xref: /linux/crypto/Kconfig (revision 4a2289dae0cdecd70d93dda610d059bec67551d3)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1172b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1186a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1192b8c19dbSHerbert Xu	help
1202b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1212b8c19dbSHerbert Xu	  cbc(aes).
1222b8c19dbSHerbert Xu
1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1246a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1256a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1266a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1276a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
128946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1294e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1302ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1316a0fcbb4SHerbert Xu
132a38f7907SSteffen Klassertconfig CRYPTO_USER
133a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1345db017aaSHerbert Xu	depends on NET
135a38f7907SSteffen Klassert	select CRYPTO_MANAGER
136a38f7907SSteffen Klassert	help
137d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
138a38f7907SSteffen Klassert	  cbc(aes).
139a38f7907SSteffen Klassert
140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
141326a6346SHerbert Xu	bool "Disable run-time self tests"
14200ca28a5SHerbert Xu	default y
14300ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1440b767f96SAlexander Shishkin	help
145326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
146326a6346SHerbert Xu	  algorithm registration.
1470b767f96SAlexander Shishkin
1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1495b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1505b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1515b2706a4SEric Biggers	help
1525b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1535b2706a4SEric Biggers	  including randomized fuzz tests.
1545b2706a4SEric Biggers
1555b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1565b2706a4SEric Biggers	  longer to run than the normal self tests.
1575b2706a4SEric Biggers
158584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
15908c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
160584fffc8SSebastian Siewior	help
161584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
162584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
163584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
164584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
165584fffc8SSebastian Siewior	  an external module that requires these functions.
166584fffc8SSebastian Siewior
167584fffc8SSebastian Siewiorconfig CRYPTO_NULL
168584fffc8SSebastian Siewior	tristate "Null algorithms"
169149a3971SHerbert Xu	select CRYPTO_NULL2
170584fffc8SSebastian Siewior	help
171584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
172584fffc8SSebastian Siewior
173149a3971SHerbert Xuconfig CRYPTO_NULL2
174dd43c4e9SHerbert Xu	tristate
175149a3971SHerbert Xu	select CRYPTO_ALGAPI2
176149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
177149a3971SHerbert Xu	select CRYPTO_HASH2
178149a3971SHerbert Xu
1795068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1803b4afaf2SKees Cook	tristate "Parallel crypto engine"
1813b4afaf2SKees Cook	depends on SMP
1825068c7a8SSteffen Klassert	select PADATA
1835068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1845068c7a8SSteffen Klassert	select CRYPTO_AEAD
1855068c7a8SSteffen Klassert	help
1865068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1875068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1885068c7a8SSteffen Klassert
18925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
19025c38d3fSHuang Ying       tristate
19125c38d3fSHuang Ying
192584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
193584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
194584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
195b8a28251SLoc Ho	select CRYPTO_HASH
196584fffc8SSebastian Siewior	select CRYPTO_MANAGER
197254eff77SHuang Ying	select CRYPTO_WORKQUEUE
198584fffc8SSebastian Siewior	help
199584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
200584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
201584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
202584fffc8SSebastian Siewior
203584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
204584fffc8SSebastian Siewior	tristate "Authenc support"
205584fffc8SSebastian Siewior	select CRYPTO_AEAD
206584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
207584fffc8SSebastian Siewior	select CRYPTO_MANAGER
208584fffc8SSebastian Siewior	select CRYPTO_HASH
209e94c6a7aSHerbert Xu	select CRYPTO_NULL
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
212584fffc8SSebastian Siewior	  This is required for IPSec.
213584fffc8SSebastian Siewior
214584fffc8SSebastian Siewiorconfig CRYPTO_TEST
215584fffc8SSebastian Siewior	tristate "Testing module"
216584fffc8SSebastian Siewior	depends on m
217da7f033dSHerbert Xu	select CRYPTO_MANAGER
218584fffc8SSebastian Siewior	help
219584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
220584fffc8SSebastian Siewior
221266d0516SHerbert Xuconfig CRYPTO_SIMD
222266d0516SHerbert Xu	tristate
223266d0516SHerbert Xu	select CRYPTO_CRYPTD
224266d0516SHerbert Xu
225596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
226596d8750SJussi Kivilinna	tristate
227596d8750SJussi Kivilinna	depends on X86
228065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
229596d8750SJussi Kivilinna
230735d37b5SBaolin Wangconfig CRYPTO_ENGINE
231735d37b5SBaolin Wang	tristate
232735d37b5SBaolin Wang
2333d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2343d6228a5SVitaly Chikunov
2353d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2363d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2373d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2383d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2393d6228a5SVitaly Chikunov	select MPILIB
2403d6228a5SVitaly Chikunov	select ASN1
2413d6228a5SVitaly Chikunov	help
2423d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2433d6228a5SVitaly Chikunov
2443d6228a5SVitaly Chikunovconfig CRYPTO_DH
2453d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2463d6228a5SVitaly Chikunov	select CRYPTO_KPP
2473d6228a5SVitaly Chikunov	select MPILIB
2483d6228a5SVitaly Chikunov	help
2493d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2503d6228a5SVitaly Chikunov
251*4a2289daSVitaly Chikunovconfig CRYPTO_ECC
252*4a2289daSVitaly Chikunov	tristate
253*4a2289daSVitaly Chikunov
2543d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2553d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
256*4a2289daSVitaly Chikunov	select CRYPTO_ECC
2573d6228a5SVitaly Chikunov	select CRYPTO_KPP
2583d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
2593d6228a5SVitaly Chikunov	help
2603d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2613d6228a5SVitaly Chikunov
262584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
263584fffc8SSebastian Siewior
264584fffc8SSebastian Siewiorconfig CRYPTO_CCM
265584fffc8SSebastian Siewior	tristate "CCM support"
266584fffc8SSebastian Siewior	select CRYPTO_CTR
267f15f05b0SArd Biesheuvel	select CRYPTO_HASH
268584fffc8SSebastian Siewior	select CRYPTO_AEAD
269584fffc8SSebastian Siewior	help
270584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
271584fffc8SSebastian Siewior
272584fffc8SSebastian Siewiorconfig CRYPTO_GCM
273584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
274584fffc8SSebastian Siewior	select CRYPTO_CTR
275584fffc8SSebastian Siewior	select CRYPTO_AEAD
2769382d97aSHuang Ying	select CRYPTO_GHASH
2779489667dSJussi Kivilinna	select CRYPTO_NULL
278584fffc8SSebastian Siewior	help
279584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
280584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
281584fffc8SSebastian Siewior
28271ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28371ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28471ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28571ebc4d1SMartin Willi	select CRYPTO_POLY1305
28671ebc4d1SMartin Willi	select CRYPTO_AEAD
28771ebc4d1SMartin Willi	help
28871ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28971ebc4d1SMartin Willi
29071ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29171ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29271ebc4d1SMartin Willi	  IETF protocols.
