xref: /linux/crypto/Kconfig (revision 4bd969243143e224d5aa450fdea1c882a75aa58e)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2171e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2181e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2191e65b81aSTim Chen	select CRYPTO_HASH
2201e65b81aSTim Chen	select CRYPTO_MANAGER
2211e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2221e65b81aSTim Chen	help
2231e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2241e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2251e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2261e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2271e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2280e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2291e65b81aSTim Chen
230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
231584fffc8SSebastian Siewior	tristate "Authenc support"
232584fffc8SSebastian Siewior	select CRYPTO_AEAD
233584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
234584fffc8SSebastian Siewior	select CRYPTO_MANAGER
235584fffc8SSebastian Siewior	select CRYPTO_HASH
236e94c6a7aSHerbert Xu	select CRYPTO_NULL
237584fffc8SSebastian Siewior	help
238584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
239584fffc8SSebastian Siewior	  This is required for IPSec.
240584fffc8SSebastian Siewior
241584fffc8SSebastian Siewiorconfig CRYPTO_TEST
242584fffc8SSebastian Siewior	tristate "Testing module"
243584fffc8SSebastian Siewior	depends on m
244da7f033dSHerbert Xu	select CRYPTO_MANAGER
245584fffc8SSebastian Siewior	help
246584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
247584fffc8SSebastian Siewior
248a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER
249ffaf9156SJussi Kivilinna	tristate
250ffaf9156SJussi Kivilinna	select CRYPTO_CRYPTD
251ffaf9156SJussi Kivilinna
252266d0516SHerbert Xuconfig CRYPTO_SIMD
253266d0516SHerbert Xu	tristate
254266d0516SHerbert Xu	select CRYPTO_CRYPTD
255266d0516SHerbert Xu
256596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
257596d8750SJussi Kivilinna	tristate
258596d8750SJussi Kivilinna	depends on X86
259065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
260596d8750SJussi Kivilinna
261735d37b5SBaolin Wangconfig CRYPTO_ENGINE
262735d37b5SBaolin Wang	tristate
263735d37b5SBaolin Wang
264584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
265584fffc8SSebastian Siewior
266584fffc8SSebastian Siewiorconfig CRYPTO_CCM
267584fffc8SSebastian Siewior	tristate "CCM support"
268584fffc8SSebastian Siewior	select CRYPTO_CTR
269f15f05b0SArd Biesheuvel	select CRYPTO_HASH
270584fffc8SSebastian Siewior	select CRYPTO_AEAD
271584fffc8SSebastian Siewior	help
272584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
273584fffc8SSebastian Siewior
274584fffc8SSebastian Siewiorconfig CRYPTO_GCM
275584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
276584fffc8SSebastian Siewior	select CRYPTO_CTR
277584fffc8SSebastian Siewior	select CRYPTO_AEAD
2789382d97aSHuang Ying	select CRYPTO_GHASH
2799489667dSJussi Kivilinna	select CRYPTO_NULL
280584fffc8SSebastian Siewior	help
281584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
282584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
283584fffc8SSebastian Siewior
28471ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28571ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28671ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28771ebc4d1SMartin Willi	select CRYPTO_POLY1305
28871ebc4d1SMartin Willi	select CRYPTO_AEAD
28971ebc4d1SMartin Willi	help
29071ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
29171ebc4d1SMartin Willi
29271ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29371ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29471ebc4d1SMartin Willi	  IETF protocols.
29571ebc4d1SMartin Willi
296584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
297584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
298584fffc8SSebastian Siewior	select CRYPTO_AEAD
299584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
300856e3f40SHerbert Xu	select CRYPTO_NULL
301401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
302584fffc8SSebastian Siewior	help
303584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
304584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
305584fffc8SSebastian Siewior
306a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
307a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
308a10f554fSHerbert Xu	select CRYPTO_AEAD
309a10f554fSHerbert Xu	select CRYPTO_NULL
310401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3113491244cSHerbert Xu	default m
312a10f554fSHerbert Xu	help
313a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
314a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
315a10f554fSHerbert Xu	  algorithm for CBC.
316a10f554fSHerbert Xu
317584fffc8SSebastian Siewiorcomment "Block modes"
318584fffc8SSebastian Siewior
319584fffc8SSebastian Siewiorconfig CRYPTO_CBC
320584fffc8SSebastian Siewior	tristate "CBC support"
321584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
322584fffc8SSebastian Siewior	select CRYPTO_MANAGER
323584fffc8SSebastian Siewior	help
324584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
325584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
326584fffc8SSebastian Siewior
327584fffc8SSebastian Siewiorconfig CRYPTO_CTR
328584fffc8SSebastian Siewior	tristate "CTR support"
329584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
330584fffc8SSebastian Siewior	select CRYPTO_SEQIV
331584fffc8SSebastian Siewior	select CRYPTO_MANAGER
332584fffc8SSebastian Siewior	help
333584fffc8SSebastian Siewior	  CTR: Counter mode
334584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
335584fffc8SSebastian Siewior
336584fffc8SSebastian Siewiorconfig CRYPTO_CTS
337584fffc8SSebastian Siewior	tristate "CTS support"
338584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
339584fffc8SSebastian Siewior	help
340584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
341584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
342584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
343584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
344584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
345584fffc8SSebastian Siewior	  for AES encryption.
346584fffc8SSebastian Siewior
347584fffc8SSebastian Siewiorconfig CRYPTO_ECB
348584fffc8SSebastian Siewior	tristate "ECB support"
349584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
350584fffc8SSebastian Siewior	select CRYPTO_MANAGER
351584fffc8SSebastian Siewior	help
352584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
353584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
354584fffc8SSebastian Siewior	  the input block by block.
355584fffc8SSebastian Siewior
356584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3572470a2b2SJussi Kivilinna	tristate "LRW support"
358584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
359584fffc8SSebastian Siewior	select CRYPTO_MANAGER
360584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
361584fffc8SSebastian Siewior	help
362584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
363584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
364584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
365584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
366584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
367584fffc8SSebastian Siewior
368584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
369584fffc8SSebastian Siewior	tristate "PCBC support"
370584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
371584fffc8SSebastian Siewior	select CRYPTO_MANAGER
372584fffc8SSebastian Siewior	help
373584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
374584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
375584fffc8SSebastian Siewior
376584fffc8SSebastian Siewiorconfig CRYPTO_XTS
3775bcf8e6dSJussi Kivilinna	tristate "XTS support"
378584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
379584fffc8SSebastian Siewior	select CRYPTO_MANAGER
38012cb3a1cSMilan Broz	select CRYPTO_ECB
381584fffc8SSebastian Siewior	help
382584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
383584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
384584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
385584fffc8SSebastian Siewior
3861c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
3871c49678eSStephan Mueller	tristate "Key wrapping support"
3881c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
3891c49678eSStephan Mueller	help
3901c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
3911c49678eSStephan Mueller	  padding.
