xref: /linux/crypto/Kconfig (revision 3d6228a5052bc059499a7d2c38a459337d74fc5c)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1172b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1186a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1192b8c19dbSHerbert Xu	help
1202b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1212b8c19dbSHerbert Xu	  cbc(aes).
1222b8c19dbSHerbert Xu
1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1246a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1256a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1266a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1276a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
128946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1294e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1302ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1316a0fcbb4SHerbert Xu
132a38f7907SSteffen Klassertconfig CRYPTO_USER
133a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1345db017aaSHerbert Xu	depends on NET
135a38f7907SSteffen Klassert	select CRYPTO_MANAGER
136a38f7907SSteffen Klassert	help
137d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
138a38f7907SSteffen Klassert	  cbc(aes).
139a38f7907SSteffen Klassert
140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
141326a6346SHerbert Xu	bool "Disable run-time self tests"
14200ca28a5SHerbert Xu	default y
14300ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1440b767f96SAlexander Shishkin	help
145326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
146326a6346SHerbert Xu	  algorithm registration.
1470b767f96SAlexander Shishkin
1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1495b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1505b2706a4SEric Biggers	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
1515b2706a4SEric Biggers	help
1525b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1535b2706a4SEric Biggers	  including randomized fuzz tests.
1545b2706a4SEric Biggers
1555b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1565b2706a4SEric Biggers	  longer to run than the normal self tests.
1575b2706a4SEric Biggers
158584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
15908c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
160584fffc8SSebastian Siewior	help
161584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
162584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
163584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
164584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
165584fffc8SSebastian Siewior	  an external module that requires these functions.
166584fffc8SSebastian Siewior
167584fffc8SSebastian Siewiorconfig CRYPTO_NULL
168584fffc8SSebastian Siewior	tristate "Null algorithms"
169149a3971SHerbert Xu	select CRYPTO_NULL2
170584fffc8SSebastian Siewior	help
171584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
172584fffc8SSebastian Siewior
173149a3971SHerbert Xuconfig CRYPTO_NULL2
174dd43c4e9SHerbert Xu	tristate
175149a3971SHerbert Xu	select CRYPTO_ALGAPI2
176149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
177149a3971SHerbert Xu	select CRYPTO_HASH2
178149a3971SHerbert Xu
1795068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1803b4afaf2SKees Cook	tristate "Parallel crypto engine"
1813b4afaf2SKees Cook	depends on SMP
1825068c7a8SSteffen Klassert	select PADATA
1835068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1845068c7a8SSteffen Klassert	select CRYPTO_AEAD
1855068c7a8SSteffen Klassert	help
1865068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1875068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1885068c7a8SSteffen Klassert
18925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
19025c38d3fSHuang Ying       tristate
19125c38d3fSHuang Ying
192584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
193584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
194584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
195b8a28251SLoc Ho	select CRYPTO_HASH
196584fffc8SSebastian Siewior	select CRYPTO_MANAGER
197254eff77SHuang Ying	select CRYPTO_WORKQUEUE
198584fffc8SSebastian Siewior	help
199584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
200584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
201584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
202584fffc8SSebastian Siewior
203584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
204584fffc8SSebastian Siewior	tristate "Authenc support"
205584fffc8SSebastian Siewior	select CRYPTO_AEAD
206584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
207584fffc8SSebastian Siewior	select CRYPTO_MANAGER
208584fffc8SSebastian Siewior	select CRYPTO_HASH
209e94c6a7aSHerbert Xu	select CRYPTO_NULL
210584fffc8SSebastian Siewior	help
211584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
212584fffc8SSebastian Siewior	  This is required for IPSec.
213584fffc8SSebastian Siewior
214584fffc8SSebastian Siewiorconfig CRYPTO_TEST
215584fffc8SSebastian Siewior	tristate "Testing module"
216584fffc8SSebastian Siewior	depends on m
217da7f033dSHerbert Xu	select CRYPTO_MANAGER
218584fffc8SSebastian Siewior	help
219584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
220584fffc8SSebastian Siewior
221266d0516SHerbert Xuconfig CRYPTO_SIMD
222266d0516SHerbert Xu	tristate
223266d0516SHerbert Xu	select CRYPTO_CRYPTD
224266d0516SHerbert Xu
225596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
226596d8750SJussi Kivilinna	tristate
227596d8750SJussi Kivilinna	depends on X86
228065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
229596d8750SJussi Kivilinna
230735d37b5SBaolin Wangconfig CRYPTO_ENGINE
231735d37b5SBaolin Wang	tristate
232735d37b5SBaolin Wang
233*3d6228a5SVitaly Chikunovcomment "Public-key cryptography"
234*3d6228a5SVitaly Chikunov
235*3d6228a5SVitaly Chikunovconfig CRYPTO_RSA
236*3d6228a5SVitaly Chikunov	tristate "RSA algorithm"
237*3d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
238*3d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
239*3d6228a5SVitaly Chikunov	select MPILIB
240*3d6228a5SVitaly Chikunov	select ASN1
241*3d6228a5SVitaly Chikunov	help
242*3d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
243*3d6228a5SVitaly Chikunov
244*3d6228a5SVitaly Chikunovconfig CRYPTO_DH
245*3d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
246*3d6228a5SVitaly Chikunov	select CRYPTO_KPP
247*3d6228a5SVitaly Chikunov	select MPILIB
248*3d6228a5SVitaly Chikunov	help
249*3d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
250*3d6228a5SVitaly Chikunov
251*3d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
252*3d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
253*3d6228a5SVitaly Chikunov	select CRYPTO_KPP
254*3d6228a5SVitaly Chikunov	select CRYPTO_RNG_DEFAULT
255*3d6228a5SVitaly Chikunov	help
256*3d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
257*3d6228a5SVitaly Chikunov
258584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
259584fffc8SSebastian Siewior
260584fffc8SSebastian Siewiorconfig CRYPTO_CCM
261584fffc8SSebastian Siewior	tristate "CCM support"
262584fffc8SSebastian Siewior	select CRYPTO_CTR
263f15f05b0SArd Biesheuvel	select CRYPTO_HASH
264584fffc8SSebastian Siewior	select CRYPTO_AEAD
265584fffc8SSebastian Siewior	help
266584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
267584fffc8SSebastian Siewior
268584fffc8SSebastian Siewiorconfig CRYPTO_GCM
269584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
270584fffc8SSebastian Siewior	select CRYPTO_CTR
271584fffc8SSebastian Siewior	select CRYPTO_AEAD
2729382d97aSHuang Ying	select CRYPTO_GHASH
2739489667dSJussi Kivilinna	select CRYPTO_NULL
274584fffc8SSebastian Siewior	help
275584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
276584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
277584fffc8SSebastian Siewior
27871ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
27971ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28071ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28171ebc4d1SMartin Willi	select CRYPTO_POLY1305
28271ebc4d1SMartin Willi	select CRYPTO_AEAD
28371ebc4d1SMartin Willi	help
28471ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28571ebc4d1SMartin Willi
28671ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28771ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
28871ebc4d1SMartin Willi	  IETF protocols.
