1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 116cfc2bb32STadeusz Strukconfig CRYPTO_RSA 117cfc2bb32STadeusz Struk tristate "RSA algorithm" 118425e0172STadeusz Struk select CRYPTO_AKCIPHER 11958446fefSTadeusz Struk select CRYPTO_MANAGER 120cfc2bb32STadeusz Struk select MPILIB 121cfc2bb32STadeusz Struk select ASN1 122cfc2bb32STadeusz Struk help 123cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 124cfc2bb32STadeusz Struk 125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 126802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 127802c7f1cSSalvatore Benedetto select CRYPTO_KPP 128802c7f1cSSalvatore Benedetto select MPILIB 129802c7f1cSSalvatore Benedetto help 130802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 131802c7f1cSSalvatore Benedetto 1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1333c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 134b5b90077SHauke Mehrtens select CRYPTO_KPP 1356755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1363c4b2390SSalvatore Benedetto help 1373c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 138802c7f1cSSalvatore Benedetto 1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1402b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1416a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1422b8c19dbSHerbert Xu help 1432b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1442b8c19dbSHerbert Xu cbc(aes). 1452b8c19dbSHerbert Xu 1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1476a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1486a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1496a0fcbb4SHerbert Xu select CRYPTO_HASH2 1506a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 151946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1524e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1532ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1546a0fcbb4SHerbert Xu 155a38f7907SSteffen Klassertconfig CRYPTO_USER 156a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1575db017aaSHerbert Xu depends on NET 158a38f7907SSteffen Klassert select CRYPTO_MANAGER 159a38f7907SSteffen Klassert help 160d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 161a38f7907SSteffen Klassert cbc(aes). 162a38f7907SSteffen Klassert 163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 164326a6346SHerbert Xu bool "Disable run-time self tests" 16500ca28a5SHerbert Xu default y 16600ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1670b767f96SAlexander Shishkin help 168326a6346SHerbert Xu Disable run-time self tests that normally take place at 169326a6346SHerbert Xu algorithm registration. 1700b767f96SAlexander Shishkin 171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 175584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 176584fffc8SSebastian Siewior option will be selected automatically if you select such a 177584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 178584fffc8SSebastian Siewior an external module that requires these functions. 179584fffc8SSebastian Siewior 180584fffc8SSebastian Siewiorconfig CRYPTO_NULL 181584fffc8SSebastian Siewior tristate "Null algorithms" 182149a3971SHerbert Xu select CRYPTO_NULL2 183584fffc8SSebastian Siewior help 184584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 185584fffc8SSebastian Siewior 186149a3971SHerbert Xuconfig CRYPTO_NULL2 187dd43c4e9SHerbert Xu tristate 188149a3971SHerbert Xu select CRYPTO_ALGAPI2 189149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 190149a3971SHerbert Xu select CRYPTO_HASH2 191149a3971SHerbert Xu 1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1933b4afaf2SKees Cook tristate "Parallel crypto engine" 1943b4afaf2SKees Cook depends on SMP 1955068c7a8SSteffen Klassert select PADATA 1965068c7a8SSteffen Klassert select CRYPTO_MANAGER 1975068c7a8SSteffen Klassert select CRYPTO_AEAD 1985068c7a8SSteffen Klassert help 1995068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2005068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2015068c7a8SSteffen Klassert 20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20325c38d3fSHuang Ying tristate 20425c38d3fSHuang Ying 205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 206584fffc8SSebastian Siewior tristate "Software async crypto daemon" 207584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 208b8a28251SLoc Ho select CRYPTO_HASH 209584fffc8SSebastian Siewior select CRYPTO_MANAGER 210254eff77SHuang Ying select CRYPTO_WORKQUEUE 211584fffc8SSebastian Siewior help 212584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 213584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 214584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 215584fffc8SSebastian Siewior 2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2171e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2181e65b81aSTim Chen select CRYPTO_BLKCIPHER 2191e65b81aSTim Chen select CRYPTO_HASH 2201e65b81aSTim Chen select CRYPTO_MANAGER 2211e65b81aSTim Chen select CRYPTO_WORKQUEUE 2221e65b81aSTim Chen help 2231e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2241e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2251e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2261e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2271e65b81aSTim Chen in the context of this kernel thread and drivers can post 2280e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2291e65b81aSTim Chen 230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 231584fffc8SSebastian Siewior tristate "Authenc support" 232584fffc8SSebastian Siewior select CRYPTO_AEAD 233584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 234584fffc8SSebastian Siewior select CRYPTO_MANAGER 235584fffc8SSebastian Siewior select CRYPTO_HASH 236e94c6a7aSHerbert Xu select CRYPTO_NULL 237584fffc8SSebastian Siewior help 238584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 239584fffc8SSebastian Siewior This is required for IPSec. 240584fffc8SSebastian Siewior 241584fffc8SSebastian Siewiorconfig CRYPTO_TEST 242584fffc8SSebastian Siewior tristate "Testing module" 243584fffc8SSebastian Siewior depends on m 244da7f033dSHerbert Xu select CRYPTO_MANAGER 245584fffc8SSebastian Siewior help 246584fffc8SSebastian Siewior Quick & dirty crypto test module. 247584fffc8SSebastian Siewior 248266d0516SHerbert Xuconfig CRYPTO_SIMD 249266d0516SHerbert Xu tristate 250266d0516SHerbert Xu select CRYPTO_CRYPTD 251266d0516SHerbert Xu 252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 253596d8750SJussi Kivilinna tristate 254596d8750SJussi Kivilinna depends on X86 255065ce327SHerbert Xu select CRYPTO_BLKCIPHER 256596d8750SJussi Kivilinna 257735d37b5SBaolin Wangconfig CRYPTO_ENGINE 258735d37b5SBaolin Wang tristate 259735d37b5SBaolin Wang 260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 261584fffc8SSebastian Siewior 262584fffc8SSebastian Siewiorconfig CRYPTO_CCM 263584fffc8SSebastian Siewior tristate "CCM support" 264584fffc8SSebastian Siewior select CRYPTO_CTR 265f15f05b0SArd Biesheuvel select CRYPTO_HASH 266584fffc8SSebastian Siewior select CRYPTO_AEAD 267584fffc8SSebastian Siewior help 268584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 269584fffc8SSebastian Siewior 270584fffc8SSebastian Siewiorconfig CRYPTO_GCM 271584fffc8SSebastian Siewior tristate "GCM/GMAC support" 272584fffc8SSebastian Siewior select CRYPTO_CTR 273584fffc8SSebastian Siewior select CRYPTO_AEAD 2749382d97aSHuang Ying select CRYPTO_GHASH 2759489667dSJussi Kivilinna select CRYPTO_NULL 276584fffc8SSebastian Siewior help 277584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 278584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 279584fffc8SSebastian Siewior 28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28171ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28271ebc4d1SMartin Willi select CRYPTO_CHACHA20 28371ebc4d1SMartin Willi select CRYPTO_POLY1305 28471ebc4d1SMartin Willi select CRYPTO_AEAD 28571ebc4d1SMartin Willi help 28671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28771ebc4d1SMartin Willi 28871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 28971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29071ebc4d1SMartin Willi IETF protocols. 29171ebc4d1SMartin Willi 292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 293f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 294f606a88eSOndrej Mosnacek select CRYPTO_AEAD 295f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 296f606a88eSOndrej Mosnacek help 297f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 298f606a88eSOndrej Mosnacek 299f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 300f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 301f606a88eSOndrej Mosnacek select CRYPTO_AEAD 302f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 303f606a88eSOndrej Mosnacek help 304f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 305f606a88eSOndrej Mosnacek 306f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 307f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 308f606a88eSOndrej Mosnacek select CRYPTO_AEAD 309f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 310f606a88eSOndrej Mosnacek help 311f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 312f606a88eSOndrej Mosnacek 3131d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3141d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3151d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3161d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3171d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3181d373d4eSOndrej Mosnacek help 3191d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm. 3201d373d4eSOndrej Mosnacek 3211d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3221d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3231d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3241d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3251d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3261d373d4eSOndrej Mosnacek help 3271d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm. 3281d373d4eSOndrej Mosnacek 3291d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3301d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3311d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3321d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3331d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3341d373d4eSOndrej Mosnacek help 3351d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm. 3361d373d4eSOndrej Mosnacek 337*396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 338*396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 339*396be41fSOndrej Mosnacek select CRYPTO_AEAD 340*396be41fSOndrej Mosnacek help 341*396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 342*396be41fSOndrej Mosnacek 