1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 116cfc2bb32STadeusz Strukconfig CRYPTO_RSA 117cfc2bb32STadeusz Struk tristate "RSA algorithm" 118425e0172STadeusz Struk select CRYPTO_AKCIPHER 11958446fefSTadeusz Struk select CRYPTO_MANAGER 120cfc2bb32STadeusz Struk select MPILIB 121cfc2bb32STadeusz Struk select ASN1 122cfc2bb32STadeusz Struk help 123cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 124cfc2bb32STadeusz Struk 125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 126802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 127802c7f1cSSalvatore Benedetto select CRYPTO_KPP 128802c7f1cSSalvatore Benedetto select MPILIB 129802c7f1cSSalvatore Benedetto help 130802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 131802c7f1cSSalvatore Benedetto 1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1333c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 134b5b90077SHauke Mehrtens select CRYPTO_KPP 1356755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1363c4b2390SSalvatore Benedetto help 1373c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 138802c7f1cSSalvatore Benedetto 1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1402b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1416a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1422b8c19dbSHerbert Xu help 1432b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1442b8c19dbSHerbert Xu cbc(aes). 1452b8c19dbSHerbert Xu 1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1476a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1486a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1496a0fcbb4SHerbert Xu select CRYPTO_HASH2 1506a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 151946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1524e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1532ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1546a0fcbb4SHerbert Xu 155a38f7907SSteffen Klassertconfig CRYPTO_USER 156a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1575db017aaSHerbert Xu depends on NET 158a38f7907SSteffen Klassert select CRYPTO_MANAGER 159a38f7907SSteffen Klassert help 160d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 161a38f7907SSteffen Klassert cbc(aes). 162a38f7907SSteffen Klassert 163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 164326a6346SHerbert Xu bool "Disable run-time self tests" 16500ca28a5SHerbert Xu default y 16600ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1670b767f96SAlexander Shishkin help 168326a6346SHerbert Xu Disable run-time self tests that normally take place at 169326a6346SHerbert Xu algorithm registration. 1700b767f96SAlexander Shishkin 171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 175584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 176584fffc8SSebastian Siewior option will be selected automatically if you select such a 177584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 178584fffc8SSebastian Siewior an external module that requires these functions. 179584fffc8SSebastian Siewior 180584fffc8SSebastian Siewiorconfig CRYPTO_NULL 181584fffc8SSebastian Siewior tristate "Null algorithms" 182149a3971SHerbert Xu select CRYPTO_NULL2 183584fffc8SSebastian Siewior help 184584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 185584fffc8SSebastian Siewior 186149a3971SHerbert Xuconfig CRYPTO_NULL2 187dd43c4e9SHerbert Xu tristate 188149a3971SHerbert Xu select CRYPTO_ALGAPI2 189149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 190149a3971SHerbert Xu select CRYPTO_HASH2 191149a3971SHerbert Xu 1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1933b4afaf2SKees Cook tristate "Parallel crypto engine" 1943b4afaf2SKees Cook depends on SMP 1955068c7a8SSteffen Klassert select PADATA 1965068c7a8SSteffen Klassert select CRYPTO_MANAGER 1975068c7a8SSteffen Klassert select CRYPTO_AEAD 1985068c7a8SSteffen Klassert help 1995068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2005068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2015068c7a8SSteffen Klassert 20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20325c38d3fSHuang Ying tristate 20425c38d3fSHuang Ying 205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 206584fffc8SSebastian Siewior tristate "Software async crypto daemon" 207584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 208b8a28251SLoc Ho select CRYPTO_HASH 209584fffc8SSebastian Siewior select CRYPTO_MANAGER 210254eff77SHuang Ying select CRYPTO_WORKQUEUE 211584fffc8SSebastian Siewior help 212584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 213584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 214584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 215584fffc8SSebastian Siewior 2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2171e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2181e65b81aSTim Chen select CRYPTO_BLKCIPHER 2191e65b81aSTim Chen select CRYPTO_HASH 2201e65b81aSTim Chen select CRYPTO_MANAGER 2211e65b81aSTim Chen select CRYPTO_WORKQUEUE 2221e65b81aSTim Chen help 2231e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2241e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2251e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2261e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2271e65b81aSTim Chen in the context of this kernel thread and drivers can post 2280e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2291e65b81aSTim Chen 230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 231584fffc8SSebastian Siewior tristate "Authenc support" 232584fffc8SSebastian Siewior select CRYPTO_AEAD 233584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 234584fffc8SSebastian Siewior select CRYPTO_MANAGER 235584fffc8SSebastian Siewior select CRYPTO_HASH 236e94c6a7aSHerbert Xu select CRYPTO_NULL 237584fffc8SSebastian Siewior help 238584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 239584fffc8SSebastian Siewior This is required for IPSec. 240584fffc8SSebastian Siewior 241584fffc8SSebastian Siewiorconfig CRYPTO_TEST 242584fffc8SSebastian Siewior tristate "Testing module" 243584fffc8SSebastian Siewior depends on m 244da7f033dSHerbert Xu select CRYPTO_MANAGER 245584fffc8SSebastian Siewior help 246584fffc8SSebastian Siewior Quick & dirty crypto test module. 247584fffc8SSebastian Siewior 248a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER 249ffaf9156SJussi Kivilinna tristate 250ffaf9156SJussi Kivilinna select CRYPTO_CRYPTD 251ffaf9156SJussi Kivilinna 252266d0516SHerbert Xuconfig CRYPTO_SIMD 253266d0516SHerbert Xu tristate 254266d0516SHerbert Xu select CRYPTO_CRYPTD 255266d0516SHerbert Xu 256596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 257596d8750SJussi Kivilinna tristate 258596d8750SJussi Kivilinna depends on X86 259065ce327SHerbert Xu select CRYPTO_BLKCIPHER 260596d8750SJussi Kivilinna 261735d37b5SBaolin Wangconfig CRYPTO_ENGINE 262735d37b5SBaolin Wang tristate 263735d37b5SBaolin Wang 264584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 265584fffc8SSebastian Siewior 266584fffc8SSebastian Siewiorconfig CRYPTO_CCM 267584fffc8SSebastian Siewior tristate "CCM support" 268584fffc8SSebastian Siewior select CRYPTO_CTR 269f15f05b0SArd Biesheuvel select CRYPTO_HASH 270584fffc8SSebastian Siewior select CRYPTO_AEAD 271584fffc8SSebastian Siewior help 272584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 273584fffc8SSebastian Siewior 274584fffc8SSebastian Siewiorconfig CRYPTO_GCM 275584fffc8SSebastian Siewior tristate "GCM/GMAC support" 276584fffc8SSebastian Siewior select CRYPTO_CTR 277584fffc8SSebastian Siewior select CRYPTO_AEAD 2789382d97aSHuang Ying select CRYPTO_GHASH 2799489667dSJussi Kivilinna select CRYPTO_NULL 280584fffc8SSebastian Siewior help 281584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 282584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 283584fffc8SSebastian Siewior 28471ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28571ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28671ebc4d1SMartin Willi select CRYPTO_CHACHA20 28771ebc4d1SMartin Willi select CRYPTO_POLY1305 28871ebc4d1SMartin Willi select CRYPTO_AEAD 28971ebc4d1SMartin Willi help 29071ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 29171ebc4d1SMartin Willi 29271ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 29371ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29471ebc4d1SMartin Willi IETF protocols. 29571ebc4d1SMartin Willi 296584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 297584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 298584fffc8SSebastian Siewior select CRYPTO_AEAD 299584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 300856e3f40SHerbert Xu select CRYPTO_NULL 301401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 302584fffc8SSebastian Siewior help 303584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 304584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 305584fffc8SSebastian Siewior 306a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 307a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 308a10f554fSHerbert Xu select CRYPTO_AEAD 309a10f554fSHerbert Xu select CRYPTO_NULL 310401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3113491244cSHerbert Xu default m 312a10f554fSHerbert Xu help 313a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 314a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 315a10f554fSHerbert Xu algorithm for CBC. 316a10f554fSHerbert Xu 317584fffc8SSebastian Siewiorcomment "Block modes" 318584fffc8SSebastian Siewior 319584fffc8SSebastian Siewiorconfig CRYPTO_CBC 320584fffc8SSebastian Siewior tristate "CBC support" 321584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 322584fffc8SSebastian Siewior select CRYPTO_MANAGER 323584fffc8SSebastian Siewior help 324584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 325584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 326584fffc8SSebastian Siewior 327584fffc8SSebastian Siewiorconfig CRYPTO_CTR 328584fffc8SSebastian Siewior tristate "CTR support" 329584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 330584fffc8SSebastian Siewior select CRYPTO_SEQIV 331584fffc8SSebastian Siewior select CRYPTO_MANAGER 332584fffc8SSebastian Siewior help 333584fffc8SSebastian Siewior CTR: Counter mode 334584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 335584fffc8SSebastian Siewior 336584fffc8SSebastian Siewiorconfig CRYPTO_CTS 337584fffc8SSebastian Siewior tristate "CTS support" 338584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 339584fffc8SSebastian Siewior help 340584fffc8SSebastian Siewior CTS: Cipher Text Stealing 341584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 342584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 343584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 344584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 345584fffc8SSebastian Siewior for AES encryption. 