b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
722b6d44341SAdrian Bunk	  against RIPEMD-160.
723534fe2c1SAdrian-Ken Rueegsegger
724534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7256d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
726534fe2c1SAdrian-Ken Rueegsegger
727534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
728534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
729d8a5e2e9SHerbert Xu	select CRYPTO_HASH
730534fe2c1SAdrian-Ken Rueegsegger	help
731b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
732b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
733b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
734b6d44341SAdrian Bunk	  (than RIPEMD-128).
735534fe2c1SAdrian-Ken Rueegsegger
736534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7376d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
738534fe2c1SAdrian-Ken Rueegsegger
739534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
740534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
7413b8efb4cSHerbert Xu	select CRYPTO_HASH
742534fe2c1SAdrian-Ken Rueegsegger	help
743b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
744b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
745b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
746b6d44341SAdrian Bunk	  (than RIPEMD-160).
747534fe2c1SAdrian-Ken Rueegsegger
74882798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7496d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
75082798f90SAdrian-Ken Rueegsegger
7511da177e4SLinus Torvaldsconfig CRYPTO_SHA1
7521da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
75354ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7541da177e4SLinus Torvalds	help
7551da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
7561da177e4SLinus Torvalds
75766be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
758e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
75966be8951SMathias Krause	depends on X86 && 64BIT
76066be8951SMathias Krause	select CRYPTO_SHA1
76166be8951SMathias Krause	select CRYPTO_HASH
76266be8951SMathias Krause	help
76366be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
76466be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
765e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
766e38b6b7fStim	  when available.
76766be8951SMathias Krause
7688275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
769e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
7708275d1aaSTim Chen	depends on X86 && 64BIT
7718275d1aaSTim Chen	select CRYPTO_SHA256
7728275d1aaSTim Chen	select CRYPTO_HASH
7738275d1aaSTim Chen	help
7748275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
7758275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
7768275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
777e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
778e38b6b7fStim	  Instructions) when available.
7798275d1aaSTim Chen
78087de4579STim Chenconfig CRYPTO_SHA512_SSSE3
78187de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
78287de4579STim Chen	depends on X86 && 64BIT
78387de4579STim Chen	select CRYPTO_SHA512
78487de4579STim Chen	select CRYPTO_HASH
78587de4579STim Chen	help
78687de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
78787de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
78887de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
78987de4579STim Chen	  version 2 (AVX2) instructions, when available.
79087de4579STim Chen
791efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
792efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
793efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
794efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
795efdb6f6eSAaro Koskinen	select CRYPTO_HASH
796efdb6f6eSAaro Koskinen	help
797efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
798efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
799efdb6f6eSAaro Koskinen
8004ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8014ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8024ff28d4cSDavid S. Miller	depends on SPARC64
8034ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8044ff28d4cSDavid S. Miller	select CRYPTO_HASH
8054ff28d4cSDavid S. Miller	help
8064ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8074ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8084ff28d4cSDavid S. Miller
809323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
810323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
811323a6bf1SMichael Ellerman	depends on PPC
812323a6bf1SMichael Ellerman	help
813323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
814323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
815323a6bf1SMichael Ellerman
816d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
817d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
818d9850fc5SMarkus Stockhausen	depends on PPC && SPE
819d9850fc5SMarkus Stockhausen	help
820d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
821d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
822d9850fc5SMarkus Stockhausen
8231e65b81aSTim Chenconfig CRYPTO_SHA1_MB
8241e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8251e65b81aSTim Chen	depends on X86 && 64BIT
8261e65b81aSTim Chen	select CRYPTO_SHA1
8271e65b81aSTim Chen	select CRYPTO_HASH
8281e65b81aSTim Chen	select CRYPTO_MCRYPTD
8291e65b81aSTim Chen	help
8301e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8311e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
8321e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
8331e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
8341e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
8351e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
8361e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
8371e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
8381e65b81aSTim Chen
8399be7e244SMegha Deyconfig CRYPTO_SHA256_MB
8409be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8419be7e244SMegha Dey	depends on X86 && 64BIT
8429be7e244SMegha Dey	select CRYPTO_SHA256
8439be7e244SMegha Dey	select CRYPTO_HASH
8449be7e244SMegha Dey	select CRYPTO_MCRYPTD
8459be7e244SMegha Dey	help
8469be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8479be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
8489be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
8499be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
8509be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
8519be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
8529be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
8539be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
8549be7e244SMegha Dey
855026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
856026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
857026bb8aaSMegha Dey        depends on X86 && 64BIT
858026bb8aaSMegha Dey        select CRYPTO_SHA512
859026bb8aaSMegha Dey        select CRYPTO_HASH
860026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
861026bb8aaSMegha Dey        help
862026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
863026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
864026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
865026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
866026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
867026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
868026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
869026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
870026bb8aaSMegha Dey
8711da177e4SLinus Torvaldsconfig CRYPTO_SHA256
872cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
87350e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8741da177e4SLinus Torvalds	help
8751da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
8761da177e4SLinus Torvalds
8771da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
8781da177e4SLinus Torvalds	  security against collision attacks.
