xref: /linux/crypto/Kconfig (revision 396be41f16fd05af6c914eeb2c96e0cc2dadf28c)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2171e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2181e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2191e65b81aSTim Chen	select CRYPTO_HASH
2201e65b81aSTim Chen	select CRYPTO_MANAGER
2211e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2221e65b81aSTim Chen	help
2231e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2241e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2251e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2261e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2271e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2280e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2291e65b81aSTim Chen
230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
231584fffc8SSebastian Siewior	tristate "Authenc support"
232584fffc8SSebastian Siewior	select CRYPTO_AEAD
233584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
234584fffc8SSebastian Siewior	select CRYPTO_MANAGER
235584fffc8SSebastian Siewior	select CRYPTO_HASH
236e94c6a7aSHerbert Xu	select CRYPTO_NULL
237584fffc8SSebastian Siewior	help
238584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
239584fffc8SSebastian Siewior	  This is required for IPSec.
240584fffc8SSebastian Siewior
241584fffc8SSebastian Siewiorconfig CRYPTO_TEST
242584fffc8SSebastian Siewior	tristate "Testing module"
243584fffc8SSebastian Siewior	depends on m
244da7f033dSHerbert Xu	select CRYPTO_MANAGER
245584fffc8SSebastian Siewior	help
246584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
247584fffc8SSebastian Siewior
248266d0516SHerbert Xuconfig CRYPTO_SIMD
249266d0516SHerbert Xu	tristate
250266d0516SHerbert Xu	select CRYPTO_CRYPTD
251266d0516SHerbert Xu
252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
253596d8750SJussi Kivilinna	tristate
254596d8750SJussi Kivilinna	depends on X86
255065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
256596d8750SJussi Kivilinna
257735d37b5SBaolin Wangconfig CRYPTO_ENGINE
258735d37b5SBaolin Wang	tristate
259735d37b5SBaolin Wang
260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
261584fffc8SSebastian Siewior
262584fffc8SSebastian Siewiorconfig CRYPTO_CCM
263584fffc8SSebastian Siewior	tristate "CCM support"
264584fffc8SSebastian Siewior	select CRYPTO_CTR
265f15f05b0SArd Biesheuvel	select CRYPTO_HASH
266584fffc8SSebastian Siewior	select CRYPTO_AEAD
267584fffc8SSebastian Siewior	help
268584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
269584fffc8SSebastian Siewior
270584fffc8SSebastian Siewiorconfig CRYPTO_GCM
271584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
272584fffc8SSebastian Siewior	select CRYPTO_CTR
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
2749382d97aSHuang Ying	select CRYPTO_GHASH
2759489667dSJussi Kivilinna	select CRYPTO_NULL
276584fffc8SSebastian Siewior	help
277584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
278584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
279584fffc8SSebastian Siewior
28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28171ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28271ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28371ebc4d1SMartin Willi	select CRYPTO_POLY1305
28471ebc4d1SMartin Willi	select CRYPTO_AEAD
28571ebc4d1SMartin Willi	help
28671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28771ebc4d1SMartin Willi
28871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29071ebc4d1SMartin Willi	  IETF protocols.
29171ebc4d1SMartin Willi
292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
293f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
294f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
295f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
296f606a88eSOndrej Mosnacek	help
297f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
298f606a88eSOndrej Mosnacek
299f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
300f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
301f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
302f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
303f606a88eSOndrej Mosnacek	help
304f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
305f606a88eSOndrej Mosnacek
306f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
307f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
308f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
309f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
310f606a88eSOndrej Mosnacek	help
311f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
312f606a88eSOndrej Mosnacek
3131d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3141d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3151d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3161d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3171d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3181d373d4eSOndrej Mosnacek	help
3191d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
3201d373d4eSOndrej Mosnacek
3211d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3221d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3231d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3241d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3251d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3261d373d4eSOndrej Mosnacek	help
3271d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
3281d373d4eSOndrej Mosnacek
3291d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3301d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3311d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3321d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3331d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3341d373d4eSOndrej Mosnacek	help
3351d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
3361d373d4eSOndrej Mosnacek
337*396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
338*396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
339*396be41fSOndrej Mosnacek	select CRYPTO_AEAD
340*396be41fSOndrej Mosnacek	help
341*396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
342*396be41fSOndrej Mosnacek
343*396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
344*396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
345*396be41fSOndrej Mosnacek	select CRYPTO_AEAD
346*396be41fSOndrej Mosnacek	help
347*396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
348*396be41fSOndrej Mosnacek
349584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
350584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
351584fffc8SSebastian Siewior	select CRYPTO_AEAD
352584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
353856e3f40SHerbert Xu	select CRYPTO_NULL
354401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
355584fffc8SSebastian Siewior	help
356584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
357584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
358584fffc8SSebastian Siewior
359a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
360a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
361a10f554fSHerbert Xu	select CRYPTO_AEAD
362a10f554fSHerbert Xu	select CRYPTO_NULL
363401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3643491244cSHerbert Xu	default m
365a10f554fSHerbert Xu	help
366a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
367a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
368a10f554fSHerbert Xu	  algorithm for CBC.
369a10f554fSHerbert Xu
370584fffc8SSebastian Siewiorcomment "Block modes"
371584fffc8SSebastian Siewior
372584fffc8SSebastian Siewiorconfig CRYPTO_CBC
373584fffc8SSebastian Siewior	tristate "CBC support"
374584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
375584fffc8SSebastian Siewior	select CRYPTO_MANAGER
376584fffc8SSebastian Siewior	help
377584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
378584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
379584fffc8SSebastian Siewior
380a7d85e06SJames Bottomleyconfig CRYPTO_CFB
381a7d85e06SJames Bottomley	tristate "CFB support"
382a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
383a7d85e06SJames Bottomley	select CRYPTO_MANAGER
384a7d85e06SJames Bottomley	help
385a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
386a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
387a7d85e06SJames Bottomley
388584fffc8SSebastian Siewiorconfig CRYPTO_CTR
389584fffc8SSebastian Siewior	tristate "CTR support"
390584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
391584fffc8SSebastian Siewior	select CRYPTO_SEQIV
392584fffc8SSebastian Siewior	select CRYPTO_MANAGER
393584fffc8SSebastian Siewior	help
394584fffc8SSebastian Siewior	  CTR: Counter mode
395584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
396584fffc8SSebastian Siewior
397584fffc8SSebastian Siewiorconfig CRYPTO_CTS
398584fffc8SSebastian Siewior	tristate "CTS support"
399584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
400584fffc8SSebastian Siewior	help
401584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
402584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
403584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
404584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
405584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
406584fffc8SSebastian Siewior	  for AES encryption.