3921c49678eSStephan Mueller
393584fffc8SSebastian Siewiorcomment "Hash modes"
394584fffc8SSebastian Siewior
39593b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
39693b5e86aSJussi Kivilinna	tristate "CMAC support"
39793b5e86aSJussi Kivilinna	select CRYPTO_HASH
39893b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
39993b5e86aSJussi Kivilinna	help
40093b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
40193b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
40293b5e86aSJussi Kivilinna
40393b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
40493b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
40593b5e86aSJussi Kivilinna
4061da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4078425165dSHerbert Xu	tristate "HMAC support"
4080796ae06SHerbert Xu	select CRYPTO_HASH
40943518407SHerbert Xu	select CRYPTO_MANAGER
4101da177e4SLinus Torvalds	help
4111da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4121da177e4SLinus Torvalds	  This is required for IPSec.
4131da177e4SLinus Torvalds
414333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
415333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
416333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
417333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
418333b0d7eSKazunori MIYAZAWA	help
419333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
420333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
421333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
422333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
423333b0d7eSKazunori MIYAZAWA
424f1939f7cSShane Wangconfig CRYPTO_VMAC
425f1939f7cSShane Wang	tristate "VMAC support"
426f1939f7cSShane Wang	select CRYPTO_HASH
427f1939f7cSShane Wang	select CRYPTO_MANAGER
428f1939f7cSShane Wang	help
429f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
430f1939f7cSShane Wang	  very high speed on 64-bit architectures.
431f1939f7cSShane Wang
432f1939f7cSShane Wang	  See also:
433f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
434f1939f7cSShane Wang
435584fffc8SSebastian Siewiorcomment "Digest"
436584fffc8SSebastian Siewior
437584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
438584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
4395773a3e6SHerbert Xu	select CRYPTO_HASH
4406a0962b2SDarrick J. Wong	select CRC32
4411da177e4SLinus Torvalds	help
442584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
443584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
44469c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
4451da177e4SLinus Torvalds
4468cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
4478cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
4488cb51ba8SAustin Zhang	depends on X86
4498cb51ba8SAustin Zhang	select CRYPTO_HASH
4508cb51ba8SAustin Zhang	help
4518cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
4528cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
4538cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
4548cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
4558cb51ba8SAustin Zhang	  gain performance compared with software implementation.
4568cb51ba8SAustin Zhang	  Module will be crc32c-intel.
4578cb51ba8SAustin Zhang
4587cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
4596dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
460c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
4616dd7a82cSAnton Blanchard	select CRYPTO_HASH
4626dd7a82cSAnton Blanchard	select CRC32
4636dd7a82cSAnton Blanchard	help
4646dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
4656dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
4666dd7a82cSAnton Blanchard	  and newer processors for improved performance.
4676dd7a82cSAnton Blanchard
4686dd7a82cSAnton Blanchard
469442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
470442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
471442a7c40SDavid S. Miller	depends on SPARC64
472442a7c40SDavid S. Miller	select CRYPTO_HASH
473442a7c40SDavid S. Miller	select CRC32
474442a7c40SDavid S. Miller	help
475442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
476442a7c40SDavid S. Miller	  when available.
477442a7c40SDavid S. Miller
47878c37d19SAlexander Boykoconfig CRYPTO_CRC32
47978c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
48078c37d19SAlexander Boyko	select CRYPTO_HASH
48178c37d19SAlexander Boyko	select CRC32
48278c37d19SAlexander Boyko	help
48378c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
48478c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
48578c37d19SAlexander Boyko
48678c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
48778c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
48878c37d19SAlexander Boyko	depends on X86
48978c37d19SAlexander Boyko	select CRYPTO_HASH
49078c37d19SAlexander Boyko	select CRC32
49178c37d19SAlexander Boyko	help
49278c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
49378c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
49478c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
49578c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
49678c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
49778c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
49878c37d19SAlexander Boyko
49968411521SHerbert Xuconfig CRYPTO_CRCT10DIF
50068411521SHerbert Xu	tristate "CRCT10DIF algorithm"
50168411521SHerbert Xu	select CRYPTO_HASH
50268411521SHerbert Xu	help
50368411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
50468411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
50568411521SHerbert Xu	  transforms to be used if they are available.
50668411521SHerbert Xu
50768411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
50868411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
50968411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
51068411521SHerbert Xu	select CRYPTO_HASH
51168411521SHerbert Xu	help
51268411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
51368411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
51468411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
51568411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
51668411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
51768411521SHerbert Xu
518b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
519b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
520b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
521b01df1c1SDaniel Axtens	select CRYPTO_HASH
522b01df1c1SDaniel Axtens	help
523b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
524b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
525b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
526b01df1c1SDaniel Axtens
527146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
528146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
529146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
530146c8688SDaniel Axtens	help
531146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
532146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
533146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
534146c8688SDaniel Axtens
5352cdc6899SHuang Yingconfig CRYPTO_GHASH
5362cdc6899SHuang Ying	tristate "GHASH digest algorithm"
5372cdc6899SHuang Ying	select CRYPTO_GF128MUL
538578c60fbSArnd Bergmann	select CRYPTO_HASH
5392cdc6899SHuang Ying	help
5402cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
5412cdc6899SHuang Ying
542f979e014SMartin Williconfig CRYPTO_POLY1305
543f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
544578c60fbSArnd Bergmann	select CRYPTO_HASH
545f979e014SMartin Willi	help
546f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
547f979e014SMartin Willi
548f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
549f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
550f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
551f979e014SMartin Willi
552c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
553b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
554c70f4abeSMartin Willi	depends on X86 && 64BIT
555c70f4abeSMartin Willi	select CRYPTO_POLY1305
556c70f4abeSMartin Willi	help
557c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
558c70f4abeSMartin Willi
559c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
560c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
561c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
562c70f4abeSMartin Willi	  instructions.