29371ebc4d1SMartin Willi
294f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
295f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
296f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
297f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
298f606a88eSOndrej Mosnacek	help
299f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
300f606a88eSOndrej Mosnacek
301f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
302f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
303f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
304f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
305f606a88eSOndrej Mosnacek	help
306f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
307f606a88eSOndrej Mosnacek
308f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
309f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
310f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
311f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
312f606a88eSOndrej Mosnacek	help
313f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
314f606a88eSOndrej Mosnacek
3151d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3161d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3171d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3181d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
319de272ca7SEric Biggers	select CRYPTO_SIMD
3201d373d4eSOndrej Mosnacek	help
3214e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3221d373d4eSOndrej Mosnacek
3231d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3241d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3251d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3261d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
327d628132aSEric Biggers	select CRYPTO_SIMD
3281d373d4eSOndrej Mosnacek	help
3294e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
3301d373d4eSOndrej Mosnacek
3311d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3321d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3331d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3341d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
335b6708c2dSEric Biggers	select CRYPTO_SIMD
3361d373d4eSOndrej Mosnacek	help
3374e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
3381d373d4eSOndrej Mosnacek
339396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
340396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
341396be41fSOndrej Mosnacek	select CRYPTO_AEAD
342396be41fSOndrej Mosnacek	help
343396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
344396be41fSOndrej Mosnacek
34556e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3462808f173SOndrej Mosnacek	tristate
3472808f173SOndrej Mosnacek	depends on X86
34856e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
34947730958SEric Biggers	select CRYPTO_SIMD
35056e8e57fSOndrej Mosnacek	help
35156e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
35256e8e57fSOndrej Mosnacek	  algorithm.
35356e8e57fSOndrej Mosnacek
3546ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3556ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3566ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3576ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3586ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3596ecc9d9fSOndrej Mosnacek	help
3606ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3616ecc9d9fSOndrej Mosnacek
362396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
363396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
364396be41fSOndrej Mosnacek	select CRYPTO_AEAD
365396be41fSOndrej Mosnacek	help
366396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
367396be41fSOndrej Mosnacek
36856e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3692808f173SOndrej Mosnacek	tristate
3702808f173SOndrej Mosnacek	depends on X86
37156e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
372e151a8d2SEric Biggers	select CRYPTO_SIMD
37356e8e57fSOndrej Mosnacek	help
37456e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
37556e8e57fSOndrej Mosnacek	  algorithm.
37656e8e57fSOndrej Mosnacek
3776ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3786ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3796ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3806ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3816ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3826ecc9d9fSOndrej Mosnacek	help
3836ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3846ecc9d9fSOndrej Mosnacek	  algorithm.
3856ecc9d9fSOndrej Mosnacek
3866ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
3876ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
3886ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3896ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3906ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3916ecc9d9fSOndrej Mosnacek	help
3926ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
3936ecc9d9fSOndrej Mosnacek	  algorithm.
3946ecc9d9fSOndrej Mosnacek
395584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
396584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
397584fffc8SSebastian Siewior	select CRYPTO_AEAD
398584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
399856e3f40SHerbert Xu	select CRYPTO_NULL
400401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
401584fffc8SSebastian Siewior	help
402584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
403584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
404584fffc8SSebastian Siewior
405a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
406a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
407a10f554fSHerbert Xu	select CRYPTO_AEAD
408a10f554fSHerbert Xu	select CRYPTO_NULL
409401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
4103491244cSHerbert Xu	default m
411a10f554fSHerbert Xu	help
412a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
413a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
414a10f554fSHerbert Xu	  algorithm for CBC.
415a10f554fSHerbert Xu
416584fffc8SSebastian Siewiorcomment "Block modes"
417584fffc8SSebastian Siewior
418584fffc8SSebastian Siewiorconfig CRYPTO_CBC
419584fffc8SSebastian Siewior	tristate "CBC support"
420584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
421584fffc8SSebastian Siewior	select CRYPTO_MANAGER
422584fffc8SSebastian Siewior	help
423584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
424584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
425584fffc8SSebastian Siewior
426a7d85e06SJames Bottomleyconfig CRYPTO_CFB
427a7d85e06SJames Bottomley	tristate "CFB support"
428a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
429a7d85e06SJames Bottomley	select CRYPTO_MANAGER
430a7d85e06SJames Bottomley	help
431a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
432a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
433a7d85e06SJames Bottomley
434584fffc8SSebastian Siewiorconfig CRYPTO_CTR
435584fffc8SSebastian Siewior	tristate "CTR support"
436584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
437584fffc8SSebastian Siewior	select CRYPTO_SEQIV
438584fffc8SSebastian Siewior	select CRYPTO_MANAGER
439584fffc8SSebastian Siewior	help
440584fffc8SSebastian Siewior	  CTR: Counter mode
441584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
442584fffc8SSebastian Siewior
443584fffc8SSebastian Siewiorconfig CRYPTO_CTS
444584fffc8SSebastian Siewior	tristate "CTS support"
445584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
446584fffc8SSebastian Siewior	help
447584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
448584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
449ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
450ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
451ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
452584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
453584fffc8SSebastian Siewior	  for AES encryption.
454584fffc8SSebastian Siewior
455ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
456ecd6d5c9SGilad Ben-Yossef
457584fffc8SSebastian Siewiorconfig CRYPTO_ECB
458584fffc8SSebastian Siewior	tristate "ECB support"
459584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
460584fffc8SSebastian Siewior	select CRYPTO_MANAGER
461584fffc8SSebastian Siewior	help
462584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
463584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
464584fffc8SSebastian Siewior	  the input block by block.
465584fffc8SSebastian Siewior
466584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4672470a2b2SJussi Kivilinna	tristate "LRW support"
468584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
469584fffc8SSebastian Siewior	select CRYPTO_MANAGER
470584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
471584fffc8SSebastian Siewior	help
472584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
473584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
474584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
475584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
476584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
477584fffc8SSebastian Siewior
478e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
479e497c518SGilad Ben-Yossef	tristate "OFB support"
480e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
481e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
482e497c518SGilad Ben-Yossef	help
483e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
484e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
485e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
486e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
487e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
488e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
489e497c518SGilad Ben-Yossef
490584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
491584fffc8SSebastian Siewior	tristate "PCBC support"
492584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
493584fffc8SSebastian Siewior	select CRYPTO_MANAGER
494584fffc8SSebastian Siewior	help
495584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
496584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
497584fffc8SSebastian Siewior
498584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4995bcf8e6dSJussi Kivilinna	tristate "XTS support"
500584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
501584fffc8SSebastian Siewior	select CRYPTO_MANAGER
50212cb3a1cSMilan Broz	select CRYPTO_ECB
503584fffc8SSebastian Siewior	help
504584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
505584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
506584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
507584fffc8SSebastian Siewior
5081c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5091c49678eSStephan Mueller	tristate "Key wrapping support"
5101c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
5111c49678eSStephan Mueller	help
5121c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5131c49678eSStephan Mueller	  padding.
