1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1172b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1186a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1192b8c19dbSHerbert Xu help 1202b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1212b8c19dbSHerbert Xu cbc(aes). 1222b8c19dbSHerbert Xu 1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1246a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1256a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1266a0fcbb4SHerbert Xu select CRYPTO_HASH2 1276a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 128946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1294e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1302ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1316a0fcbb4SHerbert Xu 132a38f7907SSteffen Klassertconfig CRYPTO_USER 133a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1345db017aaSHerbert Xu depends on NET 135a38f7907SSteffen Klassert select CRYPTO_MANAGER 136a38f7907SSteffen Klassert help 137d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 138a38f7907SSteffen Klassert cbc(aes). 139a38f7907SSteffen Klassert 140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 141326a6346SHerbert Xu bool "Disable run-time self tests" 14200ca28a5SHerbert Xu default y 14300ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1440b767f96SAlexander Shishkin help 145326a6346SHerbert Xu Disable run-time self tests that normally take place at 146326a6346SHerbert Xu algorithm registration. 1470b767f96SAlexander Shishkin 1485b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1495b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1505b2706a4SEric Biggers depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 1515b2706a4SEric Biggers help 1525b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1535b2706a4SEric Biggers including randomized fuzz tests. 1545b2706a4SEric Biggers 1555b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1565b2706a4SEric Biggers longer to run than the normal self tests. 1575b2706a4SEric Biggers 158584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 15908c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 160584fffc8SSebastian Siewior help 161584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 162584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 163584fffc8SSebastian Siewior option will be selected automatically if you select such a 164584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 165584fffc8SSebastian Siewior an external module that requires these functions. 166584fffc8SSebastian Siewior 167584fffc8SSebastian Siewiorconfig CRYPTO_NULL 168584fffc8SSebastian Siewior tristate "Null algorithms" 169149a3971SHerbert Xu select CRYPTO_NULL2 170584fffc8SSebastian Siewior help 171584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 172584fffc8SSebastian Siewior 173149a3971SHerbert Xuconfig CRYPTO_NULL2 174dd43c4e9SHerbert Xu tristate 175149a3971SHerbert Xu select CRYPTO_ALGAPI2 176149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 177149a3971SHerbert Xu select CRYPTO_HASH2 178149a3971SHerbert Xu 1795068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1803b4afaf2SKees Cook tristate "Parallel crypto engine" 1813b4afaf2SKees Cook depends on SMP 1825068c7a8SSteffen Klassert select PADATA 1835068c7a8SSteffen Klassert select CRYPTO_MANAGER 1845068c7a8SSteffen Klassert select CRYPTO_AEAD 1855068c7a8SSteffen Klassert help 1865068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1875068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1885068c7a8SSteffen Klassert 18925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 19025c38d3fSHuang Ying tristate 19125c38d3fSHuang Ying 192584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 193584fffc8SSebastian Siewior tristate "Software async crypto daemon" 194584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 195b8a28251SLoc Ho select CRYPTO_HASH 196584fffc8SSebastian Siewior select CRYPTO_MANAGER 197254eff77SHuang Ying select CRYPTO_WORKQUEUE 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 200584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 201584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 202584fffc8SSebastian Siewior 203584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 204584fffc8SSebastian Siewior tristate "Authenc support" 205584fffc8SSebastian Siewior select CRYPTO_AEAD 206584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 207584fffc8SSebastian Siewior select CRYPTO_MANAGER 208584fffc8SSebastian Siewior select CRYPTO_HASH 209e94c6a7aSHerbert Xu select CRYPTO_NULL 210584fffc8SSebastian Siewior help 211584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 212584fffc8SSebastian Siewior This is required for IPSec. 213584fffc8SSebastian Siewior 214584fffc8SSebastian Siewiorconfig CRYPTO_TEST 215584fffc8SSebastian Siewior tristate "Testing module" 216584fffc8SSebastian Siewior depends on m 217da7f033dSHerbert Xu select CRYPTO_MANAGER 218584fffc8SSebastian Siewior help 219584fffc8SSebastian Siewior Quick & dirty crypto test module. 220584fffc8SSebastian Siewior 221266d0516SHerbert Xuconfig CRYPTO_SIMD 222266d0516SHerbert Xu tristate 223266d0516SHerbert Xu select CRYPTO_CRYPTD 224266d0516SHerbert Xu 225596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 226596d8750SJussi Kivilinna tristate 227596d8750SJussi Kivilinna depends on X86 228065ce327SHerbert Xu select CRYPTO_BLKCIPHER 229596d8750SJussi Kivilinna 230735d37b5SBaolin Wangconfig CRYPTO_ENGINE 231735d37b5SBaolin Wang tristate 232735d37b5SBaolin Wang 233*3d6228a5SVitaly Chikunovcomment "Public-key cryptography" 234*3d6228a5SVitaly Chikunov 235*3d6228a5SVitaly Chikunovconfig CRYPTO_RSA 236*3d6228a5SVitaly Chikunov tristate "RSA algorithm" 237*3d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 238*3d6228a5SVitaly Chikunov select CRYPTO_MANAGER 239*3d6228a5SVitaly Chikunov select MPILIB 240*3d6228a5SVitaly Chikunov select ASN1 241*3d6228a5SVitaly Chikunov help 242*3d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 243*3d6228a5SVitaly Chikunov 244*3d6228a5SVitaly Chikunovconfig CRYPTO_DH 245*3d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 246*3d6228a5SVitaly Chikunov select CRYPTO_KPP 247*3d6228a5SVitaly Chikunov select MPILIB 248*3d6228a5SVitaly Chikunov help 249*3d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 250*3d6228a5SVitaly Chikunov 251*3d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 252*3d6228a5SVitaly Chikunov tristate "ECDH algorithm" 253*3d6228a5SVitaly Chikunov select CRYPTO_KPP 254*3d6228a5SVitaly Chikunov select CRYPTO_RNG_DEFAULT 255*3d6228a5SVitaly Chikunov help 256*3d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 257*3d6228a5SVitaly Chikunov 258584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 259584fffc8SSebastian Siewior 260584fffc8SSebastian Siewiorconfig CRYPTO_CCM 261584fffc8SSebastian Siewior tristate "CCM support" 262584fffc8SSebastian Siewior select CRYPTO_CTR 263f15f05b0SArd Biesheuvel select CRYPTO_HASH 264584fffc8SSebastian Siewior select CRYPTO_AEAD 265584fffc8SSebastian Siewior help 266584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 267584fffc8SSebastian Siewior 268584fffc8SSebastian Siewiorconfig CRYPTO_GCM 269584fffc8SSebastian Siewior tristate "GCM/GMAC support" 270584fffc8SSebastian Siewior select CRYPTO_CTR 271584fffc8SSebastian Siewior select CRYPTO_AEAD 2729382d97aSHuang Ying select CRYPTO_GHASH 2739489667dSJussi Kivilinna select CRYPTO_NULL 274584fffc8SSebastian Siewior help 275584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 276584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 277584fffc8SSebastian Siewior 27871ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 27971ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28071ebc4d1SMartin Willi select CRYPTO_CHACHA20 28171ebc4d1SMartin Willi select CRYPTO_POLY1305 28271ebc4d1SMartin Willi select CRYPTO_AEAD 28371ebc4d1SMartin Willi help 28471ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28571ebc4d1SMartin Willi 28671ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 28771ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 28871ebc4d1SMartin Willi IETF protocols. 28971ebc4d1SMartin Willi 290f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 291f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 292f606a88eSOndrej Mosnacek select CRYPTO_AEAD 293f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 294f606a88eSOndrej Mosnacek help 295f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 296f606a88eSOndrej Mosnacek 297f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 298f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 299f606a88eSOndrej Mosnacek select CRYPTO_AEAD 300f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 301f606a88eSOndrej Mosnacek help 302f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 303f606a88eSOndrej Mosnacek 304f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 305f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 306f606a88eSOndrej Mosnacek select CRYPTO_AEAD 307f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 308f606a88eSOndrej Mosnacek help 309f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 310f606a88eSOndrej Mosnacek 3111d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3121d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3131d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3141d373d4eSOndrej Mosnacek select CRYPTO_AEAD 315de272ca7SEric Biggers select CRYPTO_SIMD 3161d373d4eSOndrej Mosnacek help 3174e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3181d373d4eSOndrej Mosnacek 3191d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3201d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3211d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3221d373d4eSOndrej Mosnacek select CRYPTO_AEAD 323d628132aSEric Biggers select CRYPTO_SIMD 3241d373d4eSOndrej Mosnacek help 3254e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm. 3261d373d4eSOndrej Mosnacek 3271d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3281d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3291d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3301d373d4eSOndrej Mosnacek select CRYPTO_AEAD 331b6708c2dSEric Biggers select CRYPTO_SIMD 3321d373d4eSOndrej Mosnacek help 3334e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm. 3341d373d4eSOndrej Mosnacek 335396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 336396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 337396be41fSOndrej Mosnacek select CRYPTO_AEAD 338396be41fSOndrej Mosnacek help 339396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 340396be41fSOndrej Mosnacek 34156e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 3422808f173SOndrej Mosnacek tristate 3432808f173SOndrej Mosnacek depends on X86 34456e8e57fSOndrej Mosnacek select CRYPTO_AEAD 34547730958SEric Biggers select CRYPTO_SIMD 34656e8e57fSOndrej Mosnacek help 34756e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 34856e8e57fSOndrej Mosnacek algorithm. 