1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 140326a6346SHerbert Xu bool "Disable run-time self tests" 14100ca28a5SHerbert Xu default y 1420b767f96SAlexander Shishkin help 143326a6346SHerbert Xu Disable run-time self tests that normally take place at 144326a6346SHerbert Xu algorithm registration. 1450b767f96SAlexander Shishkin 1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1475b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1486569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1495b2706a4SEric Biggers help 1505b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1515b2706a4SEric Biggers including randomized fuzz tests. 1525b2706a4SEric Biggers 1535b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1545b2706a4SEric Biggers longer to run than the normal self tests. 1555b2706a4SEric Biggers 156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 157e590e132SEric Biggers tristate 158584fffc8SSebastian Siewior 159584fffc8SSebastian Siewiorconfig CRYPTO_NULL 160584fffc8SSebastian Siewior tristate "Null algorithms" 161149a3971SHerbert Xu select CRYPTO_NULL2 162584fffc8SSebastian Siewior help 163584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 164584fffc8SSebastian Siewior 165149a3971SHerbert Xuconfig CRYPTO_NULL2 166dd43c4e9SHerbert Xu tristate 167149a3971SHerbert Xu select CRYPTO_ALGAPI2 168b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 169149a3971SHerbert Xu select CRYPTO_HASH2 170149a3971SHerbert Xu 1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1723b4afaf2SKees Cook tristate "Parallel crypto engine" 1733b4afaf2SKees Cook depends on SMP 1745068c7a8SSteffen Klassert select PADATA 1755068c7a8SSteffen Klassert select CRYPTO_MANAGER 1765068c7a8SSteffen Klassert select CRYPTO_AEAD 1775068c7a8SSteffen Klassert help 1785068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1795068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1805068c7a8SSteffen Klassert 181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 182584fffc8SSebastian Siewior tristate "Software async crypto daemon" 183b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184b8a28251SLoc Ho select CRYPTO_HASH 185584fffc8SSebastian Siewior select CRYPTO_MANAGER 186584fffc8SSebastian Siewior help 187584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 188584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 189584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 190584fffc8SSebastian Siewior 191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 192584fffc8SSebastian Siewior tristate "Authenc support" 193584fffc8SSebastian Siewior select CRYPTO_AEAD 194b95bba5dSEric Biggers select CRYPTO_SKCIPHER 195584fffc8SSebastian Siewior select CRYPTO_MANAGER 196584fffc8SSebastian Siewior select CRYPTO_HASH 197e94c6a7aSHerbert Xu select CRYPTO_NULL 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 200584fffc8SSebastian Siewior This is required for IPSec. 201584fffc8SSebastian Siewior 202584fffc8SSebastian Siewiorconfig CRYPTO_TEST 203584fffc8SSebastian Siewior tristate "Testing module" 20400ea27f1SArd Biesheuvel depends on m || EXPERT 205da7f033dSHerbert Xu select CRYPTO_MANAGER 206584fffc8SSebastian Siewior help 207584fffc8SSebastian Siewior Quick & dirty crypto test module. 208584fffc8SSebastian Siewior 209266d0516SHerbert Xuconfig CRYPTO_SIMD 210266d0516SHerbert Xu tristate 211266d0516SHerbert Xu select CRYPTO_CRYPTD 212266d0516SHerbert Xu 213735d37b5SBaolin Wangconfig CRYPTO_ENGINE 214735d37b5SBaolin Wang tristate 215735d37b5SBaolin Wang 2163d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2173d6228a5SVitaly Chikunov 2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2193d6228a5SVitaly Chikunov tristate "RSA algorithm" 2203d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2213d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2223d6228a5SVitaly Chikunov select MPILIB 2233d6228a5SVitaly Chikunov select ASN1 2243d6228a5SVitaly Chikunov help 2253d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_DH 2283d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_KPP 2303d6228a5SVitaly Chikunov select MPILIB 2313d6228a5SVitaly Chikunov help 2323d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2333d6228a5SVitaly Chikunov 2347dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS 2357dce5981SNicolai Stange bool "Support for RFC 7919 FFDHE group parameters" 2367dce5981SNicolai Stange depends on CRYPTO_DH 2371e207964SNicolai Stange select CRYPTO_RNG_DEFAULT 2387dce5981SNicolai Stange help 2397dce5981SNicolai Stange Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 2407dce5981SNicolai Stange 2414a2289daSVitaly Chikunovconfig CRYPTO_ECC 2424a2289daSVitaly Chikunov tristate 24338aa192aSArnd Bergmann select CRYPTO_RNG_DEFAULT 2444a2289daSVitaly Chikunov 2453d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2463d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2474a2289daSVitaly Chikunov select CRYPTO_ECC 2483d6228a5SVitaly Chikunov select CRYPTO_KPP 2493d6228a5SVitaly Chikunov help 2503d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2513d6228a5SVitaly Chikunov 2524e660291SStefan Bergerconfig CRYPTO_ECDSA 2534e660291SStefan Berger tristate "ECDSA (NIST P192, P256 etc.) algorithm" 2544e660291SStefan Berger select CRYPTO_ECC 2554e660291SStefan Berger select CRYPTO_AKCIPHER 2564e660291SStefan Berger select ASN1 2574e660291SStefan Berger help 2584e660291SStefan Berger Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 2594e660291SStefan Berger is A NIST cryptographic standard algorithm. Only signature verification 2604e660291SStefan Berger is implemented. 2614e660291SStefan Berger 2620d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2630d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2640d7a7864SVitaly Chikunov select CRYPTO_ECC 2650d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2660d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2671036633eSVitaly Chikunov select OID_REGISTRY 2681036633eSVitaly Chikunov select ASN1 2690d7a7864SVitaly Chikunov help 2700d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2710d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2720d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2730d7a7864SVitaly Chikunov is implemented. 