5141c49678eSStephan Mueller
51526609a21SEric Biggersconfig CRYPTO_NHPOLY1305
51626609a21SEric Biggers	tristate
51726609a21SEric Biggers	select CRYPTO_HASH
51826609a21SEric Biggers	select CRYPTO_POLY1305
51926609a21SEric Biggers
520012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
521012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
522012c8238SEric Biggers	depends on X86 && 64BIT
523012c8238SEric Biggers	select CRYPTO_NHPOLY1305
524012c8238SEric Biggers	help
525012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
526012c8238SEric Biggers	  Adiantum encryption mode.
527012c8238SEric Biggers
5280f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5290f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5300f961f9fSEric Biggers	depends on X86 && 64BIT
5310f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5320f961f9fSEric Biggers	help
5330f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5340f961f9fSEric Biggers	  Adiantum encryption mode.
5350f961f9fSEric Biggers
536059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
537059c2a4dSEric Biggers	tristate "Adiantum support"
538059c2a4dSEric Biggers	select CRYPTO_CHACHA20
539059c2a4dSEric Biggers	select CRYPTO_POLY1305
540059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
541059c2a4dSEric Biggers	help
542059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
543059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
544059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
545059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
546059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
547059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
548059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
549059c2a4dSEric Biggers	  AES-XTS.
550059c2a4dSEric Biggers
551059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
552059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
553059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
554059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
555059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
556059c2a4dSEric Biggers
557059c2a4dSEric Biggers	  If unsure, say N.
558059c2a4dSEric Biggers
559584fffc8SSebastian Siewiorcomment "Hash modes"
560584fffc8SSebastian Siewior
56193b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
56293b5e86aSJussi Kivilinna	tristate "CMAC support"
56393b5e86aSJussi Kivilinna	select CRYPTO_HASH
56493b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
56593b5e86aSJussi Kivilinna	help
56693b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
56793b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
56893b5e86aSJussi Kivilinna
56993b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
57093b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
57193b5e86aSJussi Kivilinna
5721da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5738425165dSHerbert Xu	tristate "HMAC support"
5740796ae06SHerbert Xu	select CRYPTO_HASH
57543518407SHerbert Xu	select CRYPTO_MANAGER
5761da177e4SLinus Torvalds	help
5771da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5781da177e4SLinus Torvalds	  This is required for IPSec.
5791da177e4SLinus Torvalds
580333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
581333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
582333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
583333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
584333b0d7eSKazunori MIYAZAWA	help
585333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
586333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
587333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
588333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
589333b0d7eSKazunori MIYAZAWA
590f1939f7cSShane Wangconfig CRYPTO_VMAC
591f1939f7cSShane Wang	tristate "VMAC support"
592f1939f7cSShane Wang	select CRYPTO_HASH
593f1939f7cSShane Wang	select CRYPTO_MANAGER
594f1939f7cSShane Wang	help
595f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
596f1939f7cSShane Wang	  very high speed on 64-bit architectures.
597f1939f7cSShane Wang
598f1939f7cSShane Wang	  See also:
599f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
600f1939f7cSShane Wang
601584fffc8SSebastian Siewiorcomment "Digest"
602584fffc8SSebastian Siewior
603584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
604584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6055773a3e6SHerbert Xu	select CRYPTO_HASH
6066a0962b2SDarrick J. Wong	select CRC32
6071da177e4SLinus Torvalds	help
608584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
609584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
61069c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6111da177e4SLinus Torvalds
6128cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6138cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6148cb51ba8SAustin Zhang	depends on X86
6158cb51ba8SAustin Zhang	select CRYPTO_HASH
6168cb51ba8SAustin Zhang	help
6178cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6188cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6198cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6208cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6218cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6228cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6238cb51ba8SAustin Zhang
6247cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6256dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
626c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6276dd7a82cSAnton Blanchard	select CRYPTO_HASH
6286dd7a82cSAnton Blanchard	select CRC32
6296dd7a82cSAnton Blanchard	help
6306dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6316dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6326dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6336dd7a82cSAnton Blanchard
6346dd7a82cSAnton Blanchard
635442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
636442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
637442a7c40SDavid S. Miller	depends on SPARC64
638442a7c40SDavid S. Miller	select CRYPTO_HASH
639442a7c40SDavid S. Miller	select CRC32
640442a7c40SDavid S. Miller	help
641442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
642442a7c40SDavid S. Miller	  when available.
643442a7c40SDavid S. Miller
64478c37d19SAlexander Boykoconfig CRYPTO_CRC32
64578c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
64678c37d19SAlexander Boyko	select CRYPTO_HASH
64778c37d19SAlexander Boyko	select CRC32
64878c37d19SAlexander Boyko	help
64978c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
65078c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
65178c37d19SAlexander Boyko
65278c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
65378c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
65478c37d19SAlexander Boyko	depends on X86
65578c37d19SAlexander Boyko	select CRYPTO_HASH
65678c37d19SAlexander Boyko	select CRC32
65778c37d19SAlexander Boyko	help
65878c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
65978c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
66078c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
661af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
66278c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
66378c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
66478c37d19SAlexander Boyko
6654a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6664a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6674a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6684a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6694a5dc51eSMarcin Nowakowski	help
6704a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6714a5dc51eSMarcin Nowakowski	  instructions, when available.
6724a5dc51eSMarcin Nowakowski
6734a5dc51eSMarcin Nowakowski
67468411521SHerbert Xuconfig CRYPTO_CRCT10DIF
67568411521SHerbert Xu	tristate "CRCT10DIF algorithm"
67668411521SHerbert Xu	select CRYPTO_HASH
67768411521SHerbert Xu	help
67868411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
67968411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
68068411521SHerbert Xu	  transforms to be used if they are available.
68168411521SHerbert Xu
68268411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
68368411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
68468411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
68568411521SHerbert Xu	select CRYPTO_HASH
68668411521SHerbert Xu	help
68768411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
68868411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
68968411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
690af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
69168411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
69268411521SHerbert Xu
693b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
694b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
695b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
696b01df1c1SDaniel Axtens	select CRYPTO_HASH
697b01df1c1SDaniel Axtens	help
698b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
699b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
700b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
701b01df1c1SDaniel Axtens
702146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
703146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
704146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
705146c8688SDaniel Axtens	help
706146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
707146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
708146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
709146c8688SDaniel Axtens
7102cdc6899SHuang Yingconfig CRYPTO_GHASH
7112cdc6899SHuang Ying	tristate "GHASH digest algorithm"
7122cdc6899SHuang Ying	select CRYPTO_GF128MUL
713578c60fbSArnd Bergmann	select CRYPTO_HASH
7142cdc6899SHuang Ying	help
7152cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
7162cdc6899SHuang Ying
717f979e014SMartin Williconfig CRYPTO_POLY1305
718f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
719578c60fbSArnd Bergmann	select CRYPTO_HASH
720f979e014SMartin Willi	help
721f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
722f979e014SMartin Willi
723f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
724f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
725f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
726f979e014SMartin Willi
727c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
728b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
729c70f4abeSMartin Willi	depends on X86 && 64BIT
730c70f4abeSMartin Willi	select CRYPTO_POLY1305
731c70f4abeSMartin Willi	help
732c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
733c70f4abeSMartin Willi
734c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
735c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
736c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
737c70f4abeSMartin Willi	  instructions.