34956e8e57fSOndrej Mosnacek 3506ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3516ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3526ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3536ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3546ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3556ecc9d9fSOndrej Mosnacek help 3566ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3576ecc9d9fSOndrej Mosnacek 358396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 359396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 360396be41fSOndrej Mosnacek select CRYPTO_AEAD 361396be41fSOndrej Mosnacek help 362396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 363396be41fSOndrej Mosnacek 36456e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 3652808f173SOndrej Mosnacek tristate 3662808f173SOndrej Mosnacek depends on X86 36756e8e57fSOndrej Mosnacek select CRYPTO_AEAD 368e151a8d2SEric Biggers select CRYPTO_SIMD 36956e8e57fSOndrej Mosnacek help 37056e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 37156e8e57fSOndrej Mosnacek algorithm. 37256e8e57fSOndrej Mosnacek 3736ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3746ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3756ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3766ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3776ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3786ecc9d9fSOndrej Mosnacek help 3796ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 3806ecc9d9fSOndrej Mosnacek algorithm. 3816ecc9d9fSOndrej Mosnacek 3826ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 3836ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 3846ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3856ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3866ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3876ecc9d9fSOndrej Mosnacek help 3886ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 3896ecc9d9fSOndrej Mosnacek algorithm. 3906ecc9d9fSOndrej Mosnacek 391584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 392584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 393584fffc8SSebastian Siewior select CRYPTO_AEAD 394584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 395856e3f40SHerbert Xu select CRYPTO_NULL 396401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 397584fffc8SSebastian Siewior help 398584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 399584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 400584fffc8SSebastian Siewior 401a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 402a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 403a10f554fSHerbert Xu select CRYPTO_AEAD 404a10f554fSHerbert Xu select CRYPTO_NULL 405401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 4063491244cSHerbert Xu default m 407a10f554fSHerbert Xu help 408a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 409a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 410a10f554fSHerbert Xu algorithm for CBC. 411a10f554fSHerbert Xu 412584fffc8SSebastian Siewiorcomment "Block modes" 413584fffc8SSebastian Siewior 414584fffc8SSebastian Siewiorconfig CRYPTO_CBC 415584fffc8SSebastian Siewior tristate "CBC support" 416584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 417584fffc8SSebastian Siewior select CRYPTO_MANAGER 418584fffc8SSebastian Siewior help 419584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 420584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 421584fffc8SSebastian Siewior 422a7d85e06SJames Bottomleyconfig CRYPTO_CFB 423a7d85e06SJames Bottomley tristate "CFB support" 424a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 425a7d85e06SJames Bottomley select CRYPTO_MANAGER 426a7d85e06SJames Bottomley help 427a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 428a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 429a7d85e06SJames Bottomley 430584fffc8SSebastian Siewiorconfig CRYPTO_CTR 431584fffc8SSebastian Siewior tristate "CTR support" 432584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 433584fffc8SSebastian Siewior select CRYPTO_SEQIV 434584fffc8SSebastian Siewior select CRYPTO_MANAGER 435584fffc8SSebastian Siewior help 436584fffc8SSebastian Siewior CTR: Counter mode 437584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 438584fffc8SSebastian Siewior 439584fffc8SSebastian Siewiorconfig CRYPTO_CTS 440584fffc8SSebastian Siewior tristate "CTS support" 441584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 442584fffc8SSebastian Siewior help 443584fffc8SSebastian Siewior CTS: Cipher Text Stealing 444584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 445ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 446ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 447ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 448584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 449584fffc8SSebastian Siewior for AES encryption. 450584fffc8SSebastian Siewior 451ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 452ecd6d5c9SGilad Ben-Yossef 453584fffc8SSebastian Siewiorconfig CRYPTO_ECB 454584fffc8SSebastian Siewior tristate "ECB support" 455584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 456584fffc8SSebastian Siewior select CRYPTO_MANAGER 457584fffc8SSebastian Siewior help 458584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 459584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 460584fffc8SSebastian Siewior the input block by block. 461584fffc8SSebastian Siewior 462584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4632470a2b2SJussi Kivilinna tristate "LRW support" 464584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 465584fffc8SSebastian Siewior select CRYPTO_MANAGER 466584fffc8SSebastian Siewior select CRYPTO_GF128MUL 467584fffc8SSebastian Siewior help 468584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 469584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 470584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 471584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 472584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 473584fffc8SSebastian Siewior 474e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 475e497c518SGilad Ben-Yossef tristate "OFB support" 476e497c518SGilad Ben-Yossef select CRYPTO_BLKCIPHER 477e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 478e497c518SGilad Ben-Yossef help 479e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 480e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 481e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 482e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 483e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 484e497c518SGilad Ben-Yossef normally even when applied before encryption. 485e497c518SGilad Ben-Yossef 486584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 487584fffc8SSebastian Siewior tristate "PCBC support" 488584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 489584fffc8SSebastian Siewior select CRYPTO_MANAGER 490584fffc8SSebastian Siewior help 491584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 492584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 493584fffc8SSebastian Siewior 494584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4955bcf8e6dSJussi Kivilinna tristate "XTS support" 496584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 497584fffc8SSebastian Siewior select CRYPTO_MANAGER 49812cb3a1cSMilan Broz select CRYPTO_ECB 499584fffc8SSebastian Siewior help 500584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 501584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 502584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 503584fffc8SSebastian Siewior 5041c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 5051c49678eSStephan Mueller tristate "Key wrapping support" 5061c49678eSStephan Mueller select CRYPTO_BLKCIPHER 5071c49678eSStephan Mueller help 5081c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 5091c49678eSStephan Mueller padding. 5101c49678eSStephan Mueller 51126609a21SEric Biggersconfig CRYPTO_NHPOLY1305 51226609a21SEric Biggers tristate 51326609a21SEric Biggers select CRYPTO_HASH 51426609a21SEric Biggers select CRYPTO_POLY1305 51526609a21SEric Biggers 516012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 517012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 518012c8238SEric Biggers depends on X86 && 64BIT 519012c8238SEric Biggers select CRYPTO_NHPOLY1305 520012c8238SEric Biggers help 521012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 522012c8238SEric Biggers Adiantum encryption mode. 523012c8238SEric Biggers 5240f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5250f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5260f961f9fSEric Biggers depends on X86 && 64BIT 5270f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5280f961f9fSEric Biggers help 5290f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5300f961f9fSEric Biggers Adiantum encryption mode. 5310f961f9fSEric Biggers 532059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 533059c2a4dSEric Biggers tristate "Adiantum support" 534059c2a4dSEric Biggers select CRYPTO_CHACHA20 535059c2a4dSEric Biggers select CRYPTO_POLY1305 536059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 537059c2a4dSEric Biggers help 538059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 539059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 540059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 541059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 542059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 543059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 544059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 545059c2a4dSEric Biggers AES-XTS. 546059c2a4dSEric Biggers 547059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 548059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 549059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 550059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 551059c2a4dSEric Biggers security than XTS, subject to the security bound. 552059c2a4dSEric Biggers 553059c2a4dSEric Biggers If unsure, say N. 554059c2a4dSEric Biggers 555584fffc8SSebastian Siewiorcomment "Hash modes" 556584fffc8SSebastian Siewior 55793b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 55893b5e86aSJussi Kivilinna tristate "CMAC support" 55993b5e86aSJussi Kivilinna select CRYPTO_HASH 56093b5e86aSJussi Kivilinna select CRYPTO_MANAGER 56193b5e86aSJussi Kivilinna help 56293b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 56393b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 56493b5e86aSJussi Kivilinna 56593b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 56693b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 56793b5e86aSJussi Kivilinna 5681da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5698425165dSHerbert Xu tristate "HMAC support" 5700796ae06SHerbert Xu select CRYPTO_HASH 57143518407SHerbert Xu select CRYPTO_MANAGER 5721da177e4SLinus Torvalds help 5731da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5741da177e4SLinus Torvalds This is required for IPSec. 