xref: /linux/crypto/Kconfig (revision 4f0fc1600edbdb3612b931aa5076ca984f7ee8fe)
11da177e4SLinus Torvalds#
2685784aaSDan Williams# Generic algorithms support
3685784aaSDan Williams#
4685784aaSDan Williamsconfig XOR_BLOCKS
5685784aaSDan Williams	tristate
6685784aaSDan Williams
7685784aaSDan Williams#
89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
99bc89cd8SDan Williams#
109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
119bc89cd8SDan Williams
129bc89cd8SDan Williams#
131da177e4SLinus Torvalds# Cryptographic API Configuration
141da177e4SLinus Torvalds#
152e290f43SJan Engelhardtmenuconfig CRYPTO
16c3715cb9SSebastian Siewior	tristate "Cryptographic API"
171da177e4SLinus Torvalds	help
181da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
191da177e4SLinus Torvalds
20cce9e06dSHerbert Xuif CRYPTO
21cce9e06dSHerbert Xu
22584fffc8SSebastian Siewiorcomment "Crypto core or helper"
23584fffc8SSebastian Siewior
24ccb778e1SNeil Hormanconfig CRYPTO_FIPS
25ccb778e1SNeil Horman	bool "FIPS 200 compliance"
26f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
271f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
28ccb778e1SNeil Horman	help
29ccb778e1SNeil Horman	  This options enables the fips boot option which is
30ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
31ccb778e1SNeil Horman	  certification.  You should say no unless you know what
32e84c5480SChuck Ebbert	  this is.
33ccb778e1SNeil Horman
34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
35cce9e06dSHerbert Xu	tristate
366a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
37cce9e06dSHerbert Xu	help
38cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
39cce9e06dSHerbert Xu
406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
416a0fcbb4SHerbert Xu	tristate
426a0fcbb4SHerbert Xu
431ae97820SHerbert Xuconfig CRYPTO_AEAD
441ae97820SHerbert Xu	tristate
456a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
461ae97820SHerbert Xu	select CRYPTO_ALGAPI
471ae97820SHerbert Xu
486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
496a0fcbb4SHerbert Xu	tristate
506a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
51149a3971SHerbert Xu	select CRYPTO_NULL2
52149a3971SHerbert Xu	select CRYPTO_RNG2
536a0fcbb4SHerbert Xu
545cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
555cde0af2SHerbert Xu	tristate
566a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
575cde0af2SHerbert Xu	select CRYPTO_ALGAPI
586a0fcbb4SHerbert Xu
596a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
606a0fcbb4SHerbert Xu	tristate
616a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
626a0fcbb4SHerbert Xu	select CRYPTO_RNG2
630a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1082ebda74fSGiovanni Cabiddu
1092ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1102ebda74fSGiovanni Cabiddu	tristate
1112ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1132ebda74fSGiovanni Cabiddu
114cfc2bb32STadeusz Strukconfig CRYPTO_RSA
115cfc2bb32STadeusz Struk	tristate "RSA algorithm"
116425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11758446fefSTadeusz Struk	select CRYPTO_MANAGER
118cfc2bb32STadeusz Struk	select MPILIB
119cfc2bb32STadeusz Struk	select ASN1
120cfc2bb32STadeusz Struk	help
121cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
122cfc2bb32STadeusz Struk
123802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
124802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
125802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
126802c7f1cSSalvatore Benedetto	select MPILIB
127802c7f1cSSalvatore Benedetto	help
128802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
129802c7f1cSSalvatore Benedetto
1303c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1313c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
1323c4b2390SSalvatore Benedetto	select CRYTPO_KPP
1336755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1343c4b2390SSalvatore Benedetto	help
1353c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
136802c7f1cSSalvatore Benedetto
1372b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1382b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1396a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1402b8c19dbSHerbert Xu	help
1412b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1422b8c19dbSHerbert Xu	  cbc(aes).
1432b8c19dbSHerbert Xu
1446a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1456a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1476a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1486a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
149946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1504e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1512ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1526a0fcbb4SHerbert Xu
153a38f7907SSteffen Klassertconfig CRYPTO_USER
154a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1555db017aaSHerbert Xu	depends on NET
156a38f7907SSteffen Klassert	select CRYPTO_MANAGER
157a38f7907SSteffen Klassert	help
158d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
159a38f7907SSteffen Klassert	  cbc(aes).
160a38f7907SSteffen Klassert
161326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
162326a6346SHerbert Xu	bool "Disable run-time self tests"
16300ca28a5SHerbert Xu	default y
16400ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1650b767f96SAlexander Shishkin	help
166326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
167326a6346SHerbert Xu	  algorithm registration.
1680b767f96SAlexander Shishkin
169584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17008c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
171584fffc8SSebastian Siewior	help
172584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
173584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
174584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
175584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
176584fffc8SSebastian Siewior	  an external module that requires these functions.
177584fffc8SSebastian Siewior
178584fffc8SSebastian Siewiorconfig CRYPTO_NULL
179584fffc8SSebastian Siewior	tristate "Null algorithms"
180149a3971SHerbert Xu	select CRYPTO_NULL2
181584fffc8SSebastian Siewior	help
182584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
183584fffc8SSebastian Siewior
184149a3971SHerbert Xuconfig CRYPTO_NULL2
185dd43c4e9SHerbert Xu	tristate
186149a3971SHerbert Xu	select CRYPTO_ALGAPI2
187149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
188149a3971SHerbert Xu	select CRYPTO_HASH2
189149a3971SHerbert Xu
1905068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1913b4afaf2SKees Cook	tristate "Parallel crypto engine"
1923b4afaf2SKees Cook	depends on SMP
1935068c7a8SSteffen Klassert	select PADATA
1945068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1955068c7a8SSteffen Klassert	select CRYPTO_AEAD
1965068c7a8SSteffen Klassert	help
1975068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1985068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1995068c7a8SSteffen Klassert
20025c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20125c38d3fSHuang Ying       tristate
20225c38d3fSHuang Ying
203584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
204584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
205584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
206b8a28251SLoc Ho	select CRYPTO_HASH
207584fffc8SSebastian Siewior	select CRYPTO_MANAGER
208254eff77SHuang Ying	select CRYPTO_WORKQUEUE
209584fffc8SSebastian Siewior	help
210584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
211584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
212584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
213584fffc8SSebastian Siewior
2141e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2151e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2161e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2171e65b81aSTim Chen	select CRYPTO_HASH
2181e65b81aSTim Chen	select CRYPTO_MANAGER
2191e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2201e65b81aSTim Chen	help
2211e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2221e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2231e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2241e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2251e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2260e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2271e65b81aSTim Chen
228584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
229584fffc8SSebastian Siewior	tristate "Authenc support"
230584fffc8SSebastian Siewior	select CRYPTO_AEAD
231584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
232584fffc8SSebastian Siewior	select CRYPTO_MANAGER
233584fffc8SSebastian Siewior	select CRYPTO_HASH
234e94c6a7aSHerbert Xu	select CRYPTO_NULL
235584fffc8SSebastian Siewior	help
236584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
237584fffc8SSebastian Siewior	  This is required for IPSec.