8791da177e4SLinus Torvalds
880cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
881cd12fb90SJonathan Lynch	  of security against collision attacks.
882cd12fb90SJonathan Lynch
8832ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
8842ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
8852ecc1e95SMarkus Stockhausen	depends on PPC && SPE
8862ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
8872ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8882ecc1e95SMarkus Stockhausen	help
8892ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8902ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
8912ecc1e95SMarkus Stockhausen
892efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
893efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
894efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
895efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
896efdb6f6eSAaro Koskinen	select CRYPTO_HASH
897efdb6f6eSAaro Koskinen	help
898efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
899efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
900efdb6f6eSAaro Koskinen
90186c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
90286c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
90386c93b24SDavid S. Miller	depends on SPARC64
90486c93b24SDavid S. Miller	select CRYPTO_SHA256
90586c93b24SDavid S. Miller	select CRYPTO_HASH
90686c93b24SDavid S. Miller	help
90786c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
90886c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
90986c93b24SDavid S. Miller
9101da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9111da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
912bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9131da177e4SLinus Torvalds	help
9141da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9151da177e4SLinus Torvalds
9161da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9171da177e4SLinus Torvalds	  security against collision attacks.
9181da177e4SLinus Torvalds
9191da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9201da177e4SLinus Torvalds	  of security against collision attacks.
9211da177e4SLinus Torvalds
922efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
923efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
924efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
925efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
926efdb6f6eSAaro Koskinen	select CRYPTO_HASH
927efdb6f6eSAaro Koskinen	help
928efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
929efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
930efdb6f6eSAaro Koskinen
931775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
932775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
933775e0c69SDavid S. Miller	depends on SPARC64
934775e0c69SDavid S. Miller	select CRYPTO_SHA512
935775e0c69SDavid S. Miller	select CRYPTO_HASH
936775e0c69SDavid S. Miller	help
937775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
938775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
939775e0c69SDavid S. Miller
94053964b9eSJeff Garzikconfig CRYPTO_SHA3
94153964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
94253964b9eSJeff Garzik	select CRYPTO_HASH
94353964b9eSJeff Garzik	help
94453964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
94553964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
94653964b9eSJeff Garzik
94753964b9eSJeff Garzik	  References:
94853964b9eSJeff Garzik	  http://keccak.noekeon.org/
94953964b9eSJeff Garzik
9504f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9514f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9524f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9534f0fc160SGilad Ben-Yossef	help
9544f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9554f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9564f0fc160SGilad Ben-Yossef
9574f0fc160SGilad Ben-Yossef	  References:
9584f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9594f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9604f0fc160SGilad Ben-Yossef
9611da177e4SLinus Torvaldsconfig CRYPTO_TGR192
9621da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
963f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9641da177e4SLinus Torvalds	help
9651da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
9661da177e4SLinus Torvalds
9671da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
9681da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
9691da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
9701da177e4SLinus Torvalds
9711da177e4SLinus Torvalds	  See also:
9721da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
9731da177e4SLinus Torvalds
974584fffc8SSebastian Siewiorconfig CRYPTO_WP512
975584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
9764946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9771da177e4SLinus Torvalds	help
978584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
9791da177e4SLinus Torvalds
980584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
981584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
9821da177e4SLinus Torvalds
9831da177e4SLinus Torvalds	  See also:
9846d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
9851da177e4SLinus Torvalds
9860e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
9870e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
9888af00860SRichard Weinberger	depends on X86 && 64BIT
9890e1227d3SHuang Ying	select CRYPTO_CRYPTD
9900e1227d3SHuang Ying	help
9910e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
9920e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
9930e1227d3SHuang Ying
994584fffc8SSebastian Siewiorcomment "Ciphers"
9951da177e4SLinus Torvalds
9961da177e4SLinus Torvaldsconfig CRYPTO_AES
9971da177e4SLinus Torvalds	tristate "AES cipher algorithms"
998cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9991da177e4SLinus Torvalds	help
10001da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10011da177e4SLinus Torvalds	  algorithm.
