1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 116cfc2bb32STadeusz Strukconfig CRYPTO_RSA 117cfc2bb32STadeusz Struk tristate "RSA algorithm" 118425e0172STadeusz Struk select CRYPTO_AKCIPHER 11958446fefSTadeusz Struk select CRYPTO_MANAGER 120cfc2bb32STadeusz Struk select MPILIB 121cfc2bb32STadeusz Struk select ASN1 122cfc2bb32STadeusz Struk help 123cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 124cfc2bb32STadeusz Struk 125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 126802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 127802c7f1cSSalvatore Benedetto select CRYPTO_KPP 128802c7f1cSSalvatore Benedetto select MPILIB 129802c7f1cSSalvatore Benedetto help 130802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 131802c7f1cSSalvatore Benedetto 1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1333c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 134b5b90077SHauke Mehrtens select CRYPTO_KPP 1356755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1363c4b2390SSalvatore Benedetto help 1373c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 138802c7f1cSSalvatore Benedetto 1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1402b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1416a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1422b8c19dbSHerbert Xu help 1432b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1442b8c19dbSHerbert Xu cbc(aes). 1452b8c19dbSHerbert Xu 1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1476a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1486a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1496a0fcbb4SHerbert Xu select CRYPTO_HASH2 1506a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 151946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1524e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1532ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1546a0fcbb4SHerbert Xu 155a38f7907SSteffen Klassertconfig CRYPTO_USER 156a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1575db017aaSHerbert Xu depends on NET 158a38f7907SSteffen Klassert select CRYPTO_MANAGER 159a38f7907SSteffen Klassert help 160d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 161a38f7907SSteffen Klassert cbc(aes). 162a38f7907SSteffen Klassert 163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 164326a6346SHerbert Xu bool "Disable run-time self tests" 16500ca28a5SHerbert Xu default y 16600ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1670b767f96SAlexander Shishkin help 168326a6346SHerbert Xu Disable run-time self tests that normally take place at 169326a6346SHerbert Xu algorithm registration. 1700b767f96SAlexander Shishkin 171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 175584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 176584fffc8SSebastian Siewior option will be selected automatically if you select such a 177584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 178584fffc8SSebastian Siewior an external module that requires these functions. 179584fffc8SSebastian Siewior 180584fffc8SSebastian Siewiorconfig CRYPTO_NULL 181584fffc8SSebastian Siewior tristate "Null algorithms" 182149a3971SHerbert Xu select CRYPTO_NULL2 183584fffc8SSebastian Siewior help 184584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 185584fffc8SSebastian Siewior 186149a3971SHerbert Xuconfig CRYPTO_NULL2 187dd43c4e9SHerbert Xu tristate 188149a3971SHerbert Xu select CRYPTO_ALGAPI2 189149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 190149a3971SHerbert Xu select CRYPTO_HASH2 191149a3971SHerbert Xu 1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1933b4afaf2SKees Cook tristate "Parallel crypto engine" 1943b4afaf2SKees Cook depends on SMP 1955068c7a8SSteffen Klassert select PADATA 1965068c7a8SSteffen Klassert select CRYPTO_MANAGER 1975068c7a8SSteffen Klassert select CRYPTO_AEAD 1985068c7a8SSteffen Klassert help 1995068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2005068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2015068c7a8SSteffen Klassert 20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20325c38d3fSHuang Ying tristate 20425c38d3fSHuang Ying 205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 206584fffc8SSebastian Siewior tristate "Software async crypto daemon" 207584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 208b8a28251SLoc Ho select CRYPTO_HASH 209584fffc8SSebastian Siewior select CRYPTO_MANAGER 210254eff77SHuang Ying select CRYPTO_WORKQUEUE 211584fffc8SSebastian Siewior help 212584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 213584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 214584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 215584fffc8SSebastian Siewior 216584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 217584fffc8SSebastian Siewior tristate "Authenc support" 218584fffc8SSebastian Siewior select CRYPTO_AEAD 219584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 220584fffc8SSebastian Siewior select CRYPTO_MANAGER 221584fffc8SSebastian Siewior select CRYPTO_HASH 222e94c6a7aSHerbert Xu select CRYPTO_NULL 223584fffc8SSebastian Siewior help 224584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 225584fffc8SSebastian Siewior This is required for IPSec. 226584fffc8SSebastian Siewior 227584fffc8SSebastian Siewiorconfig CRYPTO_TEST 228584fffc8SSebastian Siewior tristate "Testing module" 229584fffc8SSebastian Siewior depends on m 230da7f033dSHerbert Xu select CRYPTO_MANAGER 231584fffc8SSebastian Siewior help 232584fffc8SSebastian Siewior Quick & dirty crypto test module. 233584fffc8SSebastian Siewior 234266d0516SHerbert Xuconfig CRYPTO_SIMD 235266d0516SHerbert Xu tristate 236266d0516SHerbert Xu select CRYPTO_CRYPTD 237266d0516SHerbert Xu 238596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 239596d8750SJussi Kivilinna tristate 240596d8750SJussi Kivilinna depends on X86 241065ce327SHerbert Xu select CRYPTO_BLKCIPHER 242596d8750SJussi Kivilinna 243735d37b5SBaolin Wangconfig CRYPTO_ENGINE 244735d37b5SBaolin Wang tristate 245735d37b5SBaolin Wang 246584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 247584fffc8SSebastian Siewior 248584fffc8SSebastian Siewiorconfig CRYPTO_CCM 249584fffc8SSebastian Siewior tristate "CCM support" 250584fffc8SSebastian Siewior select CRYPTO_CTR 251f15f05b0SArd Biesheuvel select CRYPTO_HASH 252584fffc8SSebastian Siewior select CRYPTO_AEAD 253584fffc8SSebastian Siewior help 254584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 255584fffc8SSebastian Siewior 256584fffc8SSebastian Siewiorconfig CRYPTO_GCM 257584fffc8SSebastian Siewior tristate "GCM/GMAC support" 258584fffc8SSebastian Siewior select CRYPTO_CTR 259584fffc8SSebastian Siewior select CRYPTO_AEAD 2609382d97aSHuang Ying select CRYPTO_GHASH 2619489667dSJussi Kivilinna select CRYPTO_NULL 262584fffc8SSebastian Siewior help 263584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 264584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 265584fffc8SSebastian Siewior 26671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 26771ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 26871ebc4d1SMartin Willi select CRYPTO_CHACHA20 26971ebc4d1SMartin Willi select CRYPTO_POLY1305 27071ebc4d1SMartin Willi select CRYPTO_AEAD 27171ebc4d1SMartin Willi help 27271ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 27371ebc4d1SMartin Willi 27471ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 27571ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 27671ebc4d1SMartin Willi IETF protocols. 27771ebc4d1SMartin Willi 278f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 279f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 280f606a88eSOndrej Mosnacek select CRYPTO_AEAD 281f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 282f606a88eSOndrej Mosnacek help 283f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 284f606a88eSOndrej Mosnacek 285f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 286f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 287f606a88eSOndrej Mosnacek select CRYPTO_AEAD 288f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 289f606a88eSOndrej Mosnacek help 290f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 291f606a88eSOndrej Mosnacek 292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 293f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 294f606a88eSOndrej Mosnacek select CRYPTO_AEAD 295f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 296f606a88eSOndrej Mosnacek help 297f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 298f606a88eSOndrej Mosnacek 2991d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3001d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3011d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3021d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3031d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3041d373d4eSOndrej Mosnacek help 3051d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm. 3061d373d4eSOndrej Mosnacek 3071d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3081d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3091d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3101d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3111d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3121d373d4eSOndrej Mosnacek help 3131d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm. 3141d373d4eSOndrej Mosnacek 3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3161d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3171d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3181d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3191d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3201d373d4eSOndrej Mosnacek help 3211d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm. 3221d373d4eSOndrej Mosnacek 323396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 324396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 325396be41fSOndrej Mosnacek select CRYPTO_AEAD 326396be41fSOndrej Mosnacek help 327396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 328396be41fSOndrej Mosnacek 32956e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 3302808f173SOndrej Mosnacek tristate 3312808f173SOndrej Mosnacek depends on X86 33256e8e57fSOndrej Mosnacek select CRYPTO_AEAD 33356e8e57fSOndrej Mosnacek select CRYPTO_CRYPTD 33456e8e57fSOndrej Mosnacek help 33556e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 33656e8e57fSOndrej Mosnacek algorithm. 