343*396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 344*396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 345*396be41fSOndrej Mosnacek select CRYPTO_AEAD 346*396be41fSOndrej Mosnacek help 347*396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 348*396be41fSOndrej Mosnacek 349584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 350584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 351584fffc8SSebastian Siewior select CRYPTO_AEAD 352584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 353856e3f40SHerbert Xu select CRYPTO_NULL 354401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 355584fffc8SSebastian Siewior help 356584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 357584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 358584fffc8SSebastian Siewior 359a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 360a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 361a10f554fSHerbert Xu select CRYPTO_AEAD 362a10f554fSHerbert Xu select CRYPTO_NULL 363401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 3643491244cSHerbert Xu default m 365a10f554fSHerbert Xu help 366a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 367a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 368a10f554fSHerbert Xu algorithm for CBC. 369a10f554fSHerbert Xu 370584fffc8SSebastian Siewiorcomment "Block modes" 371584fffc8SSebastian Siewior 372584fffc8SSebastian Siewiorconfig CRYPTO_CBC 373584fffc8SSebastian Siewior tristate "CBC support" 374584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 375584fffc8SSebastian Siewior select CRYPTO_MANAGER 376584fffc8SSebastian Siewior help 377584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 378584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 379584fffc8SSebastian Siewior 380a7d85e06SJames Bottomleyconfig CRYPTO_CFB 381a7d85e06SJames Bottomley tristate "CFB support" 382a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 383a7d85e06SJames Bottomley select CRYPTO_MANAGER 384a7d85e06SJames Bottomley help 385a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 386a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 387a7d85e06SJames Bottomley 388584fffc8SSebastian Siewiorconfig CRYPTO_CTR 389584fffc8SSebastian Siewior tristate "CTR support" 390584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 391584fffc8SSebastian Siewior select CRYPTO_SEQIV 392584fffc8SSebastian Siewior select CRYPTO_MANAGER 393584fffc8SSebastian Siewior help 394584fffc8SSebastian Siewior CTR: Counter mode 395584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 396584fffc8SSebastian Siewior 397584fffc8SSebastian Siewiorconfig CRYPTO_CTS 398584fffc8SSebastian Siewior tristate "CTS support" 399584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 400584fffc8SSebastian Siewior help 401584fffc8SSebastian Siewior CTS: Cipher Text Stealing 402584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 403584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 404584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 405584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 406584fffc8SSebastian Siewior for AES encryption. 407584fffc8SSebastian Siewior 408584fffc8SSebastian Siewiorconfig CRYPTO_ECB 409584fffc8SSebastian Siewior tristate "ECB support" 410584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 411584fffc8SSebastian Siewior select CRYPTO_MANAGER 412584fffc8SSebastian Siewior help 413584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 414584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 415584fffc8SSebastian Siewior the input block by block. 416584fffc8SSebastian Siewior 417584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4182470a2b2SJussi Kivilinna tristate "LRW support" 419584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 420584fffc8SSebastian Siewior select CRYPTO_MANAGER 421584fffc8SSebastian Siewior select CRYPTO_GF128MUL 422584fffc8SSebastian Siewior help 423584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 424584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 425584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 426584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 427584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 428584fffc8SSebastian Siewior 429584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 430584fffc8SSebastian Siewior tristate "PCBC support" 431584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 432584fffc8SSebastian Siewior select CRYPTO_MANAGER 433584fffc8SSebastian Siewior help 434584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 435584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 436584fffc8SSebastian Siewior 437584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4385bcf8e6dSJussi Kivilinna tristate "XTS support" 439584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 440584fffc8SSebastian Siewior select CRYPTO_MANAGER 44112cb3a1cSMilan Broz select CRYPTO_ECB 442584fffc8SSebastian Siewior help 443584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 444584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 445584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 446584fffc8SSebastian Siewior 4471c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4481c49678eSStephan Mueller tristate "Key wrapping support" 4491c49678eSStephan Mueller select CRYPTO_BLKCIPHER 4501c49678eSStephan Mueller help 4511c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4521c49678eSStephan Mueller padding. 4531c49678eSStephan Mueller 454584fffc8SSebastian Siewiorcomment "Hash modes" 455584fffc8SSebastian Siewior 45693b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 45793b5e86aSJussi Kivilinna tristate "CMAC support" 45893b5e86aSJussi Kivilinna select CRYPTO_HASH 45993b5e86aSJussi Kivilinna select CRYPTO_MANAGER 46093b5e86aSJussi Kivilinna help 46193b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 46293b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 46393b5e86aSJussi Kivilinna 46493b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 46593b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 46693b5e86aSJussi Kivilinna 4671da177e4SLinus Torvaldsconfig CRYPTO_HMAC 4688425165dSHerbert Xu tristate "HMAC support" 4690796ae06SHerbert Xu select CRYPTO_HASH 47043518407SHerbert Xu select CRYPTO_MANAGER 4711da177e4SLinus Torvalds help 4721da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 4731da177e4SLinus Torvalds This is required for IPSec. 4741da177e4SLinus Torvalds 475333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 476333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 477333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 478333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 479333b0d7eSKazunori MIYAZAWA help 480333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 481333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 482333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 483333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 484333b0d7eSKazunori MIYAZAWA 485f1939f7cSShane Wangconfig CRYPTO_VMAC 486f1939f7cSShane Wang tristate "VMAC support" 487f1939f7cSShane Wang select CRYPTO_HASH 488f1939f7cSShane Wang select CRYPTO_MANAGER 489f1939f7cSShane Wang help 490f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 491f1939f7cSShane Wang very high speed on 64-bit architectures. 492f1939f7cSShane Wang 493f1939f7cSShane Wang See also: 494f1939f7cSShane Wang <http://fastcrypto.org/vmac> 495f1939f7cSShane Wang 496584fffc8SSebastian Siewiorcomment "Digest" 497584fffc8SSebastian Siewior 498584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 499584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5005773a3e6SHerbert Xu select CRYPTO_HASH 5016a0962b2SDarrick J. Wong select CRC32 5021da177e4SLinus Torvalds help 503584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 504584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 50569c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5061da177e4SLinus Torvalds 5078cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5088cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5098cb51ba8SAustin Zhang depends on X86 5108cb51ba8SAustin Zhang select CRYPTO_HASH 5118cb51ba8SAustin Zhang help 5128cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5138cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5148cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5158cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5168cb51ba8SAustin Zhang gain performance compared with software implementation. 5178cb51ba8SAustin Zhang Module will be crc32c-intel. 5188cb51ba8SAustin Zhang 5197cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5206dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 521c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5226dd7a82cSAnton Blanchard select CRYPTO_HASH 5236dd7a82cSAnton Blanchard select CRC32 5246dd7a82cSAnton Blanchard help 5256dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 5266dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 5276dd7a82cSAnton Blanchard and newer processors for improved performance. 5286dd7a82cSAnton Blanchard 5296dd7a82cSAnton Blanchard 530442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 531442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 532442a7c40SDavid S. Miller depends on SPARC64 533442a7c40SDavid S. Miller select CRYPTO_HASH 534442a7c40SDavid S. Miller select CRC32 535442a7c40SDavid S. Miller help 536442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 537442a7c40SDavid S. Miller when available. 538442a7c40SDavid S. Miller 53978c37d19SAlexander Boykoconfig CRYPTO_CRC32 54078c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 54178c37d19SAlexander Boyko select CRYPTO_HASH 54278c37d19SAlexander Boyko select CRC32 54378c37d19SAlexander Boyko help 54478c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 54578c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 54678c37d19SAlexander Boyko 54778c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 54878c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 54978c37d19SAlexander Boyko depends on X86 55078c37d19SAlexander Boyko select CRYPTO_HASH 55178c37d19SAlexander Boyko select CRC32 55278c37d19SAlexander Boyko help 55378c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 55478c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 55578c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 55678c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 55778c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 55878c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 55978c37d19SAlexander Boyko 5604a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 5614a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 5624a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 5634a5dc51eSMarcin Nowakowski select CRYPTO_HASH 5644a5dc51eSMarcin Nowakowski help 5654a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 5664a5dc51eSMarcin Nowakowski instructions, when available. 