10021da177e4SLinus Torvalds
10031da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10041da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10051da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10061da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10071da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10081da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10091da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10101da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10111da177e4SLinus Torvalds
10121da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10131da177e4SLinus Torvalds
10141da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10151da177e4SLinus Torvalds
1016b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1017b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1018b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1019b5e0b032SArd Biesheuvel	help
1020b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1021b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1022b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1023b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1024b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1025b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1026b5e0b032SArd Biesheuvel
1027b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1028b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1029b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1030b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
1031b5e0b032SArd Biesheuvel	  block.
1032b5e0b032SArd Biesheuvel
10331da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10341da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1035cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1036cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10375157dea8SSebastian Siewior	select CRYPTO_AES
10381da177e4SLinus Torvalds	help
10391da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10401da177e4SLinus Torvalds	  algorithm.
10411da177e4SLinus Torvalds
10421da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10431da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10441da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10451da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10461da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10471da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10481da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10491da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10501da177e4SLinus Torvalds
10511da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10521da177e4SLinus Torvalds
10531da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10541da177e4SLinus Torvalds
1055a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1056a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1057cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1058cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
105981190b32SSebastian Siewior	select CRYPTO_AES
1060a2a892a2SAndreas Steinmetz	help
1061a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1062a2a892a2SAndreas Steinmetz	  algorithm.
1063a2a892a2SAndreas Steinmetz
1064a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1065a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1066a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1067a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1068a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1069a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1070a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1071a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1072a2a892a2SAndreas Steinmetz
1073a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1074a2a892a2SAndreas Steinmetz
1075a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1076a2a892a2SAndreas Steinmetz
107754b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
107854b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
10798af00860SRichard Weinberger	depends on X86
108085671860SHerbert Xu	select CRYPTO_AEAD
10810d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
10820d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
108354b6a1bdSHuang Ying	select CRYPTO_ALGAPI
108485671860SHerbert Xu	select CRYPTO_BLKCIPHER
10857643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
108685671860SHerbert Xu	select CRYPTO_SIMD
108754b6a1bdSHuang Ying	help
108854b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
108954b6a1bdSHuang Ying
109054b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
109154b6a1bdSHuang Ying	  algorithm.
109254b6a1bdSHuang Ying
109354b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
109454b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
109554b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
109654b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
109754b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
109854b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
109954b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
110054b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
110154b6a1bdSHuang Ying
110254b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
110354b6a1bdSHuang Ying
110454b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
110554b6a1bdSHuang Ying
11060d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11070d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
11080d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
11090d258efbSMathias Krause	  acceleration for CTR.
11102cf4ac8bSHuang Ying
11119bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11129bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11139bf4852dSDavid S. Miller	depends on SPARC64
11149bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11159bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11169bf4852dSDavid S. Miller	help
11179bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11189bf4852dSDavid S. Miller
11199bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11209bf4852dSDavid S. Miller	  algorithm.
11219bf4852dSDavid S. Miller
11229bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11239bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11249bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11259bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11269bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11279bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11289bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11299bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11309bf4852dSDavid S. Miller
11319bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11329bf4852dSDavid S. Miller
11339bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11349bf4852dSDavid S. Miller
11359bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11369bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11379bf4852dSDavid S. Miller	  ECB and CBC.
11389bf4852dSDavid S. Miller
1139504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1140504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1141504c6143SMarkus Stockhausen	depends on PPC && SPE
1142504c6143SMarkus Stockhausen	help
1143504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1144504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1145504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1146504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1147504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1148504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1149504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1150504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1151504c6143SMarkus Stockhausen
11521da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11531da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1154cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11551da177e4SLinus Torvalds	help
11561da177e4SLinus Torvalds	  Anubis cipher algorithm.
11571da177e4SLinus Torvalds
11581da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11591da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11601da177e4SLinus Torvalds	  in the NESSIE competition.
11611da177e4SLinus Torvalds
11621da177e4SLinus Torvalds	  See also:
11636d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11646d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11651da177e4SLinus Torvalds
1166584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1167584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1168b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1169e2ee95b8SHye-Shik Chang	help
1170584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1171e2ee95b8SHye-Shik Chang
1172584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1173584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1174584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1175584fffc8SSebastian Siewior	  weakness of the algorithm.
