xref: /linux/crypto/Kconfig (revision 34f7f6c3011276313383099156be287ac745bcea)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER
565cde0af2SHerbert Xu	tristate
57b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1088cd579d2SBart Van Assche	select SGL_ALLOC
1092ebda74fSGiovanni Cabiddu
1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1112ebda74fSGiovanni Cabiddu	tristate
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1142ebda74fSGiovanni Cabiddu
1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1162b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1176a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1182b8c19dbSHerbert Xu	help
1192b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1202b8c19dbSHerbert Xu	  cbc(aes).
1212b8c19dbSHerbert Xu
1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1236a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1246a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1256a0fcbb4SHerbert Xu	select CRYPTO_HASH2
126b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
127946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1284e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1306a0fcbb4SHerbert Xu
131a38f7907SSteffen Klassertconfig CRYPTO_USER
132a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1335db017aaSHerbert Xu	depends on NET
134a38f7907SSteffen Klassert	select CRYPTO_MANAGER
135a38f7907SSteffen Klassert	help
136d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
137a38f7907SSteffen Klassert	  cbc(aes).
138a38f7907SSteffen Klassert
139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
140326a6346SHerbert Xu	bool "Disable run-time self tests"
14100ca28a5SHerbert Xu	default y
1420b767f96SAlexander Shishkin	help
143326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
144326a6346SHerbert Xu	  algorithm registration.
1450b767f96SAlexander Shishkin
1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1475b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1486569e309SJason A. Donenfeld	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
1495b2706a4SEric Biggers	help
1505b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1515b2706a4SEric Biggers	  including randomized fuzz tests.
1525b2706a4SEric Biggers
1535b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1545b2706a4SEric Biggers	  longer to run than the normal self tests.
1555b2706a4SEric Biggers
156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
157e590e132SEric Biggers	tristate
158584fffc8SSebastian Siewior
159584fffc8SSebastian Siewiorconfig CRYPTO_NULL
160584fffc8SSebastian Siewior	tristate "Null algorithms"
161149a3971SHerbert Xu	select CRYPTO_NULL2
162584fffc8SSebastian Siewior	help
163584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
164584fffc8SSebastian Siewior
165149a3971SHerbert Xuconfig CRYPTO_NULL2
166dd43c4e9SHerbert Xu	tristate
167149a3971SHerbert Xu	select CRYPTO_ALGAPI2
168b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
169149a3971SHerbert Xu	select CRYPTO_HASH2
170149a3971SHerbert Xu
1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1723b4afaf2SKees Cook	tristate "Parallel crypto engine"
1733b4afaf2SKees Cook	depends on SMP
1745068c7a8SSteffen Klassert	select PADATA
1755068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1765068c7a8SSteffen Klassert	select CRYPTO_AEAD
1775068c7a8SSteffen Klassert	help
1785068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1795068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1805068c7a8SSteffen Klassert
181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
182584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
183b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
184b8a28251SLoc Ho	select CRYPTO_HASH
185584fffc8SSebastian Siewior	select CRYPTO_MANAGER
186584fffc8SSebastian Siewior	help
187584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
188584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
189584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
190584fffc8SSebastian Siewior
191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
192584fffc8SSebastian Siewior	tristate "Authenc support"
193584fffc8SSebastian Siewior	select CRYPTO_AEAD
194b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
195584fffc8SSebastian Siewior	select CRYPTO_MANAGER
196584fffc8SSebastian Siewior	select CRYPTO_HASH
197e94c6a7aSHerbert Xu	select CRYPTO_NULL
198584fffc8SSebastian Siewior	help
199584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
200584fffc8SSebastian Siewior	  This is required for IPSec.
201584fffc8SSebastian Siewior
202584fffc8SSebastian Siewiorconfig CRYPTO_TEST
203584fffc8SSebastian Siewior	tristate "Testing module"
20400ea27f1SArd Biesheuvel	depends on m || EXPERT
205da7f033dSHerbert Xu	select CRYPTO_MANAGER
206584fffc8SSebastian Siewior	help
207584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
208584fffc8SSebastian Siewior
209266d0516SHerbert Xuconfig CRYPTO_SIMD
210266d0516SHerbert Xu	tristate
211266d0516SHerbert Xu	select CRYPTO_CRYPTD
212266d0516SHerbert Xu
213735d37b5SBaolin Wangconfig CRYPTO_ENGINE
214735d37b5SBaolin Wang	tristate
215735d37b5SBaolin Wang
2163d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2173d6228a5SVitaly Chikunov
2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2193d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2203d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2213d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2223d6228a5SVitaly Chikunov	select MPILIB
2233d6228a5SVitaly Chikunov	select ASN1
2243d6228a5SVitaly Chikunov	help
2253d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2263d6228a5SVitaly Chikunov
2273d6228a5SVitaly Chikunovconfig CRYPTO_DH
2283d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2293d6228a5SVitaly Chikunov	select CRYPTO_KPP
2303d6228a5SVitaly Chikunov	select MPILIB
2313d6228a5SVitaly Chikunov	help
2323d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2333d6228a5SVitaly Chikunov
2347dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS
2357dce5981SNicolai Stange	bool "Support for RFC 7919 FFDHE group parameters"
2367dce5981SNicolai Stange	depends on CRYPTO_DH
2371e207964SNicolai Stange	select CRYPTO_RNG_DEFAULT
2387dce5981SNicolai Stange	help
2397dce5981SNicolai Stange	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
2407dce5981SNicolai Stange
2414a2289daSVitaly Chikunovconfig CRYPTO_ECC
2424a2289daSVitaly Chikunov	tristate
24338aa192aSArnd Bergmann	select CRYPTO_RNG_DEFAULT
2444a2289daSVitaly Chikunov
2453d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2463d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2474a2289daSVitaly Chikunov	select CRYPTO_ECC
2483d6228a5SVitaly Chikunov	select CRYPTO_KPP
2493d6228a5SVitaly Chikunov	help
2503d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2513d6228a5SVitaly Chikunov
2524e660291SStefan Bergerconfig CRYPTO_ECDSA
2534e660291SStefan Berger	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
2544e660291SStefan Berger	select CRYPTO_ECC
2554e660291SStefan Berger	select CRYPTO_AKCIPHER
2564e660291SStefan Berger	select ASN1
2574e660291SStefan Berger	help
2584e660291SStefan Berger	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
2594e660291SStefan Berger	  is A NIST cryptographic standard algorithm. Only signature verification
2604e660291SStefan Berger	  is implemented.
2614e660291SStefan Berger
2620d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2630d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2640d7a7864SVitaly Chikunov	select CRYPTO_ECC
2650d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2660d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2671036633eSVitaly Chikunov	select OID_REGISTRY
2681036633eSVitaly Chikunov	select ASN1
2690d7a7864SVitaly Chikunov	help
2700d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2710d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2720d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2730d7a7864SVitaly Chikunov	  is implemented.
2740d7a7864SVitaly Chikunov
275ea7ecb66STianjia Zhangconfig CRYPTO_SM2
276ea7ecb66STianjia Zhang	tristate "SM2 algorithm"
277d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
278ea7ecb66STianjia Zhang	select CRYPTO_AKCIPHER
279ea7ecb66STianjia Zhang	select CRYPTO_MANAGER
280ea7ecb66STianjia Zhang	select MPILIB
281ea7ecb66STianjia Zhang	select ASN1
282ea7ecb66STianjia Zhang	help
283ea7ecb66STianjia Zhang	  Generic implementation of the SM2 public key algorithm. It was
284ea7ecb66STianjia Zhang	  published by State Encryption Management Bureau, China.