563c70f4abeSMartin Willi
5641da177e4SLinus Torvaldsconfig CRYPTO_MD4
5651da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
566808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5671da177e4SLinus Torvalds	help
5681da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
5691da177e4SLinus Torvalds
5701da177e4SLinus Torvaldsconfig CRYPTO_MD5
5711da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
57214b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5731da177e4SLinus Torvalds	help
5741da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
5751da177e4SLinus Torvalds
576d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
577d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
578d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
579d69e75deSAaro Koskinen	select CRYPTO_MD5
580d69e75deSAaro Koskinen	select CRYPTO_HASH
581d69e75deSAaro Koskinen	help
582d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
583d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
584d69e75deSAaro Koskinen
585e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
586e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
587e8e59953SMarkus Stockhausen	depends on PPC
588e8e59953SMarkus Stockhausen	select CRYPTO_HASH
589e8e59953SMarkus Stockhausen	help
590e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
591e8e59953SMarkus Stockhausen	  in PPC assembler.
592e8e59953SMarkus Stockhausen
593fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
594fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
595fa4dfedcSDavid S. Miller	depends on SPARC64
596fa4dfedcSDavid S. Miller	select CRYPTO_MD5
597fa4dfedcSDavid S. Miller	select CRYPTO_HASH
598fa4dfedcSDavid S. Miller	help
599fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
600fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
601fa4dfedcSDavid S. Miller
602584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
603584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
60419e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
605584fffc8SSebastian Siewior	help
606584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
607584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
608584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
609584fffc8SSebastian Siewior	  of the algorithm.
610584fffc8SSebastian Siewior
61182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
61282798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
6137c4468bcSHerbert Xu	select CRYPTO_HASH
61482798f90SAdrian-Ken Rueegsegger	help
61582798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
61682798f90SAdrian-Ken Rueegsegger
61782798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
61835ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
61982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
62082798f90SAdrian-Ken Rueegsegger
62182798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6226d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
62382798f90SAdrian-Ken Rueegsegger
62482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
62582798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
626e5835fbaSHerbert Xu	select CRYPTO_HASH
62782798f90SAdrian-Ken Rueegsegger	help
62882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
62982798f90SAdrian-Ken Rueegsegger
63082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
63182798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
632b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
633b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
63482798f90SAdrian-Ken Rueegsegger
635b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
636b6d44341SAdrian Bunk	  against RIPEMD-160.
637534fe2c1SAdrian-Ken Rueegsegger
638534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6396d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
640534fe2c1SAdrian-Ken Rueegsegger
641534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
642534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
643d8a5e2e9SHerbert Xu	select CRYPTO_HASH
644534fe2c1SAdrian-Ken Rueegsegger	help
645b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
646b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
647b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
648b6d44341SAdrian Bunk	  (than RIPEMD-128).
649534fe2c1SAdrian-Ken Rueegsegger
650534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6516d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
652534fe2c1SAdrian-Ken Rueegsegger
653534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
654534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
6553b8efb4cSHerbert Xu	select CRYPTO_HASH
656534fe2c1SAdrian-Ken Rueegsegger	help
657b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
658b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
659b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
660b6d44341SAdrian Bunk	  (than RIPEMD-160).
661534fe2c1SAdrian-Ken Rueegsegger
66282798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6636d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
66482798f90SAdrian-Ken Rueegsegger
6651da177e4SLinus Torvaldsconfig CRYPTO_SHA1
6661da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
66754ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6681da177e4SLinus Torvalds	help
6691da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
6701da177e4SLinus Torvalds
67166be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
672e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
67366be8951SMathias Krause	depends on X86 && 64BIT
67466be8951SMathias Krause	select CRYPTO_SHA1
67566be8951SMathias Krause	select CRYPTO_HASH
67666be8951SMathias Krause	help
67766be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
67866be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
679e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
680e38b6b7fStim	  when available.
68166be8951SMathias Krause
6828275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
683e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
6848275d1aaSTim Chen	depends on X86 && 64BIT
6858275d1aaSTim Chen	select CRYPTO_SHA256
6868275d1aaSTim Chen	select CRYPTO_HASH
6878275d1aaSTim Chen	help
6888275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
6898275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
6908275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
691e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
692e38b6b7fStim	  Instructions) when available.
6938275d1aaSTim Chen
69487de4579STim Chenconfig CRYPTO_SHA512_SSSE3
69587de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
69687de4579STim Chen	depends on X86 && 64BIT
69787de4579STim Chen	select CRYPTO_SHA512
69887de4579STim Chen	select CRYPTO_HASH
69987de4579STim Chen	help
70087de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
70187de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
70287de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
70387de4579STim Chen	  version 2 (AVX2) instructions, when available.
70487de4579STim Chen
705efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
706efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
707efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
708efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
709efdb6f6eSAaro Koskinen	select CRYPTO_HASH
710efdb6f6eSAaro Koskinen	help
711efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
712efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
713efdb6f6eSAaro Koskinen
7144ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
7154ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
7164ff28d4cSDavid S. Miller	depends on SPARC64
7174ff28d4cSDavid S. Miller	select CRYPTO_SHA1
7184ff28d4cSDavid S. Miller	select CRYPTO_HASH
7194ff28d4cSDavid S. Miller	help
7204ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7214ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7224ff28d4cSDavid S. Miller
723323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
724323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
725323a6bf1SMichael Ellerman	depends on PPC
726323a6bf1SMichael Ellerman	help
727323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
728323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
729323a6bf1SMichael Ellerman
730d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
731d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
732d9850fc5SMarkus Stockhausen	depends on PPC && SPE
733d9850fc5SMarkus Stockhausen	help
734d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
735d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
736d9850fc5SMarkus Stockhausen
7371e65b81aSTim Chenconfig CRYPTO_SHA1_MB
7381e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7391e65b81aSTim Chen	depends on X86 && 64BIT
7401e65b81aSTim Chen	select CRYPTO_SHA1
7411e65b81aSTim Chen	select CRYPTO_HASH
7421e65b81aSTim Chen	select CRYPTO_MCRYPTD
7431e65b81aSTim Chen	help
7441e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7451e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
7461e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
7471e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
7481e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
7491e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
7501e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
7511e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
7521e65b81aSTim Chen
7539be7e244SMegha Deyconfig CRYPTO_SHA256_MB
7549be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7559be7e244SMegha Dey	depends on X86 && 64BIT
7569be7e244SMegha Dey	select CRYPTO_SHA256
7579be7e244SMegha Dey	select CRYPTO_HASH
7589be7e244SMegha Dey	select CRYPTO_MCRYPTD
7599be7e244SMegha Dey	help
7609be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7619be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
7629be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
7639be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
7649be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
7659be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
7669be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
7679be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
7689be7e244SMegha Dey
769026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
770026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
771026bb8aaSMegha Dey        depends on X86 && 64BIT
772026bb8aaSMegha Dey        select CRYPTO_SHA512
773026bb8aaSMegha Dey        select CRYPTO_HASH
774026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
775026bb8aaSMegha Dey        help
776026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
777026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
778026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
779026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
780026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
781026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
782026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
783026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
784026bb8aaSMegha Dey
7851da177e4SLinus Torvaldsconfig CRYPTO_SHA256
786cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
78750e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7881da177e4SLinus Torvalds	help
7891da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
7901da177e4SLinus Torvalds
7911da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
7921da177e4SLinus Torvalds	  security against collision attacks.