407584fffc8SSebastian Siewior
408584fffc8SSebastian Siewiorconfig CRYPTO_ECB
409584fffc8SSebastian Siewior	tristate "ECB support"
410584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
411584fffc8SSebastian Siewior	select CRYPTO_MANAGER
412584fffc8SSebastian Siewior	help
413584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
414584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
415584fffc8SSebastian Siewior	  the input block by block.
416584fffc8SSebastian Siewior
417584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4182470a2b2SJussi Kivilinna	tristate "LRW support"
419584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
420584fffc8SSebastian Siewior	select CRYPTO_MANAGER
421584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
422584fffc8SSebastian Siewior	help
423584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
424584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
425584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
426584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
427584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
428584fffc8SSebastian Siewior
429584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
430584fffc8SSebastian Siewior	tristate "PCBC support"
431584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
432584fffc8SSebastian Siewior	select CRYPTO_MANAGER
433584fffc8SSebastian Siewior	help
434584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
435584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
436584fffc8SSebastian Siewior
437584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4385bcf8e6dSJussi Kivilinna	tristate "XTS support"
439584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
440584fffc8SSebastian Siewior	select CRYPTO_MANAGER
44112cb3a1cSMilan Broz	select CRYPTO_ECB
442584fffc8SSebastian Siewior	help
443584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
444584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
445584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
446584fffc8SSebastian Siewior
4471c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4481c49678eSStephan Mueller	tristate "Key wrapping support"
4491c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
4501c49678eSStephan Mueller	help
4511c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4521c49678eSStephan Mueller	  padding.
4531c49678eSStephan Mueller
454584fffc8SSebastian Siewiorcomment "Hash modes"
455584fffc8SSebastian Siewior
45693b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
45793b5e86aSJussi Kivilinna	tristate "CMAC support"
45893b5e86aSJussi Kivilinna	select CRYPTO_HASH
45993b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
46093b5e86aSJussi Kivilinna	help
46193b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
46293b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
46393b5e86aSJussi Kivilinna
46493b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
46593b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
46693b5e86aSJussi Kivilinna
4671da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4688425165dSHerbert Xu	tristate "HMAC support"
4690796ae06SHerbert Xu	select CRYPTO_HASH
47043518407SHerbert Xu	select CRYPTO_MANAGER
4711da177e4SLinus Torvalds	help
4721da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4731da177e4SLinus Torvalds	  This is required for IPSec.
4741da177e4SLinus Torvalds
475333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
476333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
477333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
478333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
479333b0d7eSKazunori MIYAZAWA	help
480333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
481333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
482333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
483333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
484333b0d7eSKazunori MIYAZAWA
485f1939f7cSShane Wangconfig CRYPTO_VMAC
486f1939f7cSShane Wang	tristate "VMAC support"
487f1939f7cSShane Wang	select CRYPTO_HASH
488f1939f7cSShane Wang	select CRYPTO_MANAGER
489f1939f7cSShane Wang	help
490f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
491f1939f7cSShane Wang	  very high speed on 64-bit architectures.
492f1939f7cSShane Wang
493f1939f7cSShane Wang	  See also:
494f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
495f1939f7cSShane Wang
496584fffc8SSebastian Siewiorcomment "Digest"
497584fffc8SSebastian Siewior
498584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
499584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5005773a3e6SHerbert Xu	select CRYPTO_HASH
5016a0962b2SDarrick J. Wong	select CRC32
5021da177e4SLinus Torvalds	help
503584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
504584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
50569c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5061da177e4SLinus Torvalds
5078cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5088cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5098cb51ba8SAustin Zhang	depends on X86
5108cb51ba8SAustin Zhang	select CRYPTO_HASH
5118cb51ba8SAustin Zhang	help
5128cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5138cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5148cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5158cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5168cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5178cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5188cb51ba8SAustin Zhang
5197cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5206dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
521c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5226dd7a82cSAnton Blanchard	select CRYPTO_HASH
5236dd7a82cSAnton Blanchard	select CRC32
5246dd7a82cSAnton Blanchard	help
5256dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5266dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5276dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5286dd7a82cSAnton Blanchard
5296dd7a82cSAnton Blanchard
530442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
531442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
532442a7c40SDavid S. Miller	depends on SPARC64
533442a7c40SDavid S. Miller	select CRYPTO_HASH
534442a7c40SDavid S. Miller	select CRC32
535442a7c40SDavid S. Miller	help
536442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
537442a7c40SDavid S. Miller	  when available.
538442a7c40SDavid S. Miller
53978c37d19SAlexander Boykoconfig CRYPTO_CRC32
54078c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
54178c37d19SAlexander Boyko	select CRYPTO_HASH
54278c37d19SAlexander Boyko	select CRC32
54378c37d19SAlexander Boyko	help
54478c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
54578c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
54678c37d19SAlexander Boyko
54778c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
54878c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
54978c37d19SAlexander Boyko	depends on X86
55078c37d19SAlexander Boyko	select CRYPTO_HASH
55178c37d19SAlexander Boyko	select CRC32
55278c37d19SAlexander Boyko	help
55378c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
55478c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
55578c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
55678c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
55778c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
55878c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
55978c37d19SAlexander Boyko
5604a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
5614a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
5624a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
5634a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
5644a5dc51eSMarcin Nowakowski	help
5654a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
5664a5dc51eSMarcin Nowakowski	  instructions, when available.
5674a5dc51eSMarcin Nowakowski
5684a5dc51eSMarcin Nowakowski
56968411521SHerbert Xuconfig CRYPTO_CRCT10DIF
57068411521SHerbert Xu	tristate "CRCT10DIF algorithm"
57168411521SHerbert Xu	select CRYPTO_HASH
57268411521SHerbert Xu	help
57368411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
57468411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
57568411521SHerbert Xu	  transforms to be used if they are available.