28971ebc4d1SMartin Willi
290f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
291f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
292f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
293f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
294f606a88eSOndrej Mosnacek	help
295f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
296f606a88eSOndrej Mosnacek
297f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
298f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
299f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
300f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
301f606a88eSOndrej Mosnacek	help
302f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
303f606a88eSOndrej Mosnacek
304f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
305f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
306f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
307f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
308f606a88eSOndrej Mosnacek	help
309f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
310f606a88eSOndrej Mosnacek
3111d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3121d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3131d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3141d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
315de272ca7SEric Biggers	select CRYPTO_SIMD
3161d373d4eSOndrej Mosnacek	help
3174e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3181d373d4eSOndrej Mosnacek
3191d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3201d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3211d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3221d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
323d628132aSEric Biggers	select CRYPTO_SIMD
3241d373d4eSOndrej Mosnacek	help
3254e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm.
3261d373d4eSOndrej Mosnacek
3271d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3281d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3291d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3301d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
331b6708c2dSEric Biggers	select CRYPTO_SIMD
3321d373d4eSOndrej Mosnacek	help
3334e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm.
3341d373d4eSOndrej Mosnacek
335396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
336396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
337396be41fSOndrej Mosnacek	select CRYPTO_AEAD
338396be41fSOndrej Mosnacek	help
339396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
340396be41fSOndrej Mosnacek
34156e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
3422808f173SOndrej Mosnacek	tristate
3432808f173SOndrej Mosnacek	depends on X86
34456e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
34547730958SEric Biggers	select CRYPTO_SIMD
34656e8e57fSOndrej Mosnacek	help
34756e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
34856e8e57fSOndrej Mosnacek	  algorithm.
34956e8e57fSOndrej Mosnacek
3506ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3516ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3526ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3536ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3546ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3556ecc9d9fSOndrej Mosnacek	help
3566ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3576ecc9d9fSOndrej Mosnacek
358396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
359396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
360396be41fSOndrej Mosnacek	select CRYPTO_AEAD
361396be41fSOndrej Mosnacek	help
362396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
363396be41fSOndrej Mosnacek
36456e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
3652808f173SOndrej Mosnacek	tristate
3662808f173SOndrej Mosnacek	depends on X86
36756e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
368e151a8d2SEric Biggers	select CRYPTO_SIMD
36956e8e57fSOndrej Mosnacek	help
37056e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
37156e8e57fSOndrej Mosnacek	  algorithm.
37256e8e57fSOndrej Mosnacek
3736ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3746ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3756ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3766ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3776ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3786ecc9d9fSOndrej Mosnacek	help
3796ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3806ecc9d9fSOndrej Mosnacek	  algorithm.
3816ecc9d9fSOndrej Mosnacek
3826ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
3836ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
3846ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3856ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3866ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3876ecc9d9fSOndrej Mosnacek	help
3886ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
3896ecc9d9fSOndrej Mosnacek	  algorithm.
3906ecc9d9fSOndrej Mosnacek
391584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
392584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
393584fffc8SSebastian Siewior	select CRYPTO_AEAD
394584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
395856e3f40SHerbert Xu	select CRYPTO_NULL
396401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
397584fffc8SSebastian Siewior	help
398584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
399584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
400584fffc8SSebastian Siewior
401a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
402a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
403a10f554fSHerbert Xu	select CRYPTO_AEAD
404a10f554fSHerbert Xu	select CRYPTO_NULL
405401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
4063491244cSHerbert Xu	default m
407a10f554fSHerbert Xu	help
408a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
409a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
410a10f554fSHerbert Xu	  algorithm for CBC.
411a10f554fSHerbert Xu
412584fffc8SSebastian Siewiorcomment "Block modes"
413584fffc8SSebastian Siewior
414584fffc8SSebastian Siewiorconfig CRYPTO_CBC
415584fffc8SSebastian Siewior	tristate "CBC support"
416584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
417584fffc8SSebastian Siewior	select CRYPTO_MANAGER
418584fffc8SSebastian Siewior	help
419584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
420584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
421584fffc8SSebastian Siewior
422a7d85e06SJames Bottomleyconfig CRYPTO_CFB
423a7d85e06SJames Bottomley	tristate "CFB support"
424a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
425a7d85e06SJames Bottomley	select CRYPTO_MANAGER
426a7d85e06SJames Bottomley	help
427a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
428a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
429a7d85e06SJames Bottomley
430584fffc8SSebastian Siewiorconfig CRYPTO_CTR
431584fffc8SSebastian Siewior	tristate "CTR support"
432584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
433584fffc8SSebastian Siewior	select CRYPTO_SEQIV
434584fffc8SSebastian Siewior	select CRYPTO_MANAGER
435584fffc8SSebastian Siewior	help
436584fffc8SSebastian Siewior	  CTR: Counter mode
437584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
438584fffc8SSebastian Siewior
439584fffc8SSebastian Siewiorconfig CRYPTO_CTS
440584fffc8SSebastian Siewior	tristate "CTS support"
441584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
442584fffc8SSebastian Siewior	help
443584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
444584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
445ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
446ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
447ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
448584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
449584fffc8SSebastian Siewior	  for AES encryption.
450584fffc8SSebastian Siewior
451ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
452ecd6d5c9SGilad Ben-Yossef
453584fffc8SSebastian Siewiorconfig CRYPTO_ECB
454584fffc8SSebastian Siewior	tristate "ECB support"
455584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
456584fffc8SSebastian Siewior	select CRYPTO_MANAGER
457584fffc8SSebastian Siewior	help
458584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
459584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
460584fffc8SSebastian Siewior	  the input block by block.
461584fffc8SSebastian Siewior
462584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4632470a2b2SJussi Kivilinna	tristate "LRW support"
464584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
465584fffc8SSebastian Siewior	select CRYPTO_MANAGER
466584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
467584fffc8SSebastian Siewior	help
468584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
469584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
470584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
471584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
472584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
473584fffc8SSebastian Siewior
474e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
475e497c518SGilad Ben-Yossef	tristate "OFB support"
476e497c518SGilad Ben-Yossef	select CRYPTO_BLKCIPHER
477e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
478e497c518SGilad Ben-Yossef	help
479e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
480e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
481e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
482e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
483e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
484e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
485e497c518SGilad Ben-Yossef
486584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
487584fffc8SSebastian Siewior	tristate "PCBC support"
488584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
489584fffc8SSebastian Siewior	select CRYPTO_MANAGER
490584fffc8SSebastian Siewior	help
491584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
492584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
493584fffc8SSebastian Siewior
494584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4955bcf8e6dSJussi Kivilinna	tristate "XTS support"
496584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
497584fffc8SSebastian Siewior	select CRYPTO_MANAGER
49812cb3a1cSMilan Broz	select CRYPTO_ECB
499584fffc8SSebastian Siewior	help
500584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
501584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
502584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
503584fffc8SSebastian Siewior
5041c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
5051c49678eSStephan Mueller	tristate "Key wrapping support"
5061c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
5071c49678eSStephan Mueller	help
5081c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
5091c49678eSStephan Mueller	  padding.