285ea7ecb66STianjia Zhang	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
286ea7ecb66STianjia Zhang
287ea7ecb66STianjia Zhang	  References:
288ea7ecb66STianjia Zhang	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
289ea7ecb66STianjia Zhang	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
290ea7ecb66STianjia Zhang	  http://www.gmbz.org.cn/main/bzlb.html
291ea7ecb66STianjia Zhang
292ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519
293ee772cb6SArd Biesheuvel	tristate "Curve25519 algorithm"
294ee772cb6SArd Biesheuvel	select CRYPTO_KPP
295ee772cb6SArd Biesheuvel	select CRYPTO_LIB_CURVE25519_GENERIC
296ee772cb6SArd Biesheuvel
297bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86
298bb611bdfSJason A. Donenfeld	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
299bb611bdfSJason A. Donenfeld	depends on X86 && 64BIT
300bb611bdfSJason A. Donenfeld	select CRYPTO_LIB_CURVE25519_GENERIC
301bb611bdfSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
302bb611bdfSJason A. Donenfeld
303584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
304584fffc8SSebastian Siewior
305584fffc8SSebastian Siewiorconfig CRYPTO_CCM
306584fffc8SSebastian Siewior	tristate "CCM support"
307584fffc8SSebastian Siewior	select CRYPTO_CTR
308f15f05b0SArd Biesheuvel	select CRYPTO_HASH
309584fffc8SSebastian Siewior	select CRYPTO_AEAD
310c8a3315aSEric Biggers	select CRYPTO_MANAGER
311584fffc8SSebastian Siewior	help
312584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
313584fffc8SSebastian Siewior
314584fffc8SSebastian Siewiorconfig CRYPTO_GCM
315584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
316584fffc8SSebastian Siewior	select CRYPTO_CTR
317584fffc8SSebastian Siewior	select CRYPTO_AEAD
3189382d97aSHuang Ying	select CRYPTO_GHASH
3199489667dSJussi Kivilinna	select CRYPTO_NULL
320c8a3315aSEric Biggers	select CRYPTO_MANAGER
321584fffc8SSebastian Siewior	help
322584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
323584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
324584fffc8SSebastian Siewior
32571ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
32671ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
32771ebc4d1SMartin Willi	select CRYPTO_CHACHA20
32871ebc4d1SMartin Willi	select CRYPTO_POLY1305
32971ebc4d1SMartin Willi	select CRYPTO_AEAD
330c8a3315aSEric Biggers	select CRYPTO_MANAGER
33171ebc4d1SMartin Willi	help
33271ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
33371ebc4d1SMartin Willi
33471ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
33571ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
33671ebc4d1SMartin Willi	  IETF protocols.
33771ebc4d1SMartin Willi
338f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
339f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
340f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
341f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
342f606a88eSOndrej Mosnacek	help
343f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
344f606a88eSOndrej Mosnacek
345a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
346a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
347a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
348a4397635SArd Biesheuvel	default y
349a4397635SArd Biesheuvel
3501d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3511d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3521d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3531d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
354de272ca7SEric Biggers	select CRYPTO_SIMD
3551d373d4eSOndrej Mosnacek	help
3564e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3571d373d4eSOndrej Mosnacek
358584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
359584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
360584fffc8SSebastian Siewior	select CRYPTO_AEAD
361b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
362856e3f40SHerbert Xu	select CRYPTO_NULL
363401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
364c8a3315aSEric Biggers	select CRYPTO_MANAGER
365584fffc8SSebastian Siewior	help
366584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
367584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
368584fffc8SSebastian Siewior
369a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
370a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
371a10f554fSHerbert Xu	select CRYPTO_AEAD
372a10f554fSHerbert Xu	select CRYPTO_NULL
373401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
374c8a3315aSEric Biggers	select CRYPTO_MANAGER
375a10f554fSHerbert Xu	help
376a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
377a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
378a10f554fSHerbert Xu	  algorithm for CBC.
379a10f554fSHerbert Xu
380584fffc8SSebastian Siewiorcomment "Block modes"
381584fffc8SSebastian Siewior
382584fffc8SSebastian Siewiorconfig CRYPTO_CBC
383584fffc8SSebastian Siewior	tristate "CBC support"
384b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
385584fffc8SSebastian Siewior	select CRYPTO_MANAGER
386584fffc8SSebastian Siewior	help
387584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
388584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
389584fffc8SSebastian Siewior
390a7d85e06SJames Bottomleyconfig CRYPTO_CFB
391a7d85e06SJames Bottomley	tristate "CFB support"
392b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
393a7d85e06SJames Bottomley	select CRYPTO_MANAGER
394a7d85e06SJames Bottomley	help
395a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
396a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
397a7d85e06SJames Bottomley
398584fffc8SSebastian Siewiorconfig CRYPTO_CTR
399584fffc8SSebastian Siewior	tristate "CTR support"
400b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
401584fffc8SSebastian Siewior	select CRYPTO_MANAGER
402584fffc8SSebastian Siewior	help
403584fffc8SSebastian Siewior	  CTR: Counter mode
404584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
405584fffc8SSebastian Siewior
406584fffc8SSebastian Siewiorconfig CRYPTO_CTS
407584fffc8SSebastian Siewior	tristate "CTS support"
408b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
409c8a3315aSEric Biggers	select CRYPTO_MANAGER
410584fffc8SSebastian Siewior	help
411584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
412584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
413ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
414ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
415ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
416584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
417584fffc8SSebastian Siewior	  for AES encryption.
418584fffc8SSebastian Siewior
419ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
420ecd6d5c9SGilad Ben-Yossef
421584fffc8SSebastian Siewiorconfig CRYPTO_ECB
422584fffc8SSebastian Siewior	tristate "ECB support"
423b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
424584fffc8SSebastian Siewior	select CRYPTO_MANAGER
425584fffc8SSebastian Siewior	help
426584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
427584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
428584fffc8SSebastian Siewior	  the input block by block.
429584fffc8SSebastian Siewior
430584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4312470a2b2SJussi Kivilinna	tristate "LRW support"
432b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
433584fffc8SSebastian Siewior	select CRYPTO_MANAGER
434584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
435f60bbbbeSHerbert Xu	select CRYPTO_ECB
436584fffc8SSebastian Siewior	help
437584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
438584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
439584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
440584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
441584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
442584fffc8SSebastian Siewior
443e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
444e497c518SGilad Ben-Yossef	tristate "OFB support"
445b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
446e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
447e497c518SGilad Ben-Yossef	help
448e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
449e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
450e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
451e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
452e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
453e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
454e497c518SGilad Ben-Yossef
455584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
456584fffc8SSebastian Siewior	tristate "PCBC support"
457b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
458584fffc8SSebastian Siewior	select CRYPTO_MANAGER
459584fffc8SSebastian Siewior	help
460584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
461584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
462584fffc8SSebastian Siewior
46317fee07aSNathan Huckleberryconfig CRYPTO_XCTR
46417fee07aSNathan Huckleberry	tristate
46517fee07aSNathan Huckleberry	select CRYPTO_SKCIPHER
46617fee07aSNathan Huckleberry	select CRYPTO_MANAGER
46717fee07aSNathan Huckleberry	help
46817fee07aSNathan Huckleberry	  XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode
46917fee07aSNathan Huckleberry	  using XORs and little-endian addition rather than big-endian arithmetic.
47017fee07aSNathan Huckleberry	  XCTR mode is used to implement HCTR2.
47117fee07aSNathan Huckleberry
472584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4735bcf8e6dSJussi Kivilinna	tristate "XTS support"
474b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
475584fffc8SSebastian Siewior	select CRYPTO_MANAGER
47612cb3a1cSMilan Broz	select CRYPTO_ECB
477584fffc8SSebastian Siewior	help
478584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
479584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
480584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
481584fffc8SSebastian Siewior
4821c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4831c49678eSStephan Mueller	tristate "Key wrapping support"
484b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
485c8a3315aSEric Biggers	select CRYPTO_MANAGER
4861c49678eSStephan Mueller	help
4871c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4881c49678eSStephan Mueller	  padding.
4891c49678eSStephan Mueller
49026609a21SEric Biggersconfig CRYPTO_NHPOLY1305
49126609a21SEric Biggers	tristate
49226609a21SEric Biggers	select CRYPTO_HASH
49348ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
49426609a21SEric Biggers
495012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
496012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
497012c8238SEric Biggers	depends on X86 && 64BIT
498012c8238SEric Biggers	select CRYPTO_NHPOLY1305
499012c8238SEric Biggers	help
500012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
501012c8238SEric Biggers	  Adiantum encryption mode.
502012c8238SEric Biggers
5030f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5040f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5050f961f9fSEric Biggers	depends on X86 && 64BIT
5060f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5070f961f9fSEric Biggers	help
5080f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5090f961f9fSEric Biggers	  Adiantum encryption mode.