57668411521SHerbert Xu
57768411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
57868411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
57968411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
58068411521SHerbert Xu	select CRYPTO_HASH
58168411521SHerbert Xu	help
58268411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
58368411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
58468411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
58568411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
58668411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
58768411521SHerbert Xu
588b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
589b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
590b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
591b01df1c1SDaniel Axtens	select CRYPTO_HASH
592b01df1c1SDaniel Axtens	help
593b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
594b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
595b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
596b01df1c1SDaniel Axtens
597146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
598146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
599146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
600146c8688SDaniel Axtens	help
601146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
602146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
603146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
604146c8688SDaniel Axtens
6052cdc6899SHuang Yingconfig CRYPTO_GHASH
6062cdc6899SHuang Ying	tristate "GHASH digest algorithm"
6072cdc6899SHuang Ying	select CRYPTO_GF128MUL
608578c60fbSArnd Bergmann	select CRYPTO_HASH
6092cdc6899SHuang Ying	help
6102cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
6112cdc6899SHuang Ying
612f979e014SMartin Williconfig CRYPTO_POLY1305
613f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
614578c60fbSArnd Bergmann	select CRYPTO_HASH
615f979e014SMartin Willi	help
616f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
617f979e014SMartin Willi
618f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
619f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
620f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
621f979e014SMartin Willi
622c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
623b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
624c70f4abeSMartin Willi	depends on X86 && 64BIT
625c70f4abeSMartin Willi	select CRYPTO_POLY1305
626c70f4abeSMartin Willi	help
627c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
628c70f4abeSMartin Willi
629c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
630c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
631c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
632c70f4abeSMartin Willi	  instructions.
633c70f4abeSMartin Willi
6341da177e4SLinus Torvaldsconfig CRYPTO_MD4
6351da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
636808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6371da177e4SLinus Torvalds	help
6381da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
6391da177e4SLinus Torvalds
6401da177e4SLinus Torvaldsconfig CRYPTO_MD5
6411da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
64214b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6431da177e4SLinus Torvalds	help
6441da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
6451da177e4SLinus Torvalds
646d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
647d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
648d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
649d69e75deSAaro Koskinen	select CRYPTO_MD5
650d69e75deSAaro Koskinen	select CRYPTO_HASH
651d69e75deSAaro Koskinen	help
652d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
653d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
654d69e75deSAaro Koskinen
655e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
656e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
657e8e59953SMarkus Stockhausen	depends on PPC
658e8e59953SMarkus Stockhausen	select CRYPTO_HASH
659e8e59953SMarkus Stockhausen	help
660e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
661e8e59953SMarkus Stockhausen	  in PPC assembler.
662e8e59953SMarkus Stockhausen
663fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
664fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
665fa4dfedcSDavid S. Miller	depends on SPARC64
666fa4dfedcSDavid S. Miller	select CRYPTO_MD5
667fa4dfedcSDavid S. Miller	select CRYPTO_HASH
668fa4dfedcSDavid S. Miller	help
669fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
670fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
671fa4dfedcSDavid S. Miller
672584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
673584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
67419e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
675584fffc8SSebastian Siewior	help
676584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
677584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
678584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
679584fffc8SSebastian Siewior	  of the algorithm.
680584fffc8SSebastian Siewior
68182798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
68282798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
6837c4468bcSHerbert Xu	select CRYPTO_HASH
68482798f90SAdrian-Ken Rueegsegger	help
68582798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
68682798f90SAdrian-Ken Rueegsegger
68782798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
68835ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
68982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
69082798f90SAdrian-Ken Rueegsegger
69182798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6926d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
69382798f90SAdrian-Ken Rueegsegger
69482798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
69582798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
696e5835fbaSHerbert Xu	select CRYPTO_HASH
69782798f90SAdrian-Ken Rueegsegger	help
69882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
69982798f90SAdrian-Ken Rueegsegger
70082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
70182798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
702b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
703b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
70482798f90SAdrian-Ken Rueegsegger
705b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
706b6d44341SAdrian Bunk	  against RIPEMD-160.
707534fe2c1SAdrian-Ken Rueegsegger
708534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7096d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
710534fe2c1SAdrian-Ken Rueegsegger
711534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
712534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
713d8a5e2e9SHerbert Xu	select CRYPTO_HASH
714534fe2c1SAdrian-Ken Rueegsegger	help
715b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
716b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
717b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
718b6d44341SAdrian Bunk	  (than RIPEMD-128).
719534fe2c1SAdrian-Ken Rueegsegger
720534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7216d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
722534fe2c1SAdrian-Ken Rueegsegger
723534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
724534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
7253b8efb4cSHerbert Xu	select CRYPTO_HASH
726534fe2c1SAdrian-Ken Rueegsegger	help
727b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
728b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
729b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
730b6d44341SAdrian Bunk	  (than RIPEMD-160).
731534fe2c1SAdrian-Ken Rueegsegger
73282798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7336d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
73482798f90SAdrian-Ken Rueegsegger
7351da177e4SLinus Torvaldsconfig CRYPTO_SHA1
7361da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
73754ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7381da177e4SLinus Torvalds	help
7391da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
7401da177e4SLinus Torvalds
74166be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
742e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
74366be8951SMathias Krause	depends on X86 && 64BIT
74466be8951SMathias Krause	select CRYPTO_SHA1
74566be8951SMathias Krause	select CRYPTO_HASH
74666be8951SMathias Krause	help
74766be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
74866be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
749e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
750e38b6b7fStim	  when available.
75166be8951SMathias Krause
7528275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
753e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
7548275d1aaSTim Chen	depends on X86 && 64BIT
7558275d1aaSTim Chen	select CRYPTO_SHA256
7568275d1aaSTim Chen	select CRYPTO_HASH
7578275d1aaSTim Chen	help
7588275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
7598275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
7608275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
761e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
762e38b6b7fStim	  Instructions) when available.
7638275d1aaSTim Chen
76487de4579STim Chenconfig CRYPTO_SHA512_SSSE3
76587de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
76687de4579STim Chen	depends on X86 && 64BIT
76787de4579STim Chen	select CRYPTO_SHA512
76887de4579STim Chen	select CRYPTO_HASH
76987de4579STim Chen	help
77087de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
77187de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
77287de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
77387de4579STim Chen	  version 2 (AVX2) instructions, when available.