2740d7a7864SVitaly Chikunov 275ea7ecb66STianjia Zhangconfig CRYPTO_SM2 276ea7ecb66STianjia Zhang tristate "SM2 algorithm" 277d2825fa9SJason A. Donenfeld select CRYPTO_SM3 278ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 279ea7ecb66STianjia Zhang select CRYPTO_MANAGER 280ea7ecb66STianjia Zhang select MPILIB 281ea7ecb66STianjia Zhang select ASN1 282ea7ecb66STianjia Zhang help 283ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 284ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 285ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 286ea7ecb66STianjia Zhang 287ea7ecb66STianjia Zhang References: 288ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 289ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 290ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 291ea7ecb66STianjia Zhang 292ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 293ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 294ee772cb6SArd Biesheuvel select CRYPTO_KPP 295ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 296ee772cb6SArd Biesheuvel 297bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 298bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 299bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 300bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 301bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 302bb611bdfSJason A. Donenfeld 303584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 304584fffc8SSebastian Siewior 305584fffc8SSebastian Siewiorconfig CRYPTO_CCM 306584fffc8SSebastian Siewior tristate "CCM support" 307584fffc8SSebastian Siewior select CRYPTO_CTR 308f15f05b0SArd Biesheuvel select CRYPTO_HASH 309584fffc8SSebastian Siewior select CRYPTO_AEAD 310c8a3315aSEric Biggers select CRYPTO_MANAGER 311584fffc8SSebastian Siewior help 312584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 313584fffc8SSebastian Siewior 314584fffc8SSebastian Siewiorconfig CRYPTO_GCM 315584fffc8SSebastian Siewior tristate "GCM/GMAC support" 316584fffc8SSebastian Siewior select CRYPTO_CTR 317584fffc8SSebastian Siewior select CRYPTO_AEAD 3189382d97aSHuang Ying select CRYPTO_GHASH 3199489667dSJussi Kivilinna select CRYPTO_NULL 320c8a3315aSEric Biggers select CRYPTO_MANAGER 321584fffc8SSebastian Siewior help 322584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 323584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 324584fffc8SSebastian Siewior 32571ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 32671ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 32771ebc4d1SMartin Willi select CRYPTO_CHACHA20 32871ebc4d1SMartin Willi select CRYPTO_POLY1305 32971ebc4d1SMartin Willi select CRYPTO_AEAD 330c8a3315aSEric Biggers select CRYPTO_MANAGER 33171ebc4d1SMartin Willi help 33271ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 33371ebc4d1SMartin Willi 33471ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 33571ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 33671ebc4d1SMartin Willi IETF protocols. 33771ebc4d1SMartin Willi 338f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 339f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 340f606a88eSOndrej Mosnacek select CRYPTO_AEAD 341f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 342f606a88eSOndrej Mosnacek help 343f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 344f606a88eSOndrej Mosnacek 345a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 346a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 347a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 348a4397635SArd Biesheuvel default y 349a4397635SArd Biesheuvel 3501d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3511d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3521d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3531d373d4eSOndrej Mosnacek select CRYPTO_AEAD 354de272ca7SEric Biggers select CRYPTO_SIMD 3551d373d4eSOndrej Mosnacek help 3564e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3571d373d4eSOndrej Mosnacek 358584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 359584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 360584fffc8SSebastian Siewior select CRYPTO_AEAD 361b95bba5dSEric Biggers select CRYPTO_SKCIPHER 362856e3f40SHerbert Xu select CRYPTO_NULL 363401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 364c8a3315aSEric Biggers select CRYPTO_MANAGER 365584fffc8SSebastian Siewior help 366584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 367584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 368584fffc8SSebastian Siewior 369a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 370a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 371a10f554fSHerbert Xu select CRYPTO_AEAD 372a10f554fSHerbert Xu select CRYPTO_NULL 373401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 374c8a3315aSEric Biggers select CRYPTO_MANAGER 375a10f554fSHerbert Xu help 376a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 377a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 378a10f554fSHerbert Xu algorithm for CBC. 379a10f554fSHerbert Xu 380584fffc8SSebastian Siewiorcomment "Block modes" 381584fffc8SSebastian Siewior 382584fffc8SSebastian Siewiorconfig CRYPTO_CBC 383584fffc8SSebastian Siewior tristate "CBC support" 384b95bba5dSEric Biggers select CRYPTO_SKCIPHER 385584fffc8SSebastian Siewior select CRYPTO_MANAGER 386584fffc8SSebastian Siewior help 387584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 388584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 389584fffc8SSebastian Siewior 390a7d85e06SJames Bottomleyconfig CRYPTO_CFB 391a7d85e06SJames Bottomley tristate "CFB support" 392b95bba5dSEric Biggers select CRYPTO_SKCIPHER 393a7d85e06SJames Bottomley select CRYPTO_MANAGER 394a7d85e06SJames Bottomley help 395a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 396a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 397a7d85e06SJames Bottomley 398584fffc8SSebastian Siewiorconfig CRYPTO_CTR 399584fffc8SSebastian Siewior tristate "CTR support" 400b95bba5dSEric Biggers select CRYPTO_SKCIPHER 401584fffc8SSebastian Siewior select CRYPTO_MANAGER 402584fffc8SSebastian Siewior help 403584fffc8SSebastian Siewior CTR: Counter mode 404584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 405584fffc8SSebastian Siewior 406584fffc8SSebastian Siewiorconfig CRYPTO_CTS 407584fffc8SSebastian Siewior tristate "CTS support" 408b95bba5dSEric Biggers select CRYPTO_SKCIPHER 409c8a3315aSEric Biggers select CRYPTO_MANAGER 410584fffc8SSebastian Siewior help 411584fffc8SSebastian Siewior CTS: Cipher Text Stealing 412584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 413ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 414ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 415ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 416584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 417584fffc8SSebastian Siewior for AES encryption. 418584fffc8SSebastian Siewior 419ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 420ecd6d5c9SGilad Ben-Yossef 421584fffc8SSebastian Siewiorconfig CRYPTO_ECB 422584fffc8SSebastian Siewior tristate "ECB support" 423b95bba5dSEric Biggers select CRYPTO_SKCIPHER 424584fffc8SSebastian Siewior select CRYPTO_MANAGER 425584fffc8SSebastian Siewior help 426584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 427584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 428584fffc8SSebastian Siewior the input block by block. 429584fffc8SSebastian Siewior 430584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4312470a2b2SJussi Kivilinna tristate "LRW support" 432b95bba5dSEric Biggers select CRYPTO_SKCIPHER 433584fffc8SSebastian Siewior select CRYPTO_MANAGER 434584fffc8SSebastian Siewior select CRYPTO_GF128MUL 435f60bbbbeSHerbert Xu select CRYPTO_ECB 436584fffc8SSebastian Siewior help 437584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 438584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 439584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 440584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 441584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 442584fffc8SSebastian Siewior 443e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 444e497c518SGilad Ben-Yossef tristate "OFB support" 445b95bba5dSEric Biggers select CRYPTO_SKCIPHER 446e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 447e497c518SGilad Ben-Yossef help 448e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 449e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 450e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 451e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 452e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 453e497c518SGilad Ben-Yossef normally even when applied before encryption. 