738c70f4abeSMartin Willi
7391da177e4SLinus Torvaldsconfig CRYPTO_MD4
7401da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
741808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7421da177e4SLinus Torvalds	help
7431da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7441da177e4SLinus Torvalds
7451da177e4SLinus Torvaldsconfig CRYPTO_MD5
7461da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
74714b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7481da177e4SLinus Torvalds	help
7491da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7501da177e4SLinus Torvalds
751d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
752d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
753d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
754d69e75deSAaro Koskinen	select CRYPTO_MD5
755d69e75deSAaro Koskinen	select CRYPTO_HASH
756d69e75deSAaro Koskinen	help
757d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
758d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
759d69e75deSAaro Koskinen
760e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
761e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
762e8e59953SMarkus Stockhausen	depends on PPC
763e8e59953SMarkus Stockhausen	select CRYPTO_HASH
764e8e59953SMarkus Stockhausen	help
765e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
766e8e59953SMarkus Stockhausen	  in PPC assembler.
767e8e59953SMarkus Stockhausen
768fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
769fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
770fa4dfedcSDavid S. Miller	depends on SPARC64
771fa4dfedcSDavid S. Miller	select CRYPTO_MD5
772fa4dfedcSDavid S. Miller	select CRYPTO_HASH
773fa4dfedcSDavid S. Miller	help
774fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
775fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
776fa4dfedcSDavid S. Miller
777584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
778584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
77919e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
780584fffc8SSebastian Siewior	help
781584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
782584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
783584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
784584fffc8SSebastian Siewior	  of the algorithm.
785584fffc8SSebastian Siewior
78682798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
78782798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7887c4468bcSHerbert Xu	select CRYPTO_HASH
78982798f90SAdrian-Ken Rueegsegger	help
79082798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
79182798f90SAdrian-Ken Rueegsegger
79282798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
79335ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
79482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
79582798f90SAdrian-Ken Rueegsegger
79682798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7976d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
79882798f90SAdrian-Ken Rueegsegger
79982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
80082798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
801e5835fbaSHerbert Xu	select CRYPTO_HASH
80282798f90SAdrian-Ken Rueegsegger	help
80382798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
80482798f90SAdrian-Ken Rueegsegger
80582798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
80682798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
807b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
808b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
80982798f90SAdrian-Ken Rueegsegger
810b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
811b6d44341SAdrian Bunk	  against RIPEMD-160.
812534fe2c1SAdrian-Ken Rueegsegger
813534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8146d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
815534fe2c1SAdrian-Ken Rueegsegger
816534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
817534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
818d8a5e2e9SHerbert Xu	select CRYPTO_HASH
819534fe2c1SAdrian-Ken Rueegsegger	help
820b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
821b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
822b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
823b6d44341SAdrian Bunk	  (than RIPEMD-128).
824534fe2c1SAdrian-Ken Rueegsegger
825534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8266d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
827534fe2c1SAdrian-Ken Rueegsegger
828534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
829534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8303b8efb4cSHerbert Xu	select CRYPTO_HASH
831534fe2c1SAdrian-Ken Rueegsegger	help
832b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
833b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
834b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
835b6d44341SAdrian Bunk	  (than RIPEMD-160).
836534fe2c1SAdrian-Ken Rueegsegger
83782798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8386d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
83982798f90SAdrian-Ken Rueegsegger
8401da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8411da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
84254ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8431da177e4SLinus Torvalds	help
8441da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8451da177e4SLinus Torvalds
84666be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
847e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
84866be8951SMathias Krause	depends on X86 && 64BIT
84966be8951SMathias Krause	select CRYPTO_SHA1
85066be8951SMathias Krause	select CRYPTO_HASH
85166be8951SMathias Krause	help
85266be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
85366be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
854e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
855e38b6b7fStim	  when available.
85666be8951SMathias Krause
8578275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
858e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8598275d1aaSTim Chen	depends on X86 && 64BIT
8608275d1aaSTim Chen	select CRYPTO_SHA256
8618275d1aaSTim Chen	select CRYPTO_HASH
8628275d1aaSTim Chen	help
8638275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8648275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8658275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
866e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
867e38b6b7fStim	  Instructions) when available.
8688275d1aaSTim Chen
86987de4579STim Chenconfig CRYPTO_SHA512_SSSE3
87087de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
87187de4579STim Chen	depends on X86 && 64BIT
87287de4579STim Chen	select CRYPTO_SHA512
87387de4579STim Chen	select CRYPTO_HASH
87487de4579STim Chen	help
87587de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
87687de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
87787de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
87887de4579STim Chen	  version 2 (AVX2) instructions, when available.
87987de4579STim Chen
880efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
881efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
882efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
883efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
884efdb6f6eSAaro Koskinen	select CRYPTO_HASH
885efdb6f6eSAaro Koskinen	help
886efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
887efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
888efdb6f6eSAaro Koskinen
8894ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8904ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8914ff28d4cSDavid S. Miller	depends on SPARC64
8924ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8934ff28d4cSDavid S. Miller	select CRYPTO_HASH
8944ff28d4cSDavid S. Miller	help
8954ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8964ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8974ff28d4cSDavid S. Miller
898323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
899323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
900323a6bf1SMichael Ellerman	depends on PPC
901323a6bf1SMichael Ellerman	help
902323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
903323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
904323a6bf1SMichael Ellerman
905d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
906d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
907d9850fc5SMarkus Stockhausen	depends on PPC && SPE
908d9850fc5SMarkus Stockhausen	help
909d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
910d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
911d9850fc5SMarkus Stockhausen
9121da177e4SLinus Torvaldsconfig CRYPTO_SHA256
913cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
91450e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9151da177e4SLinus Torvalds	help
9161da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9171da177e4SLinus Torvalds
9181da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9191da177e4SLinus Torvalds	  security against collision attacks.
9201da177e4SLinus Torvalds
921cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
922cd12fb90SJonathan Lynch	  of security against collision attacks.
923cd12fb90SJonathan Lynch
9242ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9252ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9262ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9272ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9282ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9292ecc1e95SMarkus Stockhausen	help
9302ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9312ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9322ecc1e95SMarkus Stockhausen
933efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
934efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
935efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
936efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
937efdb6f6eSAaro Koskinen	select CRYPTO_HASH
938efdb6f6eSAaro Koskinen	help
939efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
940efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
941efdb6f6eSAaro Koskinen
94286c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
94386c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
94486c93b24SDavid S. Miller	depends on SPARC64
94586c93b24SDavid S. Miller	select CRYPTO_SHA256
94686c93b24SDavid S. Miller	select CRYPTO_HASH
94786c93b24SDavid S. Miller	help
94886c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
94986c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
95086c93b24SDavid S. Miller
9511da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9521da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
953bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9541da177e4SLinus Torvalds	help
9551da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9561da177e4SLinus Torvalds
9571da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9581da177e4SLinus Torvalds	  security against collision attacks.