77487de4579STim Chen
775efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
776efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
777efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
778efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
779efdb6f6eSAaro Koskinen	select CRYPTO_HASH
780efdb6f6eSAaro Koskinen	help
781efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
782efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
783efdb6f6eSAaro Koskinen
7844ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
7854ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
7864ff28d4cSDavid S. Miller	depends on SPARC64
7874ff28d4cSDavid S. Miller	select CRYPTO_SHA1
7884ff28d4cSDavid S. Miller	select CRYPTO_HASH
7894ff28d4cSDavid S. Miller	help
7904ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7914ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7924ff28d4cSDavid S. Miller
793323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
794323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
795323a6bf1SMichael Ellerman	depends on PPC
796323a6bf1SMichael Ellerman	help
797323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
798323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
799323a6bf1SMichael Ellerman
800d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
801d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
802d9850fc5SMarkus Stockhausen	depends on PPC && SPE
803d9850fc5SMarkus Stockhausen	help
804d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
805d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
806d9850fc5SMarkus Stockhausen
8071e65b81aSTim Chenconfig CRYPTO_SHA1_MB
8081e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8091e65b81aSTim Chen	depends on X86 && 64BIT
8101e65b81aSTim Chen	select CRYPTO_SHA1
8111e65b81aSTim Chen	select CRYPTO_HASH
8121e65b81aSTim Chen	select CRYPTO_MCRYPTD
8131e65b81aSTim Chen	help
8141e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8151e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
8161e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
8171e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
8181e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
8191e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
8201e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
8211e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
8221e65b81aSTim Chen
8239be7e244SMegha Deyconfig CRYPTO_SHA256_MB
8249be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8259be7e244SMegha Dey	depends on X86 && 64BIT
8269be7e244SMegha Dey	select CRYPTO_SHA256
8279be7e244SMegha Dey	select CRYPTO_HASH
8289be7e244SMegha Dey	select CRYPTO_MCRYPTD
8299be7e244SMegha Dey	help
8309be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8319be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
8329be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
8339be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
8349be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
8359be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
8369be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
8379be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
8389be7e244SMegha Dey
839026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
840026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
841026bb8aaSMegha Dey        depends on X86 && 64BIT
842026bb8aaSMegha Dey        select CRYPTO_SHA512
843026bb8aaSMegha Dey        select CRYPTO_HASH
844026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
845026bb8aaSMegha Dey        help
846026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
847026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
848026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
849026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
850026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
851026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
852026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
853026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
854026bb8aaSMegha Dey
8551da177e4SLinus Torvaldsconfig CRYPTO_SHA256
856cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
85750e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8581da177e4SLinus Torvalds	help
8591da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
8601da177e4SLinus Torvalds
8611da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
8621da177e4SLinus Torvalds	  security against collision attacks.
8631da177e4SLinus Torvalds
864cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
865cd12fb90SJonathan Lynch	  of security against collision attacks.
866cd12fb90SJonathan Lynch
8672ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
8682ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
8692ecc1e95SMarkus Stockhausen	depends on PPC && SPE
8702ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
8712ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8722ecc1e95SMarkus Stockhausen	help
8732ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8742ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
8752ecc1e95SMarkus Stockhausen
876efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
877efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
878efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
879efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
880efdb6f6eSAaro Koskinen	select CRYPTO_HASH
881efdb6f6eSAaro Koskinen	help
882efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
883efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
884efdb6f6eSAaro Koskinen
88586c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
88686c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
88786c93b24SDavid S. Miller	depends on SPARC64
88886c93b24SDavid S. Miller	select CRYPTO_SHA256
88986c93b24SDavid S. Miller	select CRYPTO_HASH
89086c93b24SDavid S. Miller	help
89186c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
89286c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
89386c93b24SDavid S. Miller
8941da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8951da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
896bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8971da177e4SLinus Torvalds	help
8981da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8991da177e4SLinus Torvalds
9001da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9011da177e4SLinus Torvalds	  security against collision attacks.
9021da177e4SLinus Torvalds
9031da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9041da177e4SLinus Torvalds	  of security against collision attacks.
9051da177e4SLinus Torvalds
906efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
907efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
908efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
909efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
910efdb6f6eSAaro Koskinen	select CRYPTO_HASH
911efdb6f6eSAaro Koskinen	help
912efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
913efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
914efdb6f6eSAaro Koskinen
915775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
916775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
917775e0c69SDavid S. Miller	depends on SPARC64
918775e0c69SDavid S. Miller	select CRYPTO_SHA512
919775e0c69SDavid S. Miller	select CRYPTO_HASH
920775e0c69SDavid S. Miller	help
921775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
922775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
923775e0c69SDavid S. Miller
92453964b9eSJeff Garzikconfig CRYPTO_SHA3
92553964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
92653964b9eSJeff Garzik	select CRYPTO_HASH
92753964b9eSJeff Garzik	help
92853964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
92953964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
93053964b9eSJeff Garzik
93153964b9eSJeff Garzik	  References:
93253964b9eSJeff Garzik	  http://keccak.noekeon.org/
93353964b9eSJeff Garzik
9344f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9354f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9364f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9374f0fc160SGilad Ben-Yossef	help
9384f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9394f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9404f0fc160SGilad Ben-Yossef
9414f0fc160SGilad Ben-Yossef	  References:
9424f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9434f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9444f0fc160SGilad Ben-Yossef
9451da177e4SLinus Torvaldsconfig CRYPTO_TGR192
9461da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
947f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9481da177e4SLinus Torvalds	help
9491da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
9501da177e4SLinus Torvalds
9511da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
9521da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
9531da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
9541da177e4SLinus Torvalds
9551da177e4SLinus Torvalds	  See also:
9561da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
9571da177e4SLinus Torvalds
958584fffc8SSebastian Siewiorconfig CRYPTO_WP512
959584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
9604946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9611da177e4SLinus Torvalds	help
962584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
9631da177e4SLinus Torvalds
964584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
965584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
9661da177e4SLinus Torvalds
9671da177e4SLinus Torvalds	  See also:
9686d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
9691da177e4SLinus Torvalds
9700e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
9710e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
9728af00860SRichard Weinberger	depends on X86 && 64BIT
9730e1227d3SHuang Ying	select CRYPTO_CRYPTD
9740e1227d3SHuang Ying	help
9750e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
9760e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
9770e1227d3SHuang Ying
978584fffc8SSebastian Siewiorcomment "Ciphers"
9791da177e4SLinus Torvalds
9801da177e4SLinus Torvaldsconfig CRYPTO_AES
9811da177e4SLinus Torvalds	tristate "AES cipher algorithms"
982cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9831da177e4SLinus Torvalds	help
9841da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9851da177e4SLinus Torvalds	  algorithm.