7931da177e4SLinus Torvalds
794cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
795cd12fb90SJonathan Lynch	  of security against collision attacks.
796cd12fb90SJonathan Lynch
7972ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
7982ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
7992ecc1e95SMarkus Stockhausen	depends on PPC && SPE
8002ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
8012ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8022ecc1e95SMarkus Stockhausen	help
8032ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8042ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
8052ecc1e95SMarkus Stockhausen
806efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
807efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
808efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
809efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
810efdb6f6eSAaro Koskinen	select CRYPTO_HASH
811efdb6f6eSAaro Koskinen	help
812efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
813efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
814efdb6f6eSAaro Koskinen
81586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
81686c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
81786c93b24SDavid S. Miller	depends on SPARC64
81886c93b24SDavid S. Miller	select CRYPTO_SHA256
81986c93b24SDavid S. Miller	select CRYPTO_HASH
82086c93b24SDavid S. Miller	help
82186c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
82286c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
82386c93b24SDavid S. Miller
8241da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8251da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
826bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8271da177e4SLinus Torvalds	help
8281da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8291da177e4SLinus Torvalds
8301da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8311da177e4SLinus Torvalds	  security against collision attacks.
8321da177e4SLinus Torvalds
8331da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
8341da177e4SLinus Torvalds	  of security against collision attacks.
8351da177e4SLinus Torvalds
836efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
837efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
838efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
839efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
840efdb6f6eSAaro Koskinen	select CRYPTO_HASH
841efdb6f6eSAaro Koskinen	help
842efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
843efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
844efdb6f6eSAaro Koskinen
845775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
846775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
847775e0c69SDavid S. Miller	depends on SPARC64
848775e0c69SDavid S. Miller	select CRYPTO_SHA512
849775e0c69SDavid S. Miller	select CRYPTO_HASH
850775e0c69SDavid S. Miller	help
851775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
852775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
853775e0c69SDavid S. Miller
85453964b9eSJeff Garzikconfig CRYPTO_SHA3
85553964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
85653964b9eSJeff Garzik	select CRYPTO_HASH
85753964b9eSJeff Garzik	help
85853964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
85953964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
86053964b9eSJeff Garzik
86153964b9eSJeff Garzik	  References:
86253964b9eSJeff Garzik	  http://keccak.noekeon.org/
86353964b9eSJeff Garzik
8644f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
8654f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
8664f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
8674f0fc160SGilad Ben-Yossef	help
8684f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
8694f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
8704f0fc160SGilad Ben-Yossef
8714f0fc160SGilad Ben-Yossef	  References:
8724f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
8734f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
8744f0fc160SGilad Ben-Yossef
8751da177e4SLinus Torvaldsconfig CRYPTO_TGR192
8761da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
877f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8781da177e4SLinus Torvalds	help
8791da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
8801da177e4SLinus Torvalds
8811da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
8821da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
8831da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
8841da177e4SLinus Torvalds
8851da177e4SLinus Torvalds	  See also:
8861da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
8871da177e4SLinus Torvalds
888584fffc8SSebastian Siewiorconfig CRYPTO_WP512
889584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
8904946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8911da177e4SLinus Torvalds	help
892584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
8931da177e4SLinus Torvalds
894584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
895584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
8961da177e4SLinus Torvalds
8971da177e4SLinus Torvalds	  See also:
8986d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
8991da177e4SLinus Torvalds
9000e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
9010e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
9028af00860SRichard Weinberger	depends on X86 && 64BIT
9030e1227d3SHuang Ying	select CRYPTO_CRYPTD
9040e1227d3SHuang Ying	help
9050e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
9060e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
9070e1227d3SHuang Ying
908584fffc8SSebastian Siewiorcomment "Ciphers"
9091da177e4SLinus Torvalds
9101da177e4SLinus Torvaldsconfig CRYPTO_AES
9111da177e4SLinus Torvalds	tristate "AES cipher algorithms"
912cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9131da177e4SLinus Torvalds	help
9141da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9151da177e4SLinus Torvalds	  algorithm.
9161da177e4SLinus Torvalds
9171da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9181da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9191da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9201da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9211da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9221da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9231da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9241da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9251da177e4SLinus Torvalds
9261da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9271da177e4SLinus Torvalds
9281da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
9291da177e4SLinus Torvalds
930b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
931b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
932b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
933b5e0b032SArd Biesheuvel	help
934b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
935b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
936b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
937b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
938b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
939b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
940b5e0b032SArd Biesheuvel
941b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
942b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
943b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
944b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
945b5e0b032SArd Biesheuvel	  block.
946b5e0b032SArd Biesheuvel
9471da177e4SLinus Torvaldsconfig CRYPTO_AES_586
9481da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
949cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
950cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9515157dea8SSebastian Siewior	select CRYPTO_AES
9521da177e4SLinus Torvalds	help
9531da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9541da177e4SLinus Torvalds	  algorithm.
9551da177e4SLinus Torvalds
9561da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9571da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9581da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9591da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9601da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9611da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9621da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9631da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9641da177e4SLinus Torvalds
9651da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9661da177e4SLinus Torvalds
9671da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
9681da177e4SLinus Torvalds
969a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
970a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
971cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
972cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
97381190b32SSebastian Siewior	select CRYPTO_AES
974a2a892a2SAndreas Steinmetz	help
975a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
976a2a892a2SAndreas Steinmetz	  algorithm.