9591da177e4SLinus Torvalds
9601da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9611da177e4SLinus Torvalds	  of security against collision attacks.
9621da177e4SLinus Torvalds
963efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
964efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
965efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
966efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
967efdb6f6eSAaro Koskinen	select CRYPTO_HASH
968efdb6f6eSAaro Koskinen	help
969efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
970efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
971efdb6f6eSAaro Koskinen
972775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
973775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
974775e0c69SDavid S. Miller	depends on SPARC64
975775e0c69SDavid S. Miller	select CRYPTO_SHA512
976775e0c69SDavid S. Miller	select CRYPTO_HASH
977775e0c69SDavid S. Miller	help
978775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
979775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
980775e0c69SDavid S. Miller
98153964b9eSJeff Garzikconfig CRYPTO_SHA3
98253964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
98353964b9eSJeff Garzik	select CRYPTO_HASH
98453964b9eSJeff Garzik	help
98553964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
98653964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
98753964b9eSJeff Garzik
98853964b9eSJeff Garzik	  References:
98953964b9eSJeff Garzik	  http://keccak.noekeon.org/
99053964b9eSJeff Garzik
9914f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9924f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9934f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9944f0fc160SGilad Ben-Yossef	help
9954f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9964f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9974f0fc160SGilad Ben-Yossef
9984f0fc160SGilad Ben-Yossef	  References:
9994f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10004f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10014f0fc160SGilad Ben-Yossef
1002fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1003fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1004fe18957eSVitaly Chikunov	select CRYPTO_HASH
1005fe18957eSVitaly Chikunov	help
1006fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1007fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1008fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1009fe18957eSVitaly Chikunov
1010fe18957eSVitaly Chikunov	  References:
1011fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1012fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1013fe18957eSVitaly Chikunov
10141da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10151da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1016f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10171da177e4SLinus Torvalds	help
10181da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10191da177e4SLinus Torvalds
10201da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10211da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10221da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10231da177e4SLinus Torvalds
10241da177e4SLinus Torvalds	  See also:
10251da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10261da177e4SLinus Torvalds
1027584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1028584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10294946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10301da177e4SLinus Torvalds	help
1031584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10321da177e4SLinus Torvalds
1033584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1034584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10351da177e4SLinus Torvalds
10361da177e4SLinus Torvalds	  See also:
10376d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10381da177e4SLinus Torvalds
10390e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10400e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10418af00860SRichard Weinberger	depends on X86 && 64BIT
10420e1227d3SHuang Ying	select CRYPTO_CRYPTD
10430e1227d3SHuang Ying	help
10440e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10450e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10460e1227d3SHuang Ying
1047584fffc8SSebastian Siewiorcomment "Ciphers"
10481da177e4SLinus Torvalds
10491da177e4SLinus Torvaldsconfig CRYPTO_AES
10501da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1051cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10521da177e4SLinus Torvalds	help
10531da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10541da177e4SLinus Torvalds	  algorithm.
10551da177e4SLinus Torvalds
10561da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10571da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10581da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10591da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10601da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10611da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10621da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10631da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10641da177e4SLinus Torvalds
10651da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10661da177e4SLinus Torvalds
10671da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10681da177e4SLinus Torvalds
1069b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1070b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1071b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1072b5e0b032SArd Biesheuvel	help
1073b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1074b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1075b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1076b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1077b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1078b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1079b5e0b032SArd Biesheuvel
1080b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1081b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1082b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1083b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10840a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10850a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1086b5e0b032SArd Biesheuvel
10871da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10881da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1089cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1090cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10915157dea8SSebastian Siewior	select CRYPTO_AES
10921da177e4SLinus Torvalds	help
10931da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10941da177e4SLinus Torvalds	  algorithm.
10951da177e4SLinus Torvalds
10961da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10971da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10981da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10991da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
11001da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
11011da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
11021da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
11031da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11041da177e4SLinus Torvalds
11051da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11061da177e4SLinus Torvalds
11071da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11081da177e4SLinus Torvalds
1109a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1110a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1111cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1112cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
111381190b32SSebastian Siewior	select CRYPTO_AES
1114a2a892a2SAndreas Steinmetz	help
1115a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1116a2a892a2SAndreas Steinmetz	  algorithm.
1117a2a892a2SAndreas Steinmetz
1118a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1119a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1120a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1121a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1122a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1123a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1124a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1125a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1126a2a892a2SAndreas Steinmetz
1127a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1128a2a892a2SAndreas Steinmetz
1129a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1130a2a892a2SAndreas Steinmetz
113154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
113254b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11338af00860SRichard Weinberger	depends on X86
113485671860SHerbert Xu	select CRYPTO_AEAD
11350d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11360d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
113754b6a1bdSHuang Ying	select CRYPTO_ALGAPI
113885671860SHerbert Xu	select CRYPTO_BLKCIPHER
11397643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
114085671860SHerbert Xu	select CRYPTO_SIMD
114154b6a1bdSHuang Ying	help
114254b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
114354b6a1bdSHuang Ying
114454b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
114554b6a1bdSHuang Ying	  algorithm.
114654b6a1bdSHuang Ying
114754b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
114854b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
114954b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
115054b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
115154b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
115254b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
115354b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
115454b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
115554b6a1bdSHuang Ying
115654b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
115754b6a1bdSHuang Ying
115854b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
115954b6a1bdSHuang Ying
11600d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11610d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1162944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11630d258efbSMathias Krause	  acceleration for CTR.
11642cf4ac8bSHuang Ying
11659bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11669bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11679bf4852dSDavid S. Miller	depends on SPARC64
11689bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11699bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11709bf4852dSDavid S. Miller	help
11719bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11729bf4852dSDavid S. Miller
11739bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11749bf4852dSDavid S. Miller	  algorithm.
11759bf4852dSDavid S. Miller
11769bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11779bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11789bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11799bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11809bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11819bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11829bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11839bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11849bf4852dSDavid S. Miller
11859bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11869bf4852dSDavid S. Miller
11879bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11889bf4852dSDavid S. Miller
11899bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11909bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11919bf4852dSDavid S. Miller	  ECB and CBC.
11929bf4852dSDavid S. Miller
1193504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1194504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1195504c6143SMarkus Stockhausen	depends on PPC && SPE
1196504c6143SMarkus Stockhausen	help
1197504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1198504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1199504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1200504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1201504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1202504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1203504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1204504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1205504c6143SMarkus Stockhausen
12061da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12071da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1208cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12091da177e4SLinus Torvalds	help
12101da177e4SLinus Torvalds	  Anubis cipher algorithm.
12111da177e4SLinus Torvalds
12121da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12131da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12141da177e4SLinus Torvalds	  in the NESSIE competition.