5751da177e4SLinus Torvalds 576333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 577333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 578333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 579333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 580333b0d7eSKazunori MIYAZAWA help 581333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 582333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 583333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 584333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 585333b0d7eSKazunori MIYAZAWA 586f1939f7cSShane Wangconfig CRYPTO_VMAC 587f1939f7cSShane Wang tristate "VMAC support" 588f1939f7cSShane Wang select CRYPTO_HASH 589f1939f7cSShane Wang select CRYPTO_MANAGER 590f1939f7cSShane Wang help 591f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 592f1939f7cSShane Wang very high speed on 64-bit architectures. 593f1939f7cSShane Wang 594f1939f7cSShane Wang See also: 595f1939f7cSShane Wang <http://fastcrypto.org/vmac> 596f1939f7cSShane Wang 597584fffc8SSebastian Siewiorcomment "Digest" 598584fffc8SSebastian Siewior 599584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 600584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6015773a3e6SHerbert Xu select CRYPTO_HASH 6026a0962b2SDarrick J. Wong select CRC32 6031da177e4SLinus Torvalds help 604584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 605584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 60669c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6071da177e4SLinus Torvalds 6088cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6098cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6108cb51ba8SAustin Zhang depends on X86 6118cb51ba8SAustin Zhang select CRYPTO_HASH 6128cb51ba8SAustin Zhang help 6138cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6148cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6158cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6168cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6178cb51ba8SAustin Zhang gain performance compared with software implementation. 6188cb51ba8SAustin Zhang Module will be crc32c-intel. 6198cb51ba8SAustin Zhang 6207cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6216dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 622c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6236dd7a82cSAnton Blanchard select CRYPTO_HASH 6246dd7a82cSAnton Blanchard select CRC32 6256dd7a82cSAnton Blanchard help 6266dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6276dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6286dd7a82cSAnton Blanchard and newer processors for improved performance. 6296dd7a82cSAnton Blanchard 6306dd7a82cSAnton Blanchard 631442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 632442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 633442a7c40SDavid S. Miller depends on SPARC64 634442a7c40SDavid S. Miller select CRYPTO_HASH 635442a7c40SDavid S. Miller select CRC32 636442a7c40SDavid S. Miller help 637442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 638442a7c40SDavid S. Miller when available. 639442a7c40SDavid S. Miller 64078c37d19SAlexander Boykoconfig CRYPTO_CRC32 64178c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 64278c37d19SAlexander Boyko select CRYPTO_HASH 64378c37d19SAlexander Boyko select CRC32 64478c37d19SAlexander Boyko help 64578c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 64678c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 64778c37d19SAlexander Boyko 64878c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 64978c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 65078c37d19SAlexander Boyko depends on X86 65178c37d19SAlexander Boyko select CRYPTO_HASH 65278c37d19SAlexander Boyko select CRC32 65378c37d19SAlexander Boyko help 65478c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 65578c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 65678c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 657af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 65878c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 65978c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 66078c37d19SAlexander Boyko 6614a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6624a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6634a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6644a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6654a5dc51eSMarcin Nowakowski help 6664a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6674a5dc51eSMarcin Nowakowski instructions, when available. 6684a5dc51eSMarcin Nowakowski 6694a5dc51eSMarcin Nowakowski 67068411521SHerbert Xuconfig CRYPTO_CRCT10DIF 67168411521SHerbert Xu tristate "CRCT10DIF algorithm" 67268411521SHerbert Xu select CRYPTO_HASH 67368411521SHerbert Xu help 67468411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 67568411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 67668411521SHerbert Xu transforms to be used if they are available. 67768411521SHerbert Xu 67868411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 67968411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 68068411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 68168411521SHerbert Xu select CRYPTO_HASH 68268411521SHerbert Xu help 68368411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 68468411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 68568411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 686af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 68768411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 68868411521SHerbert Xu 689b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 690b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 691b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 692b01df1c1SDaniel Axtens select CRYPTO_HASH 693b01df1c1SDaniel Axtens help 694b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 695b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 696b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 697b01df1c1SDaniel Axtens 698146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 699146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 700146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 701146c8688SDaniel Axtens help 702146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 703146c8688SDaniel Axtens POWER8 vpmsum instructions. 704146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 705146c8688SDaniel Axtens 7062cdc6899SHuang Yingconfig CRYPTO_GHASH 7072cdc6899SHuang Ying tristate "GHASH digest algorithm" 7082cdc6899SHuang Ying select CRYPTO_GF128MUL 709578c60fbSArnd Bergmann select CRYPTO_HASH 7102cdc6899SHuang Ying help 7112cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 7122cdc6899SHuang Ying 713f979e014SMartin Williconfig CRYPTO_POLY1305 714f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 715578c60fbSArnd Bergmann select CRYPTO_HASH 716f979e014SMartin Willi help 717f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 718f979e014SMartin Willi 719f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 720f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 721f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 722f979e014SMartin Willi 723c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 724b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 725c70f4abeSMartin Willi depends on X86 && 64BIT 726c70f4abeSMartin Willi select CRYPTO_POLY1305 727c70f4abeSMartin Willi help 728c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 729c70f4abeSMartin Willi 730c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 731c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 732c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 733c70f4abeSMartin Willi instructions. 734c70f4abeSMartin Willi 7351da177e4SLinus Torvaldsconfig CRYPTO_MD4 7361da177e4SLinus Torvalds tristate "MD4 digest algorithm" 737808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7381da177e4SLinus Torvalds help 7391da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7401da177e4SLinus Torvalds 7411da177e4SLinus Torvaldsconfig CRYPTO_MD5 7421da177e4SLinus Torvalds tristate "MD5 digest algorithm" 74314b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 7441da177e4SLinus Torvalds help 7451da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 7461da177e4SLinus Torvalds 747d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 748d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 749d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 750d69e75deSAaro Koskinen select CRYPTO_MD5 751d69e75deSAaro Koskinen select CRYPTO_HASH 752d69e75deSAaro Koskinen help 753d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 754d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 755d69e75deSAaro Koskinen 756e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 757e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 758e8e59953SMarkus Stockhausen depends on PPC 759e8e59953SMarkus Stockhausen select CRYPTO_HASH 760e8e59953SMarkus Stockhausen help 761e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 762e8e59953SMarkus Stockhausen in PPC assembler. 763e8e59953SMarkus Stockhausen 764fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 765fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 766fa4dfedcSDavid S. Miller depends on SPARC64 767fa4dfedcSDavid S. Miller select CRYPTO_MD5 768fa4dfedcSDavid S. Miller select CRYPTO_HASH 769fa4dfedcSDavid S. Miller help 770fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 771fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 772fa4dfedcSDavid S. Miller 773584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 774584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 77519e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 776584fffc8SSebastian Siewior help 777584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 778584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 779584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 780584fffc8SSebastian Siewior of the algorithm. 781584fffc8SSebastian Siewior 78282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 78382798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7847c4468bcSHerbert Xu select CRYPTO_HASH 78582798f90SAdrian-Ken Rueegsegger help 78682798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 78782798f90SAdrian-Ken Rueegsegger 78882798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 78935ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 79082798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 79182798f90SAdrian-Ken Rueegsegger 79282798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7936d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 79482798f90SAdrian-Ken Rueegsegger 79582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 79682798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 797e5835fbaSHerbert Xu select CRYPTO_HASH 79882798f90SAdrian-Ken Rueegsegger help 79982798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 80082798f90SAdrian-Ken Rueegsegger 80182798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 80282798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 803b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 804b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 80582798f90SAdrian-Ken Rueegsegger 806b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 807b6d44341SAdrian Bunk against RIPEMD-160. 