346584fffc8SSebastian Siewior 347584fffc8SSebastian Siewiorconfig CRYPTO_ECB 348584fffc8SSebastian Siewior tristate "ECB support" 349584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 350584fffc8SSebastian Siewior select CRYPTO_MANAGER 351584fffc8SSebastian Siewior help 352584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 353584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 354584fffc8SSebastian Siewior the input block by block. 355584fffc8SSebastian Siewior 356584fffc8SSebastian Siewiorconfig CRYPTO_LRW 3572470a2b2SJussi Kivilinna tristate "LRW support" 358584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 359584fffc8SSebastian Siewior select CRYPTO_MANAGER 360584fffc8SSebastian Siewior select CRYPTO_GF128MUL 361584fffc8SSebastian Siewior help 362584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 363584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 364584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 365584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 366584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 367584fffc8SSebastian Siewior 368584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 369584fffc8SSebastian Siewior tristate "PCBC support" 370584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 371584fffc8SSebastian Siewior select CRYPTO_MANAGER 372584fffc8SSebastian Siewior help 373584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 374584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 375584fffc8SSebastian Siewior 376584fffc8SSebastian Siewiorconfig CRYPTO_XTS 3775bcf8e6dSJussi Kivilinna tristate "XTS support" 378584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 379584fffc8SSebastian Siewior select CRYPTO_MANAGER 38012cb3a1cSMilan Broz select CRYPTO_ECB 381584fffc8SSebastian Siewior help 382584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 383584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 384584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 385584fffc8SSebastian Siewior 3861c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 3871c49678eSStephan Mueller tristate "Key wrapping support" 3881c49678eSStephan Mueller select CRYPTO_BLKCIPHER 3891c49678eSStephan Mueller help 3901c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 3911c49678eSStephan Mueller padding. 3921c49678eSStephan Mueller 393584fffc8SSebastian Siewiorcomment "Hash modes" 394584fffc8SSebastian Siewior 39593b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 39693b5e86aSJussi Kivilinna tristate "CMAC support" 39793b5e86aSJussi Kivilinna select CRYPTO_HASH 39893b5e86aSJussi Kivilinna select CRYPTO_MANAGER 39993b5e86aSJussi Kivilinna help 40093b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 40193b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 40293b5e86aSJussi Kivilinna 40393b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 40493b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 40593b5e86aSJussi Kivilinna 4061da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4078425165dSHerbert Xu tristate "HMAC support" 4080796ae06SHerbert Xu select CRYPTO_HASH 40943518407SHerbert Xu select CRYPTO_MANAGER 4101da177e4SLinus Torvalds help 4111da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4121da177e4SLinus Torvalds This is required for IPSec. 4131da177e4SLinus Torvalds 414333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 415333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 416333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 417333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 418333b0d7eSKazunori MIYAZAWA help 419333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 420333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 421333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 422333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 423333b0d7eSKazunori MIYAZAWA 424f1939f7cSShane Wangconfig CRYPTO_VMAC 425f1939f7cSShane Wang tristate "VMAC support" 426f1939f7cSShane Wang select CRYPTO_HASH 427f1939f7cSShane Wang select CRYPTO_MANAGER 428f1939f7cSShane Wang help 429f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 430f1939f7cSShane Wang very high speed on 64-bit architectures. 431f1939f7cSShane Wang 432f1939f7cSShane Wang See also: 433f1939f7cSShane Wang <http://fastcrypto.org/vmac> 434f1939f7cSShane Wang 435584fffc8SSebastian Siewiorcomment "Digest" 436584fffc8SSebastian Siewior 437584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 438584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 4395773a3e6SHerbert Xu select CRYPTO_HASH 4406a0962b2SDarrick J. Wong select CRC32 4411da177e4SLinus Torvalds help 442584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 443584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 44469c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 4451da177e4SLinus Torvalds 4468cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 4478cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 4488cb51ba8SAustin Zhang depends on X86 4498cb51ba8SAustin Zhang select CRYPTO_HASH 4508cb51ba8SAustin Zhang help 4518cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 4528cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 4538cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 4548cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 4558cb51ba8SAustin Zhang gain performance compared with software implementation. 4568cb51ba8SAustin Zhang Module will be crc32c-intel. 4578cb51ba8SAustin Zhang 4587cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 4596dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 460c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 4616dd7a82cSAnton Blanchard select CRYPTO_HASH 4626dd7a82cSAnton Blanchard select CRC32 4636dd7a82cSAnton Blanchard help 4646dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 4656dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 4666dd7a82cSAnton Blanchard and newer processors for improved performance. 4676dd7a82cSAnton Blanchard 4686dd7a82cSAnton Blanchard 469442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 470442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 471442a7c40SDavid S. Miller depends on SPARC64 472442a7c40SDavid S. Miller select CRYPTO_HASH 473442a7c40SDavid S. Miller select CRC32 474442a7c40SDavid S. Miller help 475442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 476442a7c40SDavid S. Miller when available. 477442a7c40SDavid S. Miller 47878c37d19SAlexander Boykoconfig CRYPTO_CRC32 47978c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 48078c37d19SAlexander Boyko select CRYPTO_HASH 48178c37d19SAlexander Boyko select CRC32 48278c37d19SAlexander Boyko help 48378c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 48478c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 48578c37d19SAlexander Boyko 48678c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 48778c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 48878c37d19SAlexander Boyko depends on X86 48978c37d19SAlexander Boyko select CRYPTO_HASH 49078c37d19SAlexander Boyko select CRC32 49178c37d19SAlexander Boyko help 49278c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 49378c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 49478c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 49578c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 49678c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 49778c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 49878c37d19SAlexander Boyko 499*4a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 500*4a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 501*4a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 502*4a5dc51eSMarcin Nowakowski select CRYPTO_HASH 503*4a5dc51eSMarcin Nowakowski help 504*4a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 505*4a5dc51eSMarcin Nowakowski instructions, when available. 506*4a5dc51eSMarcin Nowakowski 507*4a5dc51eSMarcin Nowakowski 50868411521SHerbert Xuconfig CRYPTO_CRCT10DIF 50968411521SHerbert Xu tristate "CRCT10DIF algorithm" 51068411521SHerbert Xu select CRYPTO_HASH 51168411521SHerbert Xu help 51268411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 51368411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 51468411521SHerbert Xu transforms to be used if they are available. 51568411521SHerbert Xu 51668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 51768411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 51868411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 51968411521SHerbert Xu select CRYPTO_HASH 52068411521SHerbert Xu help 52168411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 52268411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 52368411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 52468411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 52568411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 52668411521SHerbert Xu 527b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 528b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 529b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 530b01df1c1SDaniel Axtens select CRYPTO_HASH 531b01df1c1SDaniel Axtens help 532b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 533b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 534b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 535b01df1c1SDaniel Axtens 536146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 537146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 538146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 539146c8688SDaniel Axtens help 540146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 541146c8688SDaniel Axtens POWER8 vpmsum instructions. 