454e497c518SGilad Ben-Yossef 455584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 456584fffc8SSebastian Siewior tristate "PCBC support" 457b95bba5dSEric Biggers select CRYPTO_SKCIPHER 458584fffc8SSebastian Siewior select CRYPTO_MANAGER 459584fffc8SSebastian Siewior help 460584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 461584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 462584fffc8SSebastian Siewior 46317fee07aSNathan Huckleberryconfig CRYPTO_XCTR 46417fee07aSNathan Huckleberry tristate 46517fee07aSNathan Huckleberry select CRYPTO_SKCIPHER 46617fee07aSNathan Huckleberry select CRYPTO_MANAGER 46717fee07aSNathan Huckleberry help 46817fee07aSNathan Huckleberry XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode 46917fee07aSNathan Huckleberry using XORs and little-endian addition rather than big-endian arithmetic. 47017fee07aSNathan Huckleberry XCTR mode is used to implement HCTR2. 47117fee07aSNathan Huckleberry 472584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4735bcf8e6dSJussi Kivilinna tristate "XTS support" 474b95bba5dSEric Biggers select CRYPTO_SKCIPHER 475584fffc8SSebastian Siewior select CRYPTO_MANAGER 47612cb3a1cSMilan Broz select CRYPTO_ECB 477584fffc8SSebastian Siewior help 478584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 479584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 480584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 481584fffc8SSebastian Siewior 4821c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4831c49678eSStephan Mueller tristate "Key wrapping support" 484b95bba5dSEric Biggers select CRYPTO_SKCIPHER 485c8a3315aSEric Biggers select CRYPTO_MANAGER 4861c49678eSStephan Mueller help 4871c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4881c49678eSStephan Mueller padding. 4891c49678eSStephan Mueller 49026609a21SEric Biggersconfig CRYPTO_NHPOLY1305 49126609a21SEric Biggers tristate 49226609a21SEric Biggers select CRYPTO_HASH 49348ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 49426609a21SEric Biggers 495012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 496012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 497012c8238SEric Biggers depends on X86 && 64BIT 498012c8238SEric Biggers select CRYPTO_NHPOLY1305 499012c8238SEric Biggers help 500012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 501012c8238SEric Biggers Adiantum encryption mode. 502012c8238SEric Biggers 5030f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5040f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5050f961f9fSEric Biggers depends on X86 && 64BIT 5060f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5070f961f9fSEric Biggers help 5080f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5090f961f9fSEric Biggers Adiantum encryption mode. 5100f961f9fSEric Biggers 511059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 512059c2a4dSEric Biggers tristate "Adiantum support" 513059c2a4dSEric Biggers select CRYPTO_CHACHA20 51448ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 515059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 516c8a3315aSEric Biggers select CRYPTO_MANAGER 517059c2a4dSEric Biggers help 518059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 519059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 520059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 521059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 522059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 523059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 524059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 525059c2a4dSEric Biggers AES-XTS. 526059c2a4dSEric Biggers 527059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 528059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 529059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 530059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 531059c2a4dSEric Biggers security than XTS, subject to the security bound. 532059c2a4dSEric Biggers 533059c2a4dSEric Biggers If unsure, say N. 534059c2a4dSEric Biggers 5357ff554ceSNathan Huckleberryconfig CRYPTO_HCTR2 5367ff554ceSNathan Huckleberry tristate "HCTR2 support" 5377ff554ceSNathan Huckleberry select CRYPTO_XCTR 5387ff554ceSNathan Huckleberry select CRYPTO_POLYVAL 5397ff554ceSNathan Huckleberry select CRYPTO_MANAGER 5407ff554ceSNathan Huckleberry help 5417ff554ceSNathan Huckleberry HCTR2 is a length-preserving encryption mode for storage encryption that 5427ff554ceSNathan Huckleberry is efficient on processors with instructions to accelerate AES and 5437ff554ceSNathan Huckleberry carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and 5447ff554ceSNathan Huckleberry ARM processors with the ARMv8 crypto extensions. 5457ff554ceSNathan Huckleberry 546be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 547be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 548be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 549be1eb7f7SArd Biesheuvel help 550be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 551be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 552be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 553be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 554be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 555be1eb7f7SArd Biesheuvel encryption. 556be1eb7f7SArd Biesheuvel 557be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 558ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 559be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 560be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 561ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 562be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 563be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 564be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 565be1eb7f7SArd Biesheuvel 566be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 567be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 568be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 569be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 570be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 571be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 572be1eb7f7SArd Biesheuvel block encryption) 573be1eb7f7SArd Biesheuvel 574584fffc8SSebastian Siewiorcomment "Hash modes" 575584fffc8SSebastian Siewior 57693b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 57793b5e86aSJussi Kivilinna tristate "CMAC support" 57893b5e86aSJussi Kivilinna select CRYPTO_HASH 57993b5e86aSJussi Kivilinna select CRYPTO_MANAGER 58093b5e86aSJussi Kivilinna help 58193b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 58293b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 58393b5e86aSJussi Kivilinna 58493b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 58593b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 58693b5e86aSJussi Kivilinna 5871da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5888425165dSHerbert Xu tristate "HMAC support" 5890796ae06SHerbert Xu select CRYPTO_HASH 59043518407SHerbert Xu select CRYPTO_MANAGER 5911da177e4SLinus Torvalds help 5921da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5931da177e4SLinus Torvalds This is required for IPSec. 