238584fffc8SSebastian Siewior
239584fffc8SSebastian Siewiorconfig CRYPTO_TEST
240584fffc8SSebastian Siewior	tristate "Testing module"
241584fffc8SSebastian Siewior	depends on m
242da7f033dSHerbert Xu	select CRYPTO_MANAGER
243584fffc8SSebastian Siewior	help
244584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
245584fffc8SSebastian Siewior
246a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER
247ffaf9156SJussi Kivilinna	tristate
248ffaf9156SJussi Kivilinna	select CRYPTO_CRYPTD
249ffaf9156SJussi Kivilinna
250266d0516SHerbert Xuconfig CRYPTO_SIMD
251266d0516SHerbert Xu	tristate
252266d0516SHerbert Xu	select CRYPTO_CRYPTD
253266d0516SHerbert Xu
254596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
255596d8750SJussi Kivilinna	tristate
256596d8750SJussi Kivilinna	depends on X86
257065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
258596d8750SJussi Kivilinna
259735d37b5SBaolin Wangconfig CRYPTO_ENGINE
260735d37b5SBaolin Wang	tristate
261735d37b5SBaolin Wang
262584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
263584fffc8SSebastian Siewior
264584fffc8SSebastian Siewiorconfig CRYPTO_CCM
265584fffc8SSebastian Siewior	tristate "CCM support"
266584fffc8SSebastian Siewior	select CRYPTO_CTR
267f15f05b0SArd Biesheuvel	select CRYPTO_HASH
268584fffc8SSebastian Siewior	select CRYPTO_AEAD
269584fffc8SSebastian Siewior	help
270584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
271584fffc8SSebastian Siewior
272584fffc8SSebastian Siewiorconfig CRYPTO_GCM
273584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
274584fffc8SSebastian Siewior	select CRYPTO_CTR
275584fffc8SSebastian Siewior	select CRYPTO_AEAD
2769382d97aSHuang Ying	select CRYPTO_GHASH
2779489667dSJussi Kivilinna	select CRYPTO_NULL
278584fffc8SSebastian Siewior	help
279584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
280584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
281584fffc8SSebastian Siewior
28271ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28371ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28471ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28571ebc4d1SMartin Willi	select CRYPTO_POLY1305
28671ebc4d1SMartin Willi	select CRYPTO_AEAD
28771ebc4d1SMartin Willi	help
28871ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28971ebc4d1SMartin Willi
29071ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29171ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29271ebc4d1SMartin Willi	  IETF protocols.
29371ebc4d1SMartin Willi
294584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
295584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
296584fffc8SSebastian Siewior	select CRYPTO_AEAD
297584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
298856e3f40SHerbert Xu	select CRYPTO_NULL
299401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
300584fffc8SSebastian Siewior	help
301584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
302584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
303584fffc8SSebastian Siewior
304a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
305a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
306a10f554fSHerbert Xu	select CRYPTO_AEAD
307a10f554fSHerbert Xu	select CRYPTO_NULL
308401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3093491244cSHerbert Xu	default m
310a10f554fSHerbert Xu	help
311a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
312a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
313a10f554fSHerbert Xu	  algorithm for CBC.
314a10f554fSHerbert Xu
315584fffc8SSebastian Siewiorcomment "Block modes"
316584fffc8SSebastian Siewior
317584fffc8SSebastian Siewiorconfig CRYPTO_CBC
318584fffc8SSebastian Siewior	tristate "CBC support"
319584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
320584fffc8SSebastian Siewior	select CRYPTO_MANAGER
321584fffc8SSebastian Siewior	help
322584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
323584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
324584fffc8SSebastian Siewior
325584fffc8SSebastian Siewiorconfig CRYPTO_CTR
326584fffc8SSebastian Siewior	tristate "CTR support"
327584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
328584fffc8SSebastian Siewior	select CRYPTO_SEQIV
329584fffc8SSebastian Siewior	select CRYPTO_MANAGER
330584fffc8SSebastian Siewior	help
331584fffc8SSebastian Siewior	  CTR: Counter mode
332584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
333584fffc8SSebastian Siewior
334584fffc8SSebastian Siewiorconfig CRYPTO_CTS
335584fffc8SSebastian Siewior	tristate "CTS support"
336584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
337584fffc8SSebastian Siewior	help
338584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
339584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
340584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
341584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
342584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
343584fffc8SSebastian Siewior	  for AES encryption.
344584fffc8SSebastian Siewior
345584fffc8SSebastian Siewiorconfig CRYPTO_ECB
346584fffc8SSebastian Siewior	tristate "ECB support"
347584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
348584fffc8SSebastian Siewior	select CRYPTO_MANAGER
349584fffc8SSebastian Siewior	help
350584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
351584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
352584fffc8SSebastian Siewior	  the input block by block.
353584fffc8SSebastian Siewior
354584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3552470a2b2SJussi Kivilinna	tristate "LRW support"
356584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
357584fffc8SSebastian Siewior	select CRYPTO_MANAGER
358584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
359584fffc8SSebastian Siewior	help
360584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
361584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
362584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
363584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
364584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
365584fffc8SSebastian Siewior
366584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
367584fffc8SSebastian Siewior	tristate "PCBC support"
368584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
369584fffc8SSebastian Siewior	select CRYPTO_MANAGER
370584fffc8SSebastian Siewior	help
371584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
372584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
373584fffc8SSebastian Siewior
374584fffc8SSebastian Siewiorconfig CRYPTO_XTS
3755bcf8e6dSJussi Kivilinna	tristate "XTS support"
376584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
377584fffc8SSebastian Siewior	select CRYPTO_MANAGER
37812cb3a1cSMilan Broz	select CRYPTO_ECB
379584fffc8SSebastian Siewior	help
380584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
381584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
382584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
383584fffc8SSebastian Siewior
3841c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
3851c49678eSStephan Mueller	tristate "Key wrapping support"
3861c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
3871c49678eSStephan Mueller	help
3881c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
3891c49678eSStephan Mueller	  padding.
3901c49678eSStephan Mueller
391584fffc8SSebastian Siewiorcomment "Hash modes"
392584fffc8SSebastian Siewior
39393b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
39493b5e86aSJussi Kivilinna	tristate "CMAC support"
39593b5e86aSJussi Kivilinna	select CRYPTO_HASH
39693b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
39793b5e86aSJussi Kivilinna	help
39893b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
39993b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
40093b5e86aSJussi Kivilinna
40193b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
40293b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
40393b5e86aSJussi Kivilinna
4041da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4058425165dSHerbert Xu	tristate "HMAC support"
4060796ae06SHerbert Xu	select CRYPTO_HASH
40743518407SHerbert Xu	select CRYPTO_MANAGER
4081da177e4SLinus Torvalds	help
4091da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4101da177e4SLinus Torvalds	  This is required for IPSec.
4111da177e4SLinus Torvalds
412333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
413333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
414333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
415333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
416333b0d7eSKazunori MIYAZAWA	help
417333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
418333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
419333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
420333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
421333b0d7eSKazunori MIYAZAWA
422f1939f7cSShane Wangconfig CRYPTO_VMAC
423f1939f7cSShane Wang	tristate "VMAC support"
424f1939f7cSShane Wang	select CRYPTO_HASH
425f1939f7cSShane Wang	select CRYPTO_MANAGER
426f1939f7cSShane Wang	help
427f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
428f1939f7cSShane Wang	  very high speed on 64-bit architectures.