5101c49678eSStephan Mueller
51126609a21SEric Biggersconfig CRYPTO_NHPOLY1305
51226609a21SEric Biggers	tristate
51326609a21SEric Biggers	select CRYPTO_HASH
51426609a21SEric Biggers	select CRYPTO_POLY1305
51526609a21SEric Biggers
516012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
517012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
518012c8238SEric Biggers	depends on X86 && 64BIT
519012c8238SEric Biggers	select CRYPTO_NHPOLY1305
520012c8238SEric Biggers	help
521012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
522012c8238SEric Biggers	  Adiantum encryption mode.
523012c8238SEric Biggers
5240f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5250f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5260f961f9fSEric Biggers	depends on X86 && 64BIT
5270f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5280f961f9fSEric Biggers	help
5290f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5300f961f9fSEric Biggers	  Adiantum encryption mode.
5310f961f9fSEric Biggers
532059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
533059c2a4dSEric Biggers	tristate "Adiantum support"
534059c2a4dSEric Biggers	select CRYPTO_CHACHA20
535059c2a4dSEric Biggers	select CRYPTO_POLY1305
536059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
537059c2a4dSEric Biggers	help
538059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
539059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
540059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
541059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
542059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
543059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
544059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
545059c2a4dSEric Biggers	  AES-XTS.
546059c2a4dSEric Biggers
547059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
548059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
549059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
550059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
551059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
552059c2a4dSEric Biggers
553059c2a4dSEric Biggers	  If unsure, say N.
554059c2a4dSEric Biggers
555584fffc8SSebastian Siewiorcomment "Hash modes"
556584fffc8SSebastian Siewior
55793b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
55893b5e86aSJussi Kivilinna	tristate "CMAC support"
55993b5e86aSJussi Kivilinna	select CRYPTO_HASH
56093b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
56193b5e86aSJussi Kivilinna	help
56293b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
56393b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
56493b5e86aSJussi Kivilinna
56593b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
56693b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
56793b5e86aSJussi Kivilinna
5681da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5698425165dSHerbert Xu	tristate "HMAC support"
5700796ae06SHerbert Xu	select CRYPTO_HASH
57143518407SHerbert Xu	select CRYPTO_MANAGER
5721da177e4SLinus Torvalds	help
5731da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5741da177e4SLinus Torvalds	  This is required for IPSec.
5751da177e4SLinus Torvalds
576333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
577333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
578333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
579333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
580333b0d7eSKazunori MIYAZAWA	help
581333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
582333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
583333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
584333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
585333b0d7eSKazunori MIYAZAWA
586f1939f7cSShane Wangconfig CRYPTO_VMAC
587f1939f7cSShane Wang	tristate "VMAC support"
588f1939f7cSShane Wang	select CRYPTO_HASH
589f1939f7cSShane Wang	select CRYPTO_MANAGER
590f1939f7cSShane Wang	help
591f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
592f1939f7cSShane Wang	  very high speed on 64-bit architectures.
593f1939f7cSShane Wang
594f1939f7cSShane Wang	  See also:
595f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
596f1939f7cSShane Wang
597584fffc8SSebastian Siewiorcomment "Digest"
598584fffc8SSebastian Siewior
599584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
600584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6015773a3e6SHerbert Xu	select CRYPTO_HASH
6026a0962b2SDarrick J. Wong	select CRC32
6031da177e4SLinus Torvalds	help
604584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
605584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
60669c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6071da177e4SLinus Torvalds
6088cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6098cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6108cb51ba8SAustin Zhang	depends on X86
6118cb51ba8SAustin Zhang	select CRYPTO_HASH
6128cb51ba8SAustin Zhang	help
6138cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6148cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6158cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6168cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6178cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6188cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6198cb51ba8SAustin Zhang
6207cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6216dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
622c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6236dd7a82cSAnton Blanchard	select CRYPTO_HASH
6246dd7a82cSAnton Blanchard	select CRC32
6256dd7a82cSAnton Blanchard	help
6266dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6276dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6286dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6296dd7a82cSAnton Blanchard
6306dd7a82cSAnton Blanchard
631442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
632442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
633442a7c40SDavid S. Miller	depends on SPARC64
634442a7c40SDavid S. Miller	select CRYPTO_HASH
635442a7c40SDavid S. Miller	select CRC32
636442a7c40SDavid S. Miller	help
637442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
638442a7c40SDavid S. Miller	  when available.
639442a7c40SDavid S. Miller
64078c37d19SAlexander Boykoconfig CRYPTO_CRC32
64178c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
64278c37d19SAlexander Boyko	select CRYPTO_HASH
64378c37d19SAlexander Boyko	select CRC32
64478c37d19SAlexander Boyko	help
64578c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
64678c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
64778c37d19SAlexander Boyko
64878c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
64978c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
65078c37d19SAlexander Boyko	depends on X86
65178c37d19SAlexander Boyko	select CRYPTO_HASH
65278c37d19SAlexander Boyko	select CRC32
65378c37d19SAlexander Boyko	help
65478c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
65578c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
65678c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
657af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
65878c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
65978c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
66078c37d19SAlexander Boyko
6614a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6624a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6634a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6644a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6654a5dc51eSMarcin Nowakowski	help
6664a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6674a5dc51eSMarcin Nowakowski	  instructions, when available.
6684a5dc51eSMarcin Nowakowski
6694a5dc51eSMarcin Nowakowski
67068411521SHerbert Xuconfig CRYPTO_CRCT10DIF
67168411521SHerbert Xu	tristate "CRCT10DIF algorithm"
67268411521SHerbert Xu	select CRYPTO_HASH
67368411521SHerbert Xu	help
67468411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
67568411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
67668411521SHerbert Xu	  transforms to be used if they are available.
67768411521SHerbert Xu
67868411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
67968411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
68068411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
68168411521SHerbert Xu	select CRYPTO_HASH
68268411521SHerbert Xu	help
68368411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
68468411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
68568411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
686af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
68768411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
68868411521SHerbert Xu
689b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
690b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
691b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
692b01df1c1SDaniel Axtens	select CRYPTO_HASH
693b01df1c1SDaniel Axtens	help
694b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
695b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
696b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
697b01df1c1SDaniel Axtens
698146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
699146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
700146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
701146c8688SDaniel Axtens	help
702146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
703146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
704146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
705146c8688SDaniel Axtens
7062cdc6899SHuang Yingconfig CRYPTO_GHASH
7072cdc6899SHuang Ying	tristate "GHASH digest algorithm"
7082cdc6899SHuang Ying	select CRYPTO_GF128MUL
709578c60fbSArnd Bergmann	select CRYPTO_HASH
7102cdc6899SHuang Ying	help
7112cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
7122cdc6899SHuang Ying
713f979e014SMartin Williconfig CRYPTO_POLY1305
714f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
715578c60fbSArnd Bergmann	select CRYPTO_HASH
716f979e014SMartin Willi	help
717f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
718f979e014SMartin Willi
719f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
720f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
721f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
722f979e014SMartin Willi
723c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
724b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
725c70f4abeSMartin Willi	depends on X86 && 64BIT
726c70f4abeSMartin Willi	select CRYPTO_POLY1305
727c70f4abeSMartin Willi	help
728c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
729c70f4abeSMartin Willi
730c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
731c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
732c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
733c70f4abeSMartin Willi	  instructions.