9861da177e4SLinus Torvalds
9871da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9881da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9891da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9901da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9911da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9921da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9931da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9941da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9951da177e4SLinus Torvalds
9961da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9971da177e4SLinus Torvalds
9981da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
9991da177e4SLinus Torvalds
1000b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1001b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1002b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1003b5e0b032SArd Biesheuvel	help
1004b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1005b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1006b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1007b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1008b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1009b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1010b5e0b032SArd Biesheuvel
1011b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1012b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1013b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1014b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
1015b5e0b032SArd Biesheuvel	  block.
1016b5e0b032SArd Biesheuvel
10171da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10181da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1019cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1020cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10215157dea8SSebastian Siewior	select CRYPTO_AES
10221da177e4SLinus Torvalds	help
10231da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10241da177e4SLinus Torvalds	  algorithm.
10251da177e4SLinus Torvalds
10261da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10271da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10281da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10291da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10301da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10311da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10321da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10331da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10341da177e4SLinus Torvalds
10351da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10361da177e4SLinus Torvalds
10371da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10381da177e4SLinus Torvalds
1039a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1040a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1041cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1042cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
104381190b32SSebastian Siewior	select CRYPTO_AES
1044a2a892a2SAndreas Steinmetz	help
1045a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1046a2a892a2SAndreas Steinmetz	  algorithm.
1047a2a892a2SAndreas Steinmetz
1048a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1049a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1050a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1051a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1052a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1053a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1054a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1055a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1056a2a892a2SAndreas Steinmetz
1057a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1058a2a892a2SAndreas Steinmetz
1059a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1060a2a892a2SAndreas Steinmetz
106154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
106254b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
10638af00860SRichard Weinberger	depends on X86
106485671860SHerbert Xu	select CRYPTO_AEAD
10650d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
10660d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
106754b6a1bdSHuang Ying	select CRYPTO_ALGAPI
106885671860SHerbert Xu	select CRYPTO_BLKCIPHER
10697643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
107085671860SHerbert Xu	select CRYPTO_SIMD
107154b6a1bdSHuang Ying	help
107254b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
107354b6a1bdSHuang Ying
107454b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
107554b6a1bdSHuang Ying	  algorithm.
107654b6a1bdSHuang Ying
107754b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
107854b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
107954b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
108054b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
108154b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
108254b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
108354b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
108454b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
108554b6a1bdSHuang Ying
108654b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
108754b6a1bdSHuang Ying
108854b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
108954b6a1bdSHuang Ying
10900d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
10910d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
10920d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
10930d258efbSMathias Krause	  acceleration for CTR.
10942cf4ac8bSHuang Ying
10959bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
10969bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
10979bf4852dSDavid S. Miller	depends on SPARC64
10989bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
10999bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11009bf4852dSDavid S. Miller	help
11019bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11029bf4852dSDavid S. Miller
11039bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11049bf4852dSDavid S. Miller	  algorithm.
11059bf4852dSDavid S. Miller
11069bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11079bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11089bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11099bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11109bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11119bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11129bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11139bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11149bf4852dSDavid S. Miller
11159bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11169bf4852dSDavid S. Miller
11179bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11189bf4852dSDavid S. Miller
11199bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11209bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11219bf4852dSDavid S. Miller	  ECB and CBC.
11229bf4852dSDavid S. Miller
1123504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1124504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1125504c6143SMarkus Stockhausen	depends on PPC && SPE
1126504c6143SMarkus Stockhausen	help
1127504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1128504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1129504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1130504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1131504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1132504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1133504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1134504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1135504c6143SMarkus Stockhausen
11361da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11371da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1138cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11391da177e4SLinus Torvalds	help
11401da177e4SLinus Torvalds	  Anubis cipher algorithm.
11411da177e4SLinus Torvalds
11421da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11431da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11441da177e4SLinus Torvalds	  in the NESSIE competition.
11451da177e4SLinus Torvalds
11461da177e4SLinus Torvalds	  See also:
11476d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11486d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11491da177e4SLinus Torvalds
1150584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1151584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1152b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1153e2ee95b8SHye-Shik Chang	help
1154584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1155e2ee95b8SHye-Shik Chang
1156584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1157584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1158584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1159584fffc8SSebastian Siewior	  weakness of the algorithm.
1160584fffc8SSebastian Siewior
1161584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1162584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1163584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
116452ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1165584fffc8SSebastian Siewior	help
1166584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1167584fffc8SSebastian Siewior
1168584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1169584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1170584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1171e2ee95b8SHye-Shik Chang
1172e2ee95b8SHye-Shik Chang	  See also:
1173584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1174584fffc8SSebastian Siewior
117552ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
117652ba867cSJussi Kivilinna	tristate
117752ba867cSJussi Kivilinna	help
117852ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
117952ba867cSJussi Kivilinna	  generic c and the assembler implementations.
118052ba867cSJussi Kivilinna
118152ba867cSJussi Kivilinna	  See also:
118252ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
118352ba867cSJussi Kivilinna
118464b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
118564b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1186f21a7c19SAl Viro	depends on X86 && 64BIT
1187c1679171SEric Biggers	select CRYPTO_BLKCIPHER
118864b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
118964b94ceaSJussi Kivilinna	help
119064b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
119164b94ceaSJussi Kivilinna
119264b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
119364b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
119464b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
119564b94ceaSJussi Kivilinna
119664b94ceaSJussi Kivilinna	  See also:
119764b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
119864b94ceaSJussi Kivilinna
1199584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1200584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1201584fffc8SSebastian Siewior	depends on CRYPTO
1202584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1203584fffc8SSebastian Siewior	help
1204584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1205584fffc8SSebastian Siewior
1206584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1207584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1208584fffc8SSebastian Siewior
1209584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1210584fffc8SSebastian Siewior
1211584fffc8SSebastian Siewior	  See also:
1212584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1213584fffc8SSebastian Siewior
12140b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12150b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1216f21a7c19SAl Viro	depends on X86 && 64BIT
12170b95ec56SJussi Kivilinna	depends on CRYPTO
12181af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1219964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12200b95ec56SJussi Kivilinna	help
12210b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12220b95ec56SJussi Kivilinna
12230b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12240b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12250b95ec56SJussi Kivilinna
12260b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12270b95ec56SJussi Kivilinna
12280b95ec56SJussi Kivilinna	  See also:
12290b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12300b95ec56SJussi Kivilinna
1231d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1232d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1233d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1234d9b1d2e7SJussi Kivilinna	depends on CRYPTO
123544893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1236d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
123744893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
123844893bc2SEric Biggers	select CRYPTO_SIMD
1239d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1240d9b1d2e7SJussi Kivilinna	help
1241d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1242d9b1d2e7SJussi Kivilinna
1243d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1244d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1245d9b1d2e7SJussi Kivilinna
1246d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1247d9b1d2e7SJussi Kivilinna
1248d9b1d2e7SJussi Kivilinna	  See also:
1249d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1250d9b1d2e7SJussi Kivilinna
1251f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1252f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1253f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1254f3f935a7SJussi Kivilinna	depends on CRYPTO
1255f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1256f3f935a7SJussi Kivilinna	help
1257f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1258f3f935a7SJussi Kivilinna
1259f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1260f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1261f3f935a7SJussi Kivilinna
1262f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1263f3f935a7SJussi Kivilinna
1264f3f935a7SJussi Kivilinna	  See also:
1265f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1266f3f935a7SJussi Kivilinna
126781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
126881658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
126981658ad0SDavid S. Miller	depends on SPARC64
127081658ad0SDavid S. Miller	depends on CRYPTO
127181658ad0SDavid S. Miller	select CRYPTO_ALGAPI
127281658ad0SDavid S. Miller	help
127381658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
127481658ad0SDavid S. Miller
127581658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
127681658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
127781658ad0SDavid S. Miller
127881658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
127981658ad0SDavid S. Miller
128081658ad0SDavid S. Miller	  See also:
128181658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
128281658ad0SDavid S. Miller
1283044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1284044ab525SJussi Kivilinna	tristate
1285044ab525SJussi Kivilinna	help
1286044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1287044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1288044ab525SJussi Kivilinna
1289584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1290584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1291584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1292044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1293584fffc8SSebastian Siewior	help
1294584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1295584fffc8SSebastian Siewior	  described in RFC2144.