5100f961f9fSEric Biggers
511059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
512059c2a4dSEric Biggers	tristate "Adiantum support"
513059c2a4dSEric Biggers	select CRYPTO_CHACHA20
51448ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
515059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
516c8a3315aSEric Biggers	select CRYPTO_MANAGER
517059c2a4dSEric Biggers	help
518059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
519059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
520059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
521059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
522059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
523059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
524059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
525059c2a4dSEric Biggers	  AES-XTS.
526059c2a4dSEric Biggers
527059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
528059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
529059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
530059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
531059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
532059c2a4dSEric Biggers
533059c2a4dSEric Biggers	  If unsure, say N.
534059c2a4dSEric Biggers
5357ff554ceSNathan Huckleberryconfig CRYPTO_HCTR2
5367ff554ceSNathan Huckleberry	tristate "HCTR2 support"
5377ff554ceSNathan Huckleberry	select CRYPTO_XCTR
5387ff554ceSNathan Huckleberry	select CRYPTO_POLYVAL
5397ff554ceSNathan Huckleberry	select CRYPTO_MANAGER
5407ff554ceSNathan Huckleberry	help
5417ff554ceSNathan Huckleberry	  HCTR2 is a length-preserving encryption mode for storage encryption that
5427ff554ceSNathan Huckleberry	  is efficient on processors with instructions to accelerate AES and
5437ff554ceSNathan Huckleberry	  carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and
5447ff554ceSNathan Huckleberry	  ARM processors with the ARMv8 crypto extensions.
5457ff554ceSNathan Huckleberry
546be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
547be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
548be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
549be1eb7f7SArd Biesheuvel	help
550be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
551be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
552be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
553be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
554be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
555be1eb7f7SArd Biesheuvel	  encryption.
556be1eb7f7SArd Biesheuvel
557be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
558ab3d436bSGeert Uytterhoeven	  instantiated either as an skcipher or as an AEAD (depending on the
559be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
560be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
561ab3d436bSGeert Uytterhoeven	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
562be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
563be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
564be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
565be1eb7f7SArd Biesheuvel
566be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
567be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
568be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
569be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
570be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
571be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
572be1eb7f7SArd Biesheuvel	  block encryption)
573be1eb7f7SArd Biesheuvel
574584fffc8SSebastian Siewiorcomment "Hash modes"
575584fffc8SSebastian Siewior
57693b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
57793b5e86aSJussi Kivilinna	tristate "CMAC support"
57893b5e86aSJussi Kivilinna	select CRYPTO_HASH
57993b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
58093b5e86aSJussi Kivilinna	help
58193b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
58293b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
58393b5e86aSJussi Kivilinna
58493b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
58593b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
58693b5e86aSJussi Kivilinna
5871da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5888425165dSHerbert Xu	tristate "HMAC support"
5890796ae06SHerbert Xu	select CRYPTO_HASH
59043518407SHerbert Xu	select CRYPTO_MANAGER
5911da177e4SLinus Torvalds	help
5921da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5931da177e4SLinus Torvalds	  This is required for IPSec.
5941da177e4SLinus Torvalds
595333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
596333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
597333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
598333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
599333b0d7eSKazunori MIYAZAWA	help
600333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
6019332a9e7SAlexander A. Klimov		https://www.ietf.org/rfc/rfc3566.txt
602333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
603333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
604333b0d7eSKazunori MIYAZAWA
605f1939f7cSShane Wangconfig CRYPTO_VMAC
606f1939f7cSShane Wang	tristate "VMAC support"
607f1939f7cSShane Wang	select CRYPTO_HASH
608f1939f7cSShane Wang	select CRYPTO_MANAGER
609f1939f7cSShane Wang	help
610f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
611f1939f7cSShane Wang	  very high speed on 64-bit architectures.
612f1939f7cSShane Wang
613f1939f7cSShane Wang	  See also:
6149332a9e7SAlexander A. Klimov	  <https://fastcrypto.org/vmac>
615f1939f7cSShane Wang
616584fffc8SSebastian Siewiorcomment "Digest"
617584fffc8SSebastian Siewior
618584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
619584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6205773a3e6SHerbert Xu	select CRYPTO_HASH
6216a0962b2SDarrick J. Wong	select CRC32
6221da177e4SLinus Torvalds	help
623584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
624584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
62569c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6261da177e4SLinus Torvalds
6278cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6288cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6298cb51ba8SAustin Zhang	depends on X86
6308cb51ba8SAustin Zhang	select CRYPTO_HASH
6318cb51ba8SAustin Zhang	help
6328cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6338cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6348cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6358cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6368cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6378cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6388cb51ba8SAustin Zhang
6397cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6406dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
641c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6426dd7a82cSAnton Blanchard	select CRYPTO_HASH
6436dd7a82cSAnton Blanchard	select CRC32
6446dd7a82cSAnton Blanchard	help
6456dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6466dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6476dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6486dd7a82cSAnton Blanchard
6496dd7a82cSAnton Blanchard
650442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
651442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
652442a7c40SDavid S. Miller	depends on SPARC64
653442a7c40SDavid S. Miller	select CRYPTO_HASH
654442a7c40SDavid S. Miller	select CRC32
655442a7c40SDavid S. Miller	help
656442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
657442a7c40SDavid S. Miller	  when available.
658442a7c40SDavid S. Miller
65978c37d19SAlexander Boykoconfig CRYPTO_CRC32
66078c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
66178c37d19SAlexander Boyko	select CRYPTO_HASH
66278c37d19SAlexander Boyko	select CRC32
66378c37d19SAlexander Boyko	help
66478c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
66578c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
66678c37d19SAlexander Boyko
66778c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
66878c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
66978c37d19SAlexander Boyko	depends on X86
67078c37d19SAlexander Boyko	select CRYPTO_HASH
67178c37d19SAlexander Boyko	select CRC32
67278c37d19SAlexander Boyko	help
67378c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
67478c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
67578c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
676af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
67778c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
67878c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
67978c37d19SAlexander Boyko
6804a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6814a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6824a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6834a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6844a5dc51eSMarcin Nowakowski	help
6854a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6864a5dc51eSMarcin Nowakowski	  instructions, when available.
6874a5dc51eSMarcin Nowakowski
6884a5dc51eSMarcin Nowakowski
68967882e76SNikolay Borisovconfig CRYPTO_XXHASH
69067882e76SNikolay Borisov	tristate "xxHash hash algorithm"
69167882e76SNikolay Borisov	select CRYPTO_HASH
69267882e76SNikolay Borisov	select XXHASH
69367882e76SNikolay Borisov	help
69467882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
69567882e76SNikolay Borisov	  speeds close to RAM limits.
69667882e76SNikolay Borisov
69791d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
69891d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
69991d68933SDavid Sterba	select CRYPTO_HASH
70091d68933SDavid Sterba	help
70191d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
70291d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
70391d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
70491d68933SDavid Sterba
70591d68933SDavid Sterba	  This module provides the following algorithms:
70691d68933SDavid Sterba
70791d68933SDavid Sterba	  - blake2b-160
70891d68933SDavid Sterba	  - blake2b-256
70991d68933SDavid Sterba	  - blake2b-384
71091d68933SDavid Sterba	  - blake2b-512
71191d68933SDavid Sterba
71291d68933SDavid Sterba	  See https://blake2.net for further information.
71391d68933SDavid Sterba
7147f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S
7157f9b0880SArd Biesheuvel	tristate "BLAKE2s digest algorithm"
7167f9b0880SArd Biesheuvel	select CRYPTO_LIB_BLAKE2S_GENERIC
7177f9b0880SArd Biesheuvel	select CRYPTO_HASH
7187f9b0880SArd Biesheuvel	help
7197f9b0880SArd Biesheuvel	  Implementation of cryptographic hash function BLAKE2s
7207f9b0880SArd Biesheuvel	  optimized for 8-32bit platforms and can produce digests of any size
7217f9b0880SArd Biesheuvel	  between 1 to 32.  The keyed hash is also implemented.
7227f9b0880SArd Biesheuvel
7237f9b0880SArd Biesheuvel	  This module provides the following algorithms:
7247f9b0880SArd Biesheuvel
7257f9b0880SArd Biesheuvel	  - blake2s-128
7267f9b0880SArd Biesheuvel	  - blake2s-160
7277f9b0880SArd Biesheuvel	  - blake2s-224
7287f9b0880SArd Biesheuvel	  - blake2s-256
7297f9b0880SArd Biesheuvel
7307f9b0880SArd Biesheuvel	  See https://blake2.net for further information.