33756e8e57fSOndrej Mosnacek 3386ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3396ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3406ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3416ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3426ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3436ecc9d9fSOndrej Mosnacek help 3446ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3456ecc9d9fSOndrej Mosnacek 346396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 347396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 348396be41fSOndrej Mosnacek select CRYPTO_AEAD 349396be41fSOndrej Mosnacek help 350396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 351396be41fSOndrej Mosnacek 35256e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 3532808f173SOndrej Mosnacek tristate 3542808f173SOndrej Mosnacek depends on X86 35556e8e57fSOndrej Mosnacek select CRYPTO_AEAD 35656e8e57fSOndrej Mosnacek select CRYPTO_CRYPTD 35756e8e57fSOndrej Mosnacek help 35856e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 35956e8e57fSOndrej Mosnacek algorithm. 36056e8e57fSOndrej Mosnacek 3616ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3626ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3636ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3646ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3656ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3666ecc9d9fSOndrej Mosnacek help 3676ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 3686ecc9d9fSOndrej Mosnacek algorithm. 3696ecc9d9fSOndrej Mosnacek 3706ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 3716ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 3726ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3736ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3746ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3756ecc9d9fSOndrej Mosnacek help 3766ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 3776ecc9d9fSOndrej Mosnacek algorithm. 3786ecc9d9fSOndrej Mosnacek 379584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 380584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 381584fffc8SSebastian Siewior select CRYPTO_AEAD 382584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 383856e3f40SHerbert Xu select CRYPTO_NULL 384401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 385584fffc8SSebastian Siewior help 386584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 387584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 388584fffc8SSebastian Siewior 389a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 390a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 391a10f554fSHerbert Xu select CRYPTO_AEAD 392a10f554fSHerbert Xu select CRYPTO_NULL 393401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3943491244cSHerbert Xu default m 395a10f554fSHerbert Xu help 396a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 397a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 398a10f554fSHerbert Xu algorithm for CBC. 399a10f554fSHerbert Xu 400584fffc8SSebastian Siewiorcomment "Block modes" 401584fffc8SSebastian Siewior 402584fffc8SSebastian Siewiorconfig CRYPTO_CBC 403584fffc8SSebastian Siewior tristate "CBC support" 404584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 405584fffc8SSebastian Siewior select CRYPTO_MANAGER 406584fffc8SSebastian Siewior help 407584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 408584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 409584fffc8SSebastian Siewior 410a7d85e06SJames Bottomleyconfig CRYPTO_CFB 411a7d85e06SJames Bottomley tristate "CFB support" 412a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 413a7d85e06SJames Bottomley select CRYPTO_MANAGER 414a7d85e06SJames Bottomley help 415a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 416a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 417a7d85e06SJames Bottomley 418584fffc8SSebastian Siewiorconfig CRYPTO_CTR 419584fffc8SSebastian Siewior tristate "CTR support" 420584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 421584fffc8SSebastian Siewior select CRYPTO_SEQIV 422584fffc8SSebastian Siewior select CRYPTO_MANAGER 423584fffc8SSebastian Siewior help 424584fffc8SSebastian Siewior CTR: Counter mode 425584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 426584fffc8SSebastian Siewior 427584fffc8SSebastian Siewiorconfig CRYPTO_CTS 428584fffc8SSebastian Siewior tristate "CTS support" 429584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 430584fffc8SSebastian Siewior help 431584fffc8SSebastian Siewior CTS: Cipher Text Stealing 432584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 433ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 434ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 435ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 436584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 437584fffc8SSebastian Siewior for AES encryption. 438584fffc8SSebastian Siewior 439ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 440ecd6d5c9SGilad Ben-Yossef 441584fffc8SSebastian Siewiorconfig CRYPTO_ECB 442584fffc8SSebastian Siewior tristate "ECB support" 443584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 444584fffc8SSebastian Siewior select CRYPTO_MANAGER 445584fffc8SSebastian Siewior help 446584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 447584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 448584fffc8SSebastian Siewior the input block by block. 449584fffc8SSebastian Siewior 450584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4512470a2b2SJussi Kivilinna tristate "LRW support" 452584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 453584fffc8SSebastian Siewior select CRYPTO_MANAGER 454584fffc8SSebastian Siewior select CRYPTO_GF128MUL 455584fffc8SSebastian Siewior help 456584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 457584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 458584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 459584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 460584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 461584fffc8SSebastian Siewior 462e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 463e497c518SGilad Ben-Yossef tristate "OFB support" 464e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 465e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 466e497c518SGilad Ben-Yossef help 467e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 468e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 469e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 470e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 471e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 472e497c518SGilad Ben-Yossef normally even when applied before encryption. 473e497c518SGilad Ben-Yossef 474584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 475584fffc8SSebastian Siewior tristate "PCBC support" 476584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 477584fffc8SSebastian Siewior select CRYPTO_MANAGER 478584fffc8SSebastian Siewior help 479584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 480584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 481584fffc8SSebastian Siewior 482584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4835bcf8e6dSJussi Kivilinna tristate "XTS support" 484584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 485584fffc8SSebastian Siewior select CRYPTO_MANAGER 48612cb3a1cSMilan Broz select CRYPTO_ECB 487584fffc8SSebastian Siewior help 488584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 489584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 490584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 491584fffc8SSebastian Siewior 4921c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4931c49678eSStephan Mueller tristate "Key wrapping support" 4941c49678eSStephan Mueller select CRYPTO_BLKCIPHER 4951c49678eSStephan Mueller help 4961c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4971c49678eSStephan Mueller padding. 4981c49678eSStephan Mueller 49926609a21SEric Biggersconfig CRYPTO_NHPOLY1305 50026609a21SEric Biggers tristate 50126609a21SEric Biggers select CRYPTO_HASH 50226609a21SEric Biggers select CRYPTO_POLY1305 50326609a21SEric Biggers 504012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 505012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 506012c8238SEric Biggers depends on X86 && 64BIT 507012c8238SEric Biggers select CRYPTO_NHPOLY1305 508012c8238SEric Biggers help 509012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 510012c8238SEric Biggers Adiantum encryption mode. 511012c8238SEric Biggers 5120f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5130f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5140f961f9fSEric Biggers depends on X86 && 64BIT 5150f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5160f961f9fSEric Biggers help 5170f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5180f961f9fSEric Biggers Adiantum encryption mode. 5190f961f9fSEric Biggers 520059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 521059c2a4dSEric Biggers tristate "Adiantum support" 522059c2a4dSEric Biggers select CRYPTO_CHACHA20 523059c2a4dSEric Biggers select CRYPTO_POLY1305 524059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 525059c2a4dSEric Biggers help 526059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 527059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 528059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 529059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 530059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 531059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 532059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 533059c2a4dSEric Biggers AES-XTS. 534059c2a4dSEric Biggers 535059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 536059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 537059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 538059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 539059c2a4dSEric Biggers security than XTS, subject to the security bound. 540059c2a4dSEric Biggers 541059c2a4dSEric Biggers If unsure, say N. 542059c2a4dSEric Biggers 543584fffc8SSebastian Siewiorcomment "Hash modes" 544584fffc8SSebastian Siewior 54593b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 54693b5e86aSJussi Kivilinna tristate "CMAC support" 54793b5e86aSJussi Kivilinna select CRYPTO_HASH 54893b5e86aSJussi Kivilinna select CRYPTO_MANAGER 54993b5e86aSJussi Kivilinna help 55093b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 55193b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 55293b5e86aSJussi Kivilinna 55393b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 55493b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 55593b5e86aSJussi Kivilinna 5561da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5578425165dSHerbert Xu tristate "HMAC support" 5580796ae06SHerbert Xu select CRYPTO_HASH 55943518407SHerbert Xu select CRYPTO_MANAGER 5601da177e4SLinus Torvalds help 5611da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5621da177e4SLinus Torvalds This is required for IPSec. 