12151da177e4SLinus Torvalds
12161da177e4SLinus Torvalds	  See also:
12176d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12186d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12191da177e4SLinus Torvalds
1220584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1221584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1222b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1223e2ee95b8SHye-Shik Chang	help
1224584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1225e2ee95b8SHye-Shik Chang
1226584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1227584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1228584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1229584fffc8SSebastian Siewior	  weakness of the algorithm.
1230584fffc8SSebastian Siewior
1231584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1232584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1233584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
123452ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1235584fffc8SSebastian Siewior	help
1236584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1237584fffc8SSebastian Siewior
1238584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1239584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1240584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1241e2ee95b8SHye-Shik Chang
1242e2ee95b8SHye-Shik Chang	  See also:
1243584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1244584fffc8SSebastian Siewior
124552ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
124652ba867cSJussi Kivilinna	tristate
124752ba867cSJussi Kivilinna	help
124852ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
124952ba867cSJussi Kivilinna	  generic c and the assembler implementations.
125052ba867cSJussi Kivilinna
125152ba867cSJussi Kivilinna	  See also:
125252ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
125352ba867cSJussi Kivilinna
125464b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
125564b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1256f21a7c19SAl Viro	depends on X86 && 64BIT
1257c1679171SEric Biggers	select CRYPTO_BLKCIPHER
125864b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
125964b94ceaSJussi Kivilinna	help
126064b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
126164b94ceaSJussi Kivilinna
126264b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
126364b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
126464b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
126564b94ceaSJussi Kivilinna
126664b94ceaSJussi Kivilinna	  See also:
126764b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
126864b94ceaSJussi Kivilinna
1269584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1270584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1271584fffc8SSebastian Siewior	depends on CRYPTO
1272584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1273584fffc8SSebastian Siewior	help
1274584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1275584fffc8SSebastian Siewior
1276584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1277584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1278584fffc8SSebastian Siewior
1279584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1280584fffc8SSebastian Siewior
1281584fffc8SSebastian Siewior	  See also:
1282584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1283584fffc8SSebastian Siewior
12840b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12850b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1286f21a7c19SAl Viro	depends on X86 && 64BIT
12870b95ec56SJussi Kivilinna	depends on CRYPTO
12881af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1289964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12900b95ec56SJussi Kivilinna	help
12910b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12920b95ec56SJussi Kivilinna
12930b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12940b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12950b95ec56SJussi Kivilinna
12960b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12970b95ec56SJussi Kivilinna
12980b95ec56SJussi Kivilinna	  See also:
12990b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
13000b95ec56SJussi Kivilinna
1301d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1302d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1303d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1304d9b1d2e7SJussi Kivilinna	depends on CRYPTO
130544893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1306d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
130744893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
130844893bc2SEric Biggers	select CRYPTO_SIMD
1309d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1310d9b1d2e7SJussi Kivilinna	help
1311d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1312d9b1d2e7SJussi Kivilinna
1313d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1314d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1315d9b1d2e7SJussi Kivilinna
1316d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1317d9b1d2e7SJussi Kivilinna
1318d9b1d2e7SJussi Kivilinna	  See also:
1319d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1320d9b1d2e7SJussi Kivilinna
1321f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1322f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1323f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1324f3f935a7SJussi Kivilinna	depends on CRYPTO
1325f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1326f3f935a7SJussi Kivilinna	help
1327f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1328f3f935a7SJussi Kivilinna
1329f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1330f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1331f3f935a7SJussi Kivilinna
1332f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1333f3f935a7SJussi Kivilinna
1334f3f935a7SJussi Kivilinna	  See also:
1335f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1336f3f935a7SJussi Kivilinna
133781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
133881658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
133981658ad0SDavid S. Miller	depends on SPARC64
134081658ad0SDavid S. Miller	depends on CRYPTO
134181658ad0SDavid S. Miller	select CRYPTO_ALGAPI
134281658ad0SDavid S. Miller	help
134381658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
134481658ad0SDavid S. Miller
134581658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
134681658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
134781658ad0SDavid S. Miller
134881658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
134981658ad0SDavid S. Miller
135081658ad0SDavid S. Miller	  See also:
135181658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
135281658ad0SDavid S. Miller
1353044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1354044ab525SJussi Kivilinna	tristate
1355044ab525SJussi Kivilinna	help
1356044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1357044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1358044ab525SJussi Kivilinna
1359584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1360584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1361584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1362044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1363584fffc8SSebastian Siewior	help
1364584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1365584fffc8SSebastian Siewior	  described in RFC2144.
1366584fffc8SSebastian Siewior
13674d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13684d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13694d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13701e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13714d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13721e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13731e63183aSEric Biggers	select CRYPTO_SIMD
13744d6d6a2cSJohannes Goetzfried	help
13754d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13764d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13774d6d6a2cSJohannes Goetzfried
13784d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13794d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13804d6d6a2cSJohannes Goetzfried
1381584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1382584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1383584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1384044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1385584fffc8SSebastian Siewior	help
1386584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1387584fffc8SSebastian Siewior	  described in RFC2612.
1388584fffc8SSebastian Siewior
13894ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13904ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13914ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13924bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13934ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13944bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13954bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13964bd96924SEric Biggers	select CRYPTO_SIMD
13974ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13984ea1277dSJohannes Goetzfried	help
13994ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
14004ea1277dSJohannes Goetzfried	  described in RFC2612.
14014ea1277dSJohannes Goetzfried
14024ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
14034ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14044ea1277dSJohannes Goetzfried
1405584fffc8SSebastian Siewiorconfig CRYPTO_DES
1406584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1407584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1408584fffc8SSebastian Siewior	help
1409584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1410584fffc8SSebastian Siewior
1411c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1412c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
141397da37b3SDave Jones	depends on SPARC64
1414c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1415c5aac2dfSDavid S. Miller	select CRYPTO_DES
1416c5aac2dfSDavid S. Miller	help
1417c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1418c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1419c5aac2dfSDavid S. Miller
14206574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14216574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14226574e6c6SJussi Kivilinna	depends on X86 && 64BIT
142309c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
14246574e6c6SJussi Kivilinna	select CRYPTO_DES
14256574e6c6SJussi Kivilinna	help
14266574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14276574e6c6SJussi Kivilinna
14286574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14296574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14306574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14316574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14326574e6c6SJussi Kivilinna
1433584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1434584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1435584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1436584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1437584fffc8SSebastian Siewior	help
1438584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1439584fffc8SSebastian Siewior
1440584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1441584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1442584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1443584fffc8SSebastian Siewior	help
1444584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1445584fffc8SSebastian Siewior
1446584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1447584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1448584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1449584fffc8SSebastian Siewior
1450584fffc8SSebastian Siewior	  See also:
14516d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1452e2ee95b8SHye-Shik Chang
14532407d608STan Swee Hengconfig CRYPTO_SALSA20
14543b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14552407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14562407d608STan Swee Heng	help
14572407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14582407d608STan Swee Heng
14592407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14602407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14612407d608STan Swee Heng
14622407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14632407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14641da177e4SLinus Torvalds
1465c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1466aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1467c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1468c08d0e64SMartin Willi	help
1469aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1470c08d0e64SMartin Willi
1471c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1472c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1473de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1474c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1475c08d0e64SMartin Willi
1476de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1477de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1478de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1479de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1480de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1481de61d7aeSEric Biggers
1482aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1483aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1484aa762409SEric Biggers	  in some performance-sensitive scenarios.