5674a5dc51eSMarcin Nowakowski 5684a5dc51eSMarcin Nowakowski 56968411521SHerbert Xuconfig CRYPTO_CRCT10DIF 57068411521SHerbert Xu tristate "CRCT10DIF algorithm" 57168411521SHerbert Xu select CRYPTO_HASH 57268411521SHerbert Xu help 57368411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 57468411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 57568411521SHerbert Xu transforms to be used if they are available. 57668411521SHerbert Xu 57768411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 57868411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 57968411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 58068411521SHerbert Xu select CRYPTO_HASH 58168411521SHerbert Xu help 58268411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 58368411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 58468411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 58568411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 58668411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 58768411521SHerbert Xu 588b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 589b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 590b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 591b01df1c1SDaniel Axtens select CRYPTO_HASH 592b01df1c1SDaniel Axtens help 593b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 594b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 595b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 596b01df1c1SDaniel Axtens 597146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 598146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 599146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 600146c8688SDaniel Axtens help 601146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 602146c8688SDaniel Axtens POWER8 vpmsum instructions. 603146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 604146c8688SDaniel Axtens 6052cdc6899SHuang Yingconfig CRYPTO_GHASH 6062cdc6899SHuang Ying tristate "GHASH digest algorithm" 6072cdc6899SHuang Ying select CRYPTO_GF128MUL 608578c60fbSArnd Bergmann select CRYPTO_HASH 6092cdc6899SHuang Ying help 6102cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 6112cdc6899SHuang Ying 612f979e014SMartin Williconfig CRYPTO_POLY1305 613f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 614578c60fbSArnd Bergmann select CRYPTO_HASH 615f979e014SMartin Willi help 616f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 617f979e014SMartin Willi 618f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 619f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 620f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 621f979e014SMartin Willi 622c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 623b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 624c70f4abeSMartin Willi depends on X86 && 64BIT 625c70f4abeSMartin Willi select CRYPTO_POLY1305 626c70f4abeSMartin Willi help 627c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 628c70f4abeSMartin Willi 629c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 630c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 631c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 632c70f4abeSMartin Willi instructions. 633c70f4abeSMartin Willi 6341da177e4SLinus Torvaldsconfig CRYPTO_MD4 6351da177e4SLinus Torvalds tristate "MD4 digest algorithm" 636808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 6371da177e4SLinus Torvalds help 6381da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 6391da177e4SLinus Torvalds 6401da177e4SLinus Torvaldsconfig CRYPTO_MD5 6411da177e4SLinus Torvalds tristate "MD5 digest algorithm" 64214b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 6431da177e4SLinus Torvalds help 6441da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 6451da177e4SLinus Torvalds 646d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 647d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 648d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 649d69e75deSAaro Koskinen select CRYPTO_MD5 650d69e75deSAaro Koskinen select CRYPTO_HASH 651d69e75deSAaro Koskinen help 652d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 653d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 654d69e75deSAaro Koskinen 655e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 656e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 657e8e59953SMarkus Stockhausen depends on PPC 658e8e59953SMarkus Stockhausen select CRYPTO_HASH 659e8e59953SMarkus Stockhausen help 660e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 661e8e59953SMarkus Stockhausen in PPC assembler. 662e8e59953SMarkus Stockhausen 663fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 664fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 665fa4dfedcSDavid S. Miller depends on SPARC64 666fa4dfedcSDavid S. Miller select CRYPTO_MD5 667fa4dfedcSDavid S. Miller select CRYPTO_HASH 668fa4dfedcSDavid S. Miller help 669fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 670fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 671fa4dfedcSDavid S. Miller 672584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 673584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 67419e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 675584fffc8SSebastian Siewior help 676584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 677584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 678584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 679584fffc8SSebastian Siewior of the algorithm. 680584fffc8SSebastian Siewior 68182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 68282798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 6837c4468bcSHerbert Xu select CRYPTO_HASH 68482798f90SAdrian-Ken Rueegsegger help 68582798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 68682798f90SAdrian-Ken Rueegsegger 68782798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 68835ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 68982798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 69082798f90SAdrian-Ken Rueegsegger 69182798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 6926d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 69382798f90SAdrian-Ken Rueegsegger 69482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 69582798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 696e5835fbaSHerbert Xu select CRYPTO_HASH 69782798f90SAdrian-Ken Rueegsegger help 69882798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 69982798f90SAdrian-Ken Rueegsegger 70082798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 70182798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 702b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 703b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 70482798f90SAdrian-Ken Rueegsegger 705b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 706b6d44341SAdrian Bunk against RIPEMD-160. 707534fe2c1SAdrian-Ken Rueegsegger 708534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7096d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 710534fe2c1SAdrian-Ken Rueegsegger 711534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 712534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 713d8a5e2e9SHerbert Xu select CRYPTO_HASH 714534fe2c1SAdrian-Ken Rueegsegger help 715b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 716b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 717b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 718b6d44341SAdrian Bunk (than RIPEMD-128). 719534fe2c1SAdrian-Ken Rueegsegger 720534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7216d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 722534fe2c1SAdrian-Ken Rueegsegger 723534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 724534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 7253b8efb4cSHerbert Xu select CRYPTO_HASH 726534fe2c1SAdrian-Ken Rueegsegger help 727b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 728b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 729b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 730b6d44341SAdrian Bunk (than RIPEMD-160). 731534fe2c1SAdrian-Ken Rueegsegger 73282798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7336d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 73482798f90SAdrian-Ken Rueegsegger 7351da177e4SLinus Torvaldsconfig CRYPTO_SHA1 7361da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 73754ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 7381da177e4SLinus Torvalds help 7391da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 7401da177e4SLinus Torvalds 74166be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 742e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 74366be8951SMathias Krause depends on X86 && 64BIT 74466be8951SMathias Krause select CRYPTO_SHA1 74566be8951SMathias Krause select CRYPTO_HASH 74666be8951SMathias Krause help 74766be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 74866be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 749e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 750e38b6b7fStim when available. 75166be8951SMathias Krause 7528275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 753e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 7548275d1aaSTim Chen depends on X86 && 64BIT 7558275d1aaSTim Chen select CRYPTO_SHA256 7568275d1aaSTim Chen select CRYPTO_HASH 7578275d1aaSTim Chen help 7588275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 7598275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 7608275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 761e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 762e38b6b7fStim Instructions) when available. 7638275d1aaSTim Chen 76487de4579STim Chenconfig CRYPTO_SHA512_SSSE3 76587de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 76687de4579STim Chen depends on X86 && 64BIT 76787de4579STim Chen select CRYPTO_SHA512 76887de4579STim Chen select CRYPTO_HASH 76987de4579STim Chen help 77087de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 77187de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 77287de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 77387de4579STim Chen version 2 (AVX2) instructions, when available. 