734c70f4abeSMartin Willi
7351da177e4SLinus Torvaldsconfig CRYPTO_MD4
7361da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
737808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7381da177e4SLinus Torvalds	help
7391da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7401da177e4SLinus Torvalds
7411da177e4SLinus Torvaldsconfig CRYPTO_MD5
7421da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
74314b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7441da177e4SLinus Torvalds	help
7451da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
7461da177e4SLinus Torvalds
747d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
748d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
749d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
750d69e75deSAaro Koskinen	select CRYPTO_MD5
751d69e75deSAaro Koskinen	select CRYPTO_HASH
752d69e75deSAaro Koskinen	help
753d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
754d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
755d69e75deSAaro Koskinen
756e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
757e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
758e8e59953SMarkus Stockhausen	depends on PPC
759e8e59953SMarkus Stockhausen	select CRYPTO_HASH
760e8e59953SMarkus Stockhausen	help
761e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
762e8e59953SMarkus Stockhausen	  in PPC assembler.
763e8e59953SMarkus Stockhausen
764fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
765fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
766fa4dfedcSDavid S. Miller	depends on SPARC64
767fa4dfedcSDavid S. Miller	select CRYPTO_MD5
768fa4dfedcSDavid S. Miller	select CRYPTO_HASH
769fa4dfedcSDavid S. Miller	help
770fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
771fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
772fa4dfedcSDavid S. Miller
773584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
774584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
77519e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
776584fffc8SSebastian Siewior	help
777584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
778584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
779584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
780584fffc8SSebastian Siewior	  of the algorithm.
781584fffc8SSebastian Siewior
78282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
78382798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7847c4468bcSHerbert Xu	select CRYPTO_HASH
78582798f90SAdrian-Ken Rueegsegger	help
78682798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
78782798f90SAdrian-Ken Rueegsegger
78882798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
78935ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
79082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
79182798f90SAdrian-Ken Rueegsegger
79282798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7936d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
79482798f90SAdrian-Ken Rueegsegger
79582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
79682798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
797e5835fbaSHerbert Xu	select CRYPTO_HASH
79882798f90SAdrian-Ken Rueegsegger	help
79982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
80082798f90SAdrian-Ken Rueegsegger
80182798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
80282798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
803b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
804b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
80582798f90SAdrian-Ken Rueegsegger
806b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
807b6d44341SAdrian Bunk	  against RIPEMD-160.
808534fe2c1SAdrian-Ken Rueegsegger
809534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8106d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
811534fe2c1SAdrian-Ken Rueegsegger
812534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
813534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
814d8a5e2e9SHerbert Xu	select CRYPTO_HASH
815534fe2c1SAdrian-Ken Rueegsegger	help
816b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
817b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
818b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
819b6d44341SAdrian Bunk	  (than RIPEMD-128).
820534fe2c1SAdrian-Ken Rueegsegger
821534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8226d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
823534fe2c1SAdrian-Ken Rueegsegger
824534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
825534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
8263b8efb4cSHerbert Xu	select CRYPTO_HASH
827534fe2c1SAdrian-Ken Rueegsegger	help
828b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
829b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
830b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
831b6d44341SAdrian Bunk	  (than RIPEMD-160).
832534fe2c1SAdrian-Ken Rueegsegger
83382798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8346d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
83582798f90SAdrian-Ken Rueegsegger
8361da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8371da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
83854ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8391da177e4SLinus Torvalds	help
8401da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8411da177e4SLinus Torvalds
84266be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
843e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
84466be8951SMathias Krause	depends on X86 && 64BIT
84566be8951SMathias Krause	select CRYPTO_SHA1
84666be8951SMathias Krause	select CRYPTO_HASH
84766be8951SMathias Krause	help
84866be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
84966be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
850e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
851e38b6b7fStim	  when available.
85266be8951SMathias Krause
8538275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
854e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8558275d1aaSTim Chen	depends on X86 && 64BIT
8568275d1aaSTim Chen	select CRYPTO_SHA256
8578275d1aaSTim Chen	select CRYPTO_HASH
8588275d1aaSTim Chen	help
8598275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8608275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8618275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
862e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
863e38b6b7fStim	  Instructions) when available.
8648275d1aaSTim Chen
86587de4579STim Chenconfig CRYPTO_SHA512_SSSE3
86687de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
86787de4579STim Chen	depends on X86 && 64BIT
86887de4579STim Chen	select CRYPTO_SHA512
86987de4579STim Chen	select CRYPTO_HASH
87087de4579STim Chen	help
87187de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
87287de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
87387de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
87487de4579STim Chen	  version 2 (AVX2) instructions, when available.
87587de4579STim Chen
876efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
877efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
878efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
879efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
880efdb6f6eSAaro Koskinen	select CRYPTO_HASH
881efdb6f6eSAaro Koskinen	help
882efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
883efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
884efdb6f6eSAaro Koskinen
8854ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8864ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8874ff28d4cSDavid S. Miller	depends on SPARC64
8884ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8894ff28d4cSDavid S. Miller	select CRYPTO_HASH
8904ff28d4cSDavid S. Miller	help
8914ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8924ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8934ff28d4cSDavid S. Miller
894323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
895323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
896323a6bf1SMichael Ellerman	depends on PPC
897323a6bf1SMichael Ellerman	help
898323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
899323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
900323a6bf1SMichael Ellerman
901d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
902d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
903d9850fc5SMarkus Stockhausen	depends on PPC && SPE
904d9850fc5SMarkus Stockhausen	help
905d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
906d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
907d9850fc5SMarkus Stockhausen
9081da177e4SLinus Torvaldsconfig CRYPTO_SHA256
909cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
91050e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9111da177e4SLinus Torvalds	help
9121da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9131da177e4SLinus Torvalds
9141da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9151da177e4SLinus Torvalds	  security against collision attacks.
9161da177e4SLinus Torvalds
917cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
918cd12fb90SJonathan Lynch	  of security against collision attacks.
919cd12fb90SJonathan Lynch
9202ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9212ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9222ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9232ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9242ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9252ecc1e95SMarkus Stockhausen	help
9262ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9272ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9282ecc1e95SMarkus Stockhausen
929efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
930efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
931efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
932efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
933efdb6f6eSAaro Koskinen	select CRYPTO_HASH
934efdb6f6eSAaro Koskinen	help
935efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
936efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
937efdb6f6eSAaro Koskinen
93886c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
93986c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
94086c93b24SDavid S. Miller	depends on SPARC64
94186c93b24SDavid S. Miller	select CRYPTO_SHA256
94286c93b24SDavid S. Miller	select CRYPTO_HASH
94386c93b24SDavid S. Miller	help
94486c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
94586c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
94686c93b24SDavid S. Miller
9471da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9481da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
949bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9501da177e4SLinus Torvalds	help
9511da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9521da177e4SLinus Torvalds
9531da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9541da177e4SLinus Torvalds	  security against collision attacks.