5941da177e4SLinus Torvalds 595333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 596333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 597333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 598333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 599333b0d7eSKazunori MIYAZAWA help 600333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 6019332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 602333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 603333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 604333b0d7eSKazunori MIYAZAWA 605f1939f7cSShane Wangconfig CRYPTO_VMAC 606f1939f7cSShane Wang tristate "VMAC support" 607f1939f7cSShane Wang select CRYPTO_HASH 608f1939f7cSShane Wang select CRYPTO_MANAGER 609f1939f7cSShane Wang help 610f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 611f1939f7cSShane Wang very high speed on 64-bit architectures. 612f1939f7cSShane Wang 613f1939f7cSShane Wang See also: 6149332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 615f1939f7cSShane Wang 616584fffc8SSebastian Siewiorcomment "Digest" 617584fffc8SSebastian Siewior 618584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 619584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6205773a3e6SHerbert Xu select CRYPTO_HASH 6216a0962b2SDarrick J. Wong select CRC32 6221da177e4SLinus Torvalds help 623584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 624584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 62569c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6261da177e4SLinus Torvalds 6278cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6288cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6298cb51ba8SAustin Zhang depends on X86 6308cb51ba8SAustin Zhang select CRYPTO_HASH 6318cb51ba8SAustin Zhang help 6328cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6338cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6348cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6358cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6368cb51ba8SAustin Zhang gain performance compared with software implementation. 6378cb51ba8SAustin Zhang Module will be crc32c-intel. 6388cb51ba8SAustin Zhang 6397cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6406dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 641c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6426dd7a82cSAnton Blanchard select CRYPTO_HASH 6436dd7a82cSAnton Blanchard select CRC32 6446dd7a82cSAnton Blanchard help 6456dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6466dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6476dd7a82cSAnton Blanchard and newer processors for improved performance. 6486dd7a82cSAnton Blanchard 6496dd7a82cSAnton Blanchard 650442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 651442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 652442a7c40SDavid S. Miller depends on SPARC64 653442a7c40SDavid S. Miller select CRYPTO_HASH 654442a7c40SDavid S. Miller select CRC32 655442a7c40SDavid S. Miller help 656442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 657442a7c40SDavid S. Miller when available. 658442a7c40SDavid S. Miller 65978c37d19SAlexander Boykoconfig CRYPTO_CRC32 66078c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 66178c37d19SAlexander Boyko select CRYPTO_HASH 66278c37d19SAlexander Boyko select CRC32 66378c37d19SAlexander Boyko help 66478c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 66578c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 66678c37d19SAlexander Boyko 66778c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 66878c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 66978c37d19SAlexander Boyko depends on X86 67078c37d19SAlexander Boyko select CRYPTO_HASH 67178c37d19SAlexander Boyko select CRC32 67278c37d19SAlexander Boyko help 67378c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 67478c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 67578c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 676af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 67778c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 67878c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 67978c37d19SAlexander Boyko 6804a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6814a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6824a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6834a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6844a5dc51eSMarcin Nowakowski help 6854a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6864a5dc51eSMarcin Nowakowski instructions, when available. 6874a5dc51eSMarcin Nowakowski 6884a5dc51eSMarcin Nowakowski 68967882e76SNikolay Borisovconfig CRYPTO_XXHASH 69067882e76SNikolay Borisov tristate "xxHash hash algorithm" 69167882e76SNikolay Borisov select CRYPTO_HASH 69267882e76SNikolay Borisov select XXHASH 69367882e76SNikolay Borisov help 69467882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 69567882e76SNikolay Borisov speeds close to RAM limits. 69667882e76SNikolay Borisov 69791d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 69891d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 69991d68933SDavid Sterba select CRYPTO_HASH 70091d68933SDavid Sterba help 70191d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 70291d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 70391d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 70491d68933SDavid Sterba 70591d68933SDavid Sterba This module provides the following algorithms: 70691d68933SDavid Sterba 70791d68933SDavid Sterba - blake2b-160 70891d68933SDavid Sterba - blake2b-256 70991d68933SDavid Sterba - blake2b-384 71091d68933SDavid Sterba - blake2b-512 71191d68933SDavid Sterba 71291d68933SDavid Sterba See https://blake2.net for further information. 71391d68933SDavid Sterba 7147f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 7157f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 7167f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 7177f9b0880SArd Biesheuvel select CRYPTO_HASH 7187f9b0880SArd Biesheuvel help 7197f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 7207f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 7217f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 7227f9b0880SArd Biesheuvel 7237f9b0880SArd Biesheuvel This module provides the following algorithms: 7247f9b0880SArd Biesheuvel 7257f9b0880SArd Biesheuvel - blake2s-128 7267f9b0880SArd Biesheuvel - blake2s-160 7277f9b0880SArd Biesheuvel - blake2s-224 7287f9b0880SArd Biesheuvel - blake2s-256 7297f9b0880SArd Biesheuvel 7307f9b0880SArd Biesheuvel See https://blake2.net for further information. 7317f9b0880SArd Biesheuvel 732ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 733ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 734ed0356edSJason A. Donenfeld depends on X86 && 64BIT 735ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 736ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 737ed0356edSJason A. Donenfeld 73868411521SHerbert Xuconfig CRYPTO_CRCT10DIF 73968411521SHerbert Xu tristate "CRCT10DIF algorithm" 74068411521SHerbert Xu select CRYPTO_HASH 74168411521SHerbert Xu help 74268411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 74368411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 74468411521SHerbert Xu transforms to be used if they are available. 