77487de4579STim Chen 775efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 776efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 777efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 778efdb6f6eSAaro Koskinen select CRYPTO_SHA1 779efdb6f6eSAaro Koskinen select CRYPTO_HASH 780efdb6f6eSAaro Koskinen help 781efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 782efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 783efdb6f6eSAaro Koskinen 7844ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 7854ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 7864ff28d4cSDavid S. Miller depends on SPARC64 7874ff28d4cSDavid S. Miller select CRYPTO_SHA1 7884ff28d4cSDavid S. Miller select CRYPTO_HASH 7894ff28d4cSDavid S. Miller help 7904ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 7914ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 7924ff28d4cSDavid S. Miller 793323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 794323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 795323a6bf1SMichael Ellerman depends on PPC 796323a6bf1SMichael Ellerman help 797323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 798323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 799323a6bf1SMichael Ellerman 800d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 801d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 802d9850fc5SMarkus Stockhausen depends on PPC && SPE 803d9850fc5SMarkus Stockhausen help 804d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 805d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 806d9850fc5SMarkus Stockhausen 8071e65b81aSTim Chenconfig CRYPTO_SHA1_MB 8081e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 8091e65b81aSTim Chen depends on X86 && 64BIT 8101e65b81aSTim Chen select CRYPTO_SHA1 8111e65b81aSTim Chen select CRYPTO_HASH 8121e65b81aSTim Chen select CRYPTO_MCRYPTD 8131e65b81aSTim Chen help 8141e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8151e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 8161e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 8171e65b81aSTim Chen better throughput. It should not be enabled by default but 8181e65b81aSTim Chen used when there is significant amount of work to keep the keep 8191e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 8201e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 8211e65b81aSTim Chen process the crypto jobs, adding a slight latency. 8221e65b81aSTim Chen 8239be7e244SMegha Deyconfig CRYPTO_SHA256_MB 8249be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 8259be7e244SMegha Dey depends on X86 && 64BIT 8269be7e244SMegha Dey select CRYPTO_SHA256 8279be7e244SMegha Dey select CRYPTO_HASH 8289be7e244SMegha Dey select CRYPTO_MCRYPTD 8299be7e244SMegha Dey help 8309be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8319be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 8329be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 8339be7e244SMegha Dey better throughput. It should not be enabled by default but 8349be7e244SMegha Dey used when there is significant amount of work to keep the keep 8359be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 8369be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 8379be7e244SMegha Dey process the crypto jobs, adding a slight latency. 8389be7e244SMegha Dey 839026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 840026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 841026bb8aaSMegha Dey depends on X86 && 64BIT 842026bb8aaSMegha Dey select CRYPTO_SHA512 843026bb8aaSMegha Dey select CRYPTO_HASH 844026bb8aaSMegha Dey select CRYPTO_MCRYPTD 845026bb8aaSMegha Dey help 846026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 847026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 848026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 849026bb8aaSMegha Dey better throughput. It should not be enabled by default but 850026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 851026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 852026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 853026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 854026bb8aaSMegha Dey 8551da177e4SLinus Torvaldsconfig CRYPTO_SHA256 856cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 85750e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 8581da177e4SLinus Torvalds help 8591da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 8601da177e4SLinus Torvalds 8611da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 8621da177e4SLinus Torvalds security against collision attacks. 8631da177e4SLinus Torvalds 864cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 865cd12fb90SJonathan Lynch of security against collision attacks. 866cd12fb90SJonathan Lynch 8672ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 8682ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 8692ecc1e95SMarkus Stockhausen depends on PPC && SPE 8702ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 8712ecc1e95SMarkus Stockhausen select CRYPTO_HASH 8722ecc1e95SMarkus Stockhausen help 8732ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 8742ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 8752ecc1e95SMarkus Stockhausen 876efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 877efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 878efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 879efdb6f6eSAaro Koskinen select CRYPTO_SHA256 880efdb6f6eSAaro Koskinen select CRYPTO_HASH 881efdb6f6eSAaro Koskinen help 882efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 883efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 884efdb6f6eSAaro Koskinen 88586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 88686c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 88786c93b24SDavid S. Miller depends on SPARC64 88886c93b24SDavid S. Miller select CRYPTO_SHA256 88986c93b24SDavid S. Miller select CRYPTO_HASH 89086c93b24SDavid S. Miller help 89186c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 89286c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 89386c93b24SDavid S. Miller 8941da177e4SLinus Torvaldsconfig CRYPTO_SHA512 8951da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 896bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 8971da177e4SLinus Torvalds help 8981da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 8991da177e4SLinus Torvalds 9001da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9011da177e4SLinus Torvalds security against collision attacks. 9021da177e4SLinus Torvalds 9031da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9041da177e4SLinus Torvalds of security against collision attacks. 9051da177e4SLinus Torvalds 906efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 907efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 908efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 909efdb6f6eSAaro Koskinen select CRYPTO_SHA512 910efdb6f6eSAaro Koskinen select CRYPTO_HASH 911efdb6f6eSAaro Koskinen help 912efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 913efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 914efdb6f6eSAaro Koskinen 915775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 916775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 917775e0c69SDavid S. Miller depends on SPARC64 918775e0c69SDavid S. Miller select CRYPTO_SHA512 919775e0c69SDavid S. Miller select CRYPTO_HASH 920775e0c69SDavid S. Miller help 921775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 922775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 923775e0c69SDavid S. Miller 92453964b9eSJeff Garzikconfig CRYPTO_SHA3 92553964b9eSJeff Garzik tristate "SHA3 digest algorithm" 92653964b9eSJeff Garzik select CRYPTO_HASH 92753964b9eSJeff Garzik help 92853964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 92953964b9eSJeff Garzik cryptographic sponge function family called Keccak. 93053964b9eSJeff Garzik 93153964b9eSJeff Garzik References: 93253964b9eSJeff Garzik http://keccak.noekeon.org/ 93353964b9eSJeff Garzik 9344f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9354f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9364f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9374f0fc160SGilad Ben-Yossef help 9384f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9394f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9404f0fc160SGilad Ben-Yossef 9414f0fc160SGilad Ben-Yossef References: 9424f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9434f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9444f0fc160SGilad Ben-Yossef 9451da177e4SLinus Torvaldsconfig CRYPTO_TGR192 9461da177e4SLinus Torvalds tristate "Tiger digest algorithms" 947f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 9481da177e4SLinus Torvalds help 9491da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 9501da177e4SLinus Torvalds 9511da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 9521da177e4SLinus Torvalds still having decent performance on 32-bit processors. 9531da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 9541da177e4SLinus Torvalds 9551da177e4SLinus Torvalds See also: 9561da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 9571da177e4SLinus Torvalds 958584fffc8SSebastian Siewiorconfig CRYPTO_WP512 959584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 9604946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 9611da177e4SLinus Torvalds help 962584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 9631da177e4SLinus Torvalds 964584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 965584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 9661da177e4SLinus Torvalds 9671da177e4SLinus Torvalds See also: 9686d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 9691da177e4SLinus Torvalds 9700e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 9710e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 9728af00860SRichard Weinberger depends on X86 && 64BIT 9730e1227d3SHuang Ying select CRYPTO_CRYPTD 9740e1227d3SHuang Ying help 9750e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 9760e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 9770e1227d3SHuang Ying 978584fffc8SSebastian Siewiorcomment "Ciphers" 9791da177e4SLinus Torvalds 9801da177e4SLinus Torvaldsconfig CRYPTO_AES 9811da177e4SLinus Torvalds tristate "AES cipher algorithms" 982cce9e06dSHerbert Xu select CRYPTO_ALGAPI 9831da177e4SLinus Torvalds help 9841da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 9851da177e4SLinus Torvalds algorithm. 