977a2a892a2SAndreas Steinmetz
978a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
979a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
980a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
981a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
982a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
983a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
984a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
985a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
986a2a892a2SAndreas Steinmetz
987a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
988a2a892a2SAndreas Steinmetz
989a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
990a2a892a2SAndreas Steinmetz
99154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
99254b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
9938af00860SRichard Weinberger	depends on X86
99485671860SHerbert Xu	select CRYPTO_AEAD
9950d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
9960d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
99754b6a1bdSHuang Ying	select CRYPTO_ALGAPI
99885671860SHerbert Xu	select CRYPTO_BLKCIPHER
9997643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
100085671860SHerbert Xu	select CRYPTO_SIMD
100154b6a1bdSHuang Ying	help
100254b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
100354b6a1bdSHuang Ying
100454b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
100554b6a1bdSHuang Ying	  algorithm.
100654b6a1bdSHuang Ying
100754b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
100854b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
100954b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
101054b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
101154b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
101254b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
101354b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
101454b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
101554b6a1bdSHuang Ying
101654b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
101754b6a1bdSHuang Ying
101854b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
101954b6a1bdSHuang Ying
10200d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
10210d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
10220d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
10230d258efbSMathias Krause	  acceleration for CTR.
10242cf4ac8bSHuang Ying
10259bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
10269bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
10279bf4852dSDavid S. Miller	depends on SPARC64
10289bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
10299bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
10309bf4852dSDavid S. Miller	help
10319bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
10329bf4852dSDavid S. Miller
10339bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10349bf4852dSDavid S. Miller	  algorithm.
10359bf4852dSDavid S. Miller
10369bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
10379bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
10389bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
10399bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
10409bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
10419bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
10429bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
10439bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
10449bf4852dSDavid S. Miller
10459bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
10469bf4852dSDavid S. Miller
10479bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10489bf4852dSDavid S. Miller
10499bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
10509bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
10519bf4852dSDavid S. Miller	  ECB and CBC.
10529bf4852dSDavid S. Miller
1053504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1054504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1055504c6143SMarkus Stockhausen	depends on PPC && SPE
1056504c6143SMarkus Stockhausen	help
1057504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1058504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1059504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1060504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1061504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1062504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1063504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1064504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1065504c6143SMarkus Stockhausen
10661da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
10671da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1068cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10691da177e4SLinus Torvalds	help
10701da177e4SLinus Torvalds	  Anubis cipher algorithm.
10711da177e4SLinus Torvalds
10721da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
10731da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
10741da177e4SLinus Torvalds	  in the NESSIE competition.
10751da177e4SLinus Torvalds
10761da177e4SLinus Torvalds	  See also:
10776d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
10786d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
10791da177e4SLinus Torvalds
1080584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1081584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1082b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1083e2ee95b8SHye-Shik Chang	help
1084584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1085e2ee95b8SHye-Shik Chang
1086584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1087584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1088584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1089584fffc8SSebastian Siewior	  weakness of the algorithm.
1090584fffc8SSebastian Siewior
1091584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1092584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1093584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
109452ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1095584fffc8SSebastian Siewior	help
1096584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1097584fffc8SSebastian Siewior
1098584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1099584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1100584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1101e2ee95b8SHye-Shik Chang
1102e2ee95b8SHye-Shik Chang	  See also:
1103584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1104584fffc8SSebastian Siewior
110552ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
110652ba867cSJussi Kivilinna	tristate
110752ba867cSJussi Kivilinna	help
110852ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
110952ba867cSJussi Kivilinna	  generic c and the assembler implementations.
111052ba867cSJussi Kivilinna
111152ba867cSJussi Kivilinna	  See also:
111252ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
111352ba867cSJussi Kivilinna
111464b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
111564b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1116f21a7c19SAl Viro	depends on X86 && 64BIT
111764b94ceaSJussi Kivilinna	select CRYPTO_ALGAPI
111864b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
111964b94ceaSJussi Kivilinna	help
112064b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
112164b94ceaSJussi Kivilinna
112264b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
112364b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
112464b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
112564b94ceaSJussi Kivilinna
112664b94ceaSJussi Kivilinna	  See also:
112764b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
112864b94ceaSJussi Kivilinna
1129584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1130584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1131584fffc8SSebastian Siewior	depends on CRYPTO
1132584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1133584fffc8SSebastian Siewior	help
1134584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1135584fffc8SSebastian Siewior
1136584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1137584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1138584fffc8SSebastian Siewior
1139584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1140584fffc8SSebastian Siewior
1141584fffc8SSebastian Siewior	  See also:
1142584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1143584fffc8SSebastian Siewior
11440b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
11450b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1146f21a7c19SAl Viro	depends on X86 && 64BIT
11470b95ec56SJussi Kivilinna	depends on CRYPTO
11480b95ec56SJussi Kivilinna	select CRYPTO_ALGAPI
1149964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
11500b95ec56SJussi Kivilinna	select CRYPTO_LRW
11510b95ec56SJussi Kivilinna	select CRYPTO_XTS
11520b95ec56SJussi Kivilinna	help
11530b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
11540b95ec56SJussi Kivilinna
11550b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
11560b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
11570b95ec56SJussi Kivilinna
11580b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
11590b95ec56SJussi Kivilinna
11600b95ec56SJussi Kivilinna	  See also:
11610b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
11620b95ec56SJussi Kivilinna
1163d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1164d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1165d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1166d9b1d2e7SJussi Kivilinna	depends on CRYPTO
1167d9b1d2e7SJussi Kivilinna	select CRYPTO_ALGAPI
1168d9b1d2e7SJussi Kivilinna	select CRYPTO_CRYPTD
1169801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1170d9b1d2e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1171d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1172d9b1d2e7SJussi Kivilinna	select CRYPTO_LRW
1173d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1174d9b1d2e7SJussi Kivilinna	help
1175d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1176d9b1d2e7SJussi Kivilinna
1177d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1178d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1179d9b1d2e7SJussi Kivilinna
1180d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1181d9b1d2e7SJussi Kivilinna
1182d9b1d2e7SJussi Kivilinna	  See also:
1183d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1184d9b1d2e7SJussi Kivilinna
1185f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1186f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1187f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1188f3f935a7SJussi Kivilinna	depends on CRYPTO
1189f3f935a7SJussi Kivilinna	select CRYPTO_ALGAPI
1190f3f935a7SJussi Kivilinna	select CRYPTO_CRYPTD
1191801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1192f3f935a7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1193f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1194f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1195f3f935a7SJussi Kivilinna	select CRYPTO_LRW
1196f3f935a7SJussi Kivilinna	select CRYPTO_XTS
1197f3f935a7SJussi Kivilinna	help
1198f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1199f3f935a7SJussi Kivilinna
1200f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1201f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1202f3f935a7SJussi Kivilinna
1203f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1204f3f935a7SJussi Kivilinna
1205f3f935a7SJussi Kivilinna	  See also:
1206f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1207f3f935a7SJussi Kivilinna
120881658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
120981658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
121081658ad0SDavid S. Miller	depends on SPARC64
121181658ad0SDavid S. Miller	depends on CRYPTO
121281658ad0SDavid S. Miller	select CRYPTO_ALGAPI
121381658ad0SDavid S. Miller	help
121481658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
121581658ad0SDavid S. Miller
121681658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
121781658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
121881658ad0SDavid S. Miller
121981658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
122081658ad0SDavid S. Miller
122181658ad0SDavid S. Miller	  See also:
122281658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
122381658ad0SDavid S. Miller
1224044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1225044ab525SJussi Kivilinna	tristate
1226044ab525SJussi Kivilinna	help
1227044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1228044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1229044ab525SJussi Kivilinna
1230584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1231584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1232584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1233044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1234584fffc8SSebastian Siewior	help
1235584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1236584fffc8SSebastian Siewior	  described in RFC2144.