1296584fffc8SSebastian Siewior
12974d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12984d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12994d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13001e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13014d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13021e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13031e63183aSEric Biggers	select CRYPTO_SIMD
13044d6d6a2cSJohannes Goetzfried	help
13054d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13064d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13074d6d6a2cSJohannes Goetzfried
13084d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13094d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13104d6d6a2cSJohannes Goetzfried
1311584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1312584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1313584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1314044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1315584fffc8SSebastian Siewior	help
1316584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1317584fffc8SSebastian Siewior	  described in RFC2612.
1318584fffc8SSebastian Siewior
13194ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13204ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13214ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13224bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13234ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13244bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13254bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13264bd96924SEric Biggers	select CRYPTO_SIMD
13274ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13284ea1277dSJohannes Goetzfried	help
13294ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13304ea1277dSJohannes Goetzfried	  described in RFC2612.
13314ea1277dSJohannes Goetzfried
13324ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13334ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13344ea1277dSJohannes Goetzfried
1335584fffc8SSebastian Siewiorconfig CRYPTO_DES
1336584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1337584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1338584fffc8SSebastian Siewior	help
1339584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1340584fffc8SSebastian Siewior
1341c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1342c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
134397da37b3SDave Jones	depends on SPARC64
1344c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1345c5aac2dfSDavid S. Miller	select CRYPTO_DES
1346c5aac2dfSDavid S. Miller	help
1347c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1348c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1349c5aac2dfSDavid S. Miller
13506574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13516574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13526574e6c6SJussi Kivilinna	depends on X86 && 64BIT
135309c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
13546574e6c6SJussi Kivilinna	select CRYPTO_DES
13556574e6c6SJussi Kivilinna	help
13566574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13576574e6c6SJussi Kivilinna
13586574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13596574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13606574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13616574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13626574e6c6SJussi Kivilinna
1363584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1364584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1365584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1366584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1367584fffc8SSebastian Siewior	help
1368584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1369584fffc8SSebastian Siewior
1370584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1371584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1372584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1373584fffc8SSebastian Siewior	help
1374584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1375584fffc8SSebastian Siewior
1376584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1377584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1378584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1379584fffc8SSebastian Siewior
1380584fffc8SSebastian Siewior	  See also:
13816d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1382e2ee95b8SHye-Shik Chang
13832407d608STan Swee Hengconfig CRYPTO_SALSA20
13843b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
13852407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13862407d608STan Swee Heng	help
13872407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13882407d608STan Swee Heng
13892407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13902407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13912407d608STan Swee Heng
13922407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13932407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13941da177e4SLinus Torvalds
1395974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13963b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1397974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1398974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1399c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
1400974e4b75STan Swee Heng	help
1401974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1402974e4b75STan Swee Heng
1403974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1404974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1405974e4b75STan Swee Heng
1406974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1407974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1408974e4b75STan Swee Heng
14099a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
14103b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
14119a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
14129a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
1413c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
14149a7dafbbSTan Swee Heng	help
14159a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
14169a7dafbbSTan Swee Heng
14179a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14189a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14199a7dafbbSTan Swee Heng
14209a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14219a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14229a7dafbbSTan Swee Heng
1423c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1424c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1425c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1426c08d0e64SMartin Willi	help
1427c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1428c08d0e64SMartin Willi
1429c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1430c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1431c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1432c08d0e64SMartin Willi
1433c08d0e64SMartin Willi	  See also:
1434c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1435c08d0e64SMartin Willi
1436c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14373d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1438c9320b6dSMartin Willi	depends on X86 && 64BIT
1439c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1440c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1441c9320b6dSMartin Willi	help
1442c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1443c9320b6dSMartin Willi
1444c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1445c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1446c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1447c9320b6dSMartin Willi
1448c9320b6dSMartin Willi	  See also:
1449c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1450c9320b6dSMartin Willi
1451584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1452584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1453584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1454584fffc8SSebastian Siewior	help
1455584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1456584fffc8SSebastian Siewior
1457584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1458584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1459584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1460584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1461584fffc8SSebastian Siewior
1462584fffc8SSebastian Siewior	  See also:
1463584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1464584fffc8SSebastian Siewior
1465584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1466584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1467584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1468584fffc8SSebastian Siewior	help
1469584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1470584fffc8SSebastian Siewior
1471584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1472584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1473584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1474584fffc8SSebastian Siewior
1475584fffc8SSebastian Siewior	  See also:
1476584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1477584fffc8SSebastian Siewior
1478937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1479937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1480937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1481e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1482596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1483937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1484e0f409dcSEric Biggers	select CRYPTO_SIMD
1485937c30d7SJussi Kivilinna	help
1486937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1487937c30d7SJussi Kivilinna
1488937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1489937c30d7SJussi Kivilinna	  of 8 bits.