1485aa762409SEric Biggers
1486c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14874af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1488c9320b6dSMartin Willi	depends on X86 && 64BIT
1489c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1490c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1491c9320b6dSMartin Willi	help
14927a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14937a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1494c9320b6dSMartin Willi
1495584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1496584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1497584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1498584fffc8SSebastian Siewior	help
1499584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1500584fffc8SSebastian Siewior
1501584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1502584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1503584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1504584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1505584fffc8SSebastian Siewior
1506584fffc8SSebastian Siewior	  See also:
1507584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1508584fffc8SSebastian Siewior
1509584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1510584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1511584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1512584fffc8SSebastian Siewior	help
1513584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1514584fffc8SSebastian Siewior
1515584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1516584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1517584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1518584fffc8SSebastian Siewior
1519584fffc8SSebastian Siewior	  See also:
1520584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1521584fffc8SSebastian Siewior
1522937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1523937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1524937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1525e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1526596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1527937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1528e0f409dcSEric Biggers	select CRYPTO_SIMD
1529937c30d7SJussi Kivilinna	help
1530937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1531937c30d7SJussi Kivilinna
1532937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1533937c30d7SJussi Kivilinna	  of 8 bits.
1534937c30d7SJussi Kivilinna
15351e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1536937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1537937c30d7SJussi Kivilinna
1538937c30d7SJussi Kivilinna	  See also:
1539937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1540937c30d7SJussi Kivilinna
1541251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1542251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1543251496dbSJussi Kivilinna	depends on X86 && !64BIT
1544e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1545596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1546251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1547e0f409dcSEric Biggers	select CRYPTO_SIMD
1548251496dbSJussi Kivilinna	help
1549251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1550251496dbSJussi Kivilinna
1551251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1552251496dbSJussi Kivilinna	  of 8 bits.
1553251496dbSJussi Kivilinna
1554251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1555251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1556251496dbSJussi Kivilinna
1557251496dbSJussi Kivilinna	  See also:
1558251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1559251496dbSJussi Kivilinna
15607efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15617efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15627efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1563e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15641d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15657efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1566e16bf974SEric Biggers	select CRYPTO_SIMD
15677efe4076SJohannes Goetzfried	select CRYPTO_XTS
15687efe4076SJohannes Goetzfried	help
15697efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15707efe4076SJohannes Goetzfried
15717efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15727efe4076SJohannes Goetzfried	  of 8 bits.
15737efe4076SJohannes Goetzfried
15747efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15757efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15767efe4076SJohannes Goetzfried
15777efe4076SJohannes Goetzfried	  See also:
15787efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15797efe4076SJohannes Goetzfried
158056d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
158156d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
158256d76c96SJussi Kivilinna	depends on X86 && 64BIT
158356d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
158456d76c96SJussi Kivilinna	help
158556d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
158656d76c96SJussi Kivilinna
158756d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
158856d76c96SJussi Kivilinna	  of 8 bits.
158956d76c96SJussi Kivilinna
159056d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
159156d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
159256d76c96SJussi Kivilinna
159356d76c96SJussi Kivilinna	  See also:
159456d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
159556d76c96SJussi Kivilinna
1596747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1597747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1598747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1599747c8ce4SGilad Ben-Yossef	help
1600747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1601747c8ce4SGilad Ben-Yossef
1602747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1603747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1604747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1605747c8ce4SGilad Ben-Yossef
1606747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1607747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1608747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1609747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1610747c8ce4SGilad Ben-Yossef
1611747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1612747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1613747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1614747c8ce4SGilad Ben-Yossef
1615747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1616747c8ce4SGilad Ben-Yossef
1617747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1618747c8ce4SGilad Ben-Yossef
1619747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1620747c8ce4SGilad Ben-Yossef
1621584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1622584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1623584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1624584fffc8SSebastian Siewior	help
1625584fffc8SSebastian Siewior	  TEA cipher algorithm.
1626584fffc8SSebastian Siewior
1627584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1628584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1629584fffc8SSebastian Siewior	  little memory.
1630584fffc8SSebastian Siewior
1631584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1632584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1633584fffc8SSebastian Siewior	  in the TEA algorithm.
1634584fffc8SSebastian Siewior
1635584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1636584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1637584fffc8SSebastian Siewior
1638584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1639584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1640584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1641584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1642584fffc8SSebastian Siewior	help
1643584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1644584fffc8SSebastian Siewior
1645584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1646584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1647584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1648584fffc8SSebastian Siewior	  bits.
1649584fffc8SSebastian Siewior
1650584fffc8SSebastian Siewior	  See also:
1651584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1652584fffc8SSebastian Siewior
1653584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1654584fffc8SSebastian Siewior	tristate
1655584fffc8SSebastian Siewior	help
1656584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1657584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1658584fffc8SSebastian Siewior
1659584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1660584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1661584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1662584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1663584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1664584fffc8SSebastian Siewior	help
1665584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1666584fffc8SSebastian Siewior
1667584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1668584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1669584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1670584fffc8SSebastian Siewior	  bits.
1671584fffc8SSebastian Siewior
1672584fffc8SSebastian Siewior	  See also:
1673584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1674584fffc8SSebastian Siewior
1675584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1676584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1677584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1678584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1679584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1680584fffc8SSebastian Siewior	help
1681584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1682584fffc8SSebastian Siewior
1683584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1684584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1685584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1686584fffc8SSebastian Siewior	  bits.
1687584fffc8SSebastian Siewior
1688584fffc8SSebastian Siewior	  See also:
1689584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1690584fffc8SSebastian Siewior
16918280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16928280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1693f21a7c19SAl Viro	depends on X86 && 64BIT
169437992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16958280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16968280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1697414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16988280daadSJussi Kivilinna	help
16998280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17008280daadSJussi Kivilinna
17018280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17028280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17038280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17048280daadSJussi Kivilinna	  bits.
17058280daadSJussi Kivilinna
17068280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17078280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17088280daadSJussi Kivilinna
17098280daadSJussi Kivilinna	  See also:
17108280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17118280daadSJussi Kivilinna
1712107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1713107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1714107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17150e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1716a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17170e6ab46dSEric Biggers	select CRYPTO_SIMD
1718107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1719107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1720107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1721107778b5SJohannes Goetzfried	help
1722107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1723107778b5SJohannes Goetzfried
1724107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1725107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1726107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1727107778b5SJohannes Goetzfried	  bits.