429f1939f7cSShane Wang
430f1939f7cSShane Wang	  See also:
431f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
432f1939f7cSShane Wang
433584fffc8SSebastian Siewiorcomment "Digest"
434584fffc8SSebastian Siewior
435584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
436584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
4375773a3e6SHerbert Xu	select CRYPTO_HASH
4386a0962b2SDarrick J. Wong	select CRC32
4391da177e4SLinus Torvalds	help
440584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
441584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
44269c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
4431da177e4SLinus Torvalds
4448cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
4458cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
4468cb51ba8SAustin Zhang	depends on X86
4478cb51ba8SAustin Zhang	select CRYPTO_HASH
4488cb51ba8SAustin Zhang	help
4498cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
4508cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
4518cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
4528cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
4538cb51ba8SAustin Zhang	  gain performance compared with software implementation.
4548cb51ba8SAustin Zhang	  Module will be crc32c-intel.
4558cb51ba8SAustin Zhang
4567cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
4576dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
458c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
4596dd7a82cSAnton Blanchard	select CRYPTO_HASH
4606dd7a82cSAnton Blanchard	select CRC32
4616dd7a82cSAnton Blanchard	help
4626dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
4636dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
4646dd7a82cSAnton Blanchard	  and newer processors for improved performance.
4656dd7a82cSAnton Blanchard
4666dd7a82cSAnton Blanchard
467442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
468442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
469442a7c40SDavid S. Miller	depends on SPARC64
470442a7c40SDavid S. Miller	select CRYPTO_HASH
471442a7c40SDavid S. Miller	select CRC32
472442a7c40SDavid S. Miller	help
473442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
474442a7c40SDavid S. Miller	  when available.
475442a7c40SDavid S. Miller
47678c37d19SAlexander Boykoconfig CRYPTO_CRC32
47778c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
47878c37d19SAlexander Boyko	select CRYPTO_HASH
47978c37d19SAlexander Boyko	select CRC32
48078c37d19SAlexander Boyko	help
48178c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
48278c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
48378c37d19SAlexander Boyko
48478c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
48578c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
48678c37d19SAlexander Boyko	depends on X86
48778c37d19SAlexander Boyko	select CRYPTO_HASH
48878c37d19SAlexander Boyko	select CRC32
48978c37d19SAlexander Boyko	help
49078c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
49178c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
49278c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
49378c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
49478c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
49578c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
49678c37d19SAlexander Boyko
49768411521SHerbert Xuconfig CRYPTO_CRCT10DIF
49868411521SHerbert Xu	tristate "CRCT10DIF algorithm"
49968411521SHerbert Xu	select CRYPTO_HASH
50068411521SHerbert Xu	help
50168411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
50268411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
50368411521SHerbert Xu	  transforms to be used if they are available.
50468411521SHerbert Xu
50568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
50668411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
50768411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
50868411521SHerbert Xu	select CRYPTO_HASH
50968411521SHerbert Xu	help
51068411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
51168411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
51268411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
51368411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
51468411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
51568411521SHerbert Xu
516b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
517b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
518b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
519b01df1c1SDaniel Axtens	select CRYPTO_HASH
520b01df1c1SDaniel Axtens	help
521b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
522b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
523b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
524b01df1c1SDaniel Axtens
525146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
526146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
527146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
528146c8688SDaniel Axtens	help
529146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
530146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
531146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
532146c8688SDaniel Axtens
5332cdc6899SHuang Yingconfig CRYPTO_GHASH
5342cdc6899SHuang Ying	tristate "GHASH digest algorithm"
5352cdc6899SHuang Ying	select CRYPTO_GF128MUL
536578c60fbSArnd Bergmann	select CRYPTO_HASH
5372cdc6899SHuang Ying	help
5382cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
5392cdc6899SHuang Ying
540f979e014SMartin Williconfig CRYPTO_POLY1305
541f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
542578c60fbSArnd Bergmann	select CRYPTO_HASH
543f979e014SMartin Willi	help
544f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
545f979e014SMartin Willi
546f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
547f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
548f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
549f979e014SMartin Willi
550c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
551b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
552c70f4abeSMartin Willi	depends on X86 && 64BIT
553c70f4abeSMartin Willi	select CRYPTO_POLY1305
554c70f4abeSMartin Willi	help
555c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
556c70f4abeSMartin Willi
557c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
558c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
559c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
560c70f4abeSMartin Willi	  instructions.
561c70f4abeSMartin Willi
5621da177e4SLinus Torvaldsconfig CRYPTO_MD4
5631da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
564808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5651da177e4SLinus Torvalds	help
5661da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
5671da177e4SLinus Torvalds
5681da177e4SLinus Torvaldsconfig CRYPTO_MD5
5691da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
57014b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5711da177e4SLinus Torvalds	help
5721da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
5731da177e4SLinus Torvalds
574d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
575d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
576d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
577d69e75deSAaro Koskinen	select CRYPTO_MD5
578d69e75deSAaro Koskinen	select CRYPTO_HASH
579d69e75deSAaro Koskinen	help
580d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
581d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
582d69e75deSAaro Koskinen
583e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
584e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
585e8e59953SMarkus Stockhausen	depends on PPC
586e8e59953SMarkus Stockhausen	select CRYPTO_HASH
587e8e59953SMarkus Stockhausen	help
588e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
589e8e59953SMarkus Stockhausen	  in PPC assembler.
590e8e59953SMarkus Stockhausen
591fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
592fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
593fa4dfedcSDavid S. Miller	depends on SPARC64
594fa4dfedcSDavid S. Miller	select CRYPTO_MD5
595fa4dfedcSDavid S. Miller	select CRYPTO_HASH
596fa4dfedcSDavid S. Miller	help
597fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
598fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
599fa4dfedcSDavid S. Miller
600584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
601584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
60219e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
603584fffc8SSebastian Siewior	help
604584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
605584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
606584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
607584fffc8SSebastian Siewior	  of the algorithm.
608584fffc8SSebastian Siewior
60982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
61082798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
6117c4468bcSHerbert Xu	select CRYPTO_HASH
61282798f90SAdrian-Ken Rueegsegger	help
61382798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
61482798f90SAdrian-Ken Rueegsegger
61582798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
61635ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
61782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
61882798f90SAdrian-Ken Rueegsegger
61982798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6206d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
62182798f90SAdrian-Ken Rueegsegger
62282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
62382798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
624e5835fbaSHerbert Xu	select CRYPTO_HASH
62582798f90SAdrian-Ken Rueegsegger	help
62682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
62782798f90SAdrian-Ken Rueegsegger
62882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
62982798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
630b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
631b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
63282798f90SAdrian-Ken Rueegsegger
633b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
634b6d44341SAdrian Bunk	  against RIPEMD-160.
635534fe2c1SAdrian-Ken Rueegsegger
636534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6376d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
638534fe2c1SAdrian-Ken Rueegsegger
639534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
640534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
641d8a5e2e9SHerbert Xu	select CRYPTO_HASH
642534fe2c1SAdrian-Ken Rueegsegger	help
643b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
644b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
645b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
646b6d44341SAdrian Bunk	  (than RIPEMD-128).