542146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 543146c8688SDaniel Axtens 5442cdc6899SHuang Yingconfig CRYPTO_GHASH 5452cdc6899SHuang Ying tristate "GHASH digest algorithm" 5462cdc6899SHuang Ying select CRYPTO_GF128MUL 547578c60fbSArnd Bergmann select CRYPTO_HASH 5482cdc6899SHuang Ying help 5492cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 5502cdc6899SHuang Ying 551f979e014SMartin Williconfig CRYPTO_POLY1305 552f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 553578c60fbSArnd Bergmann select CRYPTO_HASH 554f979e014SMartin Willi help 555f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 556f979e014SMartin Willi 557f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 558f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 559f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 560f979e014SMartin Willi 561c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 562b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 563c70f4abeSMartin Willi depends on X86 && 64BIT 564c70f4abeSMartin Willi select CRYPTO_POLY1305 565c70f4abeSMartin Willi help 566c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 567c70f4abeSMartin Willi 568c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 569c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 570c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 571c70f4abeSMartin Willi instructions. 572c70f4abeSMartin Willi 5731da177e4SLinus Torvaldsconfig CRYPTO_MD4 5741da177e4SLinus Torvalds tristate "MD4 digest algorithm" 575808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 5761da177e4SLinus Torvalds help 5771da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 5781da177e4SLinus Torvalds 5791da177e4SLinus Torvaldsconfig CRYPTO_MD5 5801da177e4SLinus Torvalds tristate "MD5 digest algorithm" 58114b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 5821da177e4SLinus Torvalds help 5831da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 5841da177e4SLinus Torvalds 585d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 586d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 587d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 588d69e75deSAaro Koskinen select CRYPTO_MD5 589d69e75deSAaro Koskinen select CRYPTO_HASH 590d69e75deSAaro Koskinen help 591d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 592d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 593d69e75deSAaro Koskinen 594e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 595e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 596e8e59953SMarkus Stockhausen depends on PPC 597e8e59953SMarkus Stockhausen select CRYPTO_HASH 598e8e59953SMarkus Stockhausen help 599e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 600e8e59953SMarkus Stockhausen in PPC assembler. 601e8e59953SMarkus Stockhausen 602fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 603fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 604fa4dfedcSDavid S. Miller depends on SPARC64 605fa4dfedcSDavid S. Miller select CRYPTO_MD5 606fa4dfedcSDavid S. Miller select CRYPTO_HASH 607fa4dfedcSDavid S. Miller help 608fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 609fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 610fa4dfedcSDavid S. Miller 611584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 612584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 61319e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 614584fffc8SSebastian Siewior help 615584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 616584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 617584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 618584fffc8SSebastian Siewior of the algorithm. 619584fffc8SSebastian Siewior 62082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 62182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 6227c4468bcSHerbert Xu select CRYPTO_HASH 62382798f90SAdrian-Ken Rueegsegger help 62482798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 62582798f90SAdrian-Ken Rueegsegger 62682798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 62735ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 62882798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 62982798f90SAdrian-Ken Rueegsegger 63082798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6316d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 63282798f90SAdrian-Ken Rueegsegger 63382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 63482798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 635e5835fbaSHerbert Xu select CRYPTO_HASH 63682798f90SAdrian-Ken Rueegsegger help 63782798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 63882798f90SAdrian-Ken Rueegsegger 63982798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 64082798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 641b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 642b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 64382798f90SAdrian-Ken Rueegsegger 644b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 645b6d44341SAdrian Bunk against RIPEMD-160. 646534fe2c1SAdrian-Ken Rueegsegger 647534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6486d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 649534fe2c1SAdrian-Ken Rueegsegger 650534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 651534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 652d8a5e2e9SHerbert Xu select CRYPTO_HASH 653534fe2c1SAdrian-Ken Rueegsegger help 654b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 655b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 656b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 657b6d44341SAdrian Bunk (than RIPEMD-128). 658534fe2c1SAdrian-Ken Rueegsegger 659534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6606d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 661534fe2c1SAdrian-Ken Rueegsegger 662534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 663534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 6643b8efb4cSHerbert Xu select CRYPTO_HASH 665534fe2c1SAdrian-Ken Rueegsegger help 666b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 667b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 668b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 669b6d44341SAdrian Bunk (than RIPEMD-160). 670534fe2c1SAdrian-Ken Rueegsegger 67182798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6726d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 67382798f90SAdrian-Ken Rueegsegger 6741da177e4SLinus Torvaldsconfig CRYPTO_SHA1 6751da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 67654ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 6771da177e4SLinus Torvalds help 6781da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 6791da177e4SLinus Torvalds 68066be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 681e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 68266be8951SMathias Krause depends on X86 && 64BIT 68366be8951SMathias Krause select CRYPTO_SHA1 68466be8951SMathias Krause select CRYPTO_HASH 68566be8951SMathias Krause help 68666be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 68766be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 688e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 689e38b6b7fStim when available. 69066be8951SMathias Krause 6918275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 692e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 6938275d1aaSTim Chen depends on X86 && 64BIT 6948275d1aaSTim Chen select CRYPTO_SHA256 6958275d1aaSTim Chen select CRYPTO_HASH 6968275d1aaSTim Chen help 6978275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 6988275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 6998275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 700e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 701e38b6b7fStim Instructions) when available. 7028275d1aaSTim Chen 70387de4579STim Chenconfig CRYPTO_SHA512_SSSE3 70487de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 70587de4579STim Chen depends on X86 && 64BIT 70687de4579STim Chen select CRYPTO_SHA512 70787de4579STim Chen select CRYPTO_HASH 70887de4579STim Chen help 70987de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 71087de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 71187de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 71287de4579STim Chen version 2 (AVX2) instructions, when available. 71387de4579STim Chen 714efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 715efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 716efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 717efdb6f6eSAaro Koskinen select CRYPTO_SHA1 718efdb6f6eSAaro Koskinen select CRYPTO_HASH 719efdb6f6eSAaro Koskinen help 720efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 721efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 722efdb6f6eSAaro Koskinen 7234ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 7244ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 7254ff28d4cSDavid S. Miller depends on SPARC64 7264ff28d4cSDavid S. Miller select CRYPTO_SHA1 7274ff28d4cSDavid S. Miller select CRYPTO_HASH 7284ff28d4cSDavid S. Miller help 7294ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7304ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7314ff28d4cSDavid S. Miller 732323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 733323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 734323a6bf1SMichael Ellerman depends on PPC 735323a6bf1SMichael Ellerman help 736323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 737323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 738323a6bf1SMichael Ellerman 739d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 740d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 741d9850fc5SMarkus Stockhausen depends on PPC && SPE 742d9850fc5SMarkus Stockhausen help 743d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 744d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 745d9850fc5SMarkus Stockhausen 7461e65b81aSTim Chenconfig CRYPTO_SHA1_MB 7471e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7481e65b81aSTim Chen depends on X86 && 64BIT 7491e65b81aSTim Chen select CRYPTO_SHA1 7501e65b81aSTim Chen select CRYPTO_HASH 7511e65b81aSTim Chen select CRYPTO_MCRYPTD 7521e65b81aSTim Chen help 7531e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7541e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 7551e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 7561e65b81aSTim Chen better throughput. It should not be enabled by default but 7571e65b81aSTim Chen used when there is significant amount of work to keep the keep 7581e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 7591e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 7601e65b81aSTim Chen process the crypto jobs, adding a slight latency. 