9551da177e4SLinus Torvalds
9561da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9571da177e4SLinus Torvalds	  of security against collision attacks.
9581da177e4SLinus Torvalds
959efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
960efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
961efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
962efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
963efdb6f6eSAaro Koskinen	select CRYPTO_HASH
964efdb6f6eSAaro Koskinen	help
965efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
966efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
967efdb6f6eSAaro Koskinen
968775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
969775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
970775e0c69SDavid S. Miller	depends on SPARC64
971775e0c69SDavid S. Miller	select CRYPTO_SHA512
972775e0c69SDavid S. Miller	select CRYPTO_HASH
973775e0c69SDavid S. Miller	help
974775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
975775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
976775e0c69SDavid S. Miller
97753964b9eSJeff Garzikconfig CRYPTO_SHA3
97853964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
97953964b9eSJeff Garzik	select CRYPTO_HASH
98053964b9eSJeff Garzik	help
98153964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
98253964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
98353964b9eSJeff Garzik
98453964b9eSJeff Garzik	  References:
98553964b9eSJeff Garzik	  http://keccak.noekeon.org/
98653964b9eSJeff Garzik
9874f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9884f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9894f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9904f0fc160SGilad Ben-Yossef	help
9914f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9924f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9934f0fc160SGilad Ben-Yossef
9944f0fc160SGilad Ben-Yossef	  References:
9954f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9964f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9974f0fc160SGilad Ben-Yossef
998fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
999fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1000fe18957eSVitaly Chikunov	select CRYPTO_HASH
1001fe18957eSVitaly Chikunov	help
1002fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1003fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1004fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1005fe18957eSVitaly Chikunov
1006fe18957eSVitaly Chikunov	  References:
1007fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1008fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1009fe18957eSVitaly Chikunov
10101da177e4SLinus Torvaldsconfig CRYPTO_TGR192
10111da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
1012f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10131da177e4SLinus Torvalds	help
10141da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
10151da177e4SLinus Torvalds
10161da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
10171da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
10181da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
10191da177e4SLinus Torvalds
10201da177e4SLinus Torvalds	  See also:
10211da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10221da177e4SLinus Torvalds
1023584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1024584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10254946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10261da177e4SLinus Torvalds	help
1027584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10281da177e4SLinus Torvalds
1029584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1030584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10311da177e4SLinus Torvalds
10321da177e4SLinus Torvalds	  See also:
10336d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10341da177e4SLinus Torvalds
10350e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10360e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10378af00860SRichard Weinberger	depends on X86 && 64BIT
10380e1227d3SHuang Ying	select CRYPTO_CRYPTD
10390e1227d3SHuang Ying	help
10400e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10410e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10420e1227d3SHuang Ying
1043584fffc8SSebastian Siewiorcomment "Ciphers"
10441da177e4SLinus Torvalds
10451da177e4SLinus Torvaldsconfig CRYPTO_AES
10461da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1047cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10481da177e4SLinus Torvalds	help
10491da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10501da177e4SLinus Torvalds	  algorithm.
10511da177e4SLinus Torvalds
10521da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10531da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10541da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10551da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10561da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10571da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10581da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10591da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10601da177e4SLinus Torvalds
10611da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10621da177e4SLinus Torvalds
10631da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10641da177e4SLinus Torvalds
1065b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1066b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1067b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1068b5e0b032SArd Biesheuvel	help
1069b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1070b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1071b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1072b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1073b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1074b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1075b5e0b032SArd Biesheuvel
1076b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1077b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1078b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1079b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
10800a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
10810a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1082b5e0b032SArd Biesheuvel
10831da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10841da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1085cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1086cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10875157dea8SSebastian Siewior	select CRYPTO_AES
10881da177e4SLinus Torvalds	help
10891da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10901da177e4SLinus Torvalds	  algorithm.
10911da177e4SLinus Torvalds
10921da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10931da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10941da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10951da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10961da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10971da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10981da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10991da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11001da177e4SLinus Torvalds
11011da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11021da177e4SLinus Torvalds
11031da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11041da177e4SLinus Torvalds
1105a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1106a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1107cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1108cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
110981190b32SSebastian Siewior	select CRYPTO_AES
1110a2a892a2SAndreas Steinmetz	help
1111a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1112a2a892a2SAndreas Steinmetz	  algorithm.
1113a2a892a2SAndreas Steinmetz
1114a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1115a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1116a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1117a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1118a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1119a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1120a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1121a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1122a2a892a2SAndreas Steinmetz
1123a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1124a2a892a2SAndreas Steinmetz
1125a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1126a2a892a2SAndreas Steinmetz
112754b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
112854b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11298af00860SRichard Weinberger	depends on X86
113085671860SHerbert Xu	select CRYPTO_AEAD
11310d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11320d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
113354b6a1bdSHuang Ying	select CRYPTO_ALGAPI
113485671860SHerbert Xu	select CRYPTO_BLKCIPHER
11357643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
113685671860SHerbert Xu	select CRYPTO_SIMD
113754b6a1bdSHuang Ying	help
113854b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
113954b6a1bdSHuang Ying
114054b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
114154b6a1bdSHuang Ying	  algorithm.
114254b6a1bdSHuang Ying
114354b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
114454b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
114554b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
114654b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
114754b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
114854b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
114954b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
115054b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
115154b6a1bdSHuang Ying
115254b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
115354b6a1bdSHuang Ying
115454b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
115554b6a1bdSHuang Ying
11560d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11570d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1158944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11590d258efbSMathias Krause	  acceleration for CTR.
11602cf4ac8bSHuang Ying
11619bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11629bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11639bf4852dSDavid S. Miller	depends on SPARC64
11649bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11659bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11669bf4852dSDavid S. Miller	help
11679bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11689bf4852dSDavid S. Miller
11699bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11709bf4852dSDavid S. Miller	  algorithm.
11719bf4852dSDavid S. Miller
11729bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11739bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11749bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11759bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11769bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11779bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11789bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11799bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11809bf4852dSDavid S. Miller
11819bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11829bf4852dSDavid S. Miller
11839bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11849bf4852dSDavid S. Miller
11859bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11869bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11879bf4852dSDavid S. Miller	  ECB and CBC.
11889bf4852dSDavid S. Miller
1189504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1190504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1191504c6143SMarkus Stockhausen	depends on PPC && SPE
1192504c6143SMarkus Stockhausen	help
1193504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1194504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1195504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1196504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1197504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1198504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1199504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1200504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1201504c6143SMarkus Stockhausen
12021da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12031da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1204cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12051da177e4SLinus Torvalds	help
12061da177e4SLinus Torvalds	  Anubis cipher algorithm.