647534fe2c1SAdrian-Ken Rueegsegger
648534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6496d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
650534fe2c1SAdrian-Ken Rueegsegger
651534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
652534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
6533b8efb4cSHerbert Xu	select CRYPTO_HASH
654534fe2c1SAdrian-Ken Rueegsegger	help
655b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
656b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
657b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
658b6d44341SAdrian Bunk	  (than RIPEMD-160).
659534fe2c1SAdrian-Ken Rueegsegger
66082798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6616d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
66282798f90SAdrian-Ken Rueegsegger
6631da177e4SLinus Torvaldsconfig CRYPTO_SHA1
6641da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
66554ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6661da177e4SLinus Torvalds	help
6671da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
6681da177e4SLinus Torvalds
66966be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
670e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
67166be8951SMathias Krause	depends on X86 && 64BIT
67266be8951SMathias Krause	select CRYPTO_SHA1
67366be8951SMathias Krause	select CRYPTO_HASH
67466be8951SMathias Krause	help
67566be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
67666be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
677e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
678e38b6b7fStim	  when available.
67966be8951SMathias Krause
6808275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
681e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
6828275d1aaSTim Chen	depends on X86 && 64BIT
6838275d1aaSTim Chen	select CRYPTO_SHA256
6848275d1aaSTim Chen	select CRYPTO_HASH
6858275d1aaSTim Chen	help
6868275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
6878275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
6888275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
689e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
690e38b6b7fStim	  Instructions) when available.
6918275d1aaSTim Chen
69287de4579STim Chenconfig CRYPTO_SHA512_SSSE3
69387de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
69487de4579STim Chen	depends on X86 && 64BIT
69587de4579STim Chen	select CRYPTO_SHA512
69687de4579STim Chen	select CRYPTO_HASH
69787de4579STim Chen	help
69887de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
69987de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
70087de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
70187de4579STim Chen	  version 2 (AVX2) instructions, when available.
70287de4579STim Chen
703efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
704efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
705efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
706efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
707efdb6f6eSAaro Koskinen	select CRYPTO_HASH
708efdb6f6eSAaro Koskinen	help
709efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
710efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
711efdb6f6eSAaro Koskinen
7124ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
7134ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
7144ff28d4cSDavid S. Miller	depends on SPARC64
7154ff28d4cSDavid S. Miller	select CRYPTO_SHA1
7164ff28d4cSDavid S. Miller	select CRYPTO_HASH
7174ff28d4cSDavid S. Miller	help
7184ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7194ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7204ff28d4cSDavid S. Miller
721323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
722323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
723323a6bf1SMichael Ellerman	depends on PPC
724323a6bf1SMichael Ellerman	help
725323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
726323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
727323a6bf1SMichael Ellerman
728d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
729d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
730d9850fc5SMarkus Stockhausen	depends on PPC && SPE
731d9850fc5SMarkus Stockhausen	help
732d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
733d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
734d9850fc5SMarkus Stockhausen
7351e65b81aSTim Chenconfig CRYPTO_SHA1_MB
7361e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7371e65b81aSTim Chen	depends on X86 && 64BIT
7381e65b81aSTim Chen	select CRYPTO_SHA1
7391e65b81aSTim Chen	select CRYPTO_HASH
7401e65b81aSTim Chen	select CRYPTO_MCRYPTD
7411e65b81aSTim Chen	help
7421e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7431e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
7441e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
7451e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
7461e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
7471e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
7481e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
7491e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
7501e65b81aSTim Chen
7519be7e244SMegha Deyconfig CRYPTO_SHA256_MB
7529be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7539be7e244SMegha Dey	depends on X86 && 64BIT
7549be7e244SMegha Dey	select CRYPTO_SHA256
7559be7e244SMegha Dey	select CRYPTO_HASH
7569be7e244SMegha Dey	select CRYPTO_MCRYPTD
7579be7e244SMegha Dey	help
7589be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7599be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
7609be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
7619be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
7629be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
7639be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
7649be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
7659be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
7669be7e244SMegha Dey
767026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
768026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
769026bb8aaSMegha Dey        depends on X86 && 64BIT
770026bb8aaSMegha Dey        select CRYPTO_SHA512
771026bb8aaSMegha Dey        select CRYPTO_HASH
772026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
773026bb8aaSMegha Dey        help
774026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
775026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
776026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
777026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
778026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
779026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
780026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
781026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
782026bb8aaSMegha Dey
7831da177e4SLinus Torvaldsconfig CRYPTO_SHA256
784cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
78550e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7861da177e4SLinus Torvalds	help
7871da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
7881da177e4SLinus Torvalds
7891da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
7901da177e4SLinus Torvalds	  security against collision attacks.
7911da177e4SLinus Torvalds
792cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
793cd12fb90SJonathan Lynch	  of security against collision attacks.
794cd12fb90SJonathan Lynch
7952ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
7962ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
7972ecc1e95SMarkus Stockhausen	depends on PPC && SPE
7982ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
7992ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8002ecc1e95SMarkus Stockhausen	help
8012ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8022ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
8032ecc1e95SMarkus Stockhausen
804efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
805efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
806efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
807efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
808efdb6f6eSAaro Koskinen	select CRYPTO_HASH
809efdb6f6eSAaro Koskinen	help
810efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
811efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
812efdb6f6eSAaro Koskinen
81386c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
81486c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
81586c93b24SDavid S. Miller	depends on SPARC64
81686c93b24SDavid S. Miller	select CRYPTO_SHA256
81786c93b24SDavid S. Miller	select CRYPTO_HASH
81886c93b24SDavid S. Miller	help
81986c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
82086c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
82186c93b24SDavid S. Miller
8221da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8231da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
824bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8251da177e4SLinus Torvalds	help
8261da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8271da177e4SLinus Torvalds
8281da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8291da177e4SLinus Torvalds	  security against collision attacks.
8301da177e4SLinus Torvalds
8311da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
8321da177e4SLinus Torvalds	  of security against collision attacks.