808534fe2c1SAdrian-Ken Rueegsegger 809534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8106d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 811534fe2c1SAdrian-Ken Rueegsegger 812534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 813534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 814d8a5e2e9SHerbert Xu select CRYPTO_HASH 815534fe2c1SAdrian-Ken Rueegsegger help 816b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 817b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 818b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 819b6d44341SAdrian Bunk (than RIPEMD-128). 820534fe2c1SAdrian-Ken Rueegsegger 821534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8226d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 823534fe2c1SAdrian-Ken Rueegsegger 824534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 825534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 8263b8efb4cSHerbert Xu select CRYPTO_HASH 827534fe2c1SAdrian-Ken Rueegsegger help 828b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 829b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 830b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 831b6d44341SAdrian Bunk (than RIPEMD-160). 832534fe2c1SAdrian-Ken Rueegsegger 83382798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8346d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 83582798f90SAdrian-Ken Rueegsegger 8361da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8371da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 83854ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8391da177e4SLinus Torvalds help 8401da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8411da177e4SLinus Torvalds 84266be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 843e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 84466be8951SMathias Krause depends on X86 && 64BIT 84566be8951SMathias Krause select CRYPTO_SHA1 84666be8951SMathias Krause select CRYPTO_HASH 84766be8951SMathias Krause help 84866be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 84966be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 850e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 851e38b6b7fStim when available. 85266be8951SMathias Krause 8538275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 854e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8558275d1aaSTim Chen depends on X86 && 64BIT 8568275d1aaSTim Chen select CRYPTO_SHA256 8578275d1aaSTim Chen select CRYPTO_HASH 8588275d1aaSTim Chen help 8598275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8608275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8618275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 862e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 863e38b6b7fStim Instructions) when available. 8648275d1aaSTim Chen 86587de4579STim Chenconfig CRYPTO_SHA512_SSSE3 86687de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 86787de4579STim Chen depends on X86 && 64BIT 86887de4579STim Chen select CRYPTO_SHA512 86987de4579STim Chen select CRYPTO_HASH 87087de4579STim Chen help 87187de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 87287de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 87387de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 87487de4579STim Chen version 2 (AVX2) instructions, when available. 87587de4579STim Chen 876efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 877efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 878efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 879efdb6f6eSAaro Koskinen select CRYPTO_SHA1 880efdb6f6eSAaro Koskinen select CRYPTO_HASH 881efdb6f6eSAaro Koskinen help 882efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 883efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 884efdb6f6eSAaro Koskinen 8854ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8864ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8874ff28d4cSDavid S. Miller depends on SPARC64 8884ff28d4cSDavid S. Miller select CRYPTO_SHA1 8894ff28d4cSDavid S. Miller select CRYPTO_HASH 8904ff28d4cSDavid S. Miller help 8914ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8924ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 8934ff28d4cSDavid S. Miller 894323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 895323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 896323a6bf1SMichael Ellerman depends on PPC 897323a6bf1SMichael Ellerman help 898323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 899323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 900323a6bf1SMichael Ellerman 901d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 902d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 903d9850fc5SMarkus Stockhausen depends on PPC && SPE 904d9850fc5SMarkus Stockhausen help 905d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 906d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 907d9850fc5SMarkus Stockhausen 9081da177e4SLinus Torvaldsconfig CRYPTO_SHA256 909cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 91050e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 9111da177e4SLinus Torvalds help 9121da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9131da177e4SLinus Torvalds 9141da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9151da177e4SLinus Torvalds security against collision attacks. 9161da177e4SLinus Torvalds 917cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 918cd12fb90SJonathan Lynch of security against collision attacks. 919cd12fb90SJonathan Lynch 9202ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9212ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9222ecc1e95SMarkus Stockhausen depends on PPC && SPE 9232ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9242ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9252ecc1e95SMarkus Stockhausen help 9262ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9272ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9282ecc1e95SMarkus Stockhausen 929efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 930efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 931efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 932efdb6f6eSAaro Koskinen select CRYPTO_SHA256 933efdb6f6eSAaro Koskinen select CRYPTO_HASH 934efdb6f6eSAaro Koskinen help 935efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 936efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 937efdb6f6eSAaro Koskinen 93886c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 93986c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 94086c93b24SDavid S. Miller depends on SPARC64 94186c93b24SDavid S. Miller select CRYPTO_SHA256 94286c93b24SDavid S. Miller select CRYPTO_HASH 94386c93b24SDavid S. Miller help 94486c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 94586c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 94686c93b24SDavid S. Miller 9471da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9481da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 949bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9501da177e4SLinus Torvalds help 9511da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9521da177e4SLinus Torvalds 9531da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9541da177e4SLinus Torvalds security against collision attacks. 9551da177e4SLinus Torvalds 9561da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9571da177e4SLinus Torvalds of security against collision attacks. 9581da177e4SLinus Torvalds 959efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 960efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 961efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 962efdb6f6eSAaro Koskinen select CRYPTO_SHA512 963efdb6f6eSAaro Koskinen select CRYPTO_HASH 964efdb6f6eSAaro Koskinen help 965efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 966efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 967efdb6f6eSAaro Koskinen 968775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 969775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 970775e0c69SDavid S. Miller depends on SPARC64 971775e0c69SDavid S. Miller select CRYPTO_SHA512 972775e0c69SDavid S. Miller select CRYPTO_HASH 973775e0c69SDavid S. Miller help 974775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 975775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 976775e0c69SDavid S. Miller 97753964b9eSJeff Garzikconfig CRYPTO_SHA3 97853964b9eSJeff Garzik tristate "SHA3 digest algorithm" 97953964b9eSJeff Garzik select CRYPTO_HASH 98053964b9eSJeff Garzik help 98153964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 98253964b9eSJeff Garzik cryptographic sponge function family called Keccak. 98353964b9eSJeff Garzik 98453964b9eSJeff Garzik References: 98553964b9eSJeff Garzik http://keccak.noekeon.org/ 98653964b9eSJeff Garzik 9874f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9884f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9894f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9904f0fc160SGilad Ben-Yossef help 9914f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9924f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9934f0fc160SGilad Ben-Yossef 9944f0fc160SGilad Ben-Yossef References: 9954f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9964f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9974f0fc160SGilad Ben-Yossef 998fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 999fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1000fe18957eSVitaly Chikunov select CRYPTO_HASH 1001fe18957eSVitaly Chikunov help 1002fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1003fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1004fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1005fe18957eSVitaly Chikunov 1006fe18957eSVitaly Chikunov References: 1007fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1008fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1009fe18957eSVitaly Chikunov 10101da177e4SLinus Torvaldsconfig CRYPTO_TGR192 10111da177e4SLinus Torvalds tristate "Tiger digest algorithms" 1012f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 10131da177e4SLinus Torvalds help 10141da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 10151da177e4SLinus Torvalds 10161da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 10171da177e4SLinus Torvalds still having decent performance on 32-bit processors. 