9861da177e4SLinus Torvalds 9871da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 9881da177e4SLinus Torvalds both hardware and software across a wide range of computing 9891da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 9901da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 9911da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 9921da177e4SLinus Torvalds suited for restricted-space environments, in which it also 9931da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 9941da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 9951da177e4SLinus Torvalds 9961da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 9971da177e4SLinus Torvalds 9981da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 9991da177e4SLinus Torvalds 1000b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1001b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1002b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1003b5e0b032SArd Biesheuvel help 1004b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1005b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1006b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1007b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1008b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1009b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1010b5e0b032SArd Biesheuvel 1011b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1012b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1013b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1014b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 1015b5e0b032SArd Biesheuvel block. 1016b5e0b032SArd Biesheuvel 10171da177e4SLinus Torvaldsconfig CRYPTO_AES_586 10181da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1019cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1020cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10215157dea8SSebastian Siewior select CRYPTO_AES 10221da177e4SLinus Torvalds help 10231da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10241da177e4SLinus Torvalds algorithm. 10251da177e4SLinus Torvalds 10261da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10271da177e4SLinus Torvalds both hardware and software across a wide range of computing 10281da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10291da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10301da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10311da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10321da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10331da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10341da177e4SLinus Torvalds 10351da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10361da177e4SLinus Torvalds 10371da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 10381da177e4SLinus Torvalds 1039a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1040a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1041cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1042cce9e06dSHerbert Xu select CRYPTO_ALGAPI 104381190b32SSebastian Siewior select CRYPTO_AES 1044a2a892a2SAndreas Steinmetz help 1045a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1046a2a892a2SAndreas Steinmetz algorithm. 1047a2a892a2SAndreas Steinmetz 1048a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1049a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1050a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1051a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1052a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1053a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1054a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1055a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1056a2a892a2SAndreas Steinmetz 1057a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1058a2a892a2SAndreas Steinmetz 1059a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1060a2a892a2SAndreas Steinmetz 106154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 106254b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 10638af00860SRichard Weinberger depends on X86 106485671860SHerbert Xu select CRYPTO_AEAD 10650d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 10660d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 106754b6a1bdSHuang Ying select CRYPTO_ALGAPI 106885671860SHerbert Xu select CRYPTO_BLKCIPHER 10697643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 107085671860SHerbert Xu select CRYPTO_SIMD 107154b6a1bdSHuang Ying help 107254b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 107354b6a1bdSHuang Ying 107454b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 107554b6a1bdSHuang Ying algorithm. 107654b6a1bdSHuang Ying 107754b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 107854b6a1bdSHuang Ying both hardware and software across a wide range of computing 107954b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 108054b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 108154b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 108254b6a1bdSHuang Ying suited for restricted-space environments, in which it also 108354b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 108454b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 108554b6a1bdSHuang Ying 108654b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 108754b6a1bdSHuang Ying 108854b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 108954b6a1bdSHuang Ying 10900d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 10910d258efbSMathias Krause for some popular block cipher mode is supported too, including 10920d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 10930d258efbSMathias Krause acceleration for CTR. 10942cf4ac8bSHuang Ying 10959bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 10969bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 10979bf4852dSDavid S. Miller depends on SPARC64 10989bf4852dSDavid S. Miller select CRYPTO_CRYPTD 10999bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11009bf4852dSDavid S. Miller help 11019bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11029bf4852dSDavid S. Miller 11039bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11049bf4852dSDavid S. Miller algorithm. 11059bf4852dSDavid S. Miller 11069bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11079bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11089bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11099bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11109bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11119bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11129bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11139bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11149bf4852dSDavid S. Miller 11159bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11169bf4852dSDavid S. Miller 11179bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11189bf4852dSDavid S. Miller 11199bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11209bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11219bf4852dSDavid S. Miller ECB and CBC. 11229bf4852dSDavid S. Miller 1123504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1124504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1125504c6143SMarkus Stockhausen depends on PPC && SPE 1126504c6143SMarkus Stockhausen help 1127504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1128504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1129504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1130504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1131504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1132504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1133504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1134504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1135504c6143SMarkus Stockhausen 11361da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11371da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1138cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11391da177e4SLinus Torvalds help 11401da177e4SLinus Torvalds Anubis cipher algorithm. 11411da177e4SLinus Torvalds 11421da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11431da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11441da177e4SLinus Torvalds in the NESSIE competition. 11451da177e4SLinus Torvalds 11461da177e4SLinus Torvalds See also: 11476d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11486d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11491da177e4SLinus Torvalds 1150584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1151584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1152b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1153e2ee95b8SHye-Shik Chang help 1154584fffc8SSebastian Siewior ARC4 cipher algorithm. 1155e2ee95b8SHye-Shik Chang 1156584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1157584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1158584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1159584fffc8SSebastian Siewior weakness of the algorithm. 1160584fffc8SSebastian Siewior 1161584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1162584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1163584fffc8SSebastian Siewior select CRYPTO_ALGAPI 116452ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1165584fffc8SSebastian Siewior help 1166584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1167584fffc8SSebastian Siewior 1168584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1169584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1170584fffc8SSebastian Siewior designed for use on "large microprocessors". 1171e2ee95b8SHye-Shik Chang 1172e2ee95b8SHye-Shik Chang See also: 1173584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1174584fffc8SSebastian Siewior 117552ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 117652ba867cSJussi Kivilinna tristate 117752ba867cSJussi Kivilinna help 117852ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 117952ba867cSJussi Kivilinna generic c and the assembler implementations. 118052ba867cSJussi Kivilinna 118152ba867cSJussi Kivilinna See also: 118252ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 118352ba867cSJussi Kivilinna 118464b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 118564b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1186f21a7c19SAl Viro depends on X86 && 64BIT 1187c1679171SEric Biggers select CRYPTO_BLKCIPHER 118864b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 118964b94ceaSJussi Kivilinna help 119064b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 119164b94ceaSJussi Kivilinna 119264b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 119364b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 119464b94ceaSJussi Kivilinna designed for use on "large microprocessors". 119564b94ceaSJussi Kivilinna 119664b94ceaSJussi Kivilinna See also: 119764b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 119864b94ceaSJussi Kivilinna 1199584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1200584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1201584fffc8SSebastian Siewior depends on CRYPTO 1202584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1203584fffc8SSebastian Siewior help 1204584fffc8SSebastian Siewior Camellia cipher algorithms module. 