1176584fffc8SSebastian Siewior
1177584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1178584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1179584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
118052ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1181584fffc8SSebastian Siewior	help
1182584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1183584fffc8SSebastian Siewior
1184584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1185584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1186584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1187e2ee95b8SHye-Shik Chang
1188e2ee95b8SHye-Shik Chang	  See also:
1189584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1190584fffc8SSebastian Siewior
119152ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
119252ba867cSJussi Kivilinna	tristate
119352ba867cSJussi Kivilinna	help
119452ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
119552ba867cSJussi Kivilinna	  generic c and the assembler implementations.
119652ba867cSJussi Kivilinna
119752ba867cSJussi Kivilinna	  See also:
119852ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
119952ba867cSJussi Kivilinna
120064b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
120164b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1202f21a7c19SAl Viro	depends on X86 && 64BIT
1203c1679171SEric Biggers	select CRYPTO_BLKCIPHER
120464b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
120564b94ceaSJussi Kivilinna	help
120664b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
120764b94ceaSJussi Kivilinna
120864b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
120964b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
121064b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
121164b94ceaSJussi Kivilinna
121264b94ceaSJussi Kivilinna	  See also:
121364b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
121464b94ceaSJussi Kivilinna
1215584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1216584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1217584fffc8SSebastian Siewior	depends on CRYPTO
1218584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1219584fffc8SSebastian Siewior	help
1220584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1221584fffc8SSebastian Siewior
1222584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1223584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1224584fffc8SSebastian Siewior
1225584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1226584fffc8SSebastian Siewior
1227584fffc8SSebastian Siewior	  See also:
1228584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1229584fffc8SSebastian Siewior
12300b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12310b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1232f21a7c19SAl Viro	depends on X86 && 64BIT
12330b95ec56SJussi Kivilinna	depends on CRYPTO
12341af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1235964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12360b95ec56SJussi Kivilinna	help
12370b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12380b95ec56SJussi Kivilinna
12390b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12400b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12410b95ec56SJussi Kivilinna
12420b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12430b95ec56SJussi Kivilinna
12440b95ec56SJussi Kivilinna	  See also:
12450b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12460b95ec56SJussi Kivilinna
1247d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1248d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1249d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1250d9b1d2e7SJussi Kivilinna	depends on CRYPTO
125144893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1252d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
125344893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
125444893bc2SEric Biggers	select CRYPTO_SIMD
1255d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1256d9b1d2e7SJussi Kivilinna	help
1257d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1258d9b1d2e7SJussi Kivilinna
1259d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1260d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1261d9b1d2e7SJussi Kivilinna
1262d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1263d9b1d2e7SJussi Kivilinna
1264d9b1d2e7SJussi Kivilinna	  See also:
1265d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1266d9b1d2e7SJussi Kivilinna
1267f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1268f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1269f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1270f3f935a7SJussi Kivilinna	depends on CRYPTO
1271f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1272f3f935a7SJussi Kivilinna	help
1273f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1274f3f935a7SJussi Kivilinna
1275f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1276f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1277f3f935a7SJussi Kivilinna
1278f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1279f3f935a7SJussi Kivilinna
1280f3f935a7SJussi Kivilinna	  See also:
1281f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1282f3f935a7SJussi Kivilinna
128381658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
128481658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
128581658ad0SDavid S. Miller	depends on SPARC64
128681658ad0SDavid S. Miller	depends on CRYPTO
128781658ad0SDavid S. Miller	select CRYPTO_ALGAPI
128881658ad0SDavid S. Miller	help
128981658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
129081658ad0SDavid S. Miller
129181658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
129281658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
129381658ad0SDavid S. Miller
129481658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
129581658ad0SDavid S. Miller
129681658ad0SDavid S. Miller	  See also:
129781658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
129881658ad0SDavid S. Miller
1299044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1300044ab525SJussi Kivilinna	tristate
1301044ab525SJussi Kivilinna	help
1302044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1303044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1304044ab525SJussi Kivilinna
1305584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1306584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1307584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1308044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1309584fffc8SSebastian Siewior	help
1310584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1311584fffc8SSebastian Siewior	  described in RFC2144.