7611e65b81aSTim Chen 7629be7e244SMegha Deyconfig CRYPTO_SHA256_MB 7639be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 7649be7e244SMegha Dey depends on X86 && 64BIT 7659be7e244SMegha Dey select CRYPTO_SHA256 7669be7e244SMegha Dey select CRYPTO_HASH 7679be7e244SMegha Dey select CRYPTO_MCRYPTD 7689be7e244SMegha Dey help 7699be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7709be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 7719be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 7729be7e244SMegha Dey better throughput. It should not be enabled by default but 7739be7e244SMegha Dey used when there is significant amount of work to keep the keep 7749be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 7759be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 7769be7e244SMegha Dey process the crypto jobs, adding a slight latency. 7779be7e244SMegha Dey 778026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 779026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 780026bb8aaSMegha Dey depends on X86 && 64BIT 781026bb8aaSMegha Dey select CRYPTO_SHA512 782026bb8aaSMegha Dey select CRYPTO_HASH 783026bb8aaSMegha Dey select CRYPTO_MCRYPTD 784026bb8aaSMegha Dey help 785026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 786026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 787026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 788026bb8aaSMegha Dey better throughput. It should not be enabled by default but 789026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 790026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 791026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 792026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 793026bb8aaSMegha Dey 7941da177e4SLinus Torvaldsconfig CRYPTO_SHA256 795cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 79650e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 7971da177e4SLinus Torvalds help 7981da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 7991da177e4SLinus Torvalds 8001da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 8011da177e4SLinus Torvalds security against collision attacks. 8021da177e4SLinus Torvalds 803cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 804cd12fb90SJonathan Lynch of security against collision attacks. 805cd12fb90SJonathan Lynch 8062ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 8072ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 8082ecc1e95SMarkus Stockhausen depends on PPC && SPE 8092ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 8102ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8112ecc1e95SMarkus Stockhausen help 8122ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8132ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 8142ecc1e95SMarkus Stockhausen 815efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 816efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 817efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 818efdb6f6eSAaro Koskinen select CRYPTO_SHA256 819efdb6f6eSAaro Koskinen select CRYPTO_HASH 820efdb6f6eSAaro Koskinen help 821efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 822efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 823efdb6f6eSAaro Koskinen 82486c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 82586c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 82686c93b24SDavid S. Miller depends on SPARC64 82786c93b24SDavid S. Miller select CRYPTO_SHA256 82886c93b24SDavid S. Miller select CRYPTO_HASH 82986c93b24SDavid S. Miller help 83086c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 83186c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 83286c93b24SDavid S. Miller 8331da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8341da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 835bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8361da177e4SLinus Torvalds help 8371da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8381da177e4SLinus Torvalds 8391da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 8401da177e4SLinus Torvalds security against collision attacks. 8411da177e4SLinus Torvalds 8421da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 8431da177e4SLinus Torvalds of security against collision attacks. 8441da177e4SLinus Torvalds 845efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 846efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 847efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 848efdb6f6eSAaro Koskinen select CRYPTO_SHA512 849efdb6f6eSAaro Koskinen select CRYPTO_HASH 850efdb6f6eSAaro Koskinen help 851efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 852efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 853efdb6f6eSAaro Koskinen 854775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 855775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 856775e0c69SDavid S. Miller depends on SPARC64 857775e0c69SDavid S. Miller select CRYPTO_SHA512 858775e0c69SDavid S. Miller select CRYPTO_HASH 859775e0c69SDavid S. Miller help 860775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 861775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 862775e0c69SDavid S. Miller 86353964b9eSJeff Garzikconfig CRYPTO_SHA3 86453964b9eSJeff Garzik tristate "SHA3 digest algorithm" 86553964b9eSJeff Garzik select CRYPTO_HASH 86653964b9eSJeff Garzik help 86753964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 86853964b9eSJeff Garzik cryptographic sponge function family called Keccak. 86953964b9eSJeff Garzik 87053964b9eSJeff Garzik References: 87153964b9eSJeff Garzik http://keccak.noekeon.org/ 87253964b9eSJeff Garzik 8734f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 8744f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 8754f0fc160SGilad Ben-Yossef select CRYPTO_HASH 8764f0fc160SGilad Ben-Yossef help 8774f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 8784f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 8794f0fc160SGilad Ben-Yossef 8804f0fc160SGilad Ben-Yossef References: 8814f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 8824f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 8834f0fc160SGilad Ben-Yossef 8841da177e4SLinus Torvaldsconfig CRYPTO_TGR192 8851da177e4SLinus Torvalds tristate "Tiger digest algorithms" 886f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 8871da177e4SLinus Torvalds help 8881da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 8891da177e4SLinus Torvalds 8901da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 8911da177e4SLinus Torvalds still having decent performance on 32-bit processors. 8921da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 8931da177e4SLinus Torvalds 8941da177e4SLinus Torvalds See also: 8951da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 8961da177e4SLinus Torvalds 897584fffc8SSebastian Siewiorconfig CRYPTO_WP512 898584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 8994946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 9001da177e4SLinus Torvalds help 901584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 9021da177e4SLinus Torvalds 903584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 904584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 9051da177e4SLinus Torvalds 9061da177e4SLinus Torvalds See also: 9076d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 9081da177e4SLinus Torvalds 9090e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 9100e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 9118af00860SRichard Weinberger depends on X86 && 64BIT 9120e1227d3SHuang Ying select CRYPTO_CRYPTD 9130e1227d3SHuang Ying help 9140e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 9150e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 9160e1227d3SHuang Ying 917584fffc8SSebastian Siewiorcomment "Ciphers" 9181da177e4SLinus Torvalds 9191da177e4SLinus Torvaldsconfig CRYPTO_AES 9201da177e4SLinus Torvalds tristate "AES cipher algorithms" 921cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9221da177e4SLinus Torvalds help 9231da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9241da177e4SLinus Torvalds algorithm. 9251da177e4SLinus Torvalds 9261da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9271da177e4SLinus Torvalds both hardware and software across a wide range of computing 9281da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9291da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9301da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9311da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9321da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9331da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9341da177e4SLinus Torvalds 9351da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9361da177e4SLinus Torvalds 9371da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 9381da177e4SLinus Torvalds 939b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 940b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 941b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 942b5e0b032SArd Biesheuvel help 943b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 944b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 945b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 946b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 947b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 948b5e0b032SArd Biesheuvel with a more dramatic performance hit) 949b5e0b032SArd Biesheuvel 950b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 951b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 952b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 953b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 954b5e0b032SArd Biesheuvel block. 955b5e0b032SArd Biesheuvel 9561da177e4SLinus Torvaldsconfig CRYPTO_AES_586 9571da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 958cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 959cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9605157dea8SSebastian Siewior select CRYPTO_AES 9611da177e4SLinus Torvalds help 9621da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9631da177e4SLinus Torvalds algorithm. 