8331da177e4SLinus Torvalds
834efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
835efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
836efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
837efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
838efdb6f6eSAaro Koskinen	select CRYPTO_HASH
839efdb6f6eSAaro Koskinen	help
840efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
841efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
842efdb6f6eSAaro Koskinen
843775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
844775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
845775e0c69SDavid S. Miller	depends on SPARC64
846775e0c69SDavid S. Miller	select CRYPTO_SHA512
847775e0c69SDavid S. Miller	select CRYPTO_HASH
848775e0c69SDavid S. Miller	help
849775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
850775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
851775e0c69SDavid S. Miller
85253964b9eSJeff Garzikconfig CRYPTO_SHA3
85353964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
85453964b9eSJeff Garzik	select CRYPTO_HASH
85553964b9eSJeff Garzik	help
85653964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
85753964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
85853964b9eSJeff Garzik
85953964b9eSJeff Garzik	  References:
86053964b9eSJeff Garzik	  http://keccak.noekeon.org/
86153964b9eSJeff Garzik
862*4f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
863*4f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
864*4f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
865*4f0fc160SGilad Ben-Yossef	help
866*4f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
867*4f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
868*4f0fc160SGilad Ben-Yossef
869*4f0fc160SGilad Ben-Yossef	  References:
870*4f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
871*4f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
872*4f0fc160SGilad Ben-Yossef
8731da177e4SLinus Torvaldsconfig CRYPTO_TGR192
8741da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
875f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8761da177e4SLinus Torvalds	help
8771da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
8781da177e4SLinus Torvalds
8791da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
8801da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
8811da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
8821da177e4SLinus Torvalds
8831da177e4SLinus Torvalds	  See also:
8841da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
8851da177e4SLinus Torvalds
886584fffc8SSebastian Siewiorconfig CRYPTO_WP512
887584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
8884946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8891da177e4SLinus Torvalds	help
890584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
8911da177e4SLinus Torvalds
892584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
893584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
8941da177e4SLinus Torvalds
8951da177e4SLinus Torvalds	  See also:
8966d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
8971da177e4SLinus Torvalds
8980e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
8990e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
9008af00860SRichard Weinberger	depends on X86 && 64BIT
9010e1227d3SHuang Ying	select CRYPTO_CRYPTD
9020e1227d3SHuang Ying	help
9030e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
9040e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
9050e1227d3SHuang Ying
906584fffc8SSebastian Siewiorcomment "Ciphers"
9071da177e4SLinus Torvalds
9081da177e4SLinus Torvaldsconfig CRYPTO_AES
9091da177e4SLinus Torvalds	tristate "AES cipher algorithms"
910cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9111da177e4SLinus Torvalds	help
9121da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9131da177e4SLinus Torvalds	  algorithm.
9141da177e4SLinus Torvalds
9151da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9161da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9171da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9181da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9191da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9201da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9211da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9221da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9231da177e4SLinus Torvalds
9241da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9251da177e4SLinus Torvalds
9261da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
9271da177e4SLinus Torvalds
928b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
929b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
930b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
931b5e0b032SArd Biesheuvel	help
932b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
933b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
934b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
935b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
936b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
937b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
938b5e0b032SArd Biesheuvel
939b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
940b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
941b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
942b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
943b5e0b032SArd Biesheuvel	  block.
944b5e0b032SArd Biesheuvel
9451da177e4SLinus Torvaldsconfig CRYPTO_AES_586
9461da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
947cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
948cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9495157dea8SSebastian Siewior	select CRYPTO_AES
9501da177e4SLinus Torvalds	help
9511da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9521da177e4SLinus Torvalds	  algorithm.
9531da177e4SLinus Torvalds
9541da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9551da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9561da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9571da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9581da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9591da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9601da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9611da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9621da177e4SLinus Torvalds
9631da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9641da177e4SLinus Torvalds
9651da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
9661da177e4SLinus Torvalds
967a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
968a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
969cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
970cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
97181190b32SSebastian Siewior	select CRYPTO_AES
972a2a892a2SAndreas Steinmetz	help
973a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
974a2a892a2SAndreas Steinmetz	  algorithm.
975a2a892a2SAndreas Steinmetz
976a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
977a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
978a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
979a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
980a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
981a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
982a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
983a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
984a2a892a2SAndreas Steinmetz
985a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
986a2a892a2SAndreas Steinmetz
987a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
988a2a892a2SAndreas Steinmetz
98954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
99054b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
9918af00860SRichard Weinberger	depends on X86
99285671860SHerbert Xu	select CRYPTO_AEAD
9930d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
9940d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
99554b6a1bdSHuang Ying	select CRYPTO_ALGAPI
99685671860SHerbert Xu	select CRYPTO_BLKCIPHER
9977643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
99885671860SHerbert Xu	select CRYPTO_SIMD
99954b6a1bdSHuang Ying	help
100054b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
100154b6a1bdSHuang Ying
100254b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
100354b6a1bdSHuang Ying	  algorithm.
100454b6a1bdSHuang Ying
100554b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
100654b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
100754b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
100854b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
100954b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
101054b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
101154b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
101254b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
101354b6a1bdSHuang Ying
101454b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
101554b6a1bdSHuang Ying
101654b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
101754b6a1bdSHuang Ying
10180d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
10190d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
10200d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
10210d258efbSMathias Krause	  acceleration for CTR.
10222cf4ac8bSHuang Ying
10239bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
10249bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
10259bf4852dSDavid S. Miller	depends on SPARC64
10269bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
10279bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
10289bf4852dSDavid S. Miller	help
10299bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
10309bf4852dSDavid S. Miller
10319bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10329bf4852dSDavid S. Miller	  algorithm.
10339bf4852dSDavid S. Miller
10349bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
10359bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
10369bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
10379bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
10389bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
10399bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
10409bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
10419bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
10429bf4852dSDavid S. Miller
10439bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
10449bf4852dSDavid S. Miller
10459bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10469bf4852dSDavid S. Miller
10479bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
10489bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
10499bf4852dSDavid S. Miller	  ECB and CBC.
10509bf4852dSDavid S. Miller
1051504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1052504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1053504c6143SMarkus Stockhausen	depends on PPC && SPE
1054504c6143SMarkus Stockhausen	help
1055504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1056504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1057504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1058504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1059504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1060504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1061504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1062504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1063504c6143SMarkus Stockhausen
10641da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
10651da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1066cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10671da177e4SLinus Torvalds	help
10681da177e4SLinus Torvalds	  Anubis cipher algorithm.
10691da177e4SLinus Torvalds
10701da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
10711da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
10721da177e4SLinus Torvalds	  in the NESSIE competition.
10731da177e4SLinus Torvalds
10741da177e4SLinus Torvalds	  See also:
10756d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
10766d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
10771da177e4SLinus Torvalds
1078584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1079584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1080b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1081e2ee95b8SHye-Shik Chang	help
1082584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1083e2ee95b8SHye-Shik Chang
1084584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1085584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1086584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1087584fffc8SSebastian Siewior	  weakness of the algorithm.
1088584fffc8SSebastian Siewior
1089584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1090584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1091584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
109252ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1093584fffc8SSebastian Siewior	help
1094584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1095584fffc8SSebastian Siewior
1096584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1097584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1098584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1099e2ee95b8SHye-Shik Chang
1100e2ee95b8SHye-Shik Chang	  See also:
1101584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1102584fffc8SSebastian Siewior
110352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
110452ba867cSJussi Kivilinna	tristate
110552ba867cSJussi Kivilinna	help
110652ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
110752ba867cSJussi Kivilinna	  generic c and the assembler implementations.