1312584fffc8SSebastian Siewior
13134d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13144d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13154d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13161e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13174d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13181e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13191e63183aSEric Biggers	select CRYPTO_SIMD
13204d6d6a2cSJohannes Goetzfried	help
13214d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13224d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13234d6d6a2cSJohannes Goetzfried
13244d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13254d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13264d6d6a2cSJohannes Goetzfried
1327584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1328584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1329584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1330044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1331584fffc8SSebastian Siewior	help
1332584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1333584fffc8SSebastian Siewior	  described in RFC2612.
1334584fffc8SSebastian Siewior
13354ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13364ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13374ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13384bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13394ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13404bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13414bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13424bd96924SEric Biggers	select CRYPTO_SIMD
13434ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13444ea1277dSJohannes Goetzfried	help
13454ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13464ea1277dSJohannes Goetzfried	  described in RFC2612.
13474ea1277dSJohannes Goetzfried
13484ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13494ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13504ea1277dSJohannes Goetzfried
1351584fffc8SSebastian Siewiorconfig CRYPTO_DES
1352584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1353584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1354584fffc8SSebastian Siewior	help
1355584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1356584fffc8SSebastian Siewior
1357c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1358c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
135997da37b3SDave Jones	depends on SPARC64
1360c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1361c5aac2dfSDavid S. Miller	select CRYPTO_DES
1362c5aac2dfSDavid S. Miller	help
1363c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1364c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1365c5aac2dfSDavid S. Miller
13666574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13676574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13686574e6c6SJussi Kivilinna	depends on X86 && 64BIT
136909c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
13706574e6c6SJussi Kivilinna	select CRYPTO_DES
13716574e6c6SJussi Kivilinna	help
13726574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13736574e6c6SJussi Kivilinna
13746574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13756574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13766574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13776574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13786574e6c6SJussi Kivilinna
1379584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1380584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1381584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1382584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1383584fffc8SSebastian Siewior	help
1384584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1385584fffc8SSebastian Siewior
1386584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1387584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1388584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1389584fffc8SSebastian Siewior	help
1390584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1391584fffc8SSebastian Siewior
1392584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1393584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1394584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1395584fffc8SSebastian Siewior
1396584fffc8SSebastian Siewior	  See also:
13976d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1398e2ee95b8SHye-Shik Chang
13992407d608STan Swee Hengconfig CRYPTO_SALSA20
14003b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14012407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14022407d608STan Swee Heng	help
14032407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14042407d608STan Swee Heng
14052407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14062407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14072407d608STan Swee Heng
14082407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14092407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14101da177e4SLinus Torvalds
1411974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
14123b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1413974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1414974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1415c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
1416974e4b75STan Swee Heng	help
1417974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1418974e4b75STan Swee Heng
1419974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1420974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1421974e4b75STan Swee Heng
1422974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1423974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1424974e4b75STan Swee Heng
14259a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
14263b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
14279a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
14289a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
1429c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
14309a7dafbbSTan Swee Heng	help
14319a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
14329a7dafbbSTan Swee Heng
14339a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14349a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14359a7dafbbSTan Swee Heng
14369a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14379a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14389a7dafbbSTan Swee Heng
1439c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1440c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1441c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1442c08d0e64SMartin Willi	help
1443c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1444c08d0e64SMartin Willi
1445c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1446c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1447c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1448c08d0e64SMartin Willi
1449c08d0e64SMartin Willi	  See also:
1450c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1451c08d0e64SMartin Willi
1452c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14533d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1454c9320b6dSMartin Willi	depends on X86 && 64BIT
1455c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1456c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1457c9320b6dSMartin Willi	help
1458c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1459c9320b6dSMartin Willi
1460c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1461c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1462c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1463c9320b6dSMartin Willi
1464c9320b6dSMartin Willi	  See also:
1465c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1466c9320b6dSMartin Willi
1467584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1468584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1469584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1470584fffc8SSebastian Siewior	help
1471584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1472584fffc8SSebastian Siewior
1473584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1474584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1475584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1476584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1477584fffc8SSebastian Siewior
1478584fffc8SSebastian Siewior	  See also:
1479584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1480584fffc8SSebastian Siewior
1481584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1482584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1483584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1484584fffc8SSebastian Siewior	help
1485584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1486584fffc8SSebastian Siewior
1487584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1488584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1489584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1490584fffc8SSebastian Siewior
1491584fffc8SSebastian Siewior	  See also:
1492584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1493584fffc8SSebastian Siewior
1494937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1495937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1496937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1497e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1498596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1499937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1500e0f409dcSEric Biggers	select CRYPTO_SIMD
1501937c30d7SJussi Kivilinna	help
1502937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1503937c30d7SJussi Kivilinna
1504937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1505937c30d7SJussi Kivilinna	  of 8 bits.