1237584fffc8SSebastian Siewior
12384d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12394d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12404d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12411e63183aSEric Biggers	select CRYPTO_BLKCIPHER
12424d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
12431e63183aSEric Biggers	select CRYPTO_CAST_COMMON
12441e63183aSEric Biggers	select CRYPTO_SIMD
12454d6d6a2cSJohannes Goetzfried	help
12464d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
12474d6d6a2cSJohannes Goetzfried	  described in RFC2144.
12484d6d6a2cSJohannes Goetzfried
12494d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
12504d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
12514d6d6a2cSJohannes Goetzfried
1252584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1253584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1254584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1255044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1256584fffc8SSebastian Siewior	help
1257584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1258584fffc8SSebastian Siewior	  described in RFC2612.
1259584fffc8SSebastian Siewior
12604ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
12614ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
12624ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1263*4bd96924SEric Biggers	select CRYPTO_BLKCIPHER
12644ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
1265*4bd96924SEric Biggers	select CRYPTO_CAST_COMMON
1266*4bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
1267*4bd96924SEric Biggers	select CRYPTO_SIMD
12684ea1277dSJohannes Goetzfried	select CRYPTO_XTS
12694ea1277dSJohannes Goetzfried	help
12704ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
12714ea1277dSJohannes Goetzfried	  described in RFC2612.
12724ea1277dSJohannes Goetzfried
12734ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
12744ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
12754ea1277dSJohannes Goetzfried
1276584fffc8SSebastian Siewiorconfig CRYPTO_DES
1277584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1278584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1279584fffc8SSebastian Siewior	help
1280584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1281584fffc8SSebastian Siewior
1282c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1283c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
128497da37b3SDave Jones	depends on SPARC64
1285c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1286c5aac2dfSDavid S. Miller	select CRYPTO_DES
1287c5aac2dfSDavid S. Miller	help
1288c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1289c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1290c5aac2dfSDavid S. Miller
12916574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
12926574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
12936574e6c6SJussi Kivilinna	depends on X86 && 64BIT
12946574e6c6SJussi Kivilinna	select CRYPTO_ALGAPI
12956574e6c6SJussi Kivilinna	select CRYPTO_DES
12966574e6c6SJussi Kivilinna	help
12976574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
12986574e6c6SJussi Kivilinna
12996574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13006574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13016574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13026574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13036574e6c6SJussi Kivilinna
1304584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1305584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1306584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1307584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1308584fffc8SSebastian Siewior	help
1309584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1310584fffc8SSebastian Siewior
1311584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1312584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1313584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1314584fffc8SSebastian Siewior	help
1315584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1316584fffc8SSebastian Siewior
1317584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1318584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1319584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1320584fffc8SSebastian Siewior
1321584fffc8SSebastian Siewior	  See also:
13226d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1323e2ee95b8SHye-Shik Chang
13242407d608STan Swee Hengconfig CRYPTO_SALSA20
13253b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
13262407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13272407d608STan Swee Heng	help
13282407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13292407d608STan Swee Heng
13302407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13312407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13322407d608STan Swee Heng
13332407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13342407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13351da177e4SLinus Torvalds
1336974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13373b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1338974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1339974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1340c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
1341974e4b75STan Swee Heng	help
1342974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1343974e4b75STan Swee Heng
1344974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1345974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1346974e4b75STan Swee Heng
1347974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1348974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1349974e4b75STan Swee Heng
13509a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
13513b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
13529a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
13539a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
1354c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
13559a7dafbbSTan Swee Heng	help
13569a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
13579a7dafbbSTan Swee Heng
13589a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13599a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13609a7dafbbSTan Swee Heng
13619a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13629a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13639a7dafbbSTan Swee Heng
1364c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1365c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1366c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1367c08d0e64SMartin Willi	help
1368c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1369c08d0e64SMartin Willi
1370c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1371c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1372c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1373c08d0e64SMartin Willi
1374c08d0e64SMartin Willi	  See also:
1375c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1376c08d0e64SMartin Willi
1377c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
13783d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1379c9320b6dSMartin Willi	depends on X86 && 64BIT
1380c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1381c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1382c9320b6dSMartin Willi	help
1383c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1384c9320b6dSMartin Willi
1385c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1386c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1387c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1388c9320b6dSMartin Willi
1389c9320b6dSMartin Willi	  See also:
1390c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1391c9320b6dSMartin Willi
1392584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1393584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1394584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1395584fffc8SSebastian Siewior	help
1396584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1397584fffc8SSebastian Siewior
1398584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1399584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1400584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1401584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1402584fffc8SSebastian Siewior
1403584fffc8SSebastian Siewior	  See also:
1404584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1405584fffc8SSebastian Siewior
1406584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1407584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1408584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1409584fffc8SSebastian Siewior	help
1410584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1411584fffc8SSebastian Siewior
1412584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1413584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1414584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1415584fffc8SSebastian Siewior
1416584fffc8SSebastian Siewior	  See also:
1417584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1418584fffc8SSebastian Siewior
1419937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1420937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1421937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1422e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1423596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1424937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1425e0f409dcSEric Biggers	select CRYPTO_SIMD
1426937c30d7SJussi Kivilinna	help
1427937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1428937c30d7SJussi Kivilinna
1429937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1430937c30d7SJussi Kivilinna	  of 8 bits.