1490937c30d7SJussi Kivilinna
14911e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1492937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1493937c30d7SJussi Kivilinna
1494937c30d7SJussi Kivilinna	  See also:
1495937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1496937c30d7SJussi Kivilinna
1497251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1498251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1499251496dbSJussi Kivilinna	depends on X86 && !64BIT
1500e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1501596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1502251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1503e0f409dcSEric Biggers	select CRYPTO_SIMD
1504251496dbSJussi Kivilinna	help
1505251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1506251496dbSJussi Kivilinna
1507251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1508251496dbSJussi Kivilinna	  of 8 bits.
1509251496dbSJussi Kivilinna
1510251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1511251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1512251496dbSJussi Kivilinna
1513251496dbSJussi Kivilinna	  See also:
1514251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1515251496dbSJussi Kivilinna
15167efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15177efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15187efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1519e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15201d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15217efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1522e16bf974SEric Biggers	select CRYPTO_SIMD
15237efe4076SJohannes Goetzfried	select CRYPTO_XTS
15247efe4076SJohannes Goetzfried	help
15257efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15267efe4076SJohannes Goetzfried
15277efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15287efe4076SJohannes Goetzfried	  of 8 bits.
15297efe4076SJohannes Goetzfried
15307efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15317efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15327efe4076SJohannes Goetzfried
15337efe4076SJohannes Goetzfried	  See also:
15347efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15357efe4076SJohannes Goetzfried
153656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
153756d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
153856d76c96SJussi Kivilinna	depends on X86 && 64BIT
153956d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
154056d76c96SJussi Kivilinna	help
154156d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
154256d76c96SJussi Kivilinna
154356d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
154456d76c96SJussi Kivilinna	  of 8 bits.
154556d76c96SJussi Kivilinna
154656d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
154756d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
154856d76c96SJussi Kivilinna
154956d76c96SJussi Kivilinna	  See also:
155056d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
155156d76c96SJussi Kivilinna
1552747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1553747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1554747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1555747c8ce4SGilad Ben-Yossef	help
1556747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1557747c8ce4SGilad Ben-Yossef
1558747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1559747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1560747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1561747c8ce4SGilad Ben-Yossef
1562747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1563747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1564747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1565747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1566747c8ce4SGilad Ben-Yossef
1567747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1568747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1569747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1570747c8ce4SGilad Ben-Yossef
1571747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1572747c8ce4SGilad Ben-Yossef
1573747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1574747c8ce4SGilad Ben-Yossef
1575747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1576747c8ce4SGilad Ben-Yossef
1577da7a0ab5SEric Biggersconfig CRYPTO_SPECK
1578da7a0ab5SEric Biggers	tristate "Speck cipher algorithm"
1579da7a0ab5SEric Biggers	select CRYPTO_ALGAPI
1580da7a0ab5SEric Biggers	help
1581da7a0ab5SEric Biggers	  Speck is a lightweight block cipher that is tuned for optimal
1582da7a0ab5SEric Biggers	  performance in software (rather than hardware).
1583da7a0ab5SEric Biggers
1584da7a0ab5SEric Biggers	  Speck may not be as secure as AES, and should only be used on systems
1585da7a0ab5SEric Biggers	  where AES is not fast enough.
1586da7a0ab5SEric Biggers
1587da7a0ab5SEric Biggers	  See also: <https://eprint.iacr.org/2013/404.pdf>
1588da7a0ab5SEric Biggers
1589da7a0ab5SEric Biggers	  If unsure, say N.
1590da7a0ab5SEric Biggers
1591584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1592584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1593584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1594584fffc8SSebastian Siewior	help
1595584fffc8SSebastian Siewior	  TEA cipher algorithm.
1596584fffc8SSebastian Siewior
1597584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1598584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1599584fffc8SSebastian Siewior	  little memory.
1600584fffc8SSebastian Siewior
1601584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1602584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1603584fffc8SSebastian Siewior	  in the TEA algorithm.
1604584fffc8SSebastian Siewior
1605584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1606584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1607584fffc8SSebastian Siewior
1608584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1609584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1610584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1611584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1612584fffc8SSebastian Siewior	help
1613584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1614584fffc8SSebastian Siewior
1615584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1616584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1617584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1618584fffc8SSebastian Siewior	  bits.
1619584fffc8SSebastian Siewior
1620584fffc8SSebastian Siewior	  See also:
1621584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1622584fffc8SSebastian Siewior
1623584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1624584fffc8SSebastian Siewior	tristate
1625584fffc8SSebastian Siewior	help
1626584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1627584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1628584fffc8SSebastian Siewior
1629584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1630584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1631584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1632584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1633584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1634584fffc8SSebastian Siewior	help
1635584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1636584fffc8SSebastian Siewior
1637584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1639584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1640584fffc8SSebastian Siewior	  bits.
1641584fffc8SSebastian Siewior
1642584fffc8SSebastian Siewior	  See also:
1643584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1644584fffc8SSebastian Siewior
1645584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1646584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1647584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1648584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1649584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1650584fffc8SSebastian Siewior	help
1651584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1652584fffc8SSebastian Siewior
1653584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1654584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1655584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1656584fffc8SSebastian Siewior	  bits.
1657584fffc8SSebastian Siewior
1658584fffc8SSebastian Siewior	  See also:
1659584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1660584fffc8SSebastian Siewior
16618280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16628280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1663f21a7c19SAl Viro	depends on X86 && 64BIT
166437992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16658280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16668280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1667414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16688280daadSJussi Kivilinna	help
16698280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16708280daadSJussi Kivilinna
16718280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16728280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16738280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16748280daadSJussi Kivilinna	  bits.
16758280daadSJussi Kivilinna
16768280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16778280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16788280daadSJussi Kivilinna
16798280daadSJussi Kivilinna	  See also:
16808280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16818280daadSJussi Kivilinna
1682107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1683107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1684107778b5SJohannes Goetzfried	depends on X86 && 64BIT
16850e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1686a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16870e6ab46dSEric Biggers	select CRYPTO_SIMD
1688107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1689107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1690107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1691107778b5SJohannes Goetzfried	help
1692107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1693107778b5SJohannes Goetzfried
1694107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1695107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1696107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1697107778b5SJohannes Goetzfried	  bits.