110852ba867cSJussi Kivilinna
110952ba867cSJussi Kivilinna	  See also:
111052ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
111152ba867cSJussi Kivilinna
111264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
111364b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1114f21a7c19SAl Viro	depends on X86 && 64BIT
111564b94ceaSJussi Kivilinna	select CRYPTO_ALGAPI
111664b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
111764b94ceaSJussi Kivilinna	help
111864b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
111964b94ceaSJussi Kivilinna
112064b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
112164b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
112264b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
112364b94ceaSJussi Kivilinna
112464b94ceaSJussi Kivilinna	  See also:
112564b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
112664b94ceaSJussi Kivilinna
1127584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1128584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1129584fffc8SSebastian Siewior	depends on CRYPTO
1130584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1131584fffc8SSebastian Siewior	help
1132584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1133584fffc8SSebastian Siewior
1134584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1135584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1136584fffc8SSebastian Siewior
1137584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1138584fffc8SSebastian Siewior
1139584fffc8SSebastian Siewior	  See also:
1140584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1141584fffc8SSebastian Siewior
11420b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
11430b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1144f21a7c19SAl Viro	depends on X86 && 64BIT
11450b95ec56SJussi Kivilinna	depends on CRYPTO
11460b95ec56SJussi Kivilinna	select CRYPTO_ALGAPI
1147964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
11480b95ec56SJussi Kivilinna	select CRYPTO_LRW
11490b95ec56SJussi Kivilinna	select CRYPTO_XTS
11500b95ec56SJussi Kivilinna	help
11510b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
11520b95ec56SJussi Kivilinna
11530b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
11540b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
11550b95ec56SJussi Kivilinna
11560b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
11570b95ec56SJussi Kivilinna
11580b95ec56SJussi Kivilinna	  See also:
11590b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
11600b95ec56SJussi Kivilinna
1161d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1162d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1163d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1164d9b1d2e7SJussi Kivilinna	depends on CRYPTO
1165d9b1d2e7SJussi Kivilinna	select CRYPTO_ALGAPI
1166d9b1d2e7SJussi Kivilinna	select CRYPTO_CRYPTD
1167801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1168d9b1d2e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1169d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1170d9b1d2e7SJussi Kivilinna	select CRYPTO_LRW
1171d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1172d9b1d2e7SJussi Kivilinna	help
1173d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1174d9b1d2e7SJussi Kivilinna
1175d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1176d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1177d9b1d2e7SJussi Kivilinna
1178d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1179d9b1d2e7SJussi Kivilinna
1180d9b1d2e7SJussi Kivilinna	  See also:
1181d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1182d9b1d2e7SJussi Kivilinna
1183f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1184f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1185f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1186f3f935a7SJussi Kivilinna	depends on CRYPTO
1187f3f935a7SJussi Kivilinna	select CRYPTO_ALGAPI
1188f3f935a7SJussi Kivilinna	select CRYPTO_CRYPTD
1189801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1190f3f935a7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1191f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1192f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1193f3f935a7SJussi Kivilinna	select CRYPTO_LRW
1194f3f935a7SJussi Kivilinna	select CRYPTO_XTS
1195f3f935a7SJussi Kivilinna	help
1196f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1197f3f935a7SJussi Kivilinna
1198f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1199f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1200f3f935a7SJussi Kivilinna
1201f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1202f3f935a7SJussi Kivilinna
1203f3f935a7SJussi Kivilinna	  See also:
1204f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1205f3f935a7SJussi Kivilinna
120681658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
120781658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
120881658ad0SDavid S. Miller	depends on SPARC64
120981658ad0SDavid S. Miller	depends on CRYPTO
121081658ad0SDavid S. Miller	select CRYPTO_ALGAPI
121181658ad0SDavid S. Miller	help
121281658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
121381658ad0SDavid S. Miller
121481658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
121581658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
121681658ad0SDavid S. Miller
121781658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
121881658ad0SDavid S. Miller
121981658ad0SDavid S. Miller	  See also:
122081658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
122181658ad0SDavid S. Miller
1222044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1223044ab525SJussi Kivilinna	tristate
1224044ab525SJussi Kivilinna	help
1225044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1226044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1227044ab525SJussi Kivilinna
1228584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1229584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1230584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1231044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1232584fffc8SSebastian Siewior	help
1233584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1234584fffc8SSebastian Siewior	  described in RFC2144.
1235584fffc8SSebastian Siewior
12364d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12374d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12384d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12394d6d6a2cSJohannes Goetzfried	select CRYPTO_ALGAPI
12404d6d6a2cSJohannes Goetzfried	select CRYPTO_CRYPTD
1241801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1242044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12434d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
12444d6d6a2cSJohannes Goetzfried	help
12454d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
12464d6d6a2cSJohannes Goetzfried	  described in RFC2144.
12474d6d6a2cSJohannes Goetzfried
12484d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
12494d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
12504d6d6a2cSJohannes Goetzfried
1251584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1252584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1253584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1254044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1255584fffc8SSebastian Siewior	help
1256584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1257584fffc8SSebastian Siewior	  described in RFC2612.
1258584fffc8SSebastian Siewior
12594ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
12604ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
12614ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
12624ea1277dSJohannes Goetzfried	select CRYPTO_ALGAPI
12634ea1277dSJohannes Goetzfried	select CRYPTO_CRYPTD
1264801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
12654ea1277dSJohannes Goetzfried	select CRYPTO_GLUE_HELPER_X86
1266044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12674ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
12684ea1277dSJohannes Goetzfried	select CRYPTO_LRW
12694ea1277dSJohannes Goetzfried	select CRYPTO_XTS
12704ea1277dSJohannes Goetzfried	help
12714ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
12724ea1277dSJohannes Goetzfried	  described in RFC2612.
12734ea1277dSJohannes Goetzfried
12744ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
12754ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
12764ea1277dSJohannes Goetzfried
1277584fffc8SSebastian Siewiorconfig CRYPTO_DES
1278584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1279584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1280584fffc8SSebastian Siewior	help
1281584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1282584fffc8SSebastian Siewior
1283c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1284c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
128597da37b3SDave Jones	depends on SPARC64
1286c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1287c5aac2dfSDavid S. Miller	select CRYPTO_DES
1288c5aac2dfSDavid S. Miller	help
1289c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1290c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1291c5aac2dfSDavid S. Miller
12926574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
12936574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
12946574e6c6SJussi Kivilinna	depends on X86 && 64BIT
12956574e6c6SJussi Kivilinna	select CRYPTO_ALGAPI
12966574e6c6SJussi Kivilinna	select CRYPTO_DES
12976574e6c6SJussi Kivilinna	help
12986574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
12996574e6c6SJussi Kivilinna
13006574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13016574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13026574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13036574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13046574e6c6SJussi Kivilinna
1305584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1306584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1307584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1308584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1309584fffc8SSebastian Siewior	help
1310584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1311584fffc8SSebastian Siewior
1312584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1313584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1314584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1315584fffc8SSebastian Siewior	help
1316584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1317584fffc8SSebastian Siewior
1318584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1319584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1320584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1321584fffc8SSebastian Siewior
1322584fffc8SSebastian Siewior	  See also:
13236d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1324e2ee95b8SHye-Shik Chang
13252407d608STan Swee Hengconfig CRYPTO_SALSA20
13263b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
13272407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13282407d608STan Swee Heng	help
13292407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13302407d608STan Swee Heng
13312407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13322407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13332407d608STan Swee Heng
13342407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13352407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13361da177e4SLinus Torvalds
1337974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13383b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1339974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1340974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1341974e4b75STan Swee Heng	help
1342974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1343974e4b75STan Swee Heng
1344974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1345974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1346974e4b75STan Swee Heng
1347974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1348974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1349974e4b75STan Swee Heng
13509a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
13513b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
13529a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
13539a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
13549a7dafbbSTan Swee Heng	help
13559a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
13569a7dafbbSTan Swee Heng
13579a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13589a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13599a7dafbbSTan Swee Heng
13609a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13619a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13629a7dafbbSTan Swee Heng
1363c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1364c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1365c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1366c08d0e64SMartin Willi	help
1367c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1368c08d0e64SMartin Willi
1369c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1370c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1371c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1372c08d0e64SMartin Willi
1373c08d0e64SMartin Willi	  See also:
1374c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1375c08d0e64SMartin Willi
1376c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
13773d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1378c9320b6dSMartin Willi	depends on X86 && 64BIT
1379c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1380c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1381c9320b6dSMartin Willi	help
1382c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1383c9320b6dSMartin Willi
1384c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1385c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1386c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1387c9320b6dSMartin Willi
1388c9320b6dSMartin Willi	  See also:
1389c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1390c9320b6dSMartin Willi
1391584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1392584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1393584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1394584fffc8SSebastian Siewior	help
1395584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1396584fffc8SSebastian Siewior
1397584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1398584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1399584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1400584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1401584fffc8SSebastian Siewior
1402584fffc8SSebastian Siewior	  See also:
1403584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1404584fffc8SSebastian Siewior
1405584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1406584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1407584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1408584fffc8SSebastian Siewior	help
1409584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1410584fffc8SSebastian Siewior
1411584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1412584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1413584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1414584fffc8SSebastian Siewior
1415584fffc8SSebastian Siewior	  See also:
1416584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1417584fffc8SSebastian Siewior
1418937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1419937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1420937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1421937c30d7SJussi Kivilinna	select CRYPTO_ALGAPI
1422341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1423801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1424596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1425937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1426feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1427feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1428937c30d7SJussi Kivilinna	help
1429937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430937c30d7SJussi Kivilinna
1431937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1432937c30d7SJussi Kivilinna	  of 8 bits.