1431937c30d7SJussi Kivilinna
14321e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1433937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1434937c30d7SJussi Kivilinna
1435937c30d7SJussi Kivilinna	  See also:
1436937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1437937c30d7SJussi Kivilinna
1438251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1439251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1440251496dbSJussi Kivilinna	depends on X86 && !64BIT
1441e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1442596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1443251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1444e0f409dcSEric Biggers	select CRYPTO_SIMD
1445251496dbSJussi Kivilinna	help
1446251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1447251496dbSJussi Kivilinna
1448251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1449251496dbSJussi Kivilinna	  of 8 bits.
1450251496dbSJussi Kivilinna
1451251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1452251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1453251496dbSJussi Kivilinna
1454251496dbSJussi Kivilinna	  See also:
1455251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1456251496dbSJussi Kivilinna
14577efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
14587efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
14597efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1460e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
14611d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
14627efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1463e16bf974SEric Biggers	select CRYPTO_SIMD
14647efe4076SJohannes Goetzfried	select CRYPTO_XTS
14657efe4076SJohannes Goetzfried	help
14667efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
14677efe4076SJohannes Goetzfried
14687efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
14697efe4076SJohannes Goetzfried	  of 8 bits.
14707efe4076SJohannes Goetzfried
14717efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
14727efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14737efe4076SJohannes Goetzfried
14747efe4076SJohannes Goetzfried	  See also:
14757efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
14767efe4076SJohannes Goetzfried
147756d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
147856d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
147956d76c96SJussi Kivilinna	depends on X86 && 64BIT
148056d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
148156d76c96SJussi Kivilinna	help
148256d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
148356d76c96SJussi Kivilinna
148456d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
148556d76c96SJussi Kivilinna	  of 8 bits.
148656d76c96SJussi Kivilinna
148756d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
148856d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
148956d76c96SJussi Kivilinna
149056d76c96SJussi Kivilinna	  See also:
149156d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
149256d76c96SJussi Kivilinna
1493da7a0ab5SEric Biggersconfig CRYPTO_SPECK
1494da7a0ab5SEric Biggers	tristate "Speck cipher algorithm"
1495da7a0ab5SEric Biggers	select CRYPTO_ALGAPI
1496da7a0ab5SEric Biggers	help
1497da7a0ab5SEric Biggers	  Speck is a lightweight block cipher that is tuned for optimal
1498da7a0ab5SEric Biggers	  performance in software (rather than hardware).
1499da7a0ab5SEric Biggers
1500da7a0ab5SEric Biggers	  Speck may not be as secure as AES, and should only be used on systems
1501da7a0ab5SEric Biggers	  where AES is not fast enough.
1502da7a0ab5SEric Biggers
1503da7a0ab5SEric Biggers	  See also: <https://eprint.iacr.org/2013/404.pdf>
1504da7a0ab5SEric Biggers
1505da7a0ab5SEric Biggers	  If unsure, say N.
1506da7a0ab5SEric Biggers
1507584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1508584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1509584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1510584fffc8SSebastian Siewior	help
1511584fffc8SSebastian Siewior	  TEA cipher algorithm.
1512584fffc8SSebastian Siewior
1513584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1514584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1515584fffc8SSebastian Siewior	  little memory.
1516584fffc8SSebastian Siewior
1517584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1518584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1519584fffc8SSebastian Siewior	  in the TEA algorithm.
1520584fffc8SSebastian Siewior
1521584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1522584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1523584fffc8SSebastian Siewior
1524584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1525584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1526584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1527584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1528584fffc8SSebastian Siewior	help
1529584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1530584fffc8SSebastian Siewior
1531584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1532584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1533584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1534584fffc8SSebastian Siewior	  bits.
1535584fffc8SSebastian Siewior
1536584fffc8SSebastian Siewior	  See also:
1537584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1538584fffc8SSebastian Siewior
1539584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1540584fffc8SSebastian Siewior	tristate
1541584fffc8SSebastian Siewior	help
1542584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1543584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1544584fffc8SSebastian Siewior
1545584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1546584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1547584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1548584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1549584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1550584fffc8SSebastian Siewior	help
1551584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1552584fffc8SSebastian Siewior
1553584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1554584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1555584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1556584fffc8SSebastian Siewior	  bits.
1557584fffc8SSebastian Siewior
1558584fffc8SSebastian Siewior	  See also:
1559584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1560584fffc8SSebastian Siewior
1561584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1562584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1563584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1564584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1565584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1566584fffc8SSebastian Siewior	help
1567584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1568584fffc8SSebastian Siewior
1569584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1570584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1571584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1572584fffc8SSebastian Siewior	  bits.
1573584fffc8SSebastian Siewior
1574584fffc8SSebastian Siewior	  See also:
1575584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1576584fffc8SSebastian Siewior
15778280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
15788280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1579f21a7c19SAl Viro	depends on X86 && 64BIT
158037992fa4SEric Biggers	select CRYPTO_BLKCIPHER
15818280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
15828280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1583414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15848280daadSJussi Kivilinna	help
15858280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
15868280daadSJussi Kivilinna
15878280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
15888280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
15898280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
15908280daadSJussi Kivilinna	  bits.
15918280daadSJussi Kivilinna
15928280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
15938280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
15948280daadSJussi Kivilinna
15958280daadSJussi Kivilinna	  See also:
15968280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
15978280daadSJussi Kivilinna
1598107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1599107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1600107778b5SJohannes Goetzfried	depends on X86 && 64BIT
16010e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1602a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16030e6ab46dSEric Biggers	select CRYPTO_SIMD
1604107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1605107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1606107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1607107778b5SJohannes Goetzfried	help
1608107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1609107778b5SJohannes Goetzfried
1610107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1611107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1612107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1613107778b5SJohannes Goetzfried	  bits.