74568411521SHerbert Xu 74668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 74768411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 74868411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 74968411521SHerbert Xu select CRYPTO_HASH 75068411521SHerbert Xu help 75168411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 75268411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 75368411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 754af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 75568411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 75668411521SHerbert Xu 757b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 758b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 759b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 760b01df1c1SDaniel Axtens select CRYPTO_HASH 761b01df1c1SDaniel Axtens help 762b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 763b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 764b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 765b01df1c1SDaniel Axtens 766f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT 767f3813f4bSKeith Busch tristate "Rocksoft Model CRC64 algorithm" 768f3813f4bSKeith Busch depends on CRC64 769f3813f4bSKeith Busch select CRYPTO_HASH 770f3813f4bSKeith Busch 771146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 772146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 773146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 774146c8688SDaniel Axtens help 775146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 776146c8688SDaniel Axtens POWER8 vpmsum instructions. 777146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 778146c8688SDaniel Axtens 7792cdc6899SHuang Yingconfig CRYPTO_GHASH 7808dfa20fcSEric Biggers tristate "GHASH hash function" 7812cdc6899SHuang Ying select CRYPTO_GF128MUL 782578c60fbSArnd Bergmann select CRYPTO_HASH 7832cdc6899SHuang Ying help 7848dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7858dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7862cdc6899SHuang Ying 787f3c923a0SNathan Huckleberryconfig CRYPTO_POLYVAL 788f3c923a0SNathan Huckleberry tristate 789f3c923a0SNathan Huckleberry select CRYPTO_GF128MUL 790f3c923a0SNathan Huckleberry select CRYPTO_HASH 791f3c923a0SNathan Huckleberry help 792f3c923a0SNathan Huckleberry POLYVAL is the hash function used in HCTR2. It is not a general-purpose 793f3c923a0SNathan Huckleberry cryptographic hash function. 794f3c923a0SNathan Huckleberry 795*34f7f6c3SNathan Huckleberryconfig CRYPTO_POLYVAL_CLMUL_NI 796*34f7f6c3SNathan Huckleberry tristate "POLYVAL hash function (CLMUL-NI accelerated)" 797*34f7f6c3SNathan Huckleberry depends on X86 && 64BIT 798*34f7f6c3SNathan Huckleberry select CRYPTO_POLYVAL 799*34f7f6c3SNathan Huckleberry help 800*34f7f6c3SNathan Huckleberry This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is 801*34f7f6c3SNathan Huckleberry used to efficiently implement HCTR2 on x86-64 processors that support 802*34f7f6c3SNathan Huckleberry carry-less multiplication instructions. 803*34f7f6c3SNathan Huckleberry 804f979e014SMartin Williconfig CRYPTO_POLY1305 805f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 806578c60fbSArnd Bergmann select CRYPTO_HASH 80748ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 808f979e014SMartin Willi help 809f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 810f979e014SMartin Willi 811f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 812f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 813f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 814f979e014SMartin Willi 815c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 816b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 817c70f4abeSMartin Willi depends on X86 && 64BIT 8181b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 819f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 820c70f4abeSMartin Willi help 821c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 822c70f4abeSMartin Willi 823c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 824c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 825c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 826c70f4abeSMartin Willi instructions. 827c70f4abeSMartin Willi 828a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 829a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 8306c810cf2SMaciej W. Rozycki depends on MIPS 831a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 832a11d055eSArd Biesheuvel 8331da177e4SLinus Torvaldsconfig CRYPTO_MD4 8341da177e4SLinus Torvalds tristate "MD4 digest algorithm" 835808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 8361da177e4SLinus Torvalds help 8371da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 8381da177e4SLinus Torvalds 8391da177e4SLinus Torvaldsconfig CRYPTO_MD5 8401da177e4SLinus Torvalds tristate "MD5 digest algorithm" 84114b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 8421da177e4SLinus Torvalds help 8431da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 8441da177e4SLinus Torvalds 845d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 846d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 847d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 848d69e75deSAaro Koskinen select CRYPTO_MD5 849d69e75deSAaro Koskinen select CRYPTO_HASH 850d69e75deSAaro Koskinen help 851d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 852d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 853d69e75deSAaro Koskinen 854e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 855e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 856e8e59953SMarkus Stockhausen depends on PPC 857e8e59953SMarkus Stockhausen select CRYPTO_HASH 858e8e59953SMarkus Stockhausen help 859e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 860e8e59953SMarkus Stockhausen in PPC assembler. 861e8e59953SMarkus Stockhausen 862fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 863fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 864fa4dfedcSDavid S. Miller depends on SPARC64 865fa4dfedcSDavid S. Miller select CRYPTO_MD5 866fa4dfedcSDavid S. Miller select CRYPTO_HASH 867fa4dfedcSDavid S. Miller help 868fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 869fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 870fa4dfedcSDavid S. Miller 871584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 872584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 87319e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 874584fffc8SSebastian Siewior help 875584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 876584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 877584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 878584fffc8SSebastian Siewior of the algorithm. 879584fffc8SSebastian Siewior 88082798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 88182798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 882e5835fbaSHerbert Xu select CRYPTO_HASH 88382798f90SAdrian-Ken Rueegsegger help 88482798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 88582798f90SAdrian-Ken Rueegsegger 88682798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 88782798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 888b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 889b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 89082798f90SAdrian-Ken Rueegsegger 891b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 892b6d44341SAdrian Bunk against RIPEMD-160. 