5631da177e4SLinus Torvalds 564333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 565333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 566333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 567333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 568333b0d7eSKazunori MIYAZAWA help 569333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 570333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 571333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 572333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 573333b0d7eSKazunori MIYAZAWA 574f1939f7cSShane Wangconfig CRYPTO_VMAC 575f1939f7cSShane Wang tristate "VMAC support" 576f1939f7cSShane Wang select CRYPTO_HASH 577f1939f7cSShane Wang select CRYPTO_MANAGER 578f1939f7cSShane Wang help 579f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 580f1939f7cSShane Wang very high speed on 64-bit architectures. 581f1939f7cSShane Wang 582f1939f7cSShane Wang See also: 583f1939f7cSShane Wang <http://fastcrypto.org/vmac> 584f1939f7cSShane Wang 585584fffc8SSebastian Siewiorcomment "Digest" 586584fffc8SSebastian Siewior 587584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 588584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5895773a3e6SHerbert Xu select CRYPTO_HASH 5906a0962b2SDarrick J. Wong select CRC32 5911da177e4SLinus Torvalds help 592584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 593584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 59469c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5951da177e4SLinus Torvalds 5968cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5978cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5988cb51ba8SAustin Zhang depends on X86 5998cb51ba8SAustin Zhang select CRYPTO_HASH 6008cb51ba8SAustin Zhang help 6018cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6028cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6038cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6048cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6058cb51ba8SAustin Zhang gain performance compared with software implementation. 6068cb51ba8SAustin Zhang Module will be crc32c-intel. 6078cb51ba8SAustin Zhang 6087cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6096dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 610c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6116dd7a82cSAnton Blanchard select CRYPTO_HASH 6126dd7a82cSAnton Blanchard select CRC32 6136dd7a82cSAnton Blanchard help 6146dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6156dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6166dd7a82cSAnton Blanchard and newer processors for improved performance. 6176dd7a82cSAnton Blanchard 6186dd7a82cSAnton Blanchard 619442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 620442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 621442a7c40SDavid S. Miller depends on SPARC64 622442a7c40SDavid S. Miller select CRYPTO_HASH 623442a7c40SDavid S. Miller select CRC32 624442a7c40SDavid S. Miller help 625442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 626442a7c40SDavid S. Miller when available. 627442a7c40SDavid S. Miller 62878c37d19SAlexander Boykoconfig CRYPTO_CRC32 62978c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 63078c37d19SAlexander Boyko select CRYPTO_HASH 63178c37d19SAlexander Boyko select CRC32 63278c37d19SAlexander Boyko help 63378c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 63478c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 63578c37d19SAlexander Boyko 63678c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 63778c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 63878c37d19SAlexander Boyko depends on X86 63978c37d19SAlexander Boyko select CRYPTO_HASH 64078c37d19SAlexander Boyko select CRC32 64178c37d19SAlexander Boyko help 64278c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 64378c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 64478c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 64578c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 64678c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 64778c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 64878c37d19SAlexander Boyko 6494a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6504a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6514a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6524a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6534a5dc51eSMarcin Nowakowski help 6544a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6554a5dc51eSMarcin Nowakowski instructions, when available. 6564a5dc51eSMarcin Nowakowski 6574a5dc51eSMarcin Nowakowski 65868411521SHerbert Xuconfig CRYPTO_CRCT10DIF 65968411521SHerbert Xu tristate "CRCT10DIF algorithm" 66068411521SHerbert Xu select CRYPTO_HASH 66168411521SHerbert Xu help 66268411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 66368411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 66468411521SHerbert Xu transforms to be used if they are available. 66568411521SHerbert Xu 66668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 66768411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 66868411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 66968411521SHerbert Xu select CRYPTO_HASH 67068411521SHerbert Xu help 67168411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 67268411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 67368411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 67468411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 67568411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 67668411521SHerbert Xu 677b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 678b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 679b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 680b01df1c1SDaniel Axtens select CRYPTO_HASH 681b01df1c1SDaniel Axtens help 682b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 683b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 684b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 685b01df1c1SDaniel Axtens 686146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 687146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 688146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 689146c8688SDaniel Axtens help 690146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 691146c8688SDaniel Axtens POWER8 vpmsum instructions. 692146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 693146c8688SDaniel Axtens 6942cdc6899SHuang Yingconfig CRYPTO_GHASH 6952cdc6899SHuang Ying tristate "GHASH digest algorithm" 6962cdc6899SHuang Ying select CRYPTO_GF128MUL 697578c60fbSArnd Bergmann select CRYPTO_HASH 6982cdc6899SHuang Ying help 6992cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 7002cdc6899SHuang Ying 701f979e014SMartin Williconfig CRYPTO_POLY1305 702f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 703578c60fbSArnd Bergmann select CRYPTO_HASH 704f979e014SMartin Willi help 705f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 706f979e014SMartin Willi 707f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 708f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 709f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 710f979e014SMartin Willi 711c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 712b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 713c70f4abeSMartin Willi depends on X86 && 64BIT 714c70f4abeSMartin Willi select CRYPTO_POLY1305 715c70f4abeSMartin Willi help 716c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 717c70f4abeSMartin Willi 718c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 719c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 720c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 721c70f4abeSMartin Willi instructions. 722c70f4abeSMartin Willi 7231da177e4SLinus Torvaldsconfig CRYPTO_MD4 7241da177e4SLinus Torvalds tristate "MD4 digest algorithm" 725808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7261da177e4SLinus Torvalds help 7271da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7281da177e4SLinus Torvalds 7291da177e4SLinus Torvaldsconfig CRYPTO_MD5 7301da177e4SLinus Torvalds tristate "MD5 digest algorithm" 73114b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7321da177e4SLinus Torvalds help 7331da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7341da177e4SLinus Torvalds 735d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 736d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 737d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 738d69e75deSAaro Koskinen select CRYPTO_MD5 739d69e75deSAaro Koskinen select CRYPTO_HASH 740d69e75deSAaro Koskinen help 741d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 742d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 743d69e75deSAaro Koskinen 744e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 745e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 746e8e59953SMarkus Stockhausen depends on PPC 747e8e59953SMarkus Stockhausen select CRYPTO_HASH 748e8e59953SMarkus Stockhausen help 749e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 750e8e59953SMarkus Stockhausen in PPC assembler. 751e8e59953SMarkus Stockhausen 752fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 753fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 754fa4dfedcSDavid S. Miller depends on SPARC64 755fa4dfedcSDavid S. Miller select CRYPTO_MD5 756fa4dfedcSDavid S. Miller select CRYPTO_HASH 757fa4dfedcSDavid S. Miller help 758fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 759fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 760fa4dfedcSDavid S. Miller 761584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 762584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 76319e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 764584fffc8SSebastian Siewior help 765584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 766584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 767584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 768584fffc8SSebastian Siewior of the algorithm. 769584fffc8SSebastian Siewior 77082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 77182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7727c4468bcSHerbert Xu select CRYPTO_HASH 77382798f90SAdrian-Ken Rueegsegger help 77482798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 77582798f90SAdrian-Ken Rueegsegger 77682798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 77735ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 77882798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 77982798f90SAdrian-Ken Rueegsegger 78082798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7816d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 78282798f90SAdrian-Ken Rueegsegger 78382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 78482798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 785e5835fbaSHerbert Xu select CRYPTO_HASH 78682798f90SAdrian-Ken Rueegsegger help 78782798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 78882798f90SAdrian-Ken Rueegsegger 78982798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 79082798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 791b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 792b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 79382798f90SAdrian-Ken Rueegsegger 794b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 795b6d44341SAdrian Bunk against RIPEMD-160. 