12071da177e4SLinus Torvalds
12081da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12091da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12101da177e4SLinus Torvalds	  in the NESSIE competition.
12111da177e4SLinus Torvalds
12121da177e4SLinus Torvalds	  See also:
12136d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12146d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12151da177e4SLinus Torvalds
1216584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1217584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1218b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1219e2ee95b8SHye-Shik Chang	help
1220584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1221e2ee95b8SHye-Shik Chang
1222584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1223584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1224584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1225584fffc8SSebastian Siewior	  weakness of the algorithm.
1226584fffc8SSebastian Siewior
1227584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1228584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1229584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
123052ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1231584fffc8SSebastian Siewior	help
1232584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1233584fffc8SSebastian Siewior
1234584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1235584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1236584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1237e2ee95b8SHye-Shik Chang
1238e2ee95b8SHye-Shik Chang	  See also:
1239584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1240584fffc8SSebastian Siewior
124152ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
124252ba867cSJussi Kivilinna	tristate
124352ba867cSJussi Kivilinna	help
124452ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
124552ba867cSJussi Kivilinna	  generic c and the assembler implementations.
124652ba867cSJussi Kivilinna
124752ba867cSJussi Kivilinna	  See also:
124852ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
124952ba867cSJussi Kivilinna
125064b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
125164b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1252f21a7c19SAl Viro	depends on X86 && 64BIT
1253c1679171SEric Biggers	select CRYPTO_BLKCIPHER
125464b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
125564b94ceaSJussi Kivilinna	help
125664b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
125764b94ceaSJussi Kivilinna
125864b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
125964b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
126064b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
126164b94ceaSJussi Kivilinna
126264b94ceaSJussi Kivilinna	  See also:
126364b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
126464b94ceaSJussi Kivilinna
1265584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1266584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1267584fffc8SSebastian Siewior	depends on CRYPTO
1268584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1269584fffc8SSebastian Siewior	help
1270584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1271584fffc8SSebastian Siewior
1272584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1273584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1274584fffc8SSebastian Siewior
1275584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1276584fffc8SSebastian Siewior
1277584fffc8SSebastian Siewior	  See also:
1278584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1279584fffc8SSebastian Siewior
12800b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12810b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1282f21a7c19SAl Viro	depends on X86 && 64BIT
12830b95ec56SJussi Kivilinna	depends on CRYPTO
12841af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1285964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12860b95ec56SJussi Kivilinna	help
12870b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12880b95ec56SJussi Kivilinna
12890b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12900b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12910b95ec56SJussi Kivilinna
12920b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12930b95ec56SJussi Kivilinna
12940b95ec56SJussi Kivilinna	  See also:
12950b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12960b95ec56SJussi Kivilinna
1297d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1298d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1299d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1300d9b1d2e7SJussi Kivilinna	depends on CRYPTO
130144893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1302d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
130344893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
130444893bc2SEric Biggers	select CRYPTO_SIMD
1305d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1306d9b1d2e7SJussi Kivilinna	help
1307d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1308d9b1d2e7SJussi Kivilinna
1309d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1310d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1311d9b1d2e7SJussi Kivilinna
1312d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1313d9b1d2e7SJussi Kivilinna
1314d9b1d2e7SJussi Kivilinna	  See also:
1315d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1316d9b1d2e7SJussi Kivilinna
1317f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1318f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1319f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1320f3f935a7SJussi Kivilinna	depends on CRYPTO
1321f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1322f3f935a7SJussi Kivilinna	help
1323f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1324f3f935a7SJussi Kivilinna
1325f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1326f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1327f3f935a7SJussi Kivilinna
1328f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1329f3f935a7SJussi Kivilinna
1330f3f935a7SJussi Kivilinna	  See also:
1331f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1332f3f935a7SJussi Kivilinna
133381658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
133481658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
133581658ad0SDavid S. Miller	depends on SPARC64
133681658ad0SDavid S. Miller	depends on CRYPTO
133781658ad0SDavid S. Miller	select CRYPTO_ALGAPI
133881658ad0SDavid S. Miller	help
133981658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
134081658ad0SDavid S. Miller
134181658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
134281658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
134381658ad0SDavid S. Miller
134481658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
134581658ad0SDavid S. Miller
134681658ad0SDavid S. Miller	  See also:
134781658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
134881658ad0SDavid S. Miller
1349044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1350044ab525SJussi Kivilinna	tristate
1351044ab525SJussi Kivilinna	help
1352044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1353044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1354044ab525SJussi Kivilinna
1355584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1356584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1357584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1358044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1359584fffc8SSebastian Siewior	help
1360584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1361584fffc8SSebastian Siewior	  described in RFC2144.
1362584fffc8SSebastian Siewior
13634d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13644d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13654d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13661e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13674d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13681e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13691e63183aSEric Biggers	select CRYPTO_SIMD
13704d6d6a2cSJohannes Goetzfried	help
13714d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13724d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13734d6d6a2cSJohannes Goetzfried
13744d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13754d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13764d6d6a2cSJohannes Goetzfried
1377584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1378584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1379584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1380044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1381584fffc8SSebastian Siewior	help
1382584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1383584fffc8SSebastian Siewior	  described in RFC2612.
1384584fffc8SSebastian Siewior
13854ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13864ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13874ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13884bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13894ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13904bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13914bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13924bd96924SEric Biggers	select CRYPTO_SIMD
13934ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13944ea1277dSJohannes Goetzfried	help
13954ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13964ea1277dSJohannes Goetzfried	  described in RFC2612.
13974ea1277dSJohannes Goetzfried
13984ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13994ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14004ea1277dSJohannes Goetzfried
1401584fffc8SSebastian Siewiorconfig CRYPTO_DES
1402584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1403584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1404584fffc8SSebastian Siewior	help
1405584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1406584fffc8SSebastian Siewior
1407c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1408c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
140997da37b3SDave Jones	depends on SPARC64
1410c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1411c5aac2dfSDavid S. Miller	select CRYPTO_DES
1412c5aac2dfSDavid S. Miller	help
1413c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1414c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1415c5aac2dfSDavid S. Miller
14166574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14176574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14186574e6c6SJussi Kivilinna	depends on X86 && 64BIT
141909c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
14206574e6c6SJussi Kivilinna	select CRYPTO_DES
14216574e6c6SJussi Kivilinna	help
14226574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14236574e6c6SJussi Kivilinna
14246574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14256574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14266574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14276574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14286574e6c6SJussi Kivilinna
1429584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1430584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1431584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1432584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1433584fffc8SSebastian Siewior	help
1434584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1435584fffc8SSebastian Siewior
1436584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1437584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1438584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1439584fffc8SSebastian Siewior	help
1440584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1441584fffc8SSebastian Siewior
1442584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1443584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1444584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1445584fffc8SSebastian Siewior
1446584fffc8SSebastian Siewior	  See also:
14476d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1448e2ee95b8SHye-Shik Chang
14492407d608STan Swee Hengconfig CRYPTO_SALSA20
14503b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14512407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14522407d608STan Swee Heng	help
14532407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14542407d608STan Swee Heng
14552407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14562407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14572407d608STan Swee Heng
14582407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14592407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14601da177e4SLinus Torvalds
1461c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1462aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
1463c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1464c08d0e64SMartin Willi	help
1465aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1466c08d0e64SMartin Willi
1467c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1468c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1469de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
1470c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1471c08d0e64SMartin Willi
1472de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1473de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1474de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1475de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1476de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1477de61d7aeSEric Biggers
1478aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1479aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1480aa762409SEric Biggers	  in some performance-sensitive scenarios.