1205584fffc8SSebastian Siewior 1206584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1207584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1208584fffc8SSebastian Siewior 1209584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1210584fffc8SSebastian Siewior 1211584fffc8SSebastian Siewior See also: 1212584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1213584fffc8SSebastian Siewior 12140b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12150b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1216f21a7c19SAl Viro depends on X86 && 64BIT 12170b95ec56SJussi Kivilinna depends on CRYPTO 12181af6d037SEric Biggers select CRYPTO_BLKCIPHER 1219964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12200b95ec56SJussi Kivilinna help 12210b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12220b95ec56SJussi Kivilinna 12230b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12240b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12250b95ec56SJussi Kivilinna 12260b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12270b95ec56SJussi Kivilinna 12280b95ec56SJussi Kivilinna See also: 12290b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12300b95ec56SJussi Kivilinna 1231d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1232d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1233d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1234d9b1d2e7SJussi Kivilinna depends on CRYPTO 123544893bc2SEric Biggers select CRYPTO_BLKCIPHER 1236d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 123744893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 123844893bc2SEric Biggers select CRYPTO_SIMD 1239d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1240d9b1d2e7SJussi Kivilinna help 1241d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1242d9b1d2e7SJussi Kivilinna 1243d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1244d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1245d9b1d2e7SJussi Kivilinna 1246d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1247d9b1d2e7SJussi Kivilinna 1248d9b1d2e7SJussi Kivilinna See also: 1249d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1250d9b1d2e7SJussi Kivilinna 1251f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1252f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1253f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1254f3f935a7SJussi Kivilinna depends on CRYPTO 1255f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1256f3f935a7SJussi Kivilinna help 1257f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1258f3f935a7SJussi Kivilinna 1259f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1260f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1261f3f935a7SJussi Kivilinna 1262f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1263f3f935a7SJussi Kivilinna 1264f3f935a7SJussi Kivilinna See also: 1265f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1266f3f935a7SJussi Kivilinna 126781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 126881658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 126981658ad0SDavid S. Miller depends on SPARC64 127081658ad0SDavid S. Miller depends on CRYPTO 127181658ad0SDavid S. Miller select CRYPTO_ALGAPI 127281658ad0SDavid S. Miller help 127381658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 127481658ad0SDavid S. Miller 127581658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 127681658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 127781658ad0SDavid S. Miller 127881658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 127981658ad0SDavid S. Miller 128081658ad0SDavid S. Miller See also: 128181658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 128281658ad0SDavid S. Miller 1283044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1284044ab525SJussi Kivilinna tristate 1285044ab525SJussi Kivilinna help 1286044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1287044ab525SJussi Kivilinna generic c and the assembler implementations. 1288044ab525SJussi Kivilinna 1289584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1290584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1291584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1292044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1293584fffc8SSebastian Siewior help 1294584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1295584fffc8SSebastian Siewior described in RFC2144. 1296584fffc8SSebastian Siewior 12974d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 12984d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 12994d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13001e63183aSEric Biggers select CRYPTO_BLKCIPHER 13014d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13021e63183aSEric Biggers select CRYPTO_CAST_COMMON 13031e63183aSEric Biggers select CRYPTO_SIMD 13044d6d6a2cSJohannes Goetzfried help 13054d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13064d6d6a2cSJohannes Goetzfried described in RFC2144. 13074d6d6a2cSJohannes Goetzfried 13084d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13094d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13104d6d6a2cSJohannes Goetzfried 1311584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1312584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1313584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1314044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1315584fffc8SSebastian Siewior help 1316584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1317584fffc8SSebastian Siewior described in RFC2612. 1318584fffc8SSebastian Siewior 13194ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13204ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13214ea1277dSJohannes Goetzfried depends on X86 && 64BIT 13224bd96924SEric Biggers select CRYPTO_BLKCIPHER 13234ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13244bd96924SEric Biggers select CRYPTO_CAST_COMMON 13254bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13264bd96924SEric Biggers select CRYPTO_SIMD 13274ea1277dSJohannes Goetzfried select CRYPTO_XTS 13284ea1277dSJohannes Goetzfried help 13294ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13304ea1277dSJohannes Goetzfried described in RFC2612. 13314ea1277dSJohannes Goetzfried 13324ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13334ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13344ea1277dSJohannes Goetzfried 1335584fffc8SSebastian Siewiorconfig CRYPTO_DES 1336584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1337584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1338584fffc8SSebastian Siewior help 1339584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1340584fffc8SSebastian Siewior 1341c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1342c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 134397da37b3SDave Jones depends on SPARC64 1344c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1345c5aac2dfSDavid S. Miller select CRYPTO_DES 1346c5aac2dfSDavid S. Miller help 1347c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1348c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1349c5aac2dfSDavid S. Miller 13506574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13516574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13526574e6c6SJussi Kivilinna depends on X86 && 64BIT 135309c0f03bSEric Biggers select CRYPTO_BLKCIPHER 13546574e6c6SJussi Kivilinna select CRYPTO_DES 13556574e6c6SJussi Kivilinna help 13566574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 13576574e6c6SJussi Kivilinna 13586574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 13596574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 13606574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 13616574e6c6SJussi Kivilinna one that processes three blocks parallel. 13626574e6c6SJussi Kivilinna 1363584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1364584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1365584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1366584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1367584fffc8SSebastian Siewior help 1368584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1369584fffc8SSebastian Siewior 1370584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1371584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1372584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1373584fffc8SSebastian Siewior help 1374584fffc8SSebastian Siewior Khazad cipher algorithm. 1375584fffc8SSebastian Siewior 1376584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1377584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1378584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1379584fffc8SSebastian Siewior 1380584fffc8SSebastian Siewior See also: 13816d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1382e2ee95b8SHye-Shik Chang 13832407d608STan Swee Hengconfig CRYPTO_SALSA20 13843b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 13852407d608STan Swee Heng select CRYPTO_BLKCIPHER 13862407d608STan Swee Heng help 13872407d608STan Swee Heng Salsa20 stream cipher algorithm. 13882407d608STan Swee Heng 13892407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 13902407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 13912407d608STan Swee Heng 13922407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 13932407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 13941da177e4SLinus Torvalds 1395974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 13963b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1397974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1398974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1399c9a3ff8fSEric Biggers select CRYPTO_SALSA20 1400974e4b75STan Swee Heng help 1401974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1402974e4b75STan Swee Heng 1403974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1404974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1405974e4b75STan Swee Heng 1406974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1407974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1408974e4b75STan Swee Heng 14099a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 14103b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 14119a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 14129a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 1413c9a3ff8fSEric Biggers select CRYPTO_SALSA20 14149a7dafbbSTan Swee Heng help 14159a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 14169a7dafbbSTan Swee Heng 14179a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14189a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14199a7dafbbSTan Swee Heng 14209a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14219a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14229a7dafbbSTan Swee Heng 1423c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1424c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1425c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1426c08d0e64SMartin Willi help 