796534fe2c1SAdrian-Ken Rueegsegger 797534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7986d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 799534fe2c1SAdrian-Ken Rueegsegger 800534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 801534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 802d8a5e2e9SHerbert Xu select CRYPTO_HASH 803534fe2c1SAdrian-Ken Rueegsegger help 804b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 805b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 806b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 807b6d44341SAdrian Bunk (than RIPEMD-128). 808534fe2c1SAdrian-Ken Rueegsegger 809534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8106d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 811534fe2c1SAdrian-Ken Rueegsegger 812534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 813534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8143b8efb4cSHerbert Xu select CRYPTO_HASH 815534fe2c1SAdrian-Ken Rueegsegger help 816b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 817b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 818b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 819b6d44341SAdrian Bunk (than RIPEMD-160). 820534fe2c1SAdrian-Ken Rueegsegger 82182798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8226d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 82382798f90SAdrian-Ken Rueegsegger 8241da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8251da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 82654ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8271da177e4SLinus Torvalds help 8281da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8291da177e4SLinus Torvalds 83066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 831e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 83266be8951SMathias Krause depends on X86 && 64BIT 83366be8951SMathias Krause select CRYPTO_SHA1 83466be8951SMathias Krause select CRYPTO_HASH 83566be8951SMathias Krause help 83666be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 83766be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 838e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 839e38b6b7fStim when available. 84066be8951SMathias Krause 8418275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 842e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8438275d1aaSTim Chen depends on X86 && 64BIT 8448275d1aaSTim Chen select CRYPTO_SHA256 8458275d1aaSTim Chen select CRYPTO_HASH 8468275d1aaSTim Chen help 8478275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8488275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8498275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 850e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 851e38b6b7fStim Instructions) when available. 8528275d1aaSTim Chen 85387de4579STim Chenconfig CRYPTO_SHA512_SSSE3 85487de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 85587de4579STim Chen depends on X86 && 64BIT 85687de4579STim Chen select CRYPTO_SHA512 85787de4579STim Chen select CRYPTO_HASH 85887de4579STim Chen help 85987de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 86087de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 86187de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 86287de4579STim Chen version 2 (AVX2) instructions, when available. 86387de4579STim Chen 864efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 865efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 866efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 867efdb6f6eSAaro Koskinen select CRYPTO_SHA1 868efdb6f6eSAaro Koskinen select CRYPTO_HASH 869efdb6f6eSAaro Koskinen help 870efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 871efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 872efdb6f6eSAaro Koskinen 8734ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8744ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8754ff28d4cSDavid S. Miller depends on SPARC64 8764ff28d4cSDavid S. Miller select CRYPTO_SHA1 8774ff28d4cSDavid S. Miller select CRYPTO_HASH 8784ff28d4cSDavid S. Miller help 8794ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8804ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 8814ff28d4cSDavid S. Miller 882323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 883323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 884323a6bf1SMichael Ellerman depends on PPC 885323a6bf1SMichael Ellerman help 886323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 887323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 888323a6bf1SMichael Ellerman 889d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 890d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 891d9850fc5SMarkus Stockhausen depends on PPC && SPE 892d9850fc5SMarkus Stockhausen help 893d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 894d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 895d9850fc5SMarkus Stockhausen 8961da177e4SLinus Torvaldsconfig CRYPTO_SHA256 897cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 89850e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 8991da177e4SLinus Torvalds help 9001da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9011da177e4SLinus Torvalds 9021da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9031da177e4SLinus Torvalds security against collision attacks. 9041da177e4SLinus Torvalds 905cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 906cd12fb90SJonathan Lynch of security against collision attacks. 907cd12fb90SJonathan Lynch 9082ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9092ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9102ecc1e95SMarkus Stockhausen depends on PPC && SPE 9112ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9122ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9132ecc1e95SMarkus Stockhausen help 9142ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9152ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9162ecc1e95SMarkus Stockhausen 917efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 918efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 919efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 920efdb6f6eSAaro Koskinen select CRYPTO_SHA256 921efdb6f6eSAaro Koskinen select CRYPTO_HASH 922efdb6f6eSAaro Koskinen help 923efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 924efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 925efdb6f6eSAaro Koskinen 92686c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 92786c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 92886c93b24SDavid S. Miller depends on SPARC64 92986c93b24SDavid S. Miller select CRYPTO_SHA256 93086c93b24SDavid S. Miller select CRYPTO_HASH 93186c93b24SDavid S. Miller help 93286c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 93386c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 93486c93b24SDavid S. Miller 9351da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9361da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 937bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9381da177e4SLinus Torvalds help 9391da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9401da177e4SLinus Torvalds 9411da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9421da177e4SLinus Torvalds security against collision attacks. 9431da177e4SLinus Torvalds 9441da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9451da177e4SLinus Torvalds of security against collision attacks. 9461da177e4SLinus Torvalds 947efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 948efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 949efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 950efdb6f6eSAaro Koskinen select CRYPTO_SHA512 951efdb6f6eSAaro Koskinen select CRYPTO_HASH 952efdb6f6eSAaro Koskinen help 953efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 954efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 955efdb6f6eSAaro Koskinen 956775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 957775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 958775e0c69SDavid S. Miller depends on SPARC64 959775e0c69SDavid S. Miller select CRYPTO_SHA512 960775e0c69SDavid S. Miller select CRYPTO_HASH 961775e0c69SDavid S. Miller help 962775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 963775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 964775e0c69SDavid S. Miller 96553964b9eSJeff Garzikconfig CRYPTO_SHA3 96653964b9eSJeff Garzik tristate "SHA3 digest algorithm" 96753964b9eSJeff Garzik select CRYPTO_HASH 96853964b9eSJeff Garzik help 96953964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 97053964b9eSJeff Garzik cryptographic sponge function family called Keccak. 97153964b9eSJeff Garzik 97253964b9eSJeff Garzik References: 97353964b9eSJeff Garzik http://keccak.noekeon.org/ 97453964b9eSJeff Garzik 9754f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9764f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9774f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9784f0fc160SGilad Ben-Yossef help 9794f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9804f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9814f0fc160SGilad Ben-Yossef 9824f0fc160SGilad Ben-Yossef References: 9834f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9844f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9854f0fc160SGilad Ben-Yossef 986fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 987fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 988fe18957eSVitaly Chikunov select CRYPTO_HASH 989fe18957eSVitaly Chikunov help 990fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 991fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 992fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 993fe18957eSVitaly Chikunov 994fe18957eSVitaly Chikunov References: 995fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 996fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 997fe18957eSVitaly Chikunov 9981da177e4SLinus Torvaldsconfig CRYPTO_TGR192 9991da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1000f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10011da177e4SLinus Torvalds help 10021da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10031da177e4SLinus Torvalds 10041da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10051da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10061da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10071da177e4SLinus Torvalds 10081da177e4SLinus Torvalds See also: 10091da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10101da177e4SLinus Torvalds 1011584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1012584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10134946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10141da177e4SLinus Torvalds help 1015584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10161da177e4SLinus Torvalds 1017584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1018584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10191da177e4SLinus Torvalds 10201da177e4SLinus Torvalds See also: 10216d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10221da177e4SLinus Torvalds 10230e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10240e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10258af00860SRichard Weinberger depends on X86 && 64BIT 10260e1227d3SHuang Ying select CRYPTO_CRYPTD 10270e1227d3SHuang Ying help 10280e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10290e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10300e1227d3SHuang Ying 1031584fffc8SSebastian Siewiorcomment "Ciphers" 10321da177e4SLinus Torvalds 10331da177e4SLinus Torvaldsconfig CRYPTO_AES 10341da177e4SLinus Torvalds tristate "AES cipher algorithms" 1035cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10361da177e4SLinus Torvalds help 10371da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10381da177e4SLinus Torvalds algorithm. 