10181da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 10191da177e4SLinus Torvalds 10201da177e4SLinus Torvalds See also: 10211da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10221da177e4SLinus Torvalds 1023584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1024584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10254946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10261da177e4SLinus Torvalds help 1027584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10281da177e4SLinus Torvalds 1029584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1030584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10311da177e4SLinus Torvalds 10321da177e4SLinus Torvalds See also: 10336d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10341da177e4SLinus Torvalds 10350e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10360e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10378af00860SRichard Weinberger depends on X86 && 64BIT 10380e1227d3SHuang Ying select CRYPTO_CRYPTD 10390e1227d3SHuang Ying help 10400e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10410e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10420e1227d3SHuang Ying 1043584fffc8SSebastian Siewiorcomment "Ciphers" 10441da177e4SLinus Torvalds 10451da177e4SLinus Torvaldsconfig CRYPTO_AES 10461da177e4SLinus Torvalds tristate "AES cipher algorithms" 1047cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10481da177e4SLinus Torvalds help 10491da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10501da177e4SLinus Torvalds algorithm. 10511da177e4SLinus Torvalds 10521da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10531da177e4SLinus Torvalds both hardware and software across a wide range of computing 10541da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10551da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10561da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10571da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10581da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10591da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10601da177e4SLinus Torvalds 10611da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10621da177e4SLinus Torvalds 10631da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10641da177e4SLinus Torvalds 1065b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1066b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1067b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1068b5e0b032SArd Biesheuvel help 1069b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1070b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1071b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1072b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1073b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1074b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1075b5e0b032SArd Biesheuvel 1076b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1077b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1078b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1079b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 10800a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 10810a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1082b5e0b032SArd Biesheuvel 10831da177e4SLinus Torvaldsconfig CRYPTO_AES_586 10841da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1085cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1086cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10875157dea8SSebastian Siewior select CRYPTO_AES 10881da177e4SLinus Torvalds help 10891da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10901da177e4SLinus Torvalds algorithm. 10911da177e4SLinus Torvalds 10921da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10931da177e4SLinus Torvalds both hardware and software across a wide range of computing 10941da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10951da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10961da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10971da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10981da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10991da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11001da177e4SLinus Torvalds 11011da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11021da177e4SLinus Torvalds 11031da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 11041da177e4SLinus Torvalds 1105a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1106a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1107cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1108cce9e06dSHerbert Xu select CRYPTO_ALGAPI 110981190b32SSebastian Siewior select CRYPTO_AES 1110a2a892a2SAndreas Steinmetz help 1111a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1112a2a892a2SAndreas Steinmetz algorithm. 1113a2a892a2SAndreas Steinmetz 1114a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1115a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1116a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1117a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1118a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1119a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1120a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1121a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1122a2a892a2SAndreas Steinmetz 1123a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1124a2a892a2SAndreas Steinmetz 1125a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1126a2a892a2SAndreas Steinmetz 112754b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 112854b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11298af00860SRichard Weinberger depends on X86 113085671860SHerbert Xu select CRYPTO_AEAD 11310d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11320d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 113354b6a1bdSHuang Ying select CRYPTO_ALGAPI 113485671860SHerbert Xu select CRYPTO_BLKCIPHER 11357643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 113685671860SHerbert Xu select CRYPTO_SIMD 113754b6a1bdSHuang Ying help 113854b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 113954b6a1bdSHuang Ying 114054b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 114154b6a1bdSHuang Ying algorithm. 114254b6a1bdSHuang Ying 114354b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 114454b6a1bdSHuang Ying both hardware and software across a wide range of computing 114554b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 114654b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 114754b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 114854b6a1bdSHuang Ying suited for restricted-space environments, in which it also 114954b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 115054b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 115154b6a1bdSHuang Ying 115254b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 115354b6a1bdSHuang Ying 115454b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 115554b6a1bdSHuang Ying 11560d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11570d258efbSMathias Krause for some popular block cipher mode is supported too, including 1158944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11590d258efbSMathias Krause acceleration for CTR. 11602cf4ac8bSHuang Ying 11619bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11629bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11639bf4852dSDavid S. Miller depends on SPARC64 11649bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11659bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11669bf4852dSDavid S. Miller help 11679bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11689bf4852dSDavid S. Miller 11699bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11709bf4852dSDavid S. Miller algorithm. 11719bf4852dSDavid S. Miller 11729bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11739bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11749bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11759bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11769bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11779bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11789bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11799bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11809bf4852dSDavid S. Miller 11819bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11829bf4852dSDavid S. Miller 11839bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11849bf4852dSDavid S. Miller 11859bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11869bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11879bf4852dSDavid S. Miller ECB and CBC. 11889bf4852dSDavid S. Miller 1189504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1190504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1191504c6143SMarkus Stockhausen depends on PPC && SPE 1192504c6143SMarkus Stockhausen help 1193504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1194504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1195504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1196504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1197504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1198504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1199504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1200504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1201504c6143SMarkus Stockhausen 12021da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12031da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1204cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12051da177e4SLinus Torvalds help 12061da177e4SLinus Torvalds Anubis cipher algorithm. 12071da177e4SLinus Torvalds 12081da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12091da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12101da177e4SLinus Torvalds in the NESSIE competition. 12111da177e4SLinus Torvalds 12121da177e4SLinus Torvalds See also: 12136d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12146d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12151da177e4SLinus Torvalds 1216584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1217584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1218b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1219e2ee95b8SHye-Shik Chang help 1220584fffc8SSebastian Siewior ARC4 cipher algorithm. 1221e2ee95b8SHye-Shik Chang 1222584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1223584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1224584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1225584fffc8SSebastian Siewior weakness of the algorithm. 1226584fffc8SSebastian Siewior 1227584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1228584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1229584fffc8SSebastian Siewior select CRYPTO_ALGAPI 123052ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1231584fffc8SSebastian Siewior help 1232584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1233584fffc8SSebastian Siewior 1234584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1235584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1236584fffc8SSebastian Siewior designed for use on "large microprocessors". 