1427c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1428c08d0e64SMartin Willi 1429c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1430c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1431c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1432c08d0e64SMartin Willi 1433c08d0e64SMartin Willi See also: 1434c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1435c08d0e64SMartin Willi 1436c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14373d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1438c9320b6dSMartin Willi depends on X86 && 64BIT 1439c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1440c9320b6dSMartin Willi select CRYPTO_CHACHA20 1441c9320b6dSMartin Willi help 1442c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1443c9320b6dSMartin Willi 1444c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1445c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1446c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1447c9320b6dSMartin Willi 1448c9320b6dSMartin Willi See also: 1449c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1450c9320b6dSMartin Willi 1451584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1452584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1453584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1454584fffc8SSebastian Siewior help 1455584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1456584fffc8SSebastian Siewior 1457584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1458584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1459584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1460584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1461584fffc8SSebastian Siewior 1462584fffc8SSebastian Siewior See also: 1463584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1464584fffc8SSebastian Siewior 1465584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1466584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1467584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1468584fffc8SSebastian Siewior help 1469584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1470584fffc8SSebastian Siewior 1471584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1472584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1473584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1474584fffc8SSebastian Siewior 1475584fffc8SSebastian Siewior See also: 1476584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1477584fffc8SSebastian Siewior 1478937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1479937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1480937c30d7SJussi Kivilinna depends on X86 && 64BIT 1481e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1482596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1483937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1484e0f409dcSEric Biggers select CRYPTO_SIMD 1485937c30d7SJussi Kivilinna help 1486937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1487937c30d7SJussi Kivilinna 1488937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1489937c30d7SJussi Kivilinna of 8 bits. 1490937c30d7SJussi Kivilinna 14911e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1492937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1493937c30d7SJussi Kivilinna 1494937c30d7SJussi Kivilinna See also: 1495937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1496937c30d7SJussi Kivilinna 1497251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1498251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1499251496dbSJussi Kivilinna depends on X86 && !64BIT 1500e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1501596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1502251496dbSJussi Kivilinna select CRYPTO_SERPENT 1503e0f409dcSEric Biggers select CRYPTO_SIMD 1504251496dbSJussi Kivilinna help 1505251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1506251496dbSJussi Kivilinna 1507251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1508251496dbSJussi Kivilinna of 8 bits. 1509251496dbSJussi Kivilinna 1510251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1511251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1512251496dbSJussi Kivilinna 1513251496dbSJussi Kivilinna See also: 1514251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1515251496dbSJussi Kivilinna 15167efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15177efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15187efe4076SJohannes Goetzfried depends on X86 && 64BIT 1519e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15201d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15217efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1522e16bf974SEric Biggers select CRYPTO_SIMD 15237efe4076SJohannes Goetzfried select CRYPTO_XTS 15247efe4076SJohannes Goetzfried help 15257efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15267efe4076SJohannes Goetzfried 15277efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15287efe4076SJohannes Goetzfried of 8 bits. 15297efe4076SJohannes Goetzfried 15307efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15317efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15327efe4076SJohannes Goetzfried 15337efe4076SJohannes Goetzfried See also: 15347efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15357efe4076SJohannes Goetzfried 153656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 153756d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 153856d76c96SJussi Kivilinna depends on X86 && 64BIT 153956d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 154056d76c96SJussi Kivilinna help 154156d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 154256d76c96SJussi Kivilinna 154356d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 154456d76c96SJussi Kivilinna of 8 bits. 154556d76c96SJussi Kivilinna 154656d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 154756d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 154856d76c96SJussi Kivilinna 154956d76c96SJussi Kivilinna See also: 155056d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 155156d76c96SJussi Kivilinna 1552747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1553747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1554747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1555747c8ce4SGilad Ben-Yossef help 1556747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1557747c8ce4SGilad Ben-Yossef 1558747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1559747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1560747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1561747c8ce4SGilad Ben-Yossef 1562747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1563747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1564747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1565747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1566747c8ce4SGilad Ben-Yossef 1567747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1568747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1569747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1570747c8ce4SGilad Ben-Yossef 1571747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1572747c8ce4SGilad Ben-Yossef 1573747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1574747c8ce4SGilad Ben-Yossef 1575747c8ce4SGilad Ben-Yossef If unsure, say N. 1576747c8ce4SGilad Ben-Yossef 1577da7a0ab5SEric Biggersconfig CRYPTO_SPECK 1578da7a0ab5SEric Biggers tristate "Speck cipher algorithm" 1579da7a0ab5SEric Biggers select CRYPTO_ALGAPI 1580da7a0ab5SEric Biggers help 1581da7a0ab5SEric Biggers Speck is a lightweight block cipher that is tuned for optimal 1582da7a0ab5SEric Biggers performance in software (rather than hardware). 1583da7a0ab5SEric Biggers 1584da7a0ab5SEric Biggers Speck may not be as secure as AES, and should only be used on systems 1585da7a0ab5SEric Biggers where AES is not fast enough. 1586da7a0ab5SEric Biggers 1587da7a0ab5SEric Biggers See also: <https://eprint.iacr.org/2013/404.pdf> 1588da7a0ab5SEric Biggers 1589da7a0ab5SEric Biggers If unsure, say N. 1590da7a0ab5SEric Biggers 1591584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1592584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1593584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1594584fffc8SSebastian Siewior help 1595584fffc8SSebastian Siewior TEA cipher algorithm. 1596584fffc8SSebastian Siewior 1597584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1598584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1599584fffc8SSebastian Siewior little memory. 1600584fffc8SSebastian Siewior 1601584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1602584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1603584fffc8SSebastian Siewior in the TEA algorithm. 1604584fffc8SSebastian Siewior 1605584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1606584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1607584fffc8SSebastian Siewior 1608584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1609584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1610584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1611584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1612584fffc8SSebastian Siewior help 1613584fffc8SSebastian Siewior Twofish cipher algorithm. 1614584fffc8SSebastian Siewior 1615584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1616584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1617584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1618584fffc8SSebastian Siewior bits. 1619584fffc8SSebastian Siewior 1620584fffc8SSebastian Siewior See also: 1621584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1622584fffc8SSebastian Siewior 1623584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1624584fffc8SSebastian Siewior tristate 1625584fffc8SSebastian Siewior help 1626584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1627584fffc8SSebastian Siewior generic c and the assembler implementations. 1628584fffc8SSebastian Siewior 1629584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1630584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1631584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1632584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1633584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1634584fffc8SSebastian Siewior help 1635584fffc8SSebastian Siewior Twofish cipher algorithm. 