1698107778b5SJohannes Goetzfried
1699107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1700107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1701107778b5SJohannes Goetzfried
1702107778b5SJohannes Goetzfried	  See also:
1703107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1704107778b5SJohannes Goetzfried
1705584fffc8SSebastian Siewiorcomment "Compression"
1706584fffc8SSebastian Siewior
17071da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17081da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1709cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1710f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17111da177e4SLinus Torvalds	select ZLIB_INFLATE
17121da177e4SLinus Torvalds	select ZLIB_DEFLATE
17131da177e4SLinus Torvalds	help
17141da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17151da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17161da177e4SLinus Torvalds
17171da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17181da177e4SLinus Torvalds
17190b77abb3SZoltan Sogorconfig CRYPTO_LZO
17200b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17210b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1722ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17230b77abb3SZoltan Sogor	select LZO_COMPRESS
17240b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17250b77abb3SZoltan Sogor	help
17260b77abb3SZoltan Sogor	  This is the LZO algorithm.
17270b77abb3SZoltan Sogor
172835a1fc18SSeth Jenningsconfig CRYPTO_842
172935a1fc18SSeth Jennings	tristate "842 compression algorithm"
17302062c5b6SDan Streetman	select CRYPTO_ALGAPI
17316a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17322062c5b6SDan Streetman	select 842_COMPRESS
17332062c5b6SDan Streetman	select 842_DECOMPRESS
173435a1fc18SSeth Jennings	help
173535a1fc18SSeth Jennings	  This is the 842 algorithm.
173635a1fc18SSeth Jennings
17370ea8530dSChanho Minconfig CRYPTO_LZ4
17380ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17390ea8530dSChanho Min	select CRYPTO_ALGAPI
17408cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17410ea8530dSChanho Min	select LZ4_COMPRESS
17420ea8530dSChanho Min	select LZ4_DECOMPRESS
17430ea8530dSChanho Min	help
17440ea8530dSChanho Min	  This is the LZ4 algorithm.
17450ea8530dSChanho Min
17460ea8530dSChanho Minconfig CRYPTO_LZ4HC
17470ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17480ea8530dSChanho Min	select CRYPTO_ALGAPI
174991d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17500ea8530dSChanho Min	select LZ4HC_COMPRESS
17510ea8530dSChanho Min	select LZ4_DECOMPRESS
17520ea8530dSChanho Min	help
17530ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17540ea8530dSChanho Min
1755d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1756d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1757d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1758d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1759d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1760d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1761d28fc3dbSNick Terrell	help
1762d28fc3dbSNick Terrell	  This is the zstd algorithm.
1763d28fc3dbSNick Terrell
176417f0f4a4SNeil Hormancomment "Random Number Generation"
176517f0f4a4SNeil Horman
176617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
176717f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
176817f0f4a4SNeil Horman	select CRYPTO_AES
176917f0f4a4SNeil Horman	select CRYPTO_RNG
177017f0f4a4SNeil Horman	help
177117f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
177217f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17737dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17747dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
177517f0f4a4SNeil Horman
1776f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1777419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1778419090c6SStephan Mueller	help
1779419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1780419090c6SStephan Mueller	  more of the DRBG types must be selected.
1781419090c6SStephan Mueller
1782f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1783419090c6SStephan Mueller
1784419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1785401e4238SHerbert Xu	bool
1786419090c6SStephan Mueller	default y
1787419090c6SStephan Mueller	select CRYPTO_HMAC
1788826775bbSHerbert Xu	select CRYPTO_SHA256
1789419090c6SStephan Mueller
1790419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1791419090c6SStephan Mueller	bool "Enable Hash DRBG"
1792826775bbSHerbert Xu	select CRYPTO_SHA256
1793419090c6SStephan Mueller	help
1794419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1795419090c6SStephan Mueller
1796419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1797419090c6SStephan Mueller	bool "Enable CTR DRBG"
1798419090c6SStephan Mueller	select CRYPTO_AES
179935591285SStephan Mueller	depends on CRYPTO_CTR
1800419090c6SStephan Mueller	help
1801419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1802419090c6SStephan Mueller
1803f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1804f2c89a10SHerbert Xu	tristate
1805401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1806f2c89a10SHerbert Xu	select CRYPTO_RNG
1807bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1808f2c89a10SHerbert Xu
1809f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1810419090c6SStephan Mueller
1811bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1812bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18132f313e02SArnd Bergmann	select CRYPTO_RNG
1814bb5530e4SStephan Mueller	help
1815bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1816bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1817bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1818bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1819bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1820bb5530e4SStephan Mueller
182103c8efc1SHerbert Xuconfig CRYPTO_USER_API
182203c8efc1SHerbert Xu	tristate
182303c8efc1SHerbert Xu
1824fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1825fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18267451708fSHerbert Xu	depends on NET
1827fe869cdbSHerbert Xu	select CRYPTO_HASH
1828fe869cdbSHerbert Xu	select CRYPTO_USER_API
1829fe869cdbSHerbert Xu	help
1830fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1831fe869cdbSHerbert Xu	  algorithms.
1832fe869cdbSHerbert Xu
18338ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18348ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18357451708fSHerbert Xu	depends on NET
18368ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18378ff59090SHerbert Xu	select CRYPTO_USER_API
18388ff59090SHerbert Xu	help
18398ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18408ff59090SHerbert Xu	  key cipher algorithms.
18418ff59090SHerbert Xu
18422f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18432f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18442f375538SStephan Mueller	depends on NET
18452f375538SStephan Mueller	select CRYPTO_RNG
18462f375538SStephan Mueller	select CRYPTO_USER_API
18472f375538SStephan Mueller	help
18482f375538SStephan Mueller	  This option enables the user-spaces interface for random
18492f375538SStephan Mueller	  number generator algorithms.
18502f375538SStephan Mueller
1851b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1852b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1853b64a2d95SHerbert Xu	depends on NET
1854b64a2d95SHerbert Xu	select CRYPTO_AEAD
185572548b09SStephan Mueller	select CRYPTO_BLKCIPHER
185672548b09SStephan Mueller	select CRYPTO_NULL
1857b64a2d95SHerbert Xu	select CRYPTO_USER_API
1858b64a2d95SHerbert Xu	help
1859b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1860b64a2d95SHerbert Xu	  cipher algorithms.
1861b64a2d95SHerbert Xu
1862ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1863ee08997fSDmitry Kasatkin	bool
1864ee08997fSDmitry Kasatkin
18651da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1866964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1867cfc411e7SDavid Howellssource certs/Kconfig
18681da177e4SLinus Torvalds
1869cce9e06dSHerbert Xuendif	# if CRYPTO
1870