10391da177e4SLinus Torvalds 10401da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10411da177e4SLinus Torvalds both hardware and software across a wide range of computing 10421da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10431da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10441da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10451da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10461da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10471da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10481da177e4SLinus Torvalds 10491da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10501da177e4SLinus Torvalds 10511da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10521da177e4SLinus Torvalds 1053b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1054b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1055b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1056b5e0b032SArd Biesheuvel help 1057b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1058b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1059b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1060b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1061b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1062b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1063b5e0b032SArd Biesheuvel 1064b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1065b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1066b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1067b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10680a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10690a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1070b5e0b032SArd Biesheuvel 10711da177e4SLinus Torvaldsconfig CRYPTO_AES_586 10721da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1073cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1074cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10755157dea8SSebastian Siewior select CRYPTO_AES 10761da177e4SLinus Torvalds help 10771da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10781da177e4SLinus Torvalds algorithm. 10791da177e4SLinus Torvalds 10801da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10811da177e4SLinus Torvalds both hardware and software across a wide range of computing 10821da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10831da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10841da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10851da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10861da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10871da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10881da177e4SLinus Torvalds 10891da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10901da177e4SLinus Torvalds 10911da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 10921da177e4SLinus Torvalds 1093a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1094a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1095cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1096cce9e06dSHerbert Xu select CRYPTO_ALGAPI 109781190b32SSebastian Siewior select CRYPTO_AES 1098a2a892a2SAndreas Steinmetz help 1099a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1100a2a892a2SAndreas Steinmetz algorithm. 1101a2a892a2SAndreas Steinmetz 1102a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1103a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1104a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1105a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1106a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1107a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1108a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1109a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1110a2a892a2SAndreas Steinmetz 1111a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1112a2a892a2SAndreas Steinmetz 1113a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1114a2a892a2SAndreas Steinmetz 111554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 111654b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11178af00860SRichard Weinberger depends on X86 111885671860SHerbert Xu select CRYPTO_AEAD 11190d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11200d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 112154b6a1bdSHuang Ying select CRYPTO_ALGAPI 112285671860SHerbert Xu select CRYPTO_BLKCIPHER 11237643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 112485671860SHerbert Xu select CRYPTO_SIMD 112554b6a1bdSHuang Ying help 112654b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 112754b6a1bdSHuang Ying 112854b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 112954b6a1bdSHuang Ying algorithm. 113054b6a1bdSHuang Ying 113154b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 113254b6a1bdSHuang Ying both hardware and software across a wide range of computing 113354b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 113454b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 113554b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 113654b6a1bdSHuang Ying suited for restricted-space environments, in which it also 113754b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 113854b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 113954b6a1bdSHuang Ying 114054b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 114154b6a1bdSHuang Ying 114254b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 114354b6a1bdSHuang Ying 11440d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11450d258efbSMathias Krause for some popular block cipher mode is supported too, including 1146944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11470d258efbSMathias Krause acceleration for CTR. 11482cf4ac8bSHuang Ying 11499bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11509bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11519bf4852dSDavid S. Miller depends on SPARC64 11529bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11539bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11549bf4852dSDavid S. Miller help 11559bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11569bf4852dSDavid S. Miller 11579bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11589bf4852dSDavid S. Miller algorithm. 11599bf4852dSDavid S. Miller 11609bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11619bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11629bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11639bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11649bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11659bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11669bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11679bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11689bf4852dSDavid S. Miller 11699bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11709bf4852dSDavid S. Miller 11719bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11729bf4852dSDavid S. Miller 11739bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11749bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11759bf4852dSDavid S. Miller ECB and CBC. 11769bf4852dSDavid S. Miller 1177504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1178504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1179504c6143SMarkus Stockhausen depends on PPC && SPE 1180504c6143SMarkus Stockhausen help 1181504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1182504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1183504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1184504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1185504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1186504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1187504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1188504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1189504c6143SMarkus Stockhausen 11901da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11911da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1192cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11931da177e4SLinus Torvalds help 11941da177e4SLinus Torvalds Anubis cipher algorithm. 11951da177e4SLinus Torvalds 11961da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11971da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11981da177e4SLinus Torvalds in the NESSIE competition. 11991da177e4SLinus Torvalds 12001da177e4SLinus Torvalds See also: 12016d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12026d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12031da177e4SLinus Torvalds 1204584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1205584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1206b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1207e2ee95b8SHye-Shik Chang help 1208584fffc8SSebastian Siewior ARC4 cipher algorithm. 1209e2ee95b8SHye-Shik Chang 1210584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1211584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1212584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1213584fffc8SSebastian Siewior weakness of the algorithm. 1214584fffc8SSebastian Siewior 1215584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1216584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1217584fffc8SSebastian Siewior select CRYPTO_ALGAPI 121852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1219584fffc8SSebastian Siewior help 1220584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1221584fffc8SSebastian Siewior 1222584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1223584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1224584fffc8SSebastian Siewior designed for use on "large microprocessors". 