1506937c30d7SJussi Kivilinna
15071e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1508937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1509937c30d7SJussi Kivilinna
1510937c30d7SJussi Kivilinna	  See also:
1511937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1512937c30d7SJussi Kivilinna
1513251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1514251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1515251496dbSJussi Kivilinna	depends on X86 && !64BIT
1516e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1517596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1518251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1519e0f409dcSEric Biggers	select CRYPTO_SIMD
1520251496dbSJussi Kivilinna	help
1521251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1522251496dbSJussi Kivilinna
1523251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1524251496dbSJussi Kivilinna	  of 8 bits.
1525251496dbSJussi Kivilinna
1526251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1527251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1528251496dbSJussi Kivilinna
1529251496dbSJussi Kivilinna	  See also:
1530251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1531251496dbSJussi Kivilinna
15327efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15337efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15347efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1535e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15361d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15377efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1538e16bf974SEric Biggers	select CRYPTO_SIMD
15397efe4076SJohannes Goetzfried	select CRYPTO_XTS
15407efe4076SJohannes Goetzfried	help
15417efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15427efe4076SJohannes Goetzfried
15437efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15447efe4076SJohannes Goetzfried	  of 8 bits.
15457efe4076SJohannes Goetzfried
15467efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15477efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15487efe4076SJohannes Goetzfried
15497efe4076SJohannes Goetzfried	  See also:
15507efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15517efe4076SJohannes Goetzfried
155256d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
155356d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
155456d76c96SJussi Kivilinna	depends on X86 && 64BIT
155556d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
155656d76c96SJussi Kivilinna	help
155756d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
155856d76c96SJussi Kivilinna
155956d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
156056d76c96SJussi Kivilinna	  of 8 bits.
156156d76c96SJussi Kivilinna
156256d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
156356d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
156456d76c96SJussi Kivilinna
156556d76c96SJussi Kivilinna	  See also:
156656d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
156756d76c96SJussi Kivilinna
1568747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1569747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1570747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1571747c8ce4SGilad Ben-Yossef	help
1572747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1573747c8ce4SGilad Ben-Yossef
1574747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1575747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1576747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1577747c8ce4SGilad Ben-Yossef
1578747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1579747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1580747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1581747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1582747c8ce4SGilad Ben-Yossef
1583747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1584747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1585747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1586747c8ce4SGilad Ben-Yossef
1587747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1588747c8ce4SGilad Ben-Yossef
1589747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1590747c8ce4SGilad Ben-Yossef
1591747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1592747c8ce4SGilad Ben-Yossef
1593da7a0ab5SEric Biggersconfig CRYPTO_SPECK
1594da7a0ab5SEric Biggers	tristate "Speck cipher algorithm"
1595da7a0ab5SEric Biggers	select CRYPTO_ALGAPI
1596da7a0ab5SEric Biggers	help
1597da7a0ab5SEric Biggers	  Speck is a lightweight block cipher that is tuned for optimal
1598da7a0ab5SEric Biggers	  performance in software (rather than hardware).
1599da7a0ab5SEric Biggers
1600da7a0ab5SEric Biggers	  Speck may not be as secure as AES, and should only be used on systems
1601da7a0ab5SEric Biggers	  where AES is not fast enough.
1602da7a0ab5SEric Biggers
1603da7a0ab5SEric Biggers	  See also: <https://eprint.iacr.org/2013/404.pdf>
1604da7a0ab5SEric Biggers
1605da7a0ab5SEric Biggers	  If unsure, say N.
1606da7a0ab5SEric Biggers
1607584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1608584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1609584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1610584fffc8SSebastian Siewior	help
1611584fffc8SSebastian Siewior	  TEA cipher algorithm.
1612584fffc8SSebastian Siewior
1613584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1614584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1615584fffc8SSebastian Siewior	  little memory.
1616584fffc8SSebastian Siewior
1617584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1618584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1619584fffc8SSebastian Siewior	  in the TEA algorithm.
1620584fffc8SSebastian Siewior
1621584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1622584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1623584fffc8SSebastian Siewior
1624584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1625584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1626584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1627584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1628584fffc8SSebastian Siewior	help
1629584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1630584fffc8SSebastian Siewior
1631584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1632584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1633584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1634584fffc8SSebastian Siewior	  bits.