1433937c30d7SJussi Kivilinna
14341e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1435937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1436937c30d7SJussi Kivilinna
1437937c30d7SJussi Kivilinna	  See also:
1438937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439937c30d7SJussi Kivilinna
1440251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1441251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1442251496dbSJussi Kivilinna	depends on X86 && !64BIT
1443251496dbSJussi Kivilinna	select CRYPTO_ALGAPI
1444341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1445801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1446596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1447251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1448feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1449feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1450251496dbSJussi Kivilinna	help
1451251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1452251496dbSJussi Kivilinna
1453251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1454251496dbSJussi Kivilinna	  of 8 bits.
1455251496dbSJussi Kivilinna
1456251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1457251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1458251496dbSJussi Kivilinna
1459251496dbSJussi Kivilinna	  See also:
1460251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1461251496dbSJussi Kivilinna
14627efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
14637efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
14647efe4076SJohannes Goetzfried	depends on X86 && 64BIT
14657efe4076SJohannes Goetzfried	select CRYPTO_ALGAPI
14667efe4076SJohannes Goetzfried	select CRYPTO_CRYPTD
1467801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
14681d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
14697efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
14707efe4076SJohannes Goetzfried	select CRYPTO_LRW
14717efe4076SJohannes Goetzfried	select CRYPTO_XTS
14727efe4076SJohannes Goetzfried	help
14737efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
14747efe4076SJohannes Goetzfried
14757efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
14767efe4076SJohannes Goetzfried	  of 8 bits.
14777efe4076SJohannes Goetzfried
14787efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
14797efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14807efe4076SJohannes Goetzfried
14817efe4076SJohannes Goetzfried	  See also:
14827efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
14837efe4076SJohannes Goetzfried
148456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
148556d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
148656d76c96SJussi Kivilinna	depends on X86 && 64BIT
148756d76c96SJussi Kivilinna	select CRYPTO_ALGAPI
148856d76c96SJussi Kivilinna	select CRYPTO_CRYPTD
1489801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
149056d76c96SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
149156d76c96SJussi Kivilinna	select CRYPTO_SERPENT
149256d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
149356d76c96SJussi Kivilinna	select CRYPTO_LRW
149456d76c96SJussi Kivilinna	select CRYPTO_XTS
149556d76c96SJussi Kivilinna	help
149656d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
149756d76c96SJussi Kivilinna
149856d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
149956d76c96SJussi Kivilinna	  of 8 bits.
150056d76c96SJussi Kivilinna
150156d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
150256d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
150356d76c96SJussi Kivilinna
150456d76c96SJussi Kivilinna	  See also:
150556d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
150656d76c96SJussi Kivilinna
1507584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1508584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1509584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1510584fffc8SSebastian Siewior	help
1511584fffc8SSebastian Siewior	  TEA cipher algorithm.
1512584fffc8SSebastian Siewior
1513584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1514584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1515584fffc8SSebastian Siewior	  little memory.
1516584fffc8SSebastian Siewior
1517584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1518584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1519584fffc8SSebastian Siewior	  in the TEA algorithm.
1520584fffc8SSebastian Siewior
1521584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1522584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1523584fffc8SSebastian Siewior
1524584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1525584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1526584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1527584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1528584fffc8SSebastian Siewior	help
1529584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1530584fffc8SSebastian Siewior
1531584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1532584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1533584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1534584fffc8SSebastian Siewior	  bits.
1535584fffc8SSebastian Siewior
1536584fffc8SSebastian Siewior	  See also:
1537584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1538584fffc8SSebastian Siewior
1539584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1540584fffc8SSebastian Siewior	tristate
1541584fffc8SSebastian Siewior	help
1542584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1543584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1544584fffc8SSebastian Siewior
1545584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1546584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1547584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1548584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1549584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1550584fffc8SSebastian Siewior	help
1551584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1552584fffc8SSebastian Siewior
1553584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1554584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1555584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1556584fffc8SSebastian Siewior	  bits.
1557584fffc8SSebastian Siewior
1558584fffc8SSebastian Siewior	  See also:
1559584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1560584fffc8SSebastian Siewior
1561584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1562584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1563584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1564584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1565584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1566584fffc8SSebastian Siewior	help
1567584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1568584fffc8SSebastian Siewior
1569584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1570584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1571584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1572584fffc8SSebastian Siewior	  bits.
1573584fffc8SSebastian Siewior
1574584fffc8SSebastian Siewior	  See also:
1575584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1576584fffc8SSebastian Siewior
15778280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
15788280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1579f21a7c19SAl Viro	depends on X86 && 64BIT
15808280daadSJussi Kivilinna	select CRYPTO_ALGAPI
15818280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
15828280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1583414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1584e7cda5d2SJussi Kivilinna	select CRYPTO_LRW
1585e7cda5d2SJussi Kivilinna	select CRYPTO_XTS
15868280daadSJussi Kivilinna	help
15878280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
15888280daadSJussi Kivilinna
15898280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
15908280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
15918280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
15928280daadSJussi Kivilinna	  bits.