1225e2ee95b8SHye-Shik Chang 1226e2ee95b8SHye-Shik Chang See also: 1227584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1228584fffc8SSebastian Siewior 122952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 123052ba867cSJussi Kivilinna tristate 123152ba867cSJussi Kivilinna help 123252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 123352ba867cSJussi Kivilinna generic c and the assembler implementations. 123452ba867cSJussi Kivilinna 123552ba867cSJussi Kivilinna See also: 123652ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 123752ba867cSJussi Kivilinna 123864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 123964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1240f21a7c19SAl Viro depends on X86 && 64BIT 1241c1679171SEric Biggers select CRYPTO_BLKCIPHER 124264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 124364b94ceaSJussi Kivilinna help 124464b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 124564b94ceaSJussi Kivilinna 124664b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 124764b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 124864b94ceaSJussi Kivilinna designed for use on "large microprocessors". 124964b94ceaSJussi Kivilinna 125064b94ceaSJussi Kivilinna See also: 125164b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 125264b94ceaSJussi Kivilinna 1253584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1254584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1255584fffc8SSebastian Siewior depends on CRYPTO 1256584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1257584fffc8SSebastian Siewior help 1258584fffc8SSebastian Siewior Camellia cipher algorithms module. 1259584fffc8SSebastian Siewior 1260584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1261584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1262584fffc8SSebastian Siewior 1263584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1264584fffc8SSebastian Siewior 1265584fffc8SSebastian Siewior See also: 1266584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1267584fffc8SSebastian Siewior 12680b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12690b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1270f21a7c19SAl Viro depends on X86 && 64BIT 12710b95ec56SJussi Kivilinna depends on CRYPTO 12721af6d037SEric Biggers select CRYPTO_BLKCIPHER 1273964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12740b95ec56SJussi Kivilinna help 12750b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12760b95ec56SJussi Kivilinna 12770b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12780b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12790b95ec56SJussi Kivilinna 12800b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12810b95ec56SJussi Kivilinna 12820b95ec56SJussi Kivilinna See also: 12830b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12840b95ec56SJussi Kivilinna 1285d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1286d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1287d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1288d9b1d2e7SJussi Kivilinna depends on CRYPTO 128944893bc2SEric Biggers select CRYPTO_BLKCIPHER 1290d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 129144893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 129244893bc2SEric Biggers select CRYPTO_SIMD 1293d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1294d9b1d2e7SJussi Kivilinna help 1295d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1296d9b1d2e7SJussi Kivilinna 1297d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1298d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1299d9b1d2e7SJussi Kivilinna 1300d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1301d9b1d2e7SJussi Kivilinna 1302d9b1d2e7SJussi Kivilinna See also: 1303d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1304d9b1d2e7SJussi Kivilinna 1305f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1306f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1307f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1308f3f935a7SJussi Kivilinna depends on CRYPTO 1309f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1310f3f935a7SJussi Kivilinna help 1311f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1312f3f935a7SJussi Kivilinna 1313f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1314f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1315f3f935a7SJussi Kivilinna 1316f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1317f3f935a7SJussi Kivilinna 1318f3f935a7SJussi Kivilinna See also: 1319f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1320f3f935a7SJussi Kivilinna 132181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 132281658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 132381658ad0SDavid S. Miller depends on SPARC64 132481658ad0SDavid S. Miller depends on CRYPTO 132581658ad0SDavid S. Miller select CRYPTO_ALGAPI 132681658ad0SDavid S. Miller help 132781658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 132881658ad0SDavid S. Miller 132981658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 133081658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 133181658ad0SDavid S. Miller 133281658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 133381658ad0SDavid S. Miller 133481658ad0SDavid S. Miller See also: 133581658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 133681658ad0SDavid S. Miller 1337044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1338044ab525SJussi Kivilinna tristate 1339044ab525SJussi Kivilinna help 1340044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1341044ab525SJussi Kivilinna generic c and the assembler implementations. 1342044ab525SJussi Kivilinna 1343584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1344584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1345584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1346044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1347584fffc8SSebastian Siewior help 1348584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1349584fffc8SSebastian Siewior described in RFC2144. 1350584fffc8SSebastian Siewior 13514d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13524d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13534d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13541e63183aSEric Biggers select CRYPTO_BLKCIPHER 13554d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13561e63183aSEric Biggers select CRYPTO_CAST_COMMON 13571e63183aSEric Biggers select CRYPTO_SIMD 13584d6d6a2cSJohannes Goetzfried help 13594d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13604d6d6a2cSJohannes Goetzfried described in RFC2144. 13614d6d6a2cSJohannes Goetzfried 13624d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13634d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13644d6d6a2cSJohannes Goetzfried 1365584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1366584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1367584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1368044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1369584fffc8SSebastian Siewior help 1370584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1371584fffc8SSebastian Siewior described in RFC2612. 1372584fffc8SSebastian Siewior 13734ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13744ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13754ea1277dSJohannes Goetzfried depends on X86 && 64BIT 13764bd96924SEric Biggers select CRYPTO_BLKCIPHER 13774ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13784bd96924SEric Biggers select CRYPTO_CAST_COMMON 13794bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13804bd96924SEric Biggers select CRYPTO_SIMD 13814ea1277dSJohannes Goetzfried select CRYPTO_XTS 13824ea1277dSJohannes Goetzfried help 13834ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13844ea1277dSJohannes Goetzfried described in RFC2612. 13854ea1277dSJohannes Goetzfried 13864ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13874ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13884ea1277dSJohannes Goetzfried 1389584fffc8SSebastian Siewiorconfig CRYPTO_DES 1390584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1391584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1392584fffc8SSebastian Siewior help 1393584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1394584fffc8SSebastian Siewior 1395c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1396c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 139797da37b3SDave Jones depends on SPARC64 1398c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1399c5aac2dfSDavid S. Miller select CRYPTO_DES 1400c5aac2dfSDavid S. Miller help 1401c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1402c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1403c5aac2dfSDavid S. Miller 14046574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14056574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14066574e6c6SJussi Kivilinna depends on X86 && 64BIT 140709c0f03bSEric Biggers select CRYPTO_BLKCIPHER 14086574e6c6SJussi Kivilinna select CRYPTO_DES 14096574e6c6SJussi Kivilinna help 14106574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14116574e6c6SJussi Kivilinna 14126574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14136574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14146574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14156574e6c6SJussi Kivilinna one that processes three blocks parallel. 14166574e6c6SJussi Kivilinna 1417584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1418584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1419584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1420584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1421584fffc8SSebastian Siewior help 1422584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1423584fffc8SSebastian Siewior 1424584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1425584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1426584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1427584fffc8SSebastian Siewior help 1428584fffc8SSebastian Siewior Khazad cipher algorithm. 1429584fffc8SSebastian Siewior 1430584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1431584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1432584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1433584fffc8SSebastian Siewior 1434584fffc8SSebastian Siewior See also: 14356d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1436e2ee95b8SHye-Shik Chang 14372407d608STan Swee Hengconfig CRYPTO_SALSA20 14383b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14392407d608STan Swee Heng select CRYPTO_BLKCIPHER 14402407d608STan Swee Heng help 14412407d608STan Swee Heng Salsa20 stream cipher algorithm. 