1635584fffc8SSebastian Siewior
1636584fffc8SSebastian Siewior	  See also:
1637584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1638584fffc8SSebastian Siewior
1639584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1640584fffc8SSebastian Siewior	tristate
1641584fffc8SSebastian Siewior	help
1642584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1643584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1644584fffc8SSebastian Siewior
1645584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1646584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1647584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1648584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1649584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1650584fffc8SSebastian Siewior	help
1651584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1652584fffc8SSebastian Siewior
1653584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1654584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1655584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1656584fffc8SSebastian Siewior	  bits.
1657584fffc8SSebastian Siewior
1658584fffc8SSebastian Siewior	  See also:
1659584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1660584fffc8SSebastian Siewior
1661584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1662584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1663584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1664584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1665584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1666584fffc8SSebastian Siewior	help
1667584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1668584fffc8SSebastian Siewior
1669584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1670584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1671584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1672584fffc8SSebastian Siewior	  bits.
1673584fffc8SSebastian Siewior
1674584fffc8SSebastian Siewior	  See also:
1675584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1676584fffc8SSebastian Siewior
16778280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16788280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1679f21a7c19SAl Viro	depends on X86 && 64BIT
168037992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16818280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16828280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1683414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16848280daadSJussi Kivilinna	help
16858280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16868280daadSJussi Kivilinna
16878280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16888280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16898280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16908280daadSJussi Kivilinna	  bits.
16918280daadSJussi Kivilinna
16928280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16938280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16948280daadSJussi Kivilinna
16958280daadSJussi Kivilinna	  See also:
16968280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16978280daadSJussi Kivilinna
1698107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1699107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1700107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17010e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1702a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17030e6ab46dSEric Biggers	select CRYPTO_SIMD
1704107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1705107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1706107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1707107778b5SJohannes Goetzfried	help
1708107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1709107778b5SJohannes Goetzfried
1710107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1711107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1712107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1713107778b5SJohannes Goetzfried	  bits.
1714107778b5SJohannes Goetzfried
1715107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1716107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1717107778b5SJohannes Goetzfried
1718107778b5SJohannes Goetzfried	  See also:
1719107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1720107778b5SJohannes Goetzfried
1721584fffc8SSebastian Siewiorcomment "Compression"
1722584fffc8SSebastian Siewior
17231da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17241da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1725cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1726f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17271da177e4SLinus Torvalds	select ZLIB_INFLATE
17281da177e4SLinus Torvalds	select ZLIB_DEFLATE
17291da177e4SLinus Torvalds	help
17301da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17311da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17321da177e4SLinus Torvalds
17331da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17341da177e4SLinus Torvalds
17350b77abb3SZoltan Sogorconfig CRYPTO_LZO
17360b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17370b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1738ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17390b77abb3SZoltan Sogor	select LZO_COMPRESS
17400b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17410b77abb3SZoltan Sogor	help
17420b77abb3SZoltan Sogor	  This is the LZO algorithm.
17430b77abb3SZoltan Sogor
174435a1fc18SSeth Jenningsconfig CRYPTO_842
174535a1fc18SSeth Jennings	tristate "842 compression algorithm"
17462062c5b6SDan Streetman	select CRYPTO_ALGAPI
17476a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17482062c5b6SDan Streetman	select 842_COMPRESS
17492062c5b6SDan Streetman	select 842_DECOMPRESS
175035a1fc18SSeth Jennings	help
175135a1fc18SSeth Jennings	  This is the 842 algorithm.
175235a1fc18SSeth Jennings
17530ea8530dSChanho Minconfig CRYPTO_LZ4
17540ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17550ea8530dSChanho Min	select CRYPTO_ALGAPI
17568cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17570ea8530dSChanho Min	select LZ4_COMPRESS
17580ea8530dSChanho Min	select LZ4_DECOMPRESS
17590ea8530dSChanho Min	help
17600ea8530dSChanho Min	  This is the LZ4 algorithm.
17610ea8530dSChanho Min
17620ea8530dSChanho Minconfig CRYPTO_LZ4HC
17630ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17640ea8530dSChanho Min	select CRYPTO_ALGAPI
176591d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17660ea8530dSChanho Min	select LZ4HC_COMPRESS
17670ea8530dSChanho Min	select LZ4_DECOMPRESS
17680ea8530dSChanho Min	help
17690ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17700ea8530dSChanho Min
1771d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1772d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1773d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1774d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1775d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1776d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1777d28fc3dbSNick Terrell	help
1778d28fc3dbSNick Terrell	  This is the zstd algorithm.