7317f9b0880SArd Biesheuvel
732ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86
733ed0356edSJason A. Donenfeld	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
734ed0356edSJason A. Donenfeld	depends on X86 && 64BIT
735ed0356edSJason A. Donenfeld	select CRYPTO_LIB_BLAKE2S_GENERIC
736ed0356edSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
737ed0356edSJason A. Donenfeld
73868411521SHerbert Xuconfig CRYPTO_CRCT10DIF
73968411521SHerbert Xu	tristate "CRCT10DIF algorithm"
74068411521SHerbert Xu	select CRYPTO_HASH
74168411521SHerbert Xu	help
74268411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
74368411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
74468411521SHerbert Xu	  transforms to be used if they are available.
74568411521SHerbert Xu
74668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
74768411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
74868411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
74968411521SHerbert Xu	select CRYPTO_HASH
75068411521SHerbert Xu	help
75168411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
75268411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
75368411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
754af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
75568411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
75668411521SHerbert Xu
757b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
758b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
759b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
760b01df1c1SDaniel Axtens	select CRYPTO_HASH
761b01df1c1SDaniel Axtens	help
762b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
763b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
764b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
765b01df1c1SDaniel Axtens
766f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT
767f3813f4bSKeith Busch	tristate "Rocksoft Model CRC64 algorithm"
768f3813f4bSKeith Busch	depends on CRC64
769f3813f4bSKeith Busch	select CRYPTO_HASH
770f3813f4bSKeith Busch
771146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
772146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
773146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
774146c8688SDaniel Axtens	help
775146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
776146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
777146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
778146c8688SDaniel Axtens
7792cdc6899SHuang Yingconfig CRYPTO_GHASH
7808dfa20fcSEric Biggers	tristate "GHASH hash function"
7812cdc6899SHuang Ying	select CRYPTO_GF128MUL
782578c60fbSArnd Bergmann	select CRYPTO_HASH
7832cdc6899SHuang Ying	help
7848dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
7858dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
7862cdc6899SHuang Ying
787f3c923a0SNathan Huckleberryconfig CRYPTO_POLYVAL
788f3c923a0SNathan Huckleberry	tristate
789f3c923a0SNathan Huckleberry	select CRYPTO_GF128MUL
790f3c923a0SNathan Huckleberry	select CRYPTO_HASH
791f3c923a0SNathan Huckleberry	help
792f3c923a0SNathan Huckleberry	  POLYVAL is the hash function used in HCTR2.  It is not a general-purpose
793f3c923a0SNathan Huckleberry	  cryptographic hash function.
794f3c923a0SNathan Huckleberry
795*34f7f6c3SNathan Huckleberryconfig CRYPTO_POLYVAL_CLMUL_NI
796*34f7f6c3SNathan Huckleberry	tristate "POLYVAL hash function (CLMUL-NI accelerated)"
797*34f7f6c3SNathan Huckleberry	depends on X86 && 64BIT
798*34f7f6c3SNathan Huckleberry	select CRYPTO_POLYVAL
799*34f7f6c3SNathan Huckleberry	help
800*34f7f6c3SNathan Huckleberry	  This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is
801*34f7f6c3SNathan Huckleberry	  used to efficiently implement HCTR2 on x86-64 processors that support
802*34f7f6c3SNathan Huckleberry	  carry-less multiplication instructions.
803*34f7f6c3SNathan Huckleberry
804f979e014SMartin Williconfig CRYPTO_POLY1305
805f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
806578c60fbSArnd Bergmann	select CRYPTO_HASH
80748ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
808f979e014SMartin Willi	help
809f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
810f979e014SMartin Willi
811f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
812f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
813f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
814f979e014SMartin Willi
815c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
816b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
817c70f4abeSMartin Willi	depends on X86 && 64BIT
8181b2c6a51SArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
819f0e89bcfSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
820c70f4abeSMartin Willi	help
821c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
822c70f4abeSMartin Willi
823c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
824c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
825c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
826c70f4abeSMartin Willi	  instructions.
827c70f4abeSMartin Willi
828a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS
829a11d055eSArd Biesheuvel	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
8306c810cf2SMaciej W. Rozycki	depends on MIPS
831a11d055eSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
832a11d055eSArd Biesheuvel
8331da177e4SLinus Torvaldsconfig CRYPTO_MD4
8341da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
835808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8361da177e4SLinus Torvalds	help
8371da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
8381da177e4SLinus Torvalds
8391da177e4SLinus Torvaldsconfig CRYPTO_MD5
8401da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
84114b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8421da177e4SLinus Torvalds	help
8431da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
8441da177e4SLinus Torvalds
845d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
846d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
847d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
848d69e75deSAaro Koskinen	select CRYPTO_MD5
849d69e75deSAaro Koskinen	select CRYPTO_HASH
850d69e75deSAaro Koskinen	help
851d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
852d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
853d69e75deSAaro Koskinen
854e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
855e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
856e8e59953SMarkus Stockhausen	depends on PPC
857e8e59953SMarkus Stockhausen	select CRYPTO_HASH
858e8e59953SMarkus Stockhausen	help
859e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
860e8e59953SMarkus Stockhausen	  in PPC assembler.
861e8e59953SMarkus Stockhausen
862fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
863fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
864fa4dfedcSDavid S. Miller	depends on SPARC64
865fa4dfedcSDavid S. Miller	select CRYPTO_MD5
866fa4dfedcSDavid S. Miller	select CRYPTO_HASH
867fa4dfedcSDavid S. Miller	help
868fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
869fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
870fa4dfedcSDavid S. Miller
871584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
872584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
87319e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
874584fffc8SSebastian Siewior	help
875584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
876584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
877584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
878584fffc8SSebastian Siewior	  of the algorithm.
879584fffc8SSebastian Siewior
88082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
88182798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
882e5835fbaSHerbert Xu	select CRYPTO_HASH
88382798f90SAdrian-Ken Rueegsegger	help
88482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
88582798f90SAdrian-Ken Rueegsegger
88682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
88782798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
888b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
889b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
89082798f90SAdrian-Ken Rueegsegger
891b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
892b6d44341SAdrian Bunk	  against RIPEMD-160.
893534fe2c1SAdrian-Ken Rueegsegger
894534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8959332a9e7SAlexander A. Klimov	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
896534fe2c1SAdrian-Ken Rueegsegger
8971da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8981da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
89954ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9001da177e4SLinus Torvalds	help
9011da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
9021da177e4SLinus Torvalds
90366be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
904e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
90566be8951SMathias Krause	depends on X86 && 64BIT
90666be8951SMathias Krause	select CRYPTO_SHA1
90766be8951SMathias Krause	select CRYPTO_HASH
90866be8951SMathias Krause	help
90966be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
91066be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
911e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
912e38b6b7fStim	  when available.
91366be8951SMathias Krause
9148275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
915e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
9168275d1aaSTim Chen	depends on X86 && 64BIT
9178275d1aaSTim Chen	select CRYPTO_SHA256
9188275d1aaSTim Chen	select CRYPTO_HASH
9198275d1aaSTim Chen	help
9208275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
9218275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
9228275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
923e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
924e38b6b7fStim	  Instructions) when available.
9258275d1aaSTim Chen
92687de4579STim Chenconfig CRYPTO_SHA512_SSSE3
92787de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
92887de4579STim Chen	depends on X86 && 64BIT
92987de4579STim Chen	select CRYPTO_SHA512
93087de4579STim Chen	select CRYPTO_HASH
93187de4579STim Chen	help
93287de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
93387de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
93487de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
93587de4579STim Chen	  version 2 (AVX2) instructions, when available.