1636584fffc8SSebastian Siewior 1637584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1638584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1639584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1640584fffc8SSebastian Siewior bits. 1641584fffc8SSebastian Siewior 1642584fffc8SSebastian Siewior See also: 1643584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1644584fffc8SSebastian Siewior 1645584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1646584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1647584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1648584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1649584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1650584fffc8SSebastian Siewior help 1651584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1652584fffc8SSebastian Siewior 1653584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1654584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1655584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1656584fffc8SSebastian Siewior bits. 1657584fffc8SSebastian Siewior 1658584fffc8SSebastian Siewior See also: 1659584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1660584fffc8SSebastian Siewior 16618280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 16628280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1663f21a7c19SAl Viro depends on X86 && 64BIT 166437992fa4SEric Biggers select CRYPTO_BLKCIPHER 16658280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 16668280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1667414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16688280daadSJussi Kivilinna help 16698280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 16708280daadSJussi Kivilinna 16718280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 16728280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 16738280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 16748280daadSJussi Kivilinna bits. 16758280daadSJussi Kivilinna 16768280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 16778280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 16788280daadSJussi Kivilinna 16798280daadSJussi Kivilinna See also: 16808280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 16818280daadSJussi Kivilinna 1682107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1683107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1684107778b5SJohannes Goetzfried depends on X86 && 64BIT 16850e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1686a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 16870e6ab46dSEric Biggers select CRYPTO_SIMD 1688107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1689107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1690107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1691107778b5SJohannes Goetzfried help 1692107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1693107778b5SJohannes Goetzfried 1694107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1695107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1696107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1697107778b5SJohannes Goetzfried bits. 1698107778b5SJohannes Goetzfried 1699107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1700107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1701107778b5SJohannes Goetzfried 1702107778b5SJohannes Goetzfried See also: 1703107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1704107778b5SJohannes Goetzfried 1705584fffc8SSebastian Siewiorcomment "Compression" 1706584fffc8SSebastian Siewior 17071da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17081da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1709cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1710f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17111da177e4SLinus Torvalds select ZLIB_INFLATE 17121da177e4SLinus Torvalds select ZLIB_DEFLATE 17131da177e4SLinus Torvalds help 17141da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17151da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17161da177e4SLinus Torvalds 17171da177e4SLinus Torvalds You will most probably want this if using IPSec. 17181da177e4SLinus Torvalds 17190b77abb3SZoltan Sogorconfig CRYPTO_LZO 17200b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17210b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1722ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17230b77abb3SZoltan Sogor select LZO_COMPRESS 17240b77abb3SZoltan Sogor select LZO_DECOMPRESS 17250b77abb3SZoltan Sogor help 17260b77abb3SZoltan Sogor This is the LZO algorithm. 17270b77abb3SZoltan Sogor 172835a1fc18SSeth Jenningsconfig CRYPTO_842 172935a1fc18SSeth Jennings tristate "842 compression algorithm" 17302062c5b6SDan Streetman select CRYPTO_ALGAPI 17316a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17322062c5b6SDan Streetman select 842_COMPRESS 17332062c5b6SDan Streetman select 842_DECOMPRESS 173435a1fc18SSeth Jennings help 173535a1fc18SSeth Jennings This is the 842 algorithm. 173635a1fc18SSeth Jennings 17370ea8530dSChanho Minconfig CRYPTO_LZ4 17380ea8530dSChanho Min tristate "LZ4 compression algorithm" 17390ea8530dSChanho Min select CRYPTO_ALGAPI 17408cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17410ea8530dSChanho Min select LZ4_COMPRESS 17420ea8530dSChanho Min select LZ4_DECOMPRESS 17430ea8530dSChanho Min help 17440ea8530dSChanho Min This is the LZ4 algorithm. 17450ea8530dSChanho Min 17460ea8530dSChanho Minconfig CRYPTO_LZ4HC 17470ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17480ea8530dSChanho Min select CRYPTO_ALGAPI 174991d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17500ea8530dSChanho Min select LZ4HC_COMPRESS 17510ea8530dSChanho Min select LZ4_DECOMPRESS 17520ea8530dSChanho Min help 17530ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17540ea8530dSChanho Min 1755d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1756d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1757d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1758d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1759d28fc3dbSNick Terrell select ZSTD_COMPRESS 1760d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1761d28fc3dbSNick Terrell help 1762d28fc3dbSNick Terrell This is the zstd algorithm. 1763d28fc3dbSNick Terrell 176417f0f4a4SNeil Hormancomment "Random Number Generation" 176517f0f4a4SNeil Horman 176617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 176717f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 176817f0f4a4SNeil Horman select CRYPTO_AES 176917f0f4a4SNeil Horman select CRYPTO_RNG 177017f0f4a4SNeil Horman help 177117f0f4a4SNeil Horman This option enables the generic pseudo random number generator 177217f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 17737dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 17747dd607e8SJiri Kosina CRYPTO_FIPS is selected 177517f0f4a4SNeil Horman 1776f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1777419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1778419090c6SStephan Mueller help 1779419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1780419090c6SStephan Mueller more of the DRBG types must be selected. 1781419090c6SStephan Mueller 1782f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1783419090c6SStephan Mueller 1784419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1785401e4238SHerbert Xu bool 1786419090c6SStephan Mueller default y 1787419090c6SStephan Mueller select CRYPTO_HMAC 1788826775bbSHerbert Xu select CRYPTO_SHA256 1789419090c6SStephan Mueller 1790419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1791419090c6SStephan Mueller bool "Enable Hash DRBG" 1792826775bbSHerbert Xu select CRYPTO_SHA256 1793419090c6SStephan Mueller help 1794419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1795419090c6SStephan Mueller 1796419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1797419090c6SStephan Mueller bool "Enable CTR DRBG" 1798419090c6SStephan Mueller select CRYPTO_AES 179935591285SStephan Mueller depends on CRYPTO_CTR 1800419090c6SStephan Mueller help 1801419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1802419090c6SStephan Mueller 1803f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1804f2c89a10SHerbert Xu tristate 1805401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1806f2c89a10SHerbert Xu select CRYPTO_RNG 1807bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1808f2c89a10SHerbert Xu 1809f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1810419090c6SStephan Mueller 1811bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1812bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18132f313e02SArnd Bergmann select CRYPTO_RNG 1814bb5530e4SStephan Mueller help 1815bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1816bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1817bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1818bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1819bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1820bb5530e4SStephan Mueller 182103c8efc1SHerbert Xuconfig CRYPTO_USER_API 182203c8efc1SHerbert Xu tristate 182303c8efc1SHerbert Xu 1824fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1825fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18267451708fSHerbert Xu depends on NET 1827fe869cdbSHerbert Xu select CRYPTO_HASH 1828fe869cdbSHerbert Xu select CRYPTO_USER_API 1829fe869cdbSHerbert Xu help 1830fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1831fe869cdbSHerbert Xu algorithms. 1832fe869cdbSHerbert Xu 18338ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18348ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18357451708fSHerbert Xu depends on NET 18368ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18378ff59090SHerbert Xu select CRYPTO_USER_API 18388ff59090SHerbert Xu help 18398ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18408ff59090SHerbert Xu key cipher algorithms. 18418ff59090SHerbert Xu 18422f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18432f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18442f375538SStephan Mueller depends on NET 18452f375538SStephan Mueller select CRYPTO_RNG 18462f375538SStephan Mueller select CRYPTO_USER_API 18472f375538SStephan Mueller help 18482f375538SStephan Mueller This option enables the user-spaces interface for random 18492f375538SStephan Mueller number generator algorithms. 18502f375538SStephan Mueller 1851b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1852b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1853b64a2d95SHerbert Xu depends on NET 1854b64a2d95SHerbert Xu select CRYPTO_AEAD 185572548b09SStephan Mueller select CRYPTO_BLKCIPHER 185672548b09SStephan Mueller select CRYPTO_NULL 1857b64a2d95SHerbert Xu select CRYPTO_USER_API 1858b64a2d95SHerbert Xu help 1859b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1860b64a2d95SHerbert Xu cipher algorithms. 1861b64a2d95SHerbert Xu 1862ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1863ee08997fSDmitry Kasatkin bool 1864ee08997fSDmitry Kasatkin 18651da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1866964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1867cfc411e7SDavid Howellssource certs/Kconfig 18681da177e4SLinus Torvalds 1869cce9e06dSHerbert Xuendif # if CRYPTO 1870