1779d28fc3dbSNick Terrell
178017f0f4a4SNeil Hormancomment "Random Number Generation"
178117f0f4a4SNeil Horman
178217f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
178317f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
178417f0f4a4SNeil Horman	select CRYPTO_AES
178517f0f4a4SNeil Horman	select CRYPTO_RNG
178617f0f4a4SNeil Horman	help
178717f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
178817f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17897dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17907dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
179117f0f4a4SNeil Horman
1792f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1793419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1794419090c6SStephan Mueller	help
1795419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1796419090c6SStephan Mueller	  more of the DRBG types must be selected.
1797419090c6SStephan Mueller
1798f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1799419090c6SStephan Mueller
1800419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1801401e4238SHerbert Xu	bool
1802419090c6SStephan Mueller	default y
1803419090c6SStephan Mueller	select CRYPTO_HMAC
1804826775bbSHerbert Xu	select CRYPTO_SHA256
1805419090c6SStephan Mueller
1806419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1807419090c6SStephan Mueller	bool "Enable Hash DRBG"
1808826775bbSHerbert Xu	select CRYPTO_SHA256
1809419090c6SStephan Mueller	help
1810419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1811419090c6SStephan Mueller
1812419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1813419090c6SStephan Mueller	bool "Enable CTR DRBG"
1814419090c6SStephan Mueller	select CRYPTO_AES
181535591285SStephan Mueller	depends on CRYPTO_CTR
1816419090c6SStephan Mueller	help
1817419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1818419090c6SStephan Mueller
1819f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1820f2c89a10SHerbert Xu	tristate
1821401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1822f2c89a10SHerbert Xu	select CRYPTO_RNG
1823bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1824f2c89a10SHerbert Xu
1825f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1826419090c6SStephan Mueller
1827bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1828bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18292f313e02SArnd Bergmann	select CRYPTO_RNG
1830bb5530e4SStephan Mueller	help
1831bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1832bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1833bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1834bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1835bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1836bb5530e4SStephan Mueller
183703c8efc1SHerbert Xuconfig CRYPTO_USER_API
183803c8efc1SHerbert Xu	tristate
183903c8efc1SHerbert Xu
1840fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1841fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18427451708fSHerbert Xu	depends on NET
1843fe869cdbSHerbert Xu	select CRYPTO_HASH
1844fe869cdbSHerbert Xu	select CRYPTO_USER_API
1845fe869cdbSHerbert Xu	help
1846fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1847fe869cdbSHerbert Xu	  algorithms.
1848fe869cdbSHerbert Xu
18498ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18508ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18517451708fSHerbert Xu	depends on NET
18528ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18538ff59090SHerbert Xu	select CRYPTO_USER_API
18548ff59090SHerbert Xu	help
18558ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18568ff59090SHerbert Xu	  key cipher algorithms.
18578ff59090SHerbert Xu
18582f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18592f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18602f375538SStephan Mueller	depends on NET
18612f375538SStephan Mueller	select CRYPTO_RNG
18622f375538SStephan Mueller	select CRYPTO_USER_API
18632f375538SStephan Mueller	help
18642f375538SStephan Mueller	  This option enables the user-spaces interface for random
18652f375538SStephan Mueller	  number generator algorithms.
18662f375538SStephan Mueller
1867b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1868b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1869b64a2d95SHerbert Xu	depends on NET
1870b64a2d95SHerbert Xu	select CRYPTO_AEAD
187172548b09SStephan Mueller	select CRYPTO_BLKCIPHER
187272548b09SStephan Mueller	select CRYPTO_NULL
1873b64a2d95SHerbert Xu	select CRYPTO_USER_API
1874b64a2d95SHerbert Xu	help
1875b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1876b64a2d95SHerbert Xu	  cipher algorithms.
1877b64a2d95SHerbert Xu
1878ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1879ee08997fSDmitry Kasatkin	bool
1880ee08997fSDmitry Kasatkin
18811da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1882964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1883cfc411e7SDavid Howellssource certs/Kconfig
18841da177e4SLinus Torvalds
1885cce9e06dSHerbert Xuendif	# if CRYPTO
1886