93687de4579STim Chen
937efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
938efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
939efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
940efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
941efdb6f6eSAaro Koskinen	select CRYPTO_HASH
942efdb6f6eSAaro Koskinen	help
943efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
944efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
945efdb6f6eSAaro Koskinen
9464ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9474ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9484ff28d4cSDavid S. Miller	depends on SPARC64
9494ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9504ff28d4cSDavid S. Miller	select CRYPTO_HASH
9514ff28d4cSDavid S. Miller	help
9524ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9534ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9544ff28d4cSDavid S. Miller
955323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
956323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
957323a6bf1SMichael Ellerman	depends on PPC
958323a6bf1SMichael Ellerman	help
959323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
960323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
961323a6bf1SMichael Ellerman
962d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
963d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
964d9850fc5SMarkus Stockhausen	depends on PPC && SPE
965d9850fc5SMarkus Stockhausen	help
966d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
967d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
968d9850fc5SMarkus Stockhausen
9691da177e4SLinus Torvaldsconfig CRYPTO_SHA256
970cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
97150e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
97208c327f6SHans de Goede	select CRYPTO_LIB_SHA256
9731da177e4SLinus Torvalds	help
9741da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9751da177e4SLinus Torvalds
9761da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9771da177e4SLinus Torvalds	  security against collision attacks.
9781da177e4SLinus Torvalds
979cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
980cd12fb90SJonathan Lynch	  of security against collision attacks.
981cd12fb90SJonathan Lynch
9822ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9832ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9842ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9852ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9862ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9872ecc1e95SMarkus Stockhausen	help
9882ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9892ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9902ecc1e95SMarkus Stockhausen
991efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
992efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
993efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
994efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
995efdb6f6eSAaro Koskinen	select CRYPTO_HASH
996efdb6f6eSAaro Koskinen	help
997efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
998efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
999efdb6f6eSAaro Koskinen
100086c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
100186c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
100286c93b24SDavid S. Miller	depends on SPARC64
100386c93b24SDavid S. Miller	select CRYPTO_SHA256
100486c93b24SDavid S. Miller	select CRYPTO_HASH
100586c93b24SDavid S. Miller	help
100686c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
100786c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
100886c93b24SDavid S. Miller
10091da177e4SLinus Torvaldsconfig CRYPTO_SHA512
10101da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
1011bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10121da177e4SLinus Torvalds	help
10131da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
10141da177e4SLinus Torvalds
10151da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
10161da177e4SLinus Torvalds	  security against collision attacks.
10171da177e4SLinus Torvalds
10181da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
10191da177e4SLinus Torvalds	  of security against collision attacks.
10201da177e4SLinus Torvalds
1021efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
1022efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
1023efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
1024efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
1025efdb6f6eSAaro Koskinen	select CRYPTO_HASH
1026efdb6f6eSAaro Koskinen	help
1027efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1028efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
1029efdb6f6eSAaro Koskinen
1030775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
1031775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
1032775e0c69SDavid S. Miller	depends on SPARC64
1033775e0c69SDavid S. Miller	select CRYPTO_SHA512
1034775e0c69SDavid S. Miller	select CRYPTO_HASH
1035775e0c69SDavid S. Miller	help
1036775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1037775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
1038775e0c69SDavid S. Miller
103953964b9eSJeff Garzikconfig CRYPTO_SHA3
104053964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
104153964b9eSJeff Garzik	select CRYPTO_HASH
104253964b9eSJeff Garzik	help
104353964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
104453964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
104553964b9eSJeff Garzik
104653964b9eSJeff Garzik	  References:
104753964b9eSJeff Garzik	  http://keccak.noekeon.org/
104853964b9eSJeff Garzik
10494f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
1050d2825fa9SJason A. Donenfeld	tristate
1051d2825fa9SJason A. Donenfeld
1052d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC
10534f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10544f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
1055d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
10564f0fc160SGilad Ben-Yossef	help
10574f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10584f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10594f0fc160SGilad Ben-Yossef
10604f0fc160SGilad Ben-Yossef	  References:
10614f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10624f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10634f0fc160SGilad Ben-Yossef
1064930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64
1065930ab34dSTianjia Zhang	tristate "SM3 digest algorithm (x86_64/AVX)"
1066930ab34dSTianjia Zhang	depends on X86 && 64BIT
1067930ab34dSTianjia Zhang	select CRYPTO_HASH
1068d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
1069930ab34dSTianjia Zhang	help
1070930ab34dSTianjia Zhang	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1071930ab34dSTianjia Zhang	  It is part of the Chinese Commercial Cryptography suite. This is
1072930ab34dSTianjia Zhang	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1073930ab34dSTianjia Zhang	  when available.
1074930ab34dSTianjia Zhang
1075930ab34dSTianjia Zhang	  If unsure, say N.
1076930ab34dSTianjia Zhang
1077fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1078fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1079fe18957eSVitaly Chikunov	select CRYPTO_HASH
1080fe18957eSVitaly Chikunov	help
1081fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1082fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1083fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1084fe18957eSVitaly Chikunov
1085fe18957eSVitaly Chikunov	  References:
1086fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1087fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1088fe18957eSVitaly Chikunov
1089584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1090584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10914946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10921da177e4SLinus Torvalds	help
1093584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10941da177e4SLinus Torvalds
1095584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1096584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10971da177e4SLinus Torvalds
10981da177e4SLinus Torvalds	  See also:
10996d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
11001da177e4SLinus Torvalds
11010e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
11028dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
11038af00860SRichard Weinberger	depends on X86 && 64BIT
11040e1227d3SHuang Ying	select CRYPTO_CRYPTD
11050e1227d3SHuang Ying	help
11068dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
11078dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
11080e1227d3SHuang Ying
1109584fffc8SSebastian Siewiorcomment "Ciphers"
11101da177e4SLinus Torvalds
11111da177e4SLinus Torvaldsconfig CRYPTO_AES
11121da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1113cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11145bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
11151da177e4SLinus Torvalds	help
11161da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11171da177e4SLinus Torvalds	  algorithm.
11181da177e4SLinus Torvalds
11191da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
11201da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
11211da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
11221da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
11231da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
11241da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
11251da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
11261da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11271da177e4SLinus Torvalds
11281da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11291da177e4SLinus Torvalds
11301da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
11311da177e4SLinus Torvalds
1132b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1133b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1134b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1135e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1136b5e0b032SArd Biesheuvel	help
1137b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1138b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1139b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1140b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1141b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1142b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1143b5e0b032SArd Biesheuvel
1144b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1145b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1146b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1147b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
11480a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
11490a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1150b5e0b032SArd Biesheuvel
115154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
115254b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11538af00860SRichard Weinberger	depends on X86
115485671860SHerbert Xu	select CRYPTO_AEAD
11552c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
115654b6a1bdSHuang Ying	select CRYPTO_ALGAPI
1157b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
115885671860SHerbert Xu	select CRYPTO_SIMD
115954b6a1bdSHuang Ying	help
116054b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
116154b6a1bdSHuang Ying
116254b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
116354b6a1bdSHuang Ying	  algorithm.
116454b6a1bdSHuang Ying
116554b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
116654b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
116754b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
116854b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
116954b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
117054b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
117154b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
117254b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
117354b6a1bdSHuang Ying
117454b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
117554b6a1bdSHuang Ying
117654b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
117754b6a1bdSHuang Ying
11780d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11790d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1180944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1181fd94fcf0SNathan Huckleberry	  acceleration for CTR and XCTR.
11822cf4ac8bSHuang Ying
11839bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11849bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11859bf4852dSDavid S. Miller	depends on SPARC64
1186b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
11879bf4852dSDavid S. Miller	help
11889bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11899bf4852dSDavid S. Miller
11909bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11919bf4852dSDavid S. Miller	  algorithm.
11929bf4852dSDavid S. Miller
11939bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11949bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11959bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11969bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11979bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11989bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11999bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
12009bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
12019bf4852dSDavid S. Miller
12029bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
12039bf4852dSDavid S. Miller
12049bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
12059bf4852dSDavid S. Miller
12069bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
12079bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
12089bf4852dSDavid S. Miller	  ECB and CBC.
12099bf4852dSDavid S. Miller
1210504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1211504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1212504c6143SMarkus Stockhausen	depends on PPC && SPE
1213b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1214504c6143SMarkus Stockhausen	help
1215504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1216504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1217504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1218504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1219504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1220504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1221504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1222504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1223504c6143SMarkus Stockhausen
12241da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12251da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
12261674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1227cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12281da177e4SLinus Torvalds	help
12291da177e4SLinus Torvalds	  Anubis cipher algorithm.
12301da177e4SLinus Torvalds
12311da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12321da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12331da177e4SLinus Torvalds	  in the NESSIE competition.