1237e2ee95b8SHye-Shik Chang 1238e2ee95b8SHye-Shik Chang See also: 1239584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1240584fffc8SSebastian Siewior 124152ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 124252ba867cSJussi Kivilinna tristate 124352ba867cSJussi Kivilinna help 124452ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 124552ba867cSJussi Kivilinna generic c and the assembler implementations. 124652ba867cSJussi Kivilinna 124752ba867cSJussi Kivilinna See also: 124852ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 124952ba867cSJussi Kivilinna 125064b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 125164b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1252f21a7c19SAl Viro depends on X86 && 64BIT 1253c1679171SEric Biggers select CRYPTO_BLKCIPHER 125464b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 125564b94ceaSJussi Kivilinna help 125664b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 125764b94ceaSJussi Kivilinna 125864b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 125964b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 126064b94ceaSJussi Kivilinna designed for use on "large microprocessors". 126164b94ceaSJussi Kivilinna 126264b94ceaSJussi Kivilinna See also: 126364b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 126464b94ceaSJussi Kivilinna 1265584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1266584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1267584fffc8SSebastian Siewior depends on CRYPTO 1268584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1269584fffc8SSebastian Siewior help 1270584fffc8SSebastian Siewior Camellia cipher algorithms module. 1271584fffc8SSebastian Siewior 1272584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1273584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1274584fffc8SSebastian Siewior 1275584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1276584fffc8SSebastian Siewior 1277584fffc8SSebastian Siewior See also: 1278584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1279584fffc8SSebastian Siewior 12800b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12810b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1282f21a7c19SAl Viro depends on X86 && 64BIT 12830b95ec56SJussi Kivilinna depends on CRYPTO 12841af6d037SEric Biggers select CRYPTO_BLKCIPHER 1285964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12860b95ec56SJussi Kivilinna help 12870b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12880b95ec56SJussi Kivilinna 12890b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12900b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12910b95ec56SJussi Kivilinna 12920b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12930b95ec56SJussi Kivilinna 12940b95ec56SJussi Kivilinna See also: 12950b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12960b95ec56SJussi Kivilinna 1297d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1298d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1299d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1300d9b1d2e7SJussi Kivilinna depends on CRYPTO 130144893bc2SEric Biggers select CRYPTO_BLKCIPHER 1302d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 130344893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 130444893bc2SEric Biggers select CRYPTO_SIMD 1305d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1306d9b1d2e7SJussi Kivilinna help 1307d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1308d9b1d2e7SJussi Kivilinna 1309d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1310d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1311d9b1d2e7SJussi Kivilinna 1312d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1313d9b1d2e7SJussi Kivilinna 1314d9b1d2e7SJussi Kivilinna See also: 1315d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1316d9b1d2e7SJussi Kivilinna 1317f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1318f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1319f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1320f3f935a7SJussi Kivilinna depends on CRYPTO 1321f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1322f3f935a7SJussi Kivilinna help 1323f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1324f3f935a7SJussi Kivilinna 1325f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1326f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1327f3f935a7SJussi Kivilinna 1328f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1329f3f935a7SJussi Kivilinna 1330f3f935a7SJussi Kivilinna See also: 1331f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1332f3f935a7SJussi Kivilinna 133381658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 133481658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 133581658ad0SDavid S. Miller depends on SPARC64 133681658ad0SDavid S. Miller depends on CRYPTO 133781658ad0SDavid S. Miller select CRYPTO_ALGAPI 133881658ad0SDavid S. Miller help 133981658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 134081658ad0SDavid S. Miller 134181658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 134281658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 134381658ad0SDavid S. Miller 134481658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 134581658ad0SDavid S. Miller 134681658ad0SDavid S. Miller See also: 134781658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 134881658ad0SDavid S. Miller 1349044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1350044ab525SJussi Kivilinna tristate 1351044ab525SJussi Kivilinna help 1352044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1353044ab525SJussi Kivilinna generic c and the assembler implementations. 1354044ab525SJussi Kivilinna 1355584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1356584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1357584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1358044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1359584fffc8SSebastian Siewior help 1360584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1361584fffc8SSebastian Siewior described in RFC2144. 1362584fffc8SSebastian Siewior 13634d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13644d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13654d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13661e63183aSEric Biggers select CRYPTO_BLKCIPHER 13674d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13681e63183aSEric Biggers select CRYPTO_CAST_COMMON 13691e63183aSEric Biggers select CRYPTO_SIMD 13704d6d6a2cSJohannes Goetzfried help 13714d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13724d6d6a2cSJohannes Goetzfried described in RFC2144. 13734d6d6a2cSJohannes Goetzfried 13744d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13754d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13764d6d6a2cSJohannes Goetzfried 1377584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1378584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1379584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1380044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1381584fffc8SSebastian Siewior help 1382584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1383584fffc8SSebastian Siewior described in RFC2612. 1384584fffc8SSebastian Siewior 13854ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13864ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13874ea1277dSJohannes Goetzfried depends on X86 && 64BIT 13884bd96924SEric Biggers select CRYPTO_BLKCIPHER 13894ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13904bd96924SEric Biggers select CRYPTO_CAST_COMMON 13914bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13924bd96924SEric Biggers select CRYPTO_SIMD 13934ea1277dSJohannes Goetzfried select CRYPTO_XTS 13944ea1277dSJohannes Goetzfried help 13954ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13964ea1277dSJohannes Goetzfried described in RFC2612. 13974ea1277dSJohannes Goetzfried 13984ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13994ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14004ea1277dSJohannes Goetzfried 1401584fffc8SSebastian Siewiorconfig CRYPTO_DES 1402584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1403584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1404584fffc8SSebastian Siewior help 1405584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1406584fffc8SSebastian Siewior 1407c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1408c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 140997da37b3SDave Jones depends on SPARC64 1410c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1411c5aac2dfSDavid S. Miller select CRYPTO_DES 1412c5aac2dfSDavid S. Miller help 1413c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1414c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1415c5aac2dfSDavid S. Miller 14166574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14176574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14186574e6c6SJussi Kivilinna depends on X86 && 64BIT 141909c0f03bSEric Biggers select CRYPTO_BLKCIPHER 14206574e6c6SJussi Kivilinna select CRYPTO_DES 14216574e6c6SJussi Kivilinna help 14226574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14236574e6c6SJussi Kivilinna 14246574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14256574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14266574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14276574e6c6SJussi Kivilinna one that processes three blocks parallel. 14286574e6c6SJussi Kivilinna 1429584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1430584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1431584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1432584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1433584fffc8SSebastian Siewior help 1434584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1435584fffc8SSebastian Siewior 1436584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1437584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1438584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1439584fffc8SSebastian Siewior help 1440584fffc8SSebastian Siewior Khazad cipher algorithm. 1441584fffc8SSebastian Siewior 1442584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1443584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1444584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1445584fffc8SSebastian Siewior 1446584fffc8SSebastian Siewior See also: 14476d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1448e2ee95b8SHye-Shik Chang 14492407d608STan Swee Hengconfig CRYPTO_SALSA20 14503b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14512407d608STan Swee Heng select CRYPTO_BLKCIPHER 14522407d608STan Swee Heng help 14532407d608STan Swee Heng Salsa20 stream cipher algorithm. 