893534fe2c1SAdrian-Ken Rueegsegger 894534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8959332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 896534fe2c1SAdrian-Ken Rueegsegger 8971da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8981da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 89954ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 9001da177e4SLinus Torvalds help 9011da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 9021da177e4SLinus Torvalds 90366be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 904e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 90566be8951SMathias Krause depends on X86 && 64BIT 90666be8951SMathias Krause select CRYPTO_SHA1 90766be8951SMathias Krause select CRYPTO_HASH 90866be8951SMathias Krause help 90966be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 91066be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 911e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 912e38b6b7fStim when available. 91366be8951SMathias Krause 9148275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 915e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 9168275d1aaSTim Chen depends on X86 && 64BIT 9178275d1aaSTim Chen select CRYPTO_SHA256 9188275d1aaSTim Chen select CRYPTO_HASH 9198275d1aaSTim Chen help 9208275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 9218275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 9228275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 923e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 924e38b6b7fStim Instructions) when available. 9258275d1aaSTim Chen 92687de4579STim Chenconfig CRYPTO_SHA512_SSSE3 92787de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 92887de4579STim Chen depends on X86 && 64BIT 92987de4579STim Chen select CRYPTO_SHA512 93087de4579STim Chen select CRYPTO_HASH 93187de4579STim Chen help 93287de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 93387de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 93487de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 93587de4579STim Chen version 2 (AVX2) instructions, when available. 93687de4579STim Chen 937efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 938efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 939efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 940efdb6f6eSAaro Koskinen select CRYPTO_SHA1 941efdb6f6eSAaro Koskinen select CRYPTO_HASH 942efdb6f6eSAaro Koskinen help 943efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 944efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 945efdb6f6eSAaro Koskinen 9464ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9474ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9484ff28d4cSDavid S. Miller depends on SPARC64 9494ff28d4cSDavid S. Miller select CRYPTO_SHA1 9504ff28d4cSDavid S. Miller select CRYPTO_HASH 9514ff28d4cSDavid S. Miller help 9524ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9534ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9544ff28d4cSDavid S. Miller 955323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 956323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 957323a6bf1SMichael Ellerman depends on PPC 958323a6bf1SMichael Ellerman help 959323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 960323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 961323a6bf1SMichael Ellerman 962d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 963d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 964d9850fc5SMarkus Stockhausen depends on PPC && SPE 965d9850fc5SMarkus Stockhausen help 966d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 967d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 968d9850fc5SMarkus Stockhausen 9691da177e4SLinus Torvaldsconfig CRYPTO_SHA256 970cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 97150e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 97208c327f6SHans de Goede select CRYPTO_LIB_SHA256 9731da177e4SLinus Torvalds help 9741da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9751da177e4SLinus Torvalds 9761da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9771da177e4SLinus Torvalds security against collision attacks. 9781da177e4SLinus Torvalds 979cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 980cd12fb90SJonathan Lynch of security against collision attacks. 981cd12fb90SJonathan Lynch 9822ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9832ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9842ecc1e95SMarkus Stockhausen depends on PPC && SPE 9852ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9862ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9872ecc1e95SMarkus Stockhausen help 9882ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9892ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9902ecc1e95SMarkus Stockhausen 991efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 992efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 993efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 994efdb6f6eSAaro Koskinen select CRYPTO_SHA256 995efdb6f6eSAaro Koskinen select CRYPTO_HASH 996efdb6f6eSAaro Koskinen help 997efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 998efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 999efdb6f6eSAaro Koskinen 100086c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 100186c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 100286c93b24SDavid S. Miller depends on SPARC64 100386c93b24SDavid S. Miller select CRYPTO_SHA256 100486c93b24SDavid S. Miller select CRYPTO_HASH 100586c93b24SDavid S. Miller help 100686c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 100786c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 100886c93b24SDavid S. Miller 10091da177e4SLinus Torvaldsconfig CRYPTO_SHA512 10101da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 1011bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 10121da177e4SLinus Torvalds help 10131da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 10141da177e4SLinus Torvalds 10151da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 10161da177e4SLinus Torvalds security against collision attacks. 10171da177e4SLinus Torvalds 10181da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 10191da177e4SLinus Torvalds of security against collision attacks. 10201da177e4SLinus Torvalds 1021efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 1022efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 1023efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 1024efdb6f6eSAaro Koskinen select CRYPTO_SHA512 1025efdb6f6eSAaro Koskinen select CRYPTO_HASH 1026efdb6f6eSAaro Koskinen help 1027efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 1028efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 1029efdb6f6eSAaro Koskinen 1030775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 1031775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1032775e0c69SDavid S. Miller depends on SPARC64 1033775e0c69SDavid S. Miller select CRYPTO_SHA512 1034775e0c69SDavid S. Miller select CRYPTO_HASH 1035775e0c69SDavid S. Miller help 1036775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 1037775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1038775e0c69SDavid S. Miller 103953964b9eSJeff Garzikconfig CRYPTO_SHA3 104053964b9eSJeff Garzik tristate "SHA3 digest algorithm" 104153964b9eSJeff Garzik select CRYPTO_HASH 104253964b9eSJeff Garzik help 104353964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 104453964b9eSJeff Garzik cryptographic sponge function family called Keccak. 