14422407d608STan Swee Heng 14432407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14442407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14452407d608STan Swee Heng 14462407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14472407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14481da177e4SLinus Torvalds 1449c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1450aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1451c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1452c08d0e64SMartin Willi help 1453aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1454c08d0e64SMartin Willi 1455c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1456c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1457de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1458c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1459c08d0e64SMartin Willi 1460de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1461de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1462de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1463de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1464de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1465de61d7aeSEric Biggers 1466aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1467aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1468aa762409SEric Biggers in some performance-sensitive scenarios. 1469aa762409SEric Biggers 1470c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 1471*4af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1472c9320b6dSMartin Willi depends on X86 && 64BIT 1473c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1474c9320b6dSMartin Willi select CRYPTO_CHACHA20 1475c9320b6dSMartin Willi help 1476*4af78261SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20 1477*4af78261SEric Biggers and XChaCha20 stream ciphers. 1478c9320b6dSMartin Willi 1479584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1480584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1481584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1482584fffc8SSebastian Siewior help 1483584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1484584fffc8SSebastian Siewior 1485584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1486584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1487584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1488584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1489584fffc8SSebastian Siewior 1490584fffc8SSebastian Siewior See also: 1491584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1492584fffc8SSebastian Siewior 1493584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1494584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1495584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1496584fffc8SSebastian Siewior help 1497584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1498584fffc8SSebastian Siewior 1499584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1500584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1501584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1502584fffc8SSebastian Siewior 1503584fffc8SSebastian Siewior See also: 1504584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1505584fffc8SSebastian Siewior 1506937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1507937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1508937c30d7SJussi Kivilinna depends on X86 && 64BIT 1509e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1510596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1511937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1512e0f409dcSEric Biggers select CRYPTO_SIMD 1513937c30d7SJussi Kivilinna help 1514937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1515937c30d7SJussi Kivilinna 1516937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1517937c30d7SJussi Kivilinna of 8 bits. 1518937c30d7SJussi Kivilinna 15191e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1520937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1521937c30d7SJussi Kivilinna 1522937c30d7SJussi Kivilinna See also: 1523937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1524937c30d7SJussi Kivilinna 1525251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1526251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1527251496dbSJussi Kivilinna depends on X86 && !64BIT 1528e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1529596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1530251496dbSJussi Kivilinna select CRYPTO_SERPENT 1531e0f409dcSEric Biggers select CRYPTO_SIMD 1532251496dbSJussi Kivilinna help 1533251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1534251496dbSJussi Kivilinna 1535251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1536251496dbSJussi Kivilinna of 8 bits. 1537251496dbSJussi Kivilinna 1538251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1539251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1540251496dbSJussi Kivilinna 1541251496dbSJussi Kivilinna See also: 1542251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1543251496dbSJussi Kivilinna 15447efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15457efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15467efe4076SJohannes Goetzfried depends on X86 && 64BIT 1547e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15481d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15497efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1550e16bf974SEric Biggers select CRYPTO_SIMD 15517efe4076SJohannes Goetzfried select CRYPTO_XTS 15527efe4076SJohannes Goetzfried help 15537efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15547efe4076SJohannes Goetzfried 15557efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15567efe4076SJohannes Goetzfried of 8 bits. 15577efe4076SJohannes Goetzfried 15587efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15597efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15607efe4076SJohannes Goetzfried 15617efe4076SJohannes Goetzfried See also: 15627efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15637efe4076SJohannes Goetzfried 156456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 156556d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 156656d76c96SJussi Kivilinna depends on X86 && 64BIT 156756d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 156856d76c96SJussi Kivilinna help 156956d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 157056d76c96SJussi Kivilinna 157156d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 157256d76c96SJussi Kivilinna of 8 bits. 157356d76c96SJussi Kivilinna 157456d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 157556d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 157656d76c96SJussi Kivilinna 157756d76c96SJussi Kivilinna See also: 157856d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 157956d76c96SJussi Kivilinna 1580747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1581747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1582747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1583747c8ce4SGilad Ben-Yossef help 1584747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1585747c8ce4SGilad Ben-Yossef 1586747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1587747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1588747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1589747c8ce4SGilad Ben-Yossef 1590747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1591747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1592747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1593747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1594747c8ce4SGilad Ben-Yossef 1595747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1596747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1597747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1598747c8ce4SGilad Ben-Yossef 1599747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1600747c8ce4SGilad Ben-Yossef 1601747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1602747c8ce4SGilad Ben-Yossef 1603747c8ce4SGilad Ben-Yossef If unsure, say N. 1604747c8ce4SGilad Ben-Yossef 1605584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1606584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1607584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1608584fffc8SSebastian Siewior help 1609584fffc8SSebastian Siewior TEA cipher algorithm. 1610584fffc8SSebastian Siewior 1611584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1612584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1613584fffc8SSebastian Siewior little memory. 1614584fffc8SSebastian Siewior 1615584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1616584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1617584fffc8SSebastian Siewior in the TEA algorithm. 1618584fffc8SSebastian Siewior 1619584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1620584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1621584fffc8SSebastian Siewior 1622584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1623584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1624584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1625584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1626584fffc8SSebastian Siewior help 1627584fffc8SSebastian Siewior Twofish cipher algorithm. 1628584fffc8SSebastian Siewior 1629584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1630584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1631584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1632584fffc8SSebastian Siewior bits. 1633584fffc8SSebastian Siewior 1634584fffc8SSebastian Siewior See also: 1635584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1636584fffc8SSebastian Siewior 1637584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1638584fffc8SSebastian Siewior tristate 1639584fffc8SSebastian Siewior help 1640584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1641584fffc8SSebastian Siewior generic c and the assembler implementations. 1642584fffc8SSebastian Siewior 1643584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1644584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1645584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1646584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1647584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1648584fffc8SSebastian Siewior help 1649584fffc8SSebastian Siewior Twofish cipher algorithm. 