12341da177e4SLinus Torvalds
12351da177e4SLinus Torvalds	  See also:
12366d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12376d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12381da177e4SLinus Torvalds
1239584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1240584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
12419ace6771SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1242b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1243dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1244e2ee95b8SHye-Shik Chang	help
1245584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1246e2ee95b8SHye-Shik Chang
1247584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1248584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1249584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1250584fffc8SSebastian Siewior	  weakness of the algorithm.
1251584fffc8SSebastian Siewior
1252584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1253584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1254584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
125552ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1256584fffc8SSebastian Siewior	help
1257584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1258584fffc8SSebastian Siewior
1259584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1260584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1261584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1262e2ee95b8SHye-Shik Chang
1263e2ee95b8SHye-Shik Chang	  See also:
12649332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
1265584fffc8SSebastian Siewior
126652ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
126752ba867cSJussi Kivilinna	tristate
126852ba867cSJussi Kivilinna	help
126952ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
127052ba867cSJussi Kivilinna	  generic c and the assembler implementations.
127152ba867cSJussi Kivilinna
127252ba867cSJussi Kivilinna	  See also:
12739332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
127452ba867cSJussi Kivilinna
127564b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
127664b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1277f21a7c19SAl Viro	depends on X86 && 64BIT
1278b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
127964b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1280c0a64926SArd Biesheuvel	imply CRYPTO_CTR
128164b94ceaSJussi Kivilinna	help
128264b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
128364b94ceaSJussi Kivilinna
128464b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
128564b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
128664b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
128764b94ceaSJussi Kivilinna
128864b94ceaSJussi Kivilinna	  See also:
12899332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
129064b94ceaSJussi Kivilinna
1291584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1292584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1293584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1294584fffc8SSebastian Siewior	help
1295584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1296584fffc8SSebastian Siewior
1297584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1298584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1299584fffc8SSebastian Siewior
1300584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1301584fffc8SSebastian Siewior
1302584fffc8SSebastian Siewior	  See also:
1303584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1304584fffc8SSebastian Siewior
13050b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
13060b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1307f21a7c19SAl Viro	depends on X86 && 64BIT
1308b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1309a1f91ecfSArd Biesheuvel	imply CRYPTO_CTR
13100b95ec56SJussi Kivilinna	help
13110b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
13120b95ec56SJussi Kivilinna
13130b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
13140b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
13150b95ec56SJussi Kivilinna
13160b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
13170b95ec56SJussi Kivilinna
13180b95ec56SJussi Kivilinna	  See also:
13190b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
13200b95ec56SJussi Kivilinna
1321d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1322d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1323d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1324b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1325d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
132644893bc2SEric Biggers	select CRYPTO_SIMD
132755a7e88fSArd Biesheuvel	imply CRYPTO_XTS
1328d9b1d2e7SJussi Kivilinna	help
1329d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1330d9b1d2e7SJussi Kivilinna
1331d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1332d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1333d9b1d2e7SJussi Kivilinna
1334d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1335d9b1d2e7SJussi Kivilinna
1336d9b1d2e7SJussi Kivilinna	  See also:
1337d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1338d9b1d2e7SJussi Kivilinna
1339f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1340f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1341f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1342f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1343f3f935a7SJussi Kivilinna	help
1344f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1345f3f935a7SJussi Kivilinna
1346f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1347f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1348f3f935a7SJussi Kivilinna
1349f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1350f3f935a7SJussi Kivilinna
1351f3f935a7SJussi Kivilinna	  See also:
1352f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1353f3f935a7SJussi Kivilinna
135481658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
135581658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
135681658ad0SDavid S. Miller	depends on SPARC64
135781658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1358b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
135981658ad0SDavid S. Miller	help
136081658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
136181658ad0SDavid S. Miller
136281658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
136381658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
136481658ad0SDavid S. Miller
136581658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
136681658ad0SDavid S. Miller
136781658ad0SDavid S. Miller	  See also:
136881658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
136981658ad0SDavid S. Miller
1370044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1371044ab525SJussi Kivilinna	tristate
1372044ab525SJussi Kivilinna	help
1373044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1374044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1375044ab525SJussi Kivilinna
1376584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1377584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1378584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1379044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1380584fffc8SSebastian Siewior	help
1381584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1382584fffc8SSebastian Siewior	  described in RFC2144.
1383584fffc8SSebastian Siewior
13844d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13854d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13864d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
1387b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13884d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13891e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13901e63183aSEric Biggers	select CRYPTO_SIMD
1391e2d60e2fSArd Biesheuvel	imply CRYPTO_CTR
13924d6d6a2cSJohannes Goetzfried	help
13934d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13944d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13954d6d6a2cSJohannes Goetzfried
13964d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13974d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13984d6d6a2cSJohannes Goetzfried
1399584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1400584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1401584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1402044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1403584fffc8SSebastian Siewior	help
1404584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1405584fffc8SSebastian Siewior	  described in RFC2612.
1406584fffc8SSebastian Siewior
14074ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
14084ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
14094ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1410b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
14114ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
14124bd96924SEric Biggers	select CRYPTO_CAST_COMMON
14134bd96924SEric Biggers	select CRYPTO_SIMD
14142cc0fedbSArd Biesheuvel	imply CRYPTO_XTS
14157a6623ccSArd Biesheuvel	imply CRYPTO_CTR
14164ea1277dSJohannes Goetzfried	help
14174ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
14184ea1277dSJohannes Goetzfried	  described in RFC2612.
14194ea1277dSJohannes Goetzfried
14204ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
14214ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14224ea1277dSJohannes Goetzfried
1423584fffc8SSebastian Siewiorconfig CRYPTO_DES
1424584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1425584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
142604007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1427584fffc8SSebastian Siewior	help
1428584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1429584fffc8SSebastian Siewior
1430c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1431c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
143297da37b3SDave Jones	depends on SPARC64
1433c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
143404007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1435b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1436c5aac2dfSDavid S. Miller	help
1437c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1438c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1439c5aac2dfSDavid S. Miller
14406574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14416574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14426574e6c6SJussi Kivilinna	depends on X86 && 64BIT
1443b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
144404007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1445768db5feSArd Biesheuvel	imply CRYPTO_CTR
14466574e6c6SJussi Kivilinna	help
14476574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14486574e6c6SJussi Kivilinna
14496574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14506574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14516574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14526574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14536574e6c6SJussi Kivilinna
1454584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1455584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1456584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1457b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1458584fffc8SSebastian Siewior	help
1459584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1460584fffc8SSebastian Siewior
1461584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1462584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
14631674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1464584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1465584fffc8SSebastian Siewior	help
1466584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1467584fffc8SSebastian Siewior
1468584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1469584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1470584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1471584fffc8SSebastian Siewior
1472584fffc8SSebastian Siewior	  See also:
14736d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1474e2ee95b8SHye-Shik Chang
1475c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1476aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
14775fb8ef25SArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
1478b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1479c08d0e64SMartin Willi	help
1480aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1481c08d0e64SMartin Willi
1482c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1483c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1484de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
14859332a9e7SAlexander A. Klimov	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1486c08d0e64SMartin Willi
1487de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1488de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1489de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1490de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1491de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1492de61d7aeSEric Biggers
1493aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1494aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1495aa762409SEric Biggers	  in some performance-sensitive scenarios.
1496aa762409SEric Biggers
1497c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14984af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1499c9320b6dSMartin Willi	depends on X86 && 64BIT
1500b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
150128e8d89bSArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
150284e03fa3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1503c9320b6dSMartin Willi	help
15047a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
15057a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1506c9320b6dSMartin Willi
15073a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS
15083a2f58f3SArd Biesheuvel	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
15093a2f58f3SArd Biesheuvel	depends on CPU_MIPS32_R2
1510660eda8dSEric Biggers	select CRYPTO_SKCIPHER
15113a2f58f3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
15123a2f58f3SArd Biesheuvel
1513584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1514584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
15151674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1516584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1517584fffc8SSebastian Siewior	help
1518584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1519584fffc8SSebastian Siewior
1520584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1521584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1522584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1523584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1524584fffc8SSebastian Siewior
1525584fffc8SSebastian Siewior	  See also:
1526584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1527584fffc8SSebastian Siewior
1528584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1529584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1530584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1531584fffc8SSebastian Siewior	help
1532584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1533584fffc8SSebastian Siewior
1534584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1535784506a1SArd Biesheuvel	  of 8 bits.