104553964b9eSJeff Garzik 104653964b9eSJeff Garzik References: 104753964b9eSJeff Garzik http://keccak.noekeon.org/ 104853964b9eSJeff Garzik 10494f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 1050d2825fa9SJason A. Donenfeld tristate 1051d2825fa9SJason A. Donenfeld 1052d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC 10534f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10544f0fc160SGilad Ben-Yossef select CRYPTO_HASH 1055d2825fa9SJason A. Donenfeld select CRYPTO_SM3 10564f0fc160SGilad Ben-Yossef help 10574f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10584f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10594f0fc160SGilad Ben-Yossef 10604f0fc160SGilad Ben-Yossef References: 10614f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10624f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10634f0fc160SGilad Ben-Yossef 1064930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64 1065930ab34dSTianjia Zhang tristate "SM3 digest algorithm (x86_64/AVX)" 1066930ab34dSTianjia Zhang depends on X86 && 64BIT 1067930ab34dSTianjia Zhang select CRYPTO_HASH 1068d2825fa9SJason A. Donenfeld select CRYPTO_SM3 1069930ab34dSTianjia Zhang help 1070930ab34dSTianjia Zhang SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1071930ab34dSTianjia Zhang It is part of the Chinese Commercial Cryptography suite. This is 1072930ab34dSTianjia Zhang SM3 optimized implementation using Advanced Vector Extensions (AVX) 1073930ab34dSTianjia Zhang when available. 1074930ab34dSTianjia Zhang 1075930ab34dSTianjia Zhang If unsure, say N. 1076930ab34dSTianjia Zhang 1077fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1078fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1079fe18957eSVitaly Chikunov select CRYPTO_HASH 1080fe18957eSVitaly Chikunov help 1081fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1082fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1083fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1084fe18957eSVitaly Chikunov 1085fe18957eSVitaly Chikunov References: 1086fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1087fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1088fe18957eSVitaly Chikunov 1089584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1090584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10914946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10921da177e4SLinus Torvalds help 1093584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10941da177e4SLinus Torvalds 1095584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1096584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10971da177e4SLinus Torvalds 10981da177e4SLinus Torvalds See also: 10996d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 11001da177e4SLinus Torvalds 11010e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 11028dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 11038af00860SRichard Weinberger depends on X86 && 64BIT 11040e1227d3SHuang Ying select CRYPTO_CRYPTD 11050e1227d3SHuang Ying help 11068dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 11078dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 11080e1227d3SHuang Ying 1109584fffc8SSebastian Siewiorcomment "Ciphers" 11101da177e4SLinus Torvalds 11111da177e4SLinus Torvaldsconfig CRYPTO_AES 11121da177e4SLinus Torvalds tristate "AES cipher algorithms" 1113cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11145bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 11151da177e4SLinus Torvalds help 11161da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11171da177e4SLinus Torvalds algorithm. 11181da177e4SLinus Torvalds 11191da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11201da177e4SLinus Torvalds both hardware and software across a wide range of computing 11211da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11221da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 11231da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 11241da177e4SLinus Torvalds suited for restricted-space environments, in which it also 11251da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 11261da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11271da177e4SLinus Torvalds 11281da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11291da177e4SLinus Torvalds 11301da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 11311da177e4SLinus Torvalds 1132b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1133b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1134b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1135e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1136b5e0b032SArd Biesheuvel help 1137b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1138b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1139b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1140b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1141b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1142b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1143b5e0b032SArd Biesheuvel 1144b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1145b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1146b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1147b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11480a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11490a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1150b5e0b032SArd Biesheuvel 115154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 115254b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11538af00860SRichard Weinberger depends on X86 115485671860SHerbert Xu select CRYPTO_AEAD 11552c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 115654b6a1bdSHuang Ying select CRYPTO_ALGAPI 1157b95bba5dSEric Biggers select CRYPTO_SKCIPHER 115885671860SHerbert Xu select CRYPTO_SIMD 115954b6a1bdSHuang Ying help 116054b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 116154b6a1bdSHuang Ying 116254b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 116354b6a1bdSHuang Ying algorithm. 116454b6a1bdSHuang Ying 116554b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 116654b6a1bdSHuang Ying both hardware and software across a wide range of computing 116754b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 116854b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 116954b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 117054b6a1bdSHuang Ying suited for restricted-space environments, in which it also 117154b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 117254b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 117354b6a1bdSHuang Ying 117454b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 117554b6a1bdSHuang Ying 117654b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 117754b6a1bdSHuang Ying 11780d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11790d258efbSMathias Krause for some popular block cipher mode is supported too, including 1180944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 1181fd94fcf0SNathan Huckleberry acceleration for CTR and XCTR. 11822cf4ac8bSHuang Ying 11839bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11849bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11859bf4852dSDavid S. Miller depends on SPARC64 1186b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11879bf4852dSDavid S. Miller help 11889bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11899bf4852dSDavid S. Miller 11909bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11919bf4852dSDavid S. Miller algorithm. 