15938280daadSJussi Kivilinna
15948280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
15958280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
15968280daadSJussi Kivilinna
15978280daadSJussi Kivilinna	  See also:
15988280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
15998280daadSJussi Kivilinna
1600107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1601107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1602107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1603107778b5SJohannes Goetzfried	select CRYPTO_ALGAPI
1604107778b5SJohannes Goetzfried	select CRYPTO_CRYPTD
1605801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1606a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1607107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1608107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1609107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1610107778b5SJohannes Goetzfried	select CRYPTO_LRW
1611107778b5SJohannes Goetzfried	select CRYPTO_XTS
1612107778b5SJohannes Goetzfried	help
1613107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1614107778b5SJohannes Goetzfried
1615107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1616107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1617107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1618107778b5SJohannes Goetzfried	  bits.
1619107778b5SJohannes Goetzfried
1620107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1621107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1622107778b5SJohannes Goetzfried
1623107778b5SJohannes Goetzfried	  See also:
1624107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1625107778b5SJohannes Goetzfried
1626584fffc8SSebastian Siewiorcomment "Compression"
1627584fffc8SSebastian Siewior
16281da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16291da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1630cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1631f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16321da177e4SLinus Torvalds	select ZLIB_INFLATE
16331da177e4SLinus Torvalds	select ZLIB_DEFLATE
16341da177e4SLinus Torvalds	help
16351da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16361da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16371da177e4SLinus Torvalds
16381da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16391da177e4SLinus Torvalds
16400b77abb3SZoltan Sogorconfig CRYPTO_LZO
16410b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16420b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1643ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16440b77abb3SZoltan Sogor	select LZO_COMPRESS
16450b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16460b77abb3SZoltan Sogor	help
16470b77abb3SZoltan Sogor	  This is the LZO algorithm.
16480b77abb3SZoltan Sogor
164935a1fc18SSeth Jenningsconfig CRYPTO_842
165035a1fc18SSeth Jennings	tristate "842 compression algorithm"
16512062c5b6SDan Streetman	select CRYPTO_ALGAPI
16526a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
16532062c5b6SDan Streetman	select 842_COMPRESS
16542062c5b6SDan Streetman	select 842_DECOMPRESS
165535a1fc18SSeth Jennings	help
165635a1fc18SSeth Jennings	  This is the 842 algorithm.
165735a1fc18SSeth Jennings
16580ea8530dSChanho Minconfig CRYPTO_LZ4
16590ea8530dSChanho Min	tristate "LZ4 compression algorithm"
16600ea8530dSChanho Min	select CRYPTO_ALGAPI
16618cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
16620ea8530dSChanho Min	select LZ4_COMPRESS
16630ea8530dSChanho Min	select LZ4_DECOMPRESS
16640ea8530dSChanho Min	help
16650ea8530dSChanho Min	  This is the LZ4 algorithm.
16660ea8530dSChanho Min
16670ea8530dSChanho Minconfig CRYPTO_LZ4HC
16680ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
16690ea8530dSChanho Min	select CRYPTO_ALGAPI
167091d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
16710ea8530dSChanho Min	select LZ4HC_COMPRESS
16720ea8530dSChanho Min	select LZ4_DECOMPRESS
16730ea8530dSChanho Min	help
16740ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
16750ea8530dSChanho Min
167617f0f4a4SNeil Hormancomment "Random Number Generation"
167717f0f4a4SNeil Horman
167817f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
167917f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
168017f0f4a4SNeil Horman	select CRYPTO_AES
168117f0f4a4SNeil Horman	select CRYPTO_RNG
168217f0f4a4SNeil Horman	help
168317f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
168417f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
16857dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
16867dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
168717f0f4a4SNeil Horman
1688f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1689419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1690419090c6SStephan Mueller	help
1691419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1692419090c6SStephan Mueller	  more of the DRBG types must be selected.
1693419090c6SStephan Mueller
1694f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1695419090c6SStephan Mueller
1696419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1697401e4238SHerbert Xu	bool
1698419090c6SStephan Mueller	default y
1699419090c6SStephan Mueller	select CRYPTO_HMAC
1700826775bbSHerbert Xu	select CRYPTO_SHA256
1701419090c6SStephan Mueller
1702419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1703419090c6SStephan Mueller	bool "Enable Hash DRBG"
1704826775bbSHerbert Xu	select CRYPTO_SHA256
1705419090c6SStephan Mueller	help
1706419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1707419090c6SStephan Mueller
1708419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1709419090c6SStephan Mueller	bool "Enable CTR DRBG"
1710419090c6SStephan Mueller	select CRYPTO_AES
171135591285SStephan Mueller	depends on CRYPTO_CTR
1712419090c6SStephan Mueller	help
1713419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1714419090c6SStephan Mueller
1715f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1716f2c89a10SHerbert Xu	tristate
1717401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1718f2c89a10SHerbert Xu	select CRYPTO_RNG
1719bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1720f2c89a10SHerbert Xu
1721f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1722419090c6SStephan Mueller
1723bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1724bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
17252f313e02SArnd Bergmann	select CRYPTO_RNG
1726bb5530e4SStephan Mueller	help
1727bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1728bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1729bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1730bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1731bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1732bb5530e4SStephan Mueller
173303c8efc1SHerbert Xuconfig CRYPTO_USER_API
173403c8efc1SHerbert Xu	tristate
173503c8efc1SHerbert Xu
1736fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1737fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17387451708fSHerbert Xu	depends on NET
1739fe869cdbSHerbert Xu	select CRYPTO_HASH
1740fe869cdbSHerbert Xu	select CRYPTO_USER_API
1741fe869cdbSHerbert Xu	help
1742fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1743fe869cdbSHerbert Xu	  algorithms.
1744fe869cdbSHerbert Xu
17458ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
17468ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
17477451708fSHerbert Xu	depends on NET
17488ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
17498ff59090SHerbert Xu	select CRYPTO_USER_API
17508ff59090SHerbert Xu	help
17518ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
17528ff59090SHerbert Xu	  key cipher algorithms.
17538ff59090SHerbert Xu
17542f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
17552f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
17562f375538SStephan Mueller	depends on NET
17572f375538SStephan Mueller	select CRYPTO_RNG
17582f375538SStephan Mueller	select CRYPTO_USER_API
17592f375538SStephan Mueller	help
17602f375538SStephan Mueller	  This option enables the user-spaces interface for random
17612f375538SStephan Mueller	  number generator algorithms.
17622f375538SStephan Mueller
1763b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1764b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1765b64a2d95SHerbert Xu	depends on NET
1766b64a2d95SHerbert Xu	select CRYPTO_AEAD
176772548b09SStephan Mueller	select CRYPTO_BLKCIPHER
176872548b09SStephan Mueller	select CRYPTO_NULL
1769b64a2d95SHerbert Xu	select CRYPTO_USER_API
1770b64a2d95SHerbert Xu	help
1771b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1772b64a2d95SHerbert Xu	  cipher algorithms.
1773b64a2d95SHerbert Xu
1774ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1775ee08997fSDmitry Kasatkin	bool
1776ee08997fSDmitry Kasatkin
17771da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1778964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1779cfc411e7SDavid Howellssource certs/Kconfig
17801da177e4SLinus Torvalds
1781cce9e06dSHerbert Xuendif	# if CRYPTO
1782