1536584fffc8SSebastian Siewior
1537584fffc8SSebastian Siewior	  See also:
15389332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1539584fffc8SSebastian Siewior
1540937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1541937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1542937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1543b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1544937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1545e0f409dcSEric Biggers	select CRYPTO_SIMD
15462e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1547937c30d7SJussi Kivilinna	help
1548937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1549937c30d7SJussi Kivilinna
1550937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1551937c30d7SJussi Kivilinna	  of 8 bits.
1552937c30d7SJussi Kivilinna
15531e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1554937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1555937c30d7SJussi Kivilinna
1556937c30d7SJussi Kivilinna	  See also:
15579332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1558937c30d7SJussi Kivilinna
1559251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1560251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1561251496dbSJussi Kivilinna	depends on X86 && !64BIT
1562b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1563251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1564e0f409dcSEric Biggers	select CRYPTO_SIMD
15652e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1566251496dbSJussi Kivilinna	help
1567251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1568251496dbSJussi Kivilinna
1569251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1570251496dbSJussi Kivilinna	  of 8 bits.
1571251496dbSJussi Kivilinna
1572251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1573251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1574251496dbSJussi Kivilinna
1575251496dbSJussi Kivilinna	  See also:
15769332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1577251496dbSJussi Kivilinna
15787efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15797efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15807efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1581b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
15827efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1583e16bf974SEric Biggers	select CRYPTO_SIMD
15849ec0af8aSArd Biesheuvel	imply CRYPTO_XTS
15852e9440aeSArd Biesheuvel	imply CRYPTO_CTR
15867efe4076SJohannes Goetzfried	help
15877efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15887efe4076SJohannes Goetzfried
15897efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15907efe4076SJohannes Goetzfried	  of 8 bits.
15917efe4076SJohannes Goetzfried
15927efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15937efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15947efe4076SJohannes Goetzfried
15957efe4076SJohannes Goetzfried	  See also:
15969332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
15977efe4076SJohannes Goetzfried
159856d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
159956d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
160056d76c96SJussi Kivilinna	depends on X86 && 64BIT
160156d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
160256d76c96SJussi Kivilinna	help
160356d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
160456d76c96SJussi Kivilinna
160556d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
160656d76c96SJussi Kivilinna	  of 8 bits.
160756d76c96SJussi Kivilinna
160856d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
160956d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
161056d76c96SJussi Kivilinna
161156d76c96SJussi Kivilinna	  See also:
16129332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
161356d76c96SJussi Kivilinna
1614747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1615d2825fa9SJason A. Donenfeld	tristate
1616d2825fa9SJason A. Donenfeld
1617d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC
1618747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1619747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1620d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1621747c8ce4SGilad Ben-Yossef	help
1622747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1623747c8ce4SGilad Ben-Yossef
1624747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1625747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1626747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1627747c8ce4SGilad Ben-Yossef
1628747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1629747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1630747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1631747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1632747c8ce4SGilad Ben-Yossef
1633747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1634747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1635747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1636747c8ce4SGilad Ben-Yossef
1637747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1638747c8ce4SGilad Ben-Yossef
1639747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1640747c8ce4SGilad Ben-Yossef
1641747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1642747c8ce4SGilad Ben-Yossef
1643a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64
1644a7ee22eeSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1645a7ee22eeSTianjia Zhang	depends on X86 && 64BIT
1646a7ee22eeSTianjia Zhang	select CRYPTO_SKCIPHER
1647a7ee22eeSTianjia Zhang	select CRYPTO_SIMD
1648a7ee22eeSTianjia Zhang	select CRYPTO_ALGAPI
1649d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1650a7ee22eeSTianjia Zhang	help
1651a7ee22eeSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1652a7ee22eeSTianjia Zhang
1653a7ee22eeSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1654a7ee22eeSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
1655a7ee22eeSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
1656a7ee22eeSTianjia Zhang
1657a7ee22eeSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1658a7ee22eeSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
1659a7ee22eeSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1660a7ee22eeSTianjia Zhang	  effect of instruction acceleration.
1661a7ee22eeSTianjia Zhang
1662a7ee22eeSTianjia Zhang	  If unsure, say N.
1663a7ee22eeSTianjia Zhang
16645b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64
16655b2efa2bSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
16665b2efa2bSTianjia Zhang	depends on X86 && 64BIT
16675b2efa2bSTianjia Zhang	select CRYPTO_SKCIPHER
16685b2efa2bSTianjia Zhang	select CRYPTO_SIMD
16695b2efa2bSTianjia Zhang	select CRYPTO_ALGAPI
1670d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
16715b2efa2bSTianjia Zhang	select CRYPTO_SM4_AESNI_AVX_X86_64
16725b2efa2bSTianjia Zhang	help
16735b2efa2bSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
16745b2efa2bSTianjia Zhang
16755b2efa2bSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
16765b2efa2bSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
16775b2efa2bSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
16785b2efa2bSTianjia Zhang
16795b2efa2bSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
16805b2efa2bSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
16815b2efa2bSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
16825b2efa2bSTianjia Zhang	  effect of instruction acceleration.
16835b2efa2bSTianjia Zhang
16845b2efa2bSTianjia Zhang	  If unsure, say N.
16855b2efa2bSTianjia Zhang
1686584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1687584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
16881674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1689584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1690584fffc8SSebastian Siewior	help
1691584fffc8SSebastian Siewior	  TEA cipher algorithm.
1692584fffc8SSebastian Siewior
1693584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1694584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1695584fffc8SSebastian Siewior	  little memory.
1696584fffc8SSebastian Siewior
1697584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1698584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1699584fffc8SSebastian Siewior	  in the TEA algorithm.
1700584fffc8SSebastian Siewior
1701584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1702584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1703584fffc8SSebastian Siewior
1704584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1705584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1706584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1707584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1708584fffc8SSebastian Siewior	help
1709584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1710584fffc8SSebastian Siewior
1711584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1712584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1713584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1714584fffc8SSebastian Siewior	  bits.
1715584fffc8SSebastian Siewior
1716584fffc8SSebastian Siewior	  See also:
17179332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1718584fffc8SSebastian Siewior
1719584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1720584fffc8SSebastian Siewior	tristate
1721584fffc8SSebastian Siewior	help
1722584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1723584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1724584fffc8SSebastian Siewior
1725584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1726584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1727584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1728584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1729584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1730f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1731584fffc8SSebastian Siewior	help
1732584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1733584fffc8SSebastian Siewior
1734584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1735584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1736584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1737584fffc8SSebastian Siewior	  bits.
1738584fffc8SSebastian Siewior
1739584fffc8SSebastian Siewior	  See also:
17409332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1741584fffc8SSebastian Siewior
1742584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1743584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1744584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1745584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1746584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1747f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1748584fffc8SSebastian Siewior	help
1749584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1750584fffc8SSebastian Siewior
1751584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1752584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1753584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1754584fffc8SSebastian Siewior	  bits.
1755584fffc8SSebastian Siewior
1756584fffc8SSebastian Siewior	  See also:
17579332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1758584fffc8SSebastian Siewior
17598280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17608280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1761f21a7c19SAl Viro	depends on X86 && 64BIT
1762b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17638280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17648280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
17658280daadSJussi Kivilinna	help
17668280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17678280daadSJussi Kivilinna
17688280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17698280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17708280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17718280daadSJussi Kivilinna	  bits.
17728280daadSJussi Kivilinna
17738280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17748280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17758280daadSJussi Kivilinna
17768280daadSJussi Kivilinna	  See also:
17779332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
17788280daadSJussi Kivilinna
1779107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1780107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1781107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1782b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17830e6ab46dSEric Biggers	select CRYPTO_SIMD
1784107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1785107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1786107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1787da4df93aSArd Biesheuvel	imply CRYPTO_XTS
1788107778b5SJohannes Goetzfried	help
1789107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1790107778b5SJohannes Goetzfried
1791107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1792107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1793107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1794107778b5SJohannes Goetzfried	  bits.