1481aa762409SEric Biggers
1482c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14834af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1484c9320b6dSMartin Willi	depends on X86 && 64BIT
1485c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1486c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1487c9320b6dSMartin Willi	help
14887a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14897a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1490c9320b6dSMartin Willi
1491584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1492584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1493584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1494584fffc8SSebastian Siewior	help
1495584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1496584fffc8SSebastian Siewior
1497584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1498584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1499584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1500584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1501584fffc8SSebastian Siewior
1502584fffc8SSebastian Siewior	  See also:
1503584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1504584fffc8SSebastian Siewior
1505584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1506584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1507584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1508584fffc8SSebastian Siewior	help
1509584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1510584fffc8SSebastian Siewior
1511584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1512584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1513584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1514584fffc8SSebastian Siewior
1515584fffc8SSebastian Siewior	  See also:
1516584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1517584fffc8SSebastian Siewior
1518937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1519937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1520937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1521e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1522596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1523937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1524e0f409dcSEric Biggers	select CRYPTO_SIMD
1525937c30d7SJussi Kivilinna	help
1526937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1527937c30d7SJussi Kivilinna
1528937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1529937c30d7SJussi Kivilinna	  of 8 bits.
1530937c30d7SJussi Kivilinna
15311e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1532937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1533937c30d7SJussi Kivilinna
1534937c30d7SJussi Kivilinna	  See also:
1535937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1536937c30d7SJussi Kivilinna
1537251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1538251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1539251496dbSJussi Kivilinna	depends on X86 && !64BIT
1540e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1541596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1542251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1543e0f409dcSEric Biggers	select CRYPTO_SIMD
1544251496dbSJussi Kivilinna	help
1545251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1546251496dbSJussi Kivilinna
1547251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1548251496dbSJussi Kivilinna	  of 8 bits.
1549251496dbSJussi Kivilinna
1550251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1551251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1552251496dbSJussi Kivilinna
1553251496dbSJussi Kivilinna	  See also:
1554251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1555251496dbSJussi Kivilinna
15567efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15577efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15587efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1559e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15601d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15617efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1562e16bf974SEric Biggers	select CRYPTO_SIMD
15637efe4076SJohannes Goetzfried	select CRYPTO_XTS
15647efe4076SJohannes Goetzfried	help
15657efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15667efe4076SJohannes Goetzfried
15677efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15687efe4076SJohannes Goetzfried	  of 8 bits.
15697efe4076SJohannes Goetzfried
15707efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15717efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15727efe4076SJohannes Goetzfried
15737efe4076SJohannes Goetzfried	  See also:
15747efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15757efe4076SJohannes Goetzfried
157656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
157756d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
157856d76c96SJussi Kivilinna	depends on X86 && 64BIT
157956d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
158056d76c96SJussi Kivilinna	help
158156d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
158256d76c96SJussi Kivilinna
158356d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
158456d76c96SJussi Kivilinna	  of 8 bits.
158556d76c96SJussi Kivilinna
158656d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
158756d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
158856d76c96SJussi Kivilinna
158956d76c96SJussi Kivilinna	  See also:
159056d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
159156d76c96SJussi Kivilinna
1592747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1593747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1594747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1595747c8ce4SGilad Ben-Yossef	help
1596747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1597747c8ce4SGilad Ben-Yossef
1598747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1599747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1600747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1601747c8ce4SGilad Ben-Yossef
1602747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1603747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1604747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1605747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1606747c8ce4SGilad Ben-Yossef
1607747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1608747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1609747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1610747c8ce4SGilad Ben-Yossef
1611747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1612747c8ce4SGilad Ben-Yossef
1613747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1614747c8ce4SGilad Ben-Yossef
1615747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1616747c8ce4SGilad Ben-Yossef
1617584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1618584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1619584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1620584fffc8SSebastian Siewior	help
1621584fffc8SSebastian Siewior	  TEA cipher algorithm.
1622584fffc8SSebastian Siewior
1623584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1624584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1625584fffc8SSebastian Siewior	  little memory.
1626584fffc8SSebastian Siewior
1627584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1628584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1629584fffc8SSebastian Siewior	  in the TEA algorithm.
1630584fffc8SSebastian Siewior
1631584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1632584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1633584fffc8SSebastian Siewior
1634584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1635584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1636584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1637584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1638584fffc8SSebastian Siewior	help
1639584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1640584fffc8SSebastian Siewior
1641584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1642584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1643584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1644584fffc8SSebastian Siewior	  bits.
1645584fffc8SSebastian Siewior
1646584fffc8SSebastian Siewior	  See also:
1647584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1648584fffc8SSebastian Siewior
1649584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1650584fffc8SSebastian Siewior	tristate
1651584fffc8SSebastian Siewior	help
1652584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1653584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1654584fffc8SSebastian Siewior
1655584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1656584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1657584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1658584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1659584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1660584fffc8SSebastian Siewior	help
1661584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1662584fffc8SSebastian Siewior
1663584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1664584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1665584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1666584fffc8SSebastian Siewior	  bits.
1667584fffc8SSebastian Siewior
1668584fffc8SSebastian Siewior	  See also:
1669584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1670584fffc8SSebastian Siewior
1671584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1672584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1673584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1674584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1675584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1676584fffc8SSebastian Siewior	help
1677584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1678584fffc8SSebastian Siewior
1679584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1680584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1681584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1682584fffc8SSebastian Siewior	  bits.
1683584fffc8SSebastian Siewior
1684584fffc8SSebastian Siewior	  See also:
1685584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1686584fffc8SSebastian Siewior
16878280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16888280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1689f21a7c19SAl Viro	depends on X86 && 64BIT
169037992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16918280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16928280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1693414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16948280daadSJussi Kivilinna	help
16958280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16968280daadSJussi Kivilinna
16978280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16988280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16998280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17008280daadSJussi Kivilinna	  bits.
17018280daadSJussi Kivilinna
17028280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17038280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17048280daadSJussi Kivilinna
17058280daadSJussi Kivilinna	  See also:
17068280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17078280daadSJussi Kivilinna
1708107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1709107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1710107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17110e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1712a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17130e6ab46dSEric Biggers	select CRYPTO_SIMD
1714107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1715107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1716107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1717107778b5SJohannes Goetzfried	help
1718107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1719107778b5SJohannes Goetzfried
1720107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1721107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1722107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1723107778b5SJohannes Goetzfried	  bits.