14542407d608STan Swee Heng 14552407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14562407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14572407d608STan Swee Heng 14582407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14592407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14601da177e4SLinus Torvalds 1461c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1462aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 1463c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1464c08d0e64SMartin Willi help 1465aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1466c08d0e64SMartin Willi 1467c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1468c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1469de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 1470c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1471c08d0e64SMartin Willi 1472de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1473de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1474de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1475de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1476de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1477de61d7aeSEric Biggers 1478aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1479aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1480aa762409SEric Biggers in some performance-sensitive scenarios. 1481aa762409SEric Biggers 1482c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14834af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1484c9320b6dSMartin Willi depends on X86 && 64BIT 1485c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1486c9320b6dSMartin Willi select CRYPTO_CHACHA20 1487c9320b6dSMartin Willi help 14887a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14897a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1490c9320b6dSMartin Willi 1491584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1492584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1493584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1494584fffc8SSebastian Siewior help 1495584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1496584fffc8SSebastian Siewior 1497584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1498584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1499584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1500584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1501584fffc8SSebastian Siewior 1502584fffc8SSebastian Siewior See also: 1503584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1504584fffc8SSebastian Siewior 1505584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1506584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1507584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1508584fffc8SSebastian Siewior help 1509584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1510584fffc8SSebastian Siewior 1511584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1512584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1513584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1514584fffc8SSebastian Siewior 1515584fffc8SSebastian Siewior See also: 1516584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1517584fffc8SSebastian Siewior 1518937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1519937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1520937c30d7SJussi Kivilinna depends on X86 && 64BIT 1521e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1522596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1523937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1524e0f409dcSEric Biggers select CRYPTO_SIMD 1525937c30d7SJussi Kivilinna help 1526937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1527937c30d7SJussi Kivilinna 1528937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1529937c30d7SJussi Kivilinna of 8 bits. 1530937c30d7SJussi Kivilinna 15311e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1532937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1533937c30d7SJussi Kivilinna 1534937c30d7SJussi Kivilinna See also: 1535937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1536937c30d7SJussi Kivilinna 1537251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1538251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1539251496dbSJussi Kivilinna depends on X86 && !64BIT 1540e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1541596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1542251496dbSJussi Kivilinna select CRYPTO_SERPENT 1543e0f409dcSEric Biggers select CRYPTO_SIMD 1544251496dbSJussi Kivilinna help 1545251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1546251496dbSJussi Kivilinna 1547251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1548251496dbSJussi Kivilinna of 8 bits. 1549251496dbSJussi Kivilinna 1550251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1551251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1552251496dbSJussi Kivilinna 1553251496dbSJussi Kivilinna See also: 1554251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1555251496dbSJussi Kivilinna 15567efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15577efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15587efe4076SJohannes Goetzfried depends on X86 && 64BIT 1559e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15601d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15617efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1562e16bf974SEric Biggers select CRYPTO_SIMD 15637efe4076SJohannes Goetzfried select CRYPTO_XTS 15647efe4076SJohannes Goetzfried help 15657efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15667efe4076SJohannes Goetzfried 15677efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15687efe4076SJohannes Goetzfried of 8 bits. 15697efe4076SJohannes Goetzfried 15707efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15717efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15727efe4076SJohannes Goetzfried 15737efe4076SJohannes Goetzfried See also: 15747efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15757efe4076SJohannes Goetzfried 157656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 157756d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 157856d76c96SJussi Kivilinna depends on X86 && 64BIT 157956d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 158056d76c96SJussi Kivilinna help 158156d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 158256d76c96SJussi Kivilinna 158356d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 158456d76c96SJussi Kivilinna of 8 bits. 158556d76c96SJussi Kivilinna 158656d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 158756d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 158856d76c96SJussi Kivilinna 158956d76c96SJussi Kivilinna See also: 159056d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 159156d76c96SJussi Kivilinna 1592747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1593747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1594747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1595747c8ce4SGilad Ben-Yossef help 1596747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1597747c8ce4SGilad Ben-Yossef 1598747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1599747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1600747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1601747c8ce4SGilad Ben-Yossef 1602747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1603747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1604747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1605747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1606747c8ce4SGilad Ben-Yossef 1607747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1608747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1609747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1610747c8ce4SGilad Ben-Yossef 1611747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1612747c8ce4SGilad Ben-Yossef 1613747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1614747c8ce4SGilad Ben-Yossef 1615747c8ce4SGilad Ben-Yossef If unsure, say N. 1616747c8ce4SGilad Ben-Yossef 1617584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1618584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1619584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1620584fffc8SSebastian Siewior help 1621584fffc8SSebastian Siewior TEA cipher algorithm. 1622584fffc8SSebastian Siewior 1623584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1624584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1625584fffc8SSebastian Siewior little memory. 1626584fffc8SSebastian Siewior 1627584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1628584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1629584fffc8SSebastian Siewior in the TEA algorithm. 1630584fffc8SSebastian Siewior 1631584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1632584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1633584fffc8SSebastian Siewior 1634584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1635584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1636584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1637584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1638584fffc8SSebastian Siewior help 1639584fffc8SSebastian Siewior Twofish cipher algorithm. 1640584fffc8SSebastian Siewior 1641584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1642584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1643584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1644584fffc8SSebastian Siewior bits. 1645584fffc8SSebastian Siewior 1646584fffc8SSebastian Siewior See also: 1647584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1648584fffc8SSebastian Siewior 1649584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1650584fffc8SSebastian Siewior tristate 1651584fffc8SSebastian Siewior help 1652584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1653584fffc8SSebastian Siewior generic c and the assembler implementations. 1654584fffc8SSebastian Siewior 1655584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1656584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1657584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1658584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1659584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1660584fffc8SSebastian Siewior help 1661584fffc8SSebastian Siewior Twofish cipher algorithm. 