9641da177e4SLinus Torvalds 9651da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9661da177e4SLinus Torvalds both hardware and software across a wide range of computing 9671da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9681da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9691da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9701da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9711da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9721da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9731da177e4SLinus Torvalds 9741da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9751da177e4SLinus Torvalds 9761da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 9771da177e4SLinus Torvalds 978a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 979a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 980cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 981cce9e06dSHerbert Xu select CRYPTO_ALGAPI 98281190b32SSebastian Siewior select CRYPTO_AES 983a2a892a2SAndreas Steinmetz help 984a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 985a2a892a2SAndreas Steinmetz algorithm. 986a2a892a2SAndreas Steinmetz 987a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 988a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 989a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 990a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 991a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 992a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 993a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 994a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 995a2a892a2SAndreas Steinmetz 996a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 997a2a892a2SAndreas Steinmetz 998a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 999a2a892a2SAndreas Steinmetz 100054b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 100154b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 10028af00860SRichard Weinberger depends on X86 100385671860SHerbert Xu select CRYPTO_AEAD 10040d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 10050d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 100654b6a1bdSHuang Ying select CRYPTO_ALGAPI 100785671860SHerbert Xu select CRYPTO_BLKCIPHER 10087643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 100985671860SHerbert Xu select CRYPTO_SIMD 101054b6a1bdSHuang Ying help 101154b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 101254b6a1bdSHuang Ying 101354b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 101454b6a1bdSHuang Ying algorithm. 101554b6a1bdSHuang Ying 101654b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 101754b6a1bdSHuang Ying both hardware and software across a wide range of computing 101854b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 101954b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 102054b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 102154b6a1bdSHuang Ying suited for restricted-space environments, in which it also 102254b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 102354b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 102454b6a1bdSHuang Ying 102554b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 102654b6a1bdSHuang Ying 102754b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 102854b6a1bdSHuang Ying 10290d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10300d258efbSMathias Krause for some popular block cipher mode is supported too, including 10310d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 10320d258efbSMathias Krause acceleration for CTR. 10332cf4ac8bSHuang Ying 10349bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10359bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10369bf4852dSDavid S. Miller depends on SPARC64 10379bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10389bf4852dSDavid S. Miller select CRYPTO_ALGAPI 10399bf4852dSDavid S. Miller help 10409bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 10419bf4852dSDavid S. Miller 10429bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 10439bf4852dSDavid S. Miller algorithm. 10449bf4852dSDavid S. Miller 10459bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 10469bf4852dSDavid S. Miller both hardware and software across a wide range of computing 10479bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 10489bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 10499bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 10509bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 10519bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 10529bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 10539bf4852dSDavid S. Miller 10549bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 10559bf4852dSDavid S. Miller 10569bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 10579bf4852dSDavid S. Miller 10589bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 10599bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 10609bf4852dSDavid S. Miller ECB and CBC. 10619bf4852dSDavid S. Miller 1062504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1063504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1064504c6143SMarkus Stockhausen depends on PPC && SPE 1065504c6143SMarkus Stockhausen help 1066504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1067504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1068504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1069504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1070504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1071504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1072504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1073504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1074504c6143SMarkus Stockhausen 10751da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 10761da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1077cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10781da177e4SLinus Torvalds help 10791da177e4SLinus Torvalds Anubis cipher algorithm. 10801da177e4SLinus Torvalds 10811da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 10821da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 10831da177e4SLinus Torvalds in the NESSIE competition. 10841da177e4SLinus Torvalds 10851da177e4SLinus Torvalds See also: 10866d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 10876d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 10881da177e4SLinus Torvalds 1089584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1090584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1091b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1092e2ee95b8SHye-Shik Chang help 1093584fffc8SSebastian Siewior ARC4 cipher algorithm. 1094e2ee95b8SHye-Shik Chang 1095584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1096584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1097584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1098584fffc8SSebastian Siewior weakness of the algorithm. 1099584fffc8SSebastian Siewior 1100584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1101584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1102584fffc8SSebastian Siewior select CRYPTO_ALGAPI 110352ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1104584fffc8SSebastian Siewior help 1105584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1106584fffc8SSebastian Siewior 1107584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1108584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1109584fffc8SSebastian Siewior designed for use on "large microprocessors". 1110e2ee95b8SHye-Shik Chang 1111e2ee95b8SHye-Shik Chang See also: 1112584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1113584fffc8SSebastian Siewior 111452ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 111552ba867cSJussi Kivilinna tristate 111652ba867cSJussi Kivilinna help 111752ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 111852ba867cSJussi Kivilinna generic c and the assembler implementations. 111952ba867cSJussi Kivilinna 112052ba867cSJussi Kivilinna See also: 112152ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 112252ba867cSJussi Kivilinna 112364b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 112464b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1125f21a7c19SAl Viro depends on X86 && 64BIT 112664b94ceaSJussi Kivilinna select CRYPTO_ALGAPI 112764b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 112864b94ceaSJussi Kivilinna help 112964b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 113064b94ceaSJussi Kivilinna 113164b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 113264b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 113364b94ceaSJussi Kivilinna designed for use on "large microprocessors". 113464b94ceaSJussi Kivilinna 113564b94ceaSJussi Kivilinna See also: 113664b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 113764b94ceaSJussi Kivilinna 1138584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1139584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1140584fffc8SSebastian Siewior depends on CRYPTO 1141584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1142584fffc8SSebastian Siewior help 1143584fffc8SSebastian Siewior Camellia cipher algorithms module. 