1728107778b5SJohannes Goetzfried
1729107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1730107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1731107778b5SJohannes Goetzfried
1732107778b5SJohannes Goetzfried	  See also:
1733107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1734107778b5SJohannes Goetzfried
1735584fffc8SSebastian Siewiorcomment "Compression"
1736584fffc8SSebastian Siewior
17371da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17381da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1739cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1740f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17411da177e4SLinus Torvalds	select ZLIB_INFLATE
17421da177e4SLinus Torvalds	select ZLIB_DEFLATE
17431da177e4SLinus Torvalds	help
17441da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17451da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17461da177e4SLinus Torvalds
17471da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17481da177e4SLinus Torvalds
17490b77abb3SZoltan Sogorconfig CRYPTO_LZO
17500b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17510b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1752ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17530b77abb3SZoltan Sogor	select LZO_COMPRESS
17540b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17550b77abb3SZoltan Sogor	help
17560b77abb3SZoltan Sogor	  This is the LZO algorithm.
17570b77abb3SZoltan Sogor
175835a1fc18SSeth Jenningsconfig CRYPTO_842
175935a1fc18SSeth Jennings	tristate "842 compression algorithm"
17602062c5b6SDan Streetman	select CRYPTO_ALGAPI
17616a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17622062c5b6SDan Streetman	select 842_COMPRESS
17632062c5b6SDan Streetman	select 842_DECOMPRESS
176435a1fc18SSeth Jennings	help
176535a1fc18SSeth Jennings	  This is the 842 algorithm.
176635a1fc18SSeth Jennings
17670ea8530dSChanho Minconfig CRYPTO_LZ4
17680ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17690ea8530dSChanho Min	select CRYPTO_ALGAPI
17708cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17710ea8530dSChanho Min	select LZ4_COMPRESS
17720ea8530dSChanho Min	select LZ4_DECOMPRESS
17730ea8530dSChanho Min	help
17740ea8530dSChanho Min	  This is the LZ4 algorithm.
17750ea8530dSChanho Min
17760ea8530dSChanho Minconfig CRYPTO_LZ4HC
17770ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17780ea8530dSChanho Min	select CRYPTO_ALGAPI
177991d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17800ea8530dSChanho Min	select LZ4HC_COMPRESS
17810ea8530dSChanho Min	select LZ4_DECOMPRESS
17820ea8530dSChanho Min	help
17830ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17840ea8530dSChanho Min
1785d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1786d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1787d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1788d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1789d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1790d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1791d28fc3dbSNick Terrell	help
1792d28fc3dbSNick Terrell	  This is the zstd algorithm.
1793d28fc3dbSNick Terrell
179417f0f4a4SNeil Hormancomment "Random Number Generation"
179517f0f4a4SNeil Horman
179617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
179717f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
179817f0f4a4SNeil Horman	select CRYPTO_AES
179917f0f4a4SNeil Horman	select CRYPTO_RNG
180017f0f4a4SNeil Horman	help
180117f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
180217f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18037dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18047dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
180517f0f4a4SNeil Horman
1806f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1807419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1808419090c6SStephan Mueller	help
1809419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1810419090c6SStephan Mueller	  more of the DRBG types must be selected.
1811419090c6SStephan Mueller
1812f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1813419090c6SStephan Mueller
1814419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1815401e4238SHerbert Xu	bool
1816419090c6SStephan Mueller	default y
1817419090c6SStephan Mueller	select CRYPTO_HMAC
1818826775bbSHerbert Xu	select CRYPTO_SHA256
1819419090c6SStephan Mueller
1820419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1821419090c6SStephan Mueller	bool "Enable Hash DRBG"
1822826775bbSHerbert Xu	select CRYPTO_SHA256
1823419090c6SStephan Mueller	help
1824419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1825419090c6SStephan Mueller
1826419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1827419090c6SStephan Mueller	bool "Enable CTR DRBG"
1828419090c6SStephan Mueller	select CRYPTO_AES
182935591285SStephan Mueller	depends on CRYPTO_CTR
1830419090c6SStephan Mueller	help
1831419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1832419090c6SStephan Mueller
1833f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1834f2c89a10SHerbert Xu	tristate
1835401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1836f2c89a10SHerbert Xu	select CRYPTO_RNG
1837bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1838f2c89a10SHerbert Xu
1839f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1840419090c6SStephan Mueller
1841bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1842bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18432f313e02SArnd Bergmann	select CRYPTO_RNG
1844bb5530e4SStephan Mueller	help
1845bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1846bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1847bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1848bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1849bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1850bb5530e4SStephan Mueller
185103c8efc1SHerbert Xuconfig CRYPTO_USER_API
185203c8efc1SHerbert Xu	tristate
185303c8efc1SHerbert Xu
1854fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1855fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18567451708fSHerbert Xu	depends on NET
1857fe869cdbSHerbert Xu	select CRYPTO_HASH
1858fe869cdbSHerbert Xu	select CRYPTO_USER_API
1859fe869cdbSHerbert Xu	help
1860fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1861fe869cdbSHerbert Xu	  algorithms.
1862fe869cdbSHerbert Xu
18638ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18648ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18657451708fSHerbert Xu	depends on NET
18668ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18678ff59090SHerbert Xu	select CRYPTO_USER_API
18688ff59090SHerbert Xu	help
18698ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18708ff59090SHerbert Xu	  key cipher algorithms.
18718ff59090SHerbert Xu
18722f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18732f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18742f375538SStephan Mueller	depends on NET
18752f375538SStephan Mueller	select CRYPTO_RNG
18762f375538SStephan Mueller	select CRYPTO_USER_API
18772f375538SStephan Mueller	help
18782f375538SStephan Mueller	  This option enables the user-spaces interface for random
18792f375538SStephan Mueller	  number generator algorithms.
18802f375538SStephan Mueller
1881b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1882b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1883b64a2d95SHerbert Xu	depends on NET
1884b64a2d95SHerbert Xu	select CRYPTO_AEAD
188572548b09SStephan Mueller	select CRYPTO_BLKCIPHER
188672548b09SStephan Mueller	select CRYPTO_NULL
1887b64a2d95SHerbert Xu	select CRYPTO_USER_API
1888b64a2d95SHerbert Xu	help
1889b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1890b64a2d95SHerbert Xu	  cipher algorithms.
1891b64a2d95SHerbert Xu
1892cac5818cSCorentin Labbeconfig CRYPTO_STATS
1893cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1894a6a31385SCorentin Labbe	depends on CRYPTO_USER
1895cac5818cSCorentin Labbe	help
1896cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1897cac5818cSCorentin Labbe	  This will collect:
1898cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1899cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1900cac5818cSCorentin Labbe	  - size and numbers of hash operations
1901cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1902cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1903cac5818cSCorentin Labbe
1904ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1905ee08997fSDmitry Kasatkin	bool
1906ee08997fSDmitry Kasatkin
19071da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19088636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19098636a1f9SMasahiro Yamadasource "certs/Kconfig"
19101da177e4SLinus Torvalds
1911cce9e06dSHerbert Xuendif	# if CRYPTO
1912