1614107778b5SJohannes Goetzfried
1615107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1616107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1617107778b5SJohannes Goetzfried
1618107778b5SJohannes Goetzfried	  See also:
1619107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1620107778b5SJohannes Goetzfried
1621584fffc8SSebastian Siewiorcomment "Compression"
1622584fffc8SSebastian Siewior
16231da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16241da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1625cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1626f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16271da177e4SLinus Torvalds	select ZLIB_INFLATE
16281da177e4SLinus Torvalds	select ZLIB_DEFLATE
16291da177e4SLinus Torvalds	help
16301da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16311da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16321da177e4SLinus Torvalds
16331da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16341da177e4SLinus Torvalds
16350b77abb3SZoltan Sogorconfig CRYPTO_LZO
16360b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16370b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1638ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16390b77abb3SZoltan Sogor	select LZO_COMPRESS
16400b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16410b77abb3SZoltan Sogor	help
16420b77abb3SZoltan Sogor	  This is the LZO algorithm.
16430b77abb3SZoltan Sogor
164435a1fc18SSeth Jenningsconfig CRYPTO_842
164535a1fc18SSeth Jennings	tristate "842 compression algorithm"
16462062c5b6SDan Streetman	select CRYPTO_ALGAPI
16476a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
16482062c5b6SDan Streetman	select 842_COMPRESS
16492062c5b6SDan Streetman	select 842_DECOMPRESS
165035a1fc18SSeth Jennings	help
165135a1fc18SSeth Jennings	  This is the 842 algorithm.
165235a1fc18SSeth Jennings
16530ea8530dSChanho Minconfig CRYPTO_LZ4
16540ea8530dSChanho Min	tristate "LZ4 compression algorithm"
16550ea8530dSChanho Min	select CRYPTO_ALGAPI
16568cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
16570ea8530dSChanho Min	select LZ4_COMPRESS
16580ea8530dSChanho Min	select LZ4_DECOMPRESS
16590ea8530dSChanho Min	help
16600ea8530dSChanho Min	  This is the LZ4 algorithm.
16610ea8530dSChanho Min
16620ea8530dSChanho Minconfig CRYPTO_LZ4HC
16630ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
16640ea8530dSChanho Min	select CRYPTO_ALGAPI
166591d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
16660ea8530dSChanho Min	select LZ4HC_COMPRESS
16670ea8530dSChanho Min	select LZ4_DECOMPRESS
16680ea8530dSChanho Min	help
16690ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
16700ea8530dSChanho Min
167117f0f4a4SNeil Hormancomment "Random Number Generation"
167217f0f4a4SNeil Horman
167317f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
167417f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
167517f0f4a4SNeil Horman	select CRYPTO_AES
167617f0f4a4SNeil Horman	select CRYPTO_RNG
167717f0f4a4SNeil Horman	help
167817f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
167917f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
16807dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
16817dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
168217f0f4a4SNeil Horman
1683f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1684419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1685419090c6SStephan Mueller	help
1686419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1687419090c6SStephan Mueller	  more of the DRBG types must be selected.
1688419090c6SStephan Mueller
1689f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1690419090c6SStephan Mueller
1691419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1692401e4238SHerbert Xu	bool
1693419090c6SStephan Mueller	default y
1694419090c6SStephan Mueller	select CRYPTO_HMAC
1695826775bbSHerbert Xu	select CRYPTO_SHA256
1696419090c6SStephan Mueller
1697419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1698419090c6SStephan Mueller	bool "Enable Hash DRBG"
1699826775bbSHerbert Xu	select CRYPTO_SHA256
1700419090c6SStephan Mueller	help
1701419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1702419090c6SStephan Mueller
1703419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1704419090c6SStephan Mueller	bool "Enable CTR DRBG"
1705419090c6SStephan Mueller	select CRYPTO_AES
170635591285SStephan Mueller	depends on CRYPTO_CTR
1707419090c6SStephan Mueller	help
1708419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1709419090c6SStephan Mueller
1710f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1711f2c89a10SHerbert Xu	tristate
1712401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1713f2c89a10SHerbert Xu	select CRYPTO_RNG
1714bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1715f2c89a10SHerbert Xu
1716f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1717419090c6SStephan Mueller
1718bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1719bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
17202f313e02SArnd Bergmann	select CRYPTO_RNG
1721bb5530e4SStephan Mueller	help
1722bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1723bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1724bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1725bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1726bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1727bb5530e4SStephan Mueller
172803c8efc1SHerbert Xuconfig CRYPTO_USER_API
172903c8efc1SHerbert Xu	tristate
173003c8efc1SHerbert Xu
1731fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1732fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17337451708fSHerbert Xu	depends on NET
1734fe869cdbSHerbert Xu	select CRYPTO_HASH
1735fe869cdbSHerbert Xu	select CRYPTO_USER_API
1736fe869cdbSHerbert Xu	help
1737fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1738fe869cdbSHerbert Xu	  algorithms.
1739fe869cdbSHerbert Xu
17408ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
17418ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
17427451708fSHerbert Xu	depends on NET
17438ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
17448ff59090SHerbert Xu	select CRYPTO_USER_API
17458ff59090SHerbert Xu	help
17468ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
17478ff59090SHerbert Xu	  key cipher algorithms.
17488ff59090SHerbert Xu
17492f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
17502f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
17512f375538SStephan Mueller	depends on NET
17522f375538SStephan Mueller	select CRYPTO_RNG
17532f375538SStephan Mueller	select CRYPTO_USER_API
17542f375538SStephan Mueller	help
17552f375538SStephan Mueller	  This option enables the user-spaces interface for random
17562f375538SStephan Mueller	  number generator algorithms.
17572f375538SStephan Mueller
1758b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1759b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1760b64a2d95SHerbert Xu	depends on NET
1761b64a2d95SHerbert Xu	select CRYPTO_AEAD
176272548b09SStephan Mueller	select CRYPTO_BLKCIPHER
176372548b09SStephan Mueller	select CRYPTO_NULL
1764b64a2d95SHerbert Xu	select CRYPTO_USER_API
1765b64a2d95SHerbert Xu	help
1766b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1767b64a2d95SHerbert Xu	  cipher algorithms.
1768b64a2d95SHerbert Xu
1769ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1770ee08997fSDmitry Kasatkin	bool
1771ee08997fSDmitry Kasatkin
17721da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1773964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1774cfc411e7SDavid Howellssource certs/Kconfig
17751da177e4SLinus Torvalds
1776cce9e06dSHerbert Xuendif	# if CRYPTO
1777