1144584fffc8SSebastian Siewior 1145584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1146584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1147584fffc8SSebastian Siewior 1148584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1149584fffc8SSebastian Siewior 1150584fffc8SSebastian Siewior See also: 1151584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1152584fffc8SSebastian Siewior 11530b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 11540b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1155f21a7c19SAl Viro depends on X86 && 64BIT 11560b95ec56SJussi Kivilinna depends on CRYPTO 11570b95ec56SJussi Kivilinna select CRYPTO_ALGAPI 1158964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 11590b95ec56SJussi Kivilinna select CRYPTO_LRW 11600b95ec56SJussi Kivilinna select CRYPTO_XTS 11610b95ec56SJussi Kivilinna help 11620b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 11630b95ec56SJussi Kivilinna 11640b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 11650b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 11660b95ec56SJussi Kivilinna 11670b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 11680b95ec56SJussi Kivilinna 11690b95ec56SJussi Kivilinna See also: 11700b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 11710b95ec56SJussi Kivilinna 1172d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1173d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1174d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1175d9b1d2e7SJussi Kivilinna depends on CRYPTO 1176d9b1d2e7SJussi Kivilinna select CRYPTO_ALGAPI 1177d9b1d2e7SJussi Kivilinna select CRYPTO_CRYPTD 1178801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1179d9b1d2e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1180d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1181d9b1d2e7SJussi Kivilinna select CRYPTO_LRW 1182d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1183d9b1d2e7SJussi Kivilinna help 1184d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1185d9b1d2e7SJussi Kivilinna 1186d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1187d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1188d9b1d2e7SJussi Kivilinna 1189d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1190d9b1d2e7SJussi Kivilinna 1191d9b1d2e7SJussi Kivilinna See also: 1192d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1193d9b1d2e7SJussi Kivilinna 1194f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1195f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1196f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1197f3f935a7SJussi Kivilinna depends on CRYPTO 1198f3f935a7SJussi Kivilinna select CRYPTO_ALGAPI 1199f3f935a7SJussi Kivilinna select CRYPTO_CRYPTD 1200801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1201f3f935a7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1202f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 1203f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1204f3f935a7SJussi Kivilinna select CRYPTO_LRW 1205f3f935a7SJussi Kivilinna select CRYPTO_XTS 1206f3f935a7SJussi Kivilinna help 1207f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1208f3f935a7SJussi Kivilinna 1209f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1210f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1211f3f935a7SJussi Kivilinna 1212f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1213f3f935a7SJussi Kivilinna 1214f3f935a7SJussi Kivilinna See also: 1215f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1216f3f935a7SJussi Kivilinna 121781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 121881658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 121981658ad0SDavid S. Miller depends on SPARC64 122081658ad0SDavid S. Miller depends on CRYPTO 122181658ad0SDavid S. Miller select CRYPTO_ALGAPI 122281658ad0SDavid S. Miller help 122381658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 122481658ad0SDavid S. Miller 122581658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 122681658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 122781658ad0SDavid S. Miller 122881658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 122981658ad0SDavid S. Miller 123081658ad0SDavid S. Miller See also: 123181658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 123281658ad0SDavid S. Miller 1233044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1234044ab525SJussi Kivilinna tristate 1235044ab525SJussi Kivilinna help 1236044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1237044ab525SJussi Kivilinna generic c and the assembler implementations. 1238044ab525SJussi Kivilinna 1239584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1240584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1241584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1242044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1243584fffc8SSebastian Siewior help 1244584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1245584fffc8SSebastian Siewior described in RFC2144. 1246584fffc8SSebastian Siewior 12474d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12484d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12494d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 12504d6d6a2cSJohannes Goetzfried select CRYPTO_ALGAPI 12514d6d6a2cSJohannes Goetzfried select CRYPTO_CRYPTD 1252801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1253044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12544d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 12554d6d6a2cSJohannes Goetzfried help 12564d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 12574d6d6a2cSJohannes Goetzfried described in RFC2144. 12584d6d6a2cSJohannes Goetzfried 12594d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 12604d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 12614d6d6a2cSJohannes Goetzfried 1262584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1263584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1264584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1265044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1266584fffc8SSebastian Siewior help 1267584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1268584fffc8SSebastian Siewior described in RFC2612. 1269584fffc8SSebastian Siewior 12704ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 12714ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 12724ea1277dSJohannes Goetzfried depends on X86 && 64BIT 12734ea1277dSJohannes Goetzfried select CRYPTO_ALGAPI 12744ea1277dSJohannes Goetzfried select CRYPTO_CRYPTD 1275801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 12764ea1277dSJohannes Goetzfried select CRYPTO_GLUE_HELPER_X86 1277044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 12784ea1277dSJohannes Goetzfried select CRYPTO_CAST6 12794ea1277dSJohannes Goetzfried select CRYPTO_LRW 12804ea1277dSJohannes Goetzfried select CRYPTO_XTS 12814ea1277dSJohannes Goetzfried help 12824ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 12834ea1277dSJohannes Goetzfried described in RFC2612. 12844ea1277dSJohannes Goetzfried 12854ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 12864ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 12874ea1277dSJohannes Goetzfried 1288584fffc8SSebastian Siewiorconfig CRYPTO_DES 1289584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1290584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1291584fffc8SSebastian Siewior help 1292584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1293584fffc8SSebastian Siewior 1294c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1295c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 129697da37b3SDave Jones depends on SPARC64 1297c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1298c5aac2dfSDavid S. Miller select CRYPTO_DES 1299c5aac2dfSDavid S. Miller help 1300c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1301c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1302c5aac2dfSDavid S. Miller 13036574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13046574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13056574e6c6SJussi Kivilinna depends on X86 && 64BIT 13066574e6c6SJussi Kivilinna select CRYPTO_ALGAPI 13076574e6c6SJussi Kivilinna select CRYPTO_DES 13086574e6c6SJussi Kivilinna help 13096574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13106574e6c6SJussi Kivilinna 13116574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13126574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13136574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13146574e6c6SJussi Kivilinna one that processes three blocks parallel. 13156574e6c6SJussi Kivilinna 1316584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1317584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1318584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1319584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1320584fffc8SSebastian Siewior help 1321584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1322584fffc8SSebastian Siewior 1323584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1324584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1325584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1326584fffc8SSebastian Siewior help 1327584fffc8SSebastian Siewior Khazad cipher algorithm. 1328584fffc8SSebastian Siewior 1329584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1330584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1331584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1332584fffc8SSebastian Siewior 1333584fffc8SSebastian Siewior See also: 13346d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1335e2ee95b8SHye-Shik Chang 13362407d608STan Swee Hengconfig CRYPTO_SALSA20 13373b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13382407d608STan Swee Heng select CRYPTO_BLKCIPHER 13392407d608STan Swee Heng help 13402407d608STan Swee Heng Salsa20 stream cipher algorithm. 