1662584fffc8SSebastian Siewior 1663584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1664584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1665584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1666584fffc8SSebastian Siewior bits. 1667584fffc8SSebastian Siewior 1668584fffc8SSebastian Siewior See also: 1669584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1670584fffc8SSebastian Siewior 1671584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1672584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1673584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1674584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1675584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1676584fffc8SSebastian Siewior help 1677584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1678584fffc8SSebastian Siewior 1679584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1680584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1681584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1682584fffc8SSebastian Siewior bits. 1683584fffc8SSebastian Siewior 1684584fffc8SSebastian Siewior See also: 1685584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1686584fffc8SSebastian Siewior 16878280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16888280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1689f21a7c19SAl Viro depends on X86 && 64BIT 169037992fa4SEric Biggers select CRYPTO_BLKCIPHER 16918280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16928280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1693414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16948280daadSJussi Kivilinna help 16958280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16968280daadSJussi Kivilinna 16978280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16988280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16998280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17008280daadSJussi Kivilinna bits. 17018280daadSJussi Kivilinna 17028280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17038280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17048280daadSJussi Kivilinna 17058280daadSJussi Kivilinna See also: 17068280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 17078280daadSJussi Kivilinna 1708107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1709107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1710107778b5SJohannes Goetzfried depends on X86 && 64BIT 17110e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1712a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17130e6ab46dSEric Biggers select CRYPTO_SIMD 1714107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1715107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1716107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1717107778b5SJohannes Goetzfried help 1718107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1719107778b5SJohannes Goetzfried 1720107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1721107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1722107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1723107778b5SJohannes Goetzfried bits. 1724107778b5SJohannes Goetzfried 1725107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1726107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1727107778b5SJohannes Goetzfried 1728107778b5SJohannes Goetzfried See also: 1729107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1730107778b5SJohannes Goetzfried 1731584fffc8SSebastian Siewiorcomment "Compression" 1732584fffc8SSebastian Siewior 17331da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17341da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1735cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1736f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17371da177e4SLinus Torvalds select ZLIB_INFLATE 17381da177e4SLinus Torvalds select ZLIB_DEFLATE 17391da177e4SLinus Torvalds help 17401da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17411da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17421da177e4SLinus Torvalds 17431da177e4SLinus Torvalds You will most probably want this if using IPSec. 17441da177e4SLinus Torvalds 17450b77abb3SZoltan Sogorconfig CRYPTO_LZO 17460b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17470b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1748ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17490b77abb3SZoltan Sogor select LZO_COMPRESS 17500b77abb3SZoltan Sogor select LZO_DECOMPRESS 17510b77abb3SZoltan Sogor help 17520b77abb3SZoltan Sogor This is the LZO algorithm. 17530b77abb3SZoltan Sogor 175435a1fc18SSeth Jenningsconfig CRYPTO_842 175535a1fc18SSeth Jennings tristate "842 compression algorithm" 17562062c5b6SDan Streetman select CRYPTO_ALGAPI 17576a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17582062c5b6SDan Streetman select 842_COMPRESS 17592062c5b6SDan Streetman select 842_DECOMPRESS 176035a1fc18SSeth Jennings help 176135a1fc18SSeth Jennings This is the 842 algorithm. 176235a1fc18SSeth Jennings 17630ea8530dSChanho Minconfig CRYPTO_LZ4 17640ea8530dSChanho Min tristate "LZ4 compression algorithm" 17650ea8530dSChanho Min select CRYPTO_ALGAPI 17668cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17670ea8530dSChanho Min select LZ4_COMPRESS 17680ea8530dSChanho Min select LZ4_DECOMPRESS 17690ea8530dSChanho Min help 17700ea8530dSChanho Min This is the LZ4 algorithm. 17710ea8530dSChanho Min 17720ea8530dSChanho Minconfig CRYPTO_LZ4HC 17730ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17740ea8530dSChanho Min select CRYPTO_ALGAPI 177591d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17760ea8530dSChanho Min select LZ4HC_COMPRESS 17770ea8530dSChanho Min select LZ4_DECOMPRESS 17780ea8530dSChanho Min help 17790ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17800ea8530dSChanho Min 1781d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1782d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1783d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1784d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1785d28fc3dbSNick Terrell select ZSTD_COMPRESS 1786d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1787d28fc3dbSNick Terrell help 1788d28fc3dbSNick Terrell This is the zstd algorithm. 1789d28fc3dbSNick Terrell 179017f0f4a4SNeil Hormancomment "Random Number Generation" 179117f0f4a4SNeil Horman 179217f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 179317f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 179417f0f4a4SNeil Horman select CRYPTO_AES 179517f0f4a4SNeil Horman select CRYPTO_RNG 179617f0f4a4SNeil Horman help 179717f0f4a4SNeil Horman This option enables the generic pseudo random number generator 179817f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17997dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18007dd607e8SJiri Kosina CRYPTO_FIPS is selected 180117f0f4a4SNeil Horman 1802f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1803419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1804419090c6SStephan Mueller help 1805419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1806419090c6SStephan Mueller more of the DRBG types must be selected. 1807419090c6SStephan Mueller 1808f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1809419090c6SStephan Mueller 1810419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1811401e4238SHerbert Xu bool 1812419090c6SStephan Mueller default y 1813419090c6SStephan Mueller select CRYPTO_HMAC 1814826775bbSHerbert Xu select CRYPTO_SHA256 1815419090c6SStephan Mueller 1816419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1817419090c6SStephan Mueller bool "Enable Hash DRBG" 1818826775bbSHerbert Xu select CRYPTO_SHA256 1819419090c6SStephan Mueller help 1820419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1821419090c6SStephan Mueller 1822419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1823419090c6SStephan Mueller bool "Enable CTR DRBG" 1824419090c6SStephan Mueller select CRYPTO_AES 182535591285SStephan Mueller depends on CRYPTO_CTR 1826419090c6SStephan Mueller help 1827419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1828419090c6SStephan Mueller 1829f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1830f2c89a10SHerbert Xu tristate 1831401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1832f2c89a10SHerbert Xu select CRYPTO_RNG 1833bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1834f2c89a10SHerbert Xu 1835f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1836419090c6SStephan Mueller 1837bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1838bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18392f313e02SArnd Bergmann select CRYPTO_RNG 1840bb5530e4SStephan Mueller help 1841bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1842bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1843bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1844bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1845bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1846bb5530e4SStephan Mueller 184703c8efc1SHerbert Xuconfig CRYPTO_USER_API 184803c8efc1SHerbert Xu tristate 184903c8efc1SHerbert Xu 1850fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1851fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18527451708fSHerbert Xu depends on NET 1853fe869cdbSHerbert Xu select CRYPTO_HASH 1854fe869cdbSHerbert Xu select CRYPTO_USER_API 1855fe869cdbSHerbert Xu help 1856fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1857fe869cdbSHerbert Xu algorithms. 1858fe869cdbSHerbert Xu 18598ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18608ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18617451708fSHerbert Xu depends on NET 18628ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18638ff59090SHerbert Xu select CRYPTO_USER_API 18648ff59090SHerbert Xu help 18658ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18668ff59090SHerbert Xu key cipher algorithms. 18678ff59090SHerbert Xu 18682f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18692f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18702f375538SStephan Mueller depends on NET 18712f375538SStephan Mueller select CRYPTO_RNG 18722f375538SStephan Mueller select CRYPTO_USER_API 18732f375538SStephan Mueller help 18742f375538SStephan Mueller This option enables the user-spaces interface for random 18752f375538SStephan Mueller number generator algorithms. 18762f375538SStephan Mueller 1877b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1878b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1879b64a2d95SHerbert Xu depends on NET 1880b64a2d95SHerbert Xu select CRYPTO_AEAD 188172548b09SStephan Mueller select CRYPTO_BLKCIPHER 188272548b09SStephan Mueller select CRYPTO_NULL 1883b64a2d95SHerbert Xu select CRYPTO_USER_API 1884b64a2d95SHerbert Xu help 1885b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1886b64a2d95SHerbert Xu cipher algorithms. 1887b64a2d95SHerbert Xu 1888cac5818cSCorentin Labbeconfig CRYPTO_STATS 1889cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1890a6a31385SCorentin Labbe depends on CRYPTO_USER 1891cac5818cSCorentin Labbe help 1892cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1893cac5818cSCorentin Labbe This will collect: 1894cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1895cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1896cac5818cSCorentin Labbe - size and numbers of hash operations 1897cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1898cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1899cac5818cSCorentin Labbe 1900ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1901ee08997fSDmitry Kasatkin bool 1902ee08997fSDmitry Kasatkin 19031da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19048636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19058636a1f9SMasahiro Yamadasource "certs/Kconfig" 19061da177e4SLinus Torvalds 1907cce9e06dSHerbert Xuendif # if CRYPTO 1908