1724107778b5SJohannes Goetzfried
1725107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1726107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1727107778b5SJohannes Goetzfried
1728107778b5SJohannes Goetzfried	  See also:
1729107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1730107778b5SJohannes Goetzfried
1731584fffc8SSebastian Siewiorcomment "Compression"
1732584fffc8SSebastian Siewior
17331da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17341da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1735cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1736f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17371da177e4SLinus Torvalds	select ZLIB_INFLATE
17381da177e4SLinus Torvalds	select ZLIB_DEFLATE
17391da177e4SLinus Torvalds	help
17401da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17411da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17421da177e4SLinus Torvalds
17431da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17441da177e4SLinus Torvalds
17450b77abb3SZoltan Sogorconfig CRYPTO_LZO
17460b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17470b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1748ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17490b77abb3SZoltan Sogor	select LZO_COMPRESS
17500b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17510b77abb3SZoltan Sogor	help
17520b77abb3SZoltan Sogor	  This is the LZO algorithm.
17530b77abb3SZoltan Sogor
175435a1fc18SSeth Jenningsconfig CRYPTO_842
175535a1fc18SSeth Jennings	tristate "842 compression algorithm"
17562062c5b6SDan Streetman	select CRYPTO_ALGAPI
17576a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17582062c5b6SDan Streetman	select 842_COMPRESS
17592062c5b6SDan Streetman	select 842_DECOMPRESS
176035a1fc18SSeth Jennings	help
176135a1fc18SSeth Jennings	  This is the 842 algorithm.
176235a1fc18SSeth Jennings
17630ea8530dSChanho Minconfig CRYPTO_LZ4
17640ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17650ea8530dSChanho Min	select CRYPTO_ALGAPI
17668cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17670ea8530dSChanho Min	select LZ4_COMPRESS
17680ea8530dSChanho Min	select LZ4_DECOMPRESS
17690ea8530dSChanho Min	help
17700ea8530dSChanho Min	  This is the LZ4 algorithm.
17710ea8530dSChanho Min
17720ea8530dSChanho Minconfig CRYPTO_LZ4HC
17730ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17740ea8530dSChanho Min	select CRYPTO_ALGAPI
177591d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17760ea8530dSChanho Min	select LZ4HC_COMPRESS
17770ea8530dSChanho Min	select LZ4_DECOMPRESS
17780ea8530dSChanho Min	help
17790ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17800ea8530dSChanho Min
1781d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1782d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1783d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1784d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1785d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1786d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1787d28fc3dbSNick Terrell	help
1788d28fc3dbSNick Terrell	  This is the zstd algorithm.
1789d28fc3dbSNick Terrell
179017f0f4a4SNeil Hormancomment "Random Number Generation"
179117f0f4a4SNeil Horman
179217f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
179317f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
179417f0f4a4SNeil Horman	select CRYPTO_AES
179517f0f4a4SNeil Horman	select CRYPTO_RNG
179617f0f4a4SNeil Horman	help
179717f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
179817f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17997dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18007dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
180117f0f4a4SNeil Horman
1802f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1803419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1804419090c6SStephan Mueller	help
1805419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1806419090c6SStephan Mueller	  more of the DRBG types must be selected.
1807419090c6SStephan Mueller
1808f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1809419090c6SStephan Mueller
1810419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1811401e4238SHerbert Xu	bool
1812419090c6SStephan Mueller	default y
1813419090c6SStephan Mueller	select CRYPTO_HMAC
1814826775bbSHerbert Xu	select CRYPTO_SHA256
1815419090c6SStephan Mueller
1816419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1817419090c6SStephan Mueller	bool "Enable Hash DRBG"
1818826775bbSHerbert Xu	select CRYPTO_SHA256
1819419090c6SStephan Mueller	help
1820419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1821419090c6SStephan Mueller
1822419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1823419090c6SStephan Mueller	bool "Enable CTR DRBG"
1824419090c6SStephan Mueller	select CRYPTO_AES
182535591285SStephan Mueller	depends on CRYPTO_CTR
1826419090c6SStephan Mueller	help
1827419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1828419090c6SStephan Mueller
1829f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1830f2c89a10SHerbert Xu	tristate
1831401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1832f2c89a10SHerbert Xu	select CRYPTO_RNG
1833bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1834f2c89a10SHerbert Xu
1835f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1836419090c6SStephan Mueller
1837bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1838bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18392f313e02SArnd Bergmann	select CRYPTO_RNG
1840bb5530e4SStephan Mueller	help
1841bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1842bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1843bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1844bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1845bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1846bb5530e4SStephan Mueller
184703c8efc1SHerbert Xuconfig CRYPTO_USER_API
184803c8efc1SHerbert Xu	tristate
184903c8efc1SHerbert Xu
1850fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1851fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18527451708fSHerbert Xu	depends on NET
1853fe869cdbSHerbert Xu	select CRYPTO_HASH
1854fe869cdbSHerbert Xu	select CRYPTO_USER_API
1855fe869cdbSHerbert Xu	help
1856fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1857fe869cdbSHerbert Xu	  algorithms.
1858fe869cdbSHerbert Xu
18598ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18608ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18617451708fSHerbert Xu	depends on NET
18628ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18638ff59090SHerbert Xu	select CRYPTO_USER_API
18648ff59090SHerbert Xu	help
18658ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18668ff59090SHerbert Xu	  key cipher algorithms.
18678ff59090SHerbert Xu
18682f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18692f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18702f375538SStephan Mueller	depends on NET
18712f375538SStephan Mueller	select CRYPTO_RNG
18722f375538SStephan Mueller	select CRYPTO_USER_API
18732f375538SStephan Mueller	help
18742f375538SStephan Mueller	  This option enables the user-spaces interface for random
18752f375538SStephan Mueller	  number generator algorithms.
18762f375538SStephan Mueller
1877b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1878b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1879b64a2d95SHerbert Xu	depends on NET
1880b64a2d95SHerbert Xu	select CRYPTO_AEAD
188172548b09SStephan Mueller	select CRYPTO_BLKCIPHER
188272548b09SStephan Mueller	select CRYPTO_NULL
1883b64a2d95SHerbert Xu	select CRYPTO_USER_API
1884b64a2d95SHerbert Xu	help
1885b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1886b64a2d95SHerbert Xu	  cipher algorithms.
1887b64a2d95SHerbert Xu
1888cac5818cSCorentin Labbeconfig CRYPTO_STATS
1889cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1890a6a31385SCorentin Labbe	depends on CRYPTO_USER
1891cac5818cSCorentin Labbe	help
1892cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1893cac5818cSCorentin Labbe	  This will collect:
1894cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1895cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1896cac5818cSCorentin Labbe	  - size and numbers of hash operations
1897cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1898cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1899cac5818cSCorentin Labbe
1900ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1901ee08997fSDmitry Kasatkin	bool
1902ee08997fSDmitry Kasatkin
19031da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19048636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19058636a1f9SMasahiro Yamadasource "certs/Kconfig"
19061da177e4SLinus Torvalds
1907cce9e06dSHerbert Xuendif	# if CRYPTO
1908