13412407d608STan Swee Heng 13422407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13432407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13442407d608STan Swee Heng 13452407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13462407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13471da177e4SLinus Torvalds 1348974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13493b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1350974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1351974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1352c9a3ff8fSEric Biggers select CRYPTO_SALSA20 1353974e4b75STan Swee Heng help 1354974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1355974e4b75STan Swee Heng 1356974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1357974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1358974e4b75STan Swee Heng 1359974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1360974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1361974e4b75STan Swee Heng 13629a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 13633b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 13649a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 13659a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 1366c9a3ff8fSEric Biggers select CRYPTO_SALSA20 13679a7dafbbSTan Swee Heng help 13689a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 13699a7dafbbSTan Swee Heng 13709a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13719a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13729a7dafbbSTan Swee Heng 13739a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13749a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13759a7dafbbSTan Swee Heng 1376c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1377c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1378c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1379c08d0e64SMartin Willi help 1380c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1381c08d0e64SMartin Willi 1382c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1383c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1384c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1385c08d0e64SMartin Willi 1386c08d0e64SMartin Willi See also: 1387c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1388c08d0e64SMartin Willi 1389c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 13903d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1391c9320b6dSMartin Willi depends on X86 && 64BIT 1392c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1393c9320b6dSMartin Willi select CRYPTO_CHACHA20 1394c9320b6dSMartin Willi help 1395c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1396c9320b6dSMartin Willi 1397c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1398c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1399c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1400c9320b6dSMartin Willi 1401c9320b6dSMartin Willi See also: 1402c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1403c9320b6dSMartin Willi 1404584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1405584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1406584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1407584fffc8SSebastian Siewior help 1408584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1409584fffc8SSebastian Siewior 1410584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1411584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1412584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1413584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1414584fffc8SSebastian Siewior 1415584fffc8SSebastian Siewior See also: 1416584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1417584fffc8SSebastian Siewior 1418584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1419584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1420584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1421584fffc8SSebastian Siewior help 1422584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1423584fffc8SSebastian Siewior 1424584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1425584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1426584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1427584fffc8SSebastian Siewior 1428584fffc8SSebastian Siewior See also: 1429584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1430584fffc8SSebastian Siewior 1431937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1432937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1433937c30d7SJussi Kivilinna depends on X86 && 64BIT 1434937c30d7SJussi Kivilinna select CRYPTO_ALGAPI 1435341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1436801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1437596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1438937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1439feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1440feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1441937c30d7SJussi Kivilinna help 1442937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1443937c30d7SJussi Kivilinna 1444937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1445937c30d7SJussi Kivilinna of 8 bits. 1446937c30d7SJussi Kivilinna 14471e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1448937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1449937c30d7SJussi Kivilinna 1450937c30d7SJussi Kivilinna See also: 1451937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1452937c30d7SJussi Kivilinna 1453251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1454251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1455251496dbSJussi Kivilinna depends on X86 && !64BIT 1456251496dbSJussi Kivilinna select CRYPTO_ALGAPI 1457341975bfSJussi Kivilinna select CRYPTO_CRYPTD 1458801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1459596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1460251496dbSJussi Kivilinna select CRYPTO_SERPENT 1461feaf0cfcSJussi Kivilinna select CRYPTO_LRW 1462feaf0cfcSJussi Kivilinna select CRYPTO_XTS 1463251496dbSJussi Kivilinna help 1464251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1465251496dbSJussi Kivilinna 1466251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1467251496dbSJussi Kivilinna of 8 bits. 1468251496dbSJussi Kivilinna 1469251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1470251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1471251496dbSJussi Kivilinna 1472251496dbSJussi Kivilinna See also: 1473251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1474251496dbSJussi Kivilinna 14757efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 14767efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 14777efe4076SJohannes Goetzfried depends on X86 && 64BIT 14787efe4076SJohannes Goetzfried select CRYPTO_ALGAPI 14797efe4076SJohannes Goetzfried select CRYPTO_CRYPTD 1480801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 14811d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 14827efe4076SJohannes Goetzfried select CRYPTO_SERPENT 14837efe4076SJohannes Goetzfried select CRYPTO_LRW 14847efe4076SJohannes Goetzfried select CRYPTO_XTS 14857efe4076SJohannes Goetzfried help 14867efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 14877efe4076SJohannes Goetzfried 14887efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 14897efe4076SJohannes Goetzfried of 8 bits. 14907efe4076SJohannes Goetzfried 14917efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 14927efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14937efe4076SJohannes Goetzfried 14947efe4076SJohannes Goetzfried See also: 14957efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 14967efe4076SJohannes Goetzfried 149756d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 149856d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 149956d76c96SJussi Kivilinna depends on X86 && 64BIT 150056d76c96SJussi Kivilinna select CRYPTO_ALGAPI 150156d76c96SJussi Kivilinna select CRYPTO_CRYPTD 1502801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 150356d76c96SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 150456d76c96SJussi Kivilinna select CRYPTO_SERPENT 150556d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 150656d76c96SJussi Kivilinna select CRYPTO_LRW 150756d76c96SJussi Kivilinna select CRYPTO_XTS 150856d76c96SJussi Kivilinna help 150956d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 151056d76c96SJussi Kivilinna 151156d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 151256d76c96SJussi Kivilinna of 8 bits. 151356d76c96SJussi Kivilinna 151456d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 151556d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 151656d76c96SJussi Kivilinna 151756d76c96SJussi Kivilinna See also: 151856d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 151956d76c96SJussi Kivilinna 1520584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1521584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1522584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1523584fffc8SSebastian Siewior help 1524584fffc8SSebastian Siewior TEA cipher algorithm. 1525584fffc8SSebastian Siewior 1526584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1527584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1528584fffc8SSebastian Siewior little memory. 1529584fffc8SSebastian Siewior 1530584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1531584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1532584fffc8SSebastian Siewior in the TEA algorithm. 1533584fffc8SSebastian Siewior 1534584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1535584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1536584fffc8SSebastian Siewior 1537584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1538584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1539584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1540584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1541584fffc8SSebastian Siewior help 1542584fffc8SSebastian Siewior Twofish cipher algorithm. 1543584fffc8SSebastian Siewior 1544584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1545584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1546584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1547584fffc8SSebastian Siewior bits. 1548584fffc8SSebastian Siewior 1549584fffc8SSebastian Siewior See also: 1550584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1551584fffc8SSebastian Siewior 1552584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1553584fffc8SSebastian Siewior tristate 1554584fffc8SSebastian Siewior help 1555584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1556584fffc8SSebastian Siewior generic c and the assembler implementations. 1557584fffc8SSebastian Siewior 1558584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1559584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1560584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1561584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1562584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1563584fffc8SSebastian Siewior help 1564584fffc8SSebastian Siewior Twofish cipher algorithm. 