1650584fffc8SSebastian Siewior 1651584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1652584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1653584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1654584fffc8SSebastian Siewior bits. 1655584fffc8SSebastian Siewior 1656584fffc8SSebastian Siewior See also: 1657584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1658584fffc8SSebastian Siewior 1659584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1660584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1661584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1662584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1663584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1664584fffc8SSebastian Siewior help 1665584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1666584fffc8SSebastian Siewior 1667584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1668584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1669584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1670584fffc8SSebastian Siewior bits. 1671584fffc8SSebastian Siewior 1672584fffc8SSebastian Siewior See also: 1673584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1674584fffc8SSebastian Siewior 16758280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16768280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1677f21a7c19SAl Viro depends on X86 && 64BIT 167837992fa4SEric Biggers select CRYPTO_BLKCIPHER 16798280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16808280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1681414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16828280daadSJussi Kivilinna help 16838280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16848280daadSJussi Kivilinna 16858280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16868280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16878280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16888280daadSJussi Kivilinna bits. 16898280daadSJussi Kivilinna 16908280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16918280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16928280daadSJussi Kivilinna 16938280daadSJussi Kivilinna See also: 16948280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16958280daadSJussi Kivilinna 1696107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1697107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1698107778b5SJohannes Goetzfried depends on X86 && 64BIT 16990e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1700a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17010e6ab46dSEric Biggers select CRYPTO_SIMD 1702107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1703107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1704107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1705107778b5SJohannes Goetzfried help 1706107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1707107778b5SJohannes Goetzfried 1708107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1709107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1710107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1711107778b5SJohannes Goetzfried bits. 1712107778b5SJohannes Goetzfried 1713107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1714107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1715107778b5SJohannes Goetzfried 1716107778b5SJohannes Goetzfried See also: 1717107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1718107778b5SJohannes Goetzfried 1719584fffc8SSebastian Siewiorcomment "Compression" 1720584fffc8SSebastian Siewior 17211da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17221da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1723cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1724f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17251da177e4SLinus Torvalds select ZLIB_INFLATE 17261da177e4SLinus Torvalds select ZLIB_DEFLATE 17271da177e4SLinus Torvalds help 17281da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17291da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17301da177e4SLinus Torvalds 17311da177e4SLinus Torvalds You will most probably want this if using IPSec. 17321da177e4SLinus Torvalds 17330b77abb3SZoltan Sogorconfig CRYPTO_LZO 17340b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17350b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1736ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17370b77abb3SZoltan Sogor select LZO_COMPRESS 17380b77abb3SZoltan Sogor select LZO_DECOMPRESS 17390b77abb3SZoltan Sogor help 17400b77abb3SZoltan Sogor This is the LZO algorithm. 17410b77abb3SZoltan Sogor 174235a1fc18SSeth Jenningsconfig CRYPTO_842 174335a1fc18SSeth Jennings tristate "842 compression algorithm" 17442062c5b6SDan Streetman select CRYPTO_ALGAPI 17456a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17462062c5b6SDan Streetman select 842_COMPRESS 17472062c5b6SDan Streetman select 842_DECOMPRESS 174835a1fc18SSeth Jennings help 174935a1fc18SSeth Jennings This is the 842 algorithm. 175035a1fc18SSeth Jennings 17510ea8530dSChanho Minconfig CRYPTO_LZ4 17520ea8530dSChanho Min tristate "LZ4 compression algorithm" 17530ea8530dSChanho Min select CRYPTO_ALGAPI 17548cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17550ea8530dSChanho Min select LZ4_COMPRESS 17560ea8530dSChanho Min select LZ4_DECOMPRESS 17570ea8530dSChanho Min help 17580ea8530dSChanho Min This is the LZ4 algorithm. 17590ea8530dSChanho Min 17600ea8530dSChanho Minconfig CRYPTO_LZ4HC 17610ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17620ea8530dSChanho Min select CRYPTO_ALGAPI 176391d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17640ea8530dSChanho Min select LZ4HC_COMPRESS 17650ea8530dSChanho Min select LZ4_DECOMPRESS 17660ea8530dSChanho Min help 17670ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17680ea8530dSChanho Min 1769d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1770d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1771d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1772d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1773d28fc3dbSNick Terrell select ZSTD_COMPRESS 1774d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1775d28fc3dbSNick Terrell help 1776d28fc3dbSNick Terrell This is the zstd algorithm. 1777d28fc3dbSNick Terrell 177817f0f4a4SNeil Hormancomment "Random Number Generation" 177917f0f4a4SNeil Horman 178017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 178117f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 178217f0f4a4SNeil Horman select CRYPTO_AES 178317f0f4a4SNeil Horman select CRYPTO_RNG 178417f0f4a4SNeil Horman help 178517f0f4a4SNeil Horman This option enables the generic pseudo random number generator 178617f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17877dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17887dd607e8SJiri Kosina CRYPTO_FIPS is selected 178917f0f4a4SNeil Horman 1790f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1791419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1792419090c6SStephan Mueller help 1793419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1794419090c6SStephan Mueller more of the DRBG types must be selected. 1795419090c6SStephan Mueller 1796f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1797419090c6SStephan Mueller 1798419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1799401e4238SHerbert Xu bool 1800419090c6SStephan Mueller default y 1801419090c6SStephan Mueller select CRYPTO_HMAC 1802826775bbSHerbert Xu select CRYPTO_SHA256 1803419090c6SStephan Mueller 1804419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1805419090c6SStephan Mueller bool "Enable Hash DRBG" 1806826775bbSHerbert Xu select CRYPTO_SHA256 1807419090c6SStephan Mueller help 1808419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1809419090c6SStephan Mueller 1810419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1811419090c6SStephan Mueller bool "Enable CTR DRBG" 1812419090c6SStephan Mueller select CRYPTO_AES 181335591285SStephan Mueller depends on CRYPTO_CTR 1814419090c6SStephan Mueller help 1815419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1816419090c6SStephan Mueller 1817f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1818f2c89a10SHerbert Xu tristate 1819401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1820f2c89a10SHerbert Xu select CRYPTO_RNG 1821bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1822f2c89a10SHerbert Xu 1823f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1824419090c6SStephan Mueller 1825bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1826bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18272f313e02SArnd Bergmann select CRYPTO_RNG 1828bb5530e4SStephan Mueller help 1829bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1830bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1831bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1832bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1833bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1834bb5530e4SStephan Mueller 183503c8efc1SHerbert Xuconfig CRYPTO_USER_API 183603c8efc1SHerbert Xu tristate 183703c8efc1SHerbert Xu 1838fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1839fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18407451708fSHerbert Xu depends on NET 1841fe869cdbSHerbert Xu select CRYPTO_HASH 1842fe869cdbSHerbert Xu select CRYPTO_USER_API 1843fe869cdbSHerbert Xu help 1844fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1845fe869cdbSHerbert Xu algorithms. 1846fe869cdbSHerbert Xu 18478ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18488ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18497451708fSHerbert Xu depends on NET 18508ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18518ff59090SHerbert Xu select CRYPTO_USER_API 18528ff59090SHerbert Xu help 18538ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18548ff59090SHerbert Xu key cipher algorithms. 18558ff59090SHerbert Xu 18562f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18572f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18582f375538SStephan Mueller depends on NET 18592f375538SStephan Mueller select CRYPTO_RNG 18602f375538SStephan Mueller select CRYPTO_USER_API 18612f375538SStephan Mueller help 18622f375538SStephan Mueller This option enables the user-spaces interface for random 18632f375538SStephan Mueller number generator algorithms. 18642f375538SStephan Mueller 1865b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1866b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1867b64a2d95SHerbert Xu depends on NET 1868b64a2d95SHerbert Xu select CRYPTO_AEAD 186972548b09SStephan Mueller select CRYPTO_BLKCIPHER 187072548b09SStephan Mueller select CRYPTO_NULL 1871b64a2d95SHerbert Xu select CRYPTO_USER_API 1872b64a2d95SHerbert Xu help 1873b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1874b64a2d95SHerbert Xu cipher algorithms. 1875b64a2d95SHerbert Xu 1876cac5818cSCorentin Labbeconfig CRYPTO_STATS 1877cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1878a6a31385SCorentin Labbe depends on CRYPTO_USER 1879cac5818cSCorentin Labbe help 1880cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1881cac5818cSCorentin Labbe This will collect: 1882cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1883cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1884cac5818cSCorentin Labbe - size and numbers of hash operations 1885cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1886cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1887cac5818cSCorentin Labbe 1888ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1889ee08997fSDmitry Kasatkin bool 1890ee08997fSDmitry Kasatkin 18911da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1892964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1893cfc411e7SDavid Howellssource certs/Kconfig 18941da177e4SLinus Torvalds 1895cce9e06dSHerbert Xuendif # if CRYPTO 1896