1795107778b5SJohannes Goetzfried
1796107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1797107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1798107778b5SJohannes Goetzfried
1799107778b5SJohannes Goetzfried	  See also:
18009332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1801107778b5SJohannes Goetzfried
1802584fffc8SSebastian Siewiorcomment "Compression"
1803584fffc8SSebastian Siewior
18041da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
18051da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1806cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1807f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
18081da177e4SLinus Torvalds	select ZLIB_INFLATE
18091da177e4SLinus Torvalds	select ZLIB_DEFLATE
18101da177e4SLinus Torvalds	help
18111da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
18121da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
18131da177e4SLinus Torvalds
18141da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
18151da177e4SLinus Torvalds
18160b77abb3SZoltan Sogorconfig CRYPTO_LZO
18170b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
18180b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1819ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
18200b77abb3SZoltan Sogor	select LZO_COMPRESS
18210b77abb3SZoltan Sogor	select LZO_DECOMPRESS
18220b77abb3SZoltan Sogor	help
18230b77abb3SZoltan Sogor	  This is the LZO algorithm.
18240b77abb3SZoltan Sogor
182535a1fc18SSeth Jenningsconfig CRYPTO_842
182635a1fc18SSeth Jennings	tristate "842 compression algorithm"
18272062c5b6SDan Streetman	select CRYPTO_ALGAPI
18286a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
18292062c5b6SDan Streetman	select 842_COMPRESS
18302062c5b6SDan Streetman	select 842_DECOMPRESS
183135a1fc18SSeth Jennings	help
183235a1fc18SSeth Jennings	  This is the 842 algorithm.
183335a1fc18SSeth Jennings
18340ea8530dSChanho Minconfig CRYPTO_LZ4
18350ea8530dSChanho Min	tristate "LZ4 compression algorithm"
18360ea8530dSChanho Min	select CRYPTO_ALGAPI
18378cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
18380ea8530dSChanho Min	select LZ4_COMPRESS
18390ea8530dSChanho Min	select LZ4_DECOMPRESS
18400ea8530dSChanho Min	help
18410ea8530dSChanho Min	  This is the LZ4 algorithm.
18420ea8530dSChanho Min
18430ea8530dSChanho Minconfig CRYPTO_LZ4HC
18440ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
18450ea8530dSChanho Min	select CRYPTO_ALGAPI
184691d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
18470ea8530dSChanho Min	select LZ4HC_COMPRESS
18480ea8530dSChanho Min	select LZ4_DECOMPRESS
18490ea8530dSChanho Min	help
18500ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
18510ea8530dSChanho Min
1852d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1853d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1854d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1855d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1856d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1857d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1858d28fc3dbSNick Terrell	help
1859d28fc3dbSNick Terrell	  This is the zstd algorithm.
1860d28fc3dbSNick Terrell
186117f0f4a4SNeil Hormancomment "Random Number Generation"
186217f0f4a4SNeil Horman
186317f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
186417f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
186517f0f4a4SNeil Horman	select CRYPTO_AES
186617f0f4a4SNeil Horman	select CRYPTO_RNG
186717f0f4a4SNeil Horman	help
186817f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
186917f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18707dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18717dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
187217f0f4a4SNeil Horman
1873f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1874419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1875419090c6SStephan Mueller	help
1876419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1877419090c6SStephan Mueller	  more of the DRBG types must be selected.
1878419090c6SStephan Mueller
1879f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1880419090c6SStephan Mueller
1881419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1882401e4238SHerbert Xu	bool
1883419090c6SStephan Mueller	default y
1884419090c6SStephan Mueller	select CRYPTO_HMAC
18855261cdf4SStephan Mueller	select CRYPTO_SHA512
1886419090c6SStephan Mueller
1887419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1888419090c6SStephan Mueller	bool "Enable Hash DRBG"
1889826775bbSHerbert Xu	select CRYPTO_SHA256
1890419090c6SStephan Mueller	help
1891419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1892419090c6SStephan Mueller
1893419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1894419090c6SStephan Mueller	bool "Enable CTR DRBG"
1895419090c6SStephan Mueller	select CRYPTO_AES
1896d6fc1a45SCorentin Labbe	select CRYPTO_CTR
1897419090c6SStephan Mueller	help
1898419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1899419090c6SStephan Mueller
1900f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1901f2c89a10SHerbert Xu	tristate
1902401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1903f2c89a10SHerbert Xu	select CRYPTO_RNG
1904bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1905f2c89a10SHerbert Xu
1906f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1907419090c6SStephan Mueller
1908bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1909bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
19102f313e02SArnd Bergmann	select CRYPTO_RNG
1911bb5530e4SStephan Mueller	help
1912bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1913bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1914bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1915bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1916bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1917bb5530e4SStephan Mueller
1918026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR
1919026a733eSStephan Müller	tristate
1920a88592ccSHerbert Xu	select CRYPTO_HMAC
1921304b4aceSStephan Müller	select CRYPTO_SHA256
1922026a733eSStephan Müller
192303c8efc1SHerbert Xuconfig CRYPTO_USER_API
192403c8efc1SHerbert Xu	tristate
192503c8efc1SHerbert Xu
1926fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1927fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
19287451708fSHerbert Xu	depends on NET
1929fe869cdbSHerbert Xu	select CRYPTO_HASH
1930fe869cdbSHerbert Xu	select CRYPTO_USER_API
1931fe869cdbSHerbert Xu	help
1932fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1933fe869cdbSHerbert Xu	  algorithms.
1934fe869cdbSHerbert Xu
19358ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
19368ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
19377451708fSHerbert Xu	depends on NET
1938b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
19398ff59090SHerbert Xu	select CRYPTO_USER_API
19408ff59090SHerbert Xu	help
19418ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
19428ff59090SHerbert Xu	  key cipher algorithms.
19438ff59090SHerbert Xu
19442f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
19452f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
19462f375538SStephan Mueller	depends on NET
19472f375538SStephan Mueller	select CRYPTO_RNG
19482f375538SStephan Mueller	select CRYPTO_USER_API
19492f375538SStephan Mueller	help
19502f375538SStephan Mueller	  This option enables the user-spaces interface for random
19512f375538SStephan Mueller	  number generator algorithms.
19522f375538SStephan Mueller
195377ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP
195477ebdabeSElena Petrova	bool "Enable CAVP testing of DRBG"
195577ebdabeSElena Petrova	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
195677ebdabeSElena Petrova	help
195777ebdabeSElena Petrova	  This option enables extra API for CAVP testing via the user-space
195877ebdabeSElena Petrova	  interface: resetting of DRBG entropy, and providing Additional Data.
195977ebdabeSElena Petrova	  This should only be enabled for CAVP testing. You should say
196077ebdabeSElena Petrova	  no unless you know what this is.
196177ebdabeSElena Petrova
1962b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1963b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1964b64a2d95SHerbert Xu	depends on NET
1965b64a2d95SHerbert Xu	select CRYPTO_AEAD
1966b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
196772548b09SStephan Mueller	select CRYPTO_NULL
1968b64a2d95SHerbert Xu	select CRYPTO_USER_API
1969b64a2d95SHerbert Xu	help
1970b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1971b64a2d95SHerbert Xu	  cipher algorithms.
1972b64a2d95SHerbert Xu
19739ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE
19749ace6771SArd Biesheuvel	bool "Enable obsolete cryptographic algorithms for userspace"
19759ace6771SArd Biesheuvel	depends on CRYPTO_USER_API
19769ace6771SArd Biesheuvel	default y
19779ace6771SArd Biesheuvel	help
19789ace6771SArd Biesheuvel	  Allow obsolete cryptographic algorithms to be selected that have
19799ace6771SArd Biesheuvel	  already been phased out from internal use by the kernel, and are
19809ace6771SArd Biesheuvel	  only useful for userspace clients that still rely on them.
19819ace6771SArd Biesheuvel
1982cac5818cSCorentin Labbeconfig CRYPTO_STATS
1983cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1984a6a31385SCorentin Labbe	depends on CRYPTO_USER
1985cac5818cSCorentin Labbe	help
1986cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1987cac5818cSCorentin Labbe	  This will collect:
1988cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1989cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1990cac5818cSCorentin Labbe	  - size and numbers of hash operations
1991cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1992cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1993cac5818cSCorentin Labbe
1994ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1995ee08997fSDmitry Kasatkin	bool
1996ee08997fSDmitry Kasatkin
19971da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19988636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19998636a1f9SMasahiro Yamadasource "certs/Kconfig"
20001da177e4SLinus Torvalds
2001cce9e06dSHerbert Xuendif	# if CRYPTO
2002