1565584fffc8SSebastian Siewior 1566584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1567584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1568584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1569584fffc8SSebastian Siewior bits. 1570584fffc8SSebastian Siewior 1571584fffc8SSebastian Siewior See also: 1572584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1573584fffc8SSebastian Siewior 1574584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1575584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1576584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1577584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1578584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1579584fffc8SSebastian Siewior help 1580584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1581584fffc8SSebastian Siewior 1582584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1583584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1584584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1585584fffc8SSebastian Siewior bits. 1586584fffc8SSebastian Siewior 1587584fffc8SSebastian Siewior See also: 1588584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1589584fffc8SSebastian Siewior 15908280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 15918280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1592f21a7c19SAl Viro depends on X86 && 64BIT 15938280daadSJussi Kivilinna select CRYPTO_ALGAPI 15948280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 15958280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1596414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1597e7cda5d2SJussi Kivilinna select CRYPTO_LRW 1598e7cda5d2SJussi Kivilinna select CRYPTO_XTS 15998280daadSJussi Kivilinna help 16008280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16018280daadSJussi Kivilinna 16028280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16038280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16048280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16058280daadSJussi Kivilinna bits. 16068280daadSJussi Kivilinna 16078280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16088280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16098280daadSJussi Kivilinna 16108280daadSJussi Kivilinna See also: 16118280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16128280daadSJussi Kivilinna 1613107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1614107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1615107778b5SJohannes Goetzfried depends on X86 && 64BIT 1616107778b5SJohannes Goetzfried select CRYPTO_ALGAPI 1617107778b5SJohannes Goetzfried select CRYPTO_CRYPTD 1618801201aaSArd Biesheuvel select CRYPTO_ABLK_HELPER 1619a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1620107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1621107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1622107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1623107778b5SJohannes Goetzfried select CRYPTO_LRW 1624107778b5SJohannes Goetzfried select CRYPTO_XTS 1625107778b5SJohannes Goetzfried help 1626107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1627107778b5SJohannes Goetzfried 1628107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1629107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1630107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1631107778b5SJohannes Goetzfried bits. 1632107778b5SJohannes Goetzfried 1633107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1634107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1635107778b5SJohannes Goetzfried 1636107778b5SJohannes Goetzfried See also: 1637107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1638107778b5SJohannes Goetzfried 1639584fffc8SSebastian Siewiorcomment "Compression" 1640584fffc8SSebastian Siewior 16411da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 16421da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1643cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1644f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 16451da177e4SLinus Torvalds select ZLIB_INFLATE 16461da177e4SLinus Torvalds select ZLIB_DEFLATE 16471da177e4SLinus Torvalds help 16481da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 16491da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 16501da177e4SLinus Torvalds 16511da177e4SLinus Torvalds You will most probably want this if using IPSec. 16521da177e4SLinus Torvalds 16530b77abb3SZoltan Sogorconfig CRYPTO_LZO 16540b77abb3SZoltan Sogor tristate "LZO compression algorithm" 16550b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1656ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 16570b77abb3SZoltan Sogor select LZO_COMPRESS 16580b77abb3SZoltan Sogor select LZO_DECOMPRESS 16590b77abb3SZoltan Sogor help 16600b77abb3SZoltan Sogor This is the LZO algorithm. 16610b77abb3SZoltan Sogor 166235a1fc18SSeth Jenningsconfig CRYPTO_842 166335a1fc18SSeth Jennings tristate "842 compression algorithm" 16642062c5b6SDan Streetman select CRYPTO_ALGAPI 16656a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 16662062c5b6SDan Streetman select 842_COMPRESS 16672062c5b6SDan Streetman select 842_DECOMPRESS 166835a1fc18SSeth Jennings help 166935a1fc18SSeth Jennings This is the 842 algorithm. 167035a1fc18SSeth Jennings 16710ea8530dSChanho Minconfig CRYPTO_LZ4 16720ea8530dSChanho Min tristate "LZ4 compression algorithm" 16730ea8530dSChanho Min select CRYPTO_ALGAPI 16748cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 16750ea8530dSChanho Min select LZ4_COMPRESS 16760ea8530dSChanho Min select LZ4_DECOMPRESS 16770ea8530dSChanho Min help 16780ea8530dSChanho Min This is the LZ4 algorithm. 16790ea8530dSChanho Min 16800ea8530dSChanho Minconfig CRYPTO_LZ4HC 16810ea8530dSChanho Min tristate "LZ4HC compression algorithm" 16820ea8530dSChanho Min select CRYPTO_ALGAPI 168391d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 16840ea8530dSChanho Min select LZ4HC_COMPRESS 16850ea8530dSChanho Min select LZ4_DECOMPRESS 16860ea8530dSChanho Min help 16870ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 16880ea8530dSChanho Min 168917f0f4a4SNeil Hormancomment "Random Number Generation" 169017f0f4a4SNeil Horman 169117f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 169217f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 169317f0f4a4SNeil Horman select CRYPTO_AES 169417f0f4a4SNeil Horman select CRYPTO_RNG 169517f0f4a4SNeil Horman help 169617f0f4a4SNeil Horman This option enables the generic pseudo random number generator 169717f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 16987dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 16997dd607e8SJiri Kosina CRYPTO_FIPS is selected 170017f0f4a4SNeil Horman 1701f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1702419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1703419090c6SStephan Mueller help 1704419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1705419090c6SStephan Mueller more of the DRBG types must be selected. 1706419090c6SStephan Mueller 1707f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1708419090c6SStephan Mueller 1709419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1710401e4238SHerbert Xu bool 1711419090c6SStephan Mueller default y 1712419090c6SStephan Mueller select CRYPTO_HMAC 1713826775bbSHerbert Xu select CRYPTO_SHA256 1714419090c6SStephan Mueller 1715419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1716419090c6SStephan Mueller bool "Enable Hash DRBG" 1717826775bbSHerbert Xu select CRYPTO_SHA256 1718419090c6SStephan Mueller help 1719419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1720419090c6SStephan Mueller 1721419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1722419090c6SStephan Mueller bool "Enable CTR DRBG" 1723419090c6SStephan Mueller select CRYPTO_AES 172435591285SStephan Mueller depends on CRYPTO_CTR 1725419090c6SStephan Mueller help 1726419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1727419090c6SStephan Mueller 1728f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1729f2c89a10SHerbert Xu tristate 1730401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1731f2c89a10SHerbert Xu select CRYPTO_RNG 1732bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1733f2c89a10SHerbert Xu 1734f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1735419090c6SStephan Mueller 1736bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1737bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 17382f313e02SArnd Bergmann select CRYPTO_RNG 1739bb5530e4SStephan Mueller help 1740bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1741bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1742bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1743bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1744bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1745bb5530e4SStephan Mueller 174603c8efc1SHerbert Xuconfig CRYPTO_USER_API 174703c8efc1SHerbert Xu tristate 174803c8efc1SHerbert Xu 1749fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1750fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 17517451708fSHerbert Xu depends on NET 1752fe869cdbSHerbert Xu select CRYPTO_HASH 1753fe869cdbSHerbert Xu select CRYPTO_USER_API 1754fe869cdbSHerbert Xu help 1755fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1756fe869cdbSHerbert Xu algorithms. 1757fe869cdbSHerbert Xu 17588ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 17598ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 17607451708fSHerbert Xu depends on NET 17618ff59090SHerbert Xu select CRYPTO_BLKCIPHER 17628ff59090SHerbert Xu select CRYPTO_USER_API 17638ff59090SHerbert Xu help 17648ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 17658ff59090SHerbert Xu key cipher algorithms. 17668ff59090SHerbert Xu 17672f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 17682f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 17692f375538SStephan Mueller depends on NET 17702f375538SStephan Mueller select CRYPTO_RNG 17712f375538SStephan Mueller select CRYPTO_USER_API 17722f375538SStephan Mueller help 17732f375538SStephan Mueller This option enables the user-spaces interface for random 17742f375538SStephan Mueller number generator algorithms. 17752f375538SStephan Mueller 1776b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1777b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1778b64a2d95SHerbert Xu depends on NET 1779b64a2d95SHerbert Xu select CRYPTO_AEAD 178072548b09SStephan Mueller select CRYPTO_BLKCIPHER 178172548b09SStephan Mueller select CRYPTO_NULL 1782b64a2d95SHerbert Xu select CRYPTO_USER_API 1783b64a2d95SHerbert Xu help 1784b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1785b64a2d95SHerbert Xu cipher algorithms. 1786b64a2d95SHerbert Xu 1787ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1788ee08997fSDmitry Kasatkin bool 1789ee08997fSDmitry Kasatkin 17901da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1791964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1792cfc411e7SDavid Howellssource certs/Kconfig 17931da177e4SLinus Torvalds 1794cce9e06dSHerbert Xuendif # if CRYPTO 1795