11929bf4852dSDavid S. Miller 11939bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11949bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11959bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11969bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11979bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11989bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11999bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 12009bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 12019bf4852dSDavid S. Miller 12029bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 12039bf4852dSDavid S. Miller 12049bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 12059bf4852dSDavid S. Miller 12069bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 12079bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 12089bf4852dSDavid S. Miller ECB and CBC. 12099bf4852dSDavid S. Miller 1210504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1211504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1212504c6143SMarkus Stockhausen depends on PPC && SPE 1213b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1214504c6143SMarkus Stockhausen help 1215504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1216504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1217504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1218504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1219504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1220504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1221504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1222504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1223504c6143SMarkus Stockhausen 12241da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12251da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 12261674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1227cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12281da177e4SLinus Torvalds help 12291da177e4SLinus Torvalds Anubis cipher algorithm. 12301da177e4SLinus Torvalds 12311da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12321da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12331da177e4SLinus Torvalds in the NESSIE competition. 12341da177e4SLinus Torvalds 12351da177e4SLinus Torvalds See also: 12366d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12376d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12381da177e4SLinus Torvalds 1239584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1240584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 12419ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1242b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1243dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1244e2ee95b8SHye-Shik Chang help 1245584fffc8SSebastian Siewior ARC4 cipher algorithm. 1246e2ee95b8SHye-Shik Chang 1247584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1248584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1249584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1250584fffc8SSebastian Siewior weakness of the algorithm. 1251584fffc8SSebastian Siewior 1252584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1253584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1254584fffc8SSebastian Siewior select CRYPTO_ALGAPI 125552ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1256584fffc8SSebastian Siewior help 1257584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1258584fffc8SSebastian Siewior 1259584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1260584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1261584fffc8SSebastian Siewior designed for use on "large microprocessors". 1262e2ee95b8SHye-Shik Chang 1263e2ee95b8SHye-Shik Chang See also: 12649332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1265584fffc8SSebastian Siewior 126652ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 126752ba867cSJussi Kivilinna tristate 126852ba867cSJussi Kivilinna help 126952ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 127052ba867cSJussi Kivilinna generic c and the assembler implementations. 127152ba867cSJussi Kivilinna 127252ba867cSJussi Kivilinna See also: 12739332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 127452ba867cSJussi Kivilinna 127564b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 127664b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1277f21a7c19SAl Viro depends on X86 && 64BIT 1278b95bba5dSEric Biggers select CRYPTO_SKCIPHER 127964b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1280c0a64926SArd Biesheuvel imply CRYPTO_CTR 128164b94ceaSJussi Kivilinna help 128264b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 128364b94ceaSJussi Kivilinna 128464b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 128564b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 128664b94ceaSJussi Kivilinna designed for use on "large microprocessors". 128764b94ceaSJussi Kivilinna 128864b94ceaSJussi Kivilinna See also: 12899332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 129064b94ceaSJussi Kivilinna 1291584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1292584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1293584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1294584fffc8SSebastian Siewior help 1295584fffc8SSebastian Siewior Camellia cipher algorithms module. 1296584fffc8SSebastian Siewior 1297584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1298584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1299584fffc8SSebastian Siewior 1300584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1301584fffc8SSebastian Siewior 1302584fffc8SSebastian Siewior See also: 1303584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1304584fffc8SSebastian Siewior 13050b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 13060b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1307f21a7c19SAl Viro depends on X86 && 64BIT 1308b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1309a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 13100b95ec56SJussi Kivilinna help 13110b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 13120b95ec56SJussi Kivilinna 13130b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 13140b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 13150b95ec56SJussi Kivilinna 13160b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 13170b95ec56SJussi Kivilinna 13180b95ec56SJussi Kivilinna See also: 13190b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 13200b95ec56SJussi Kivilinna 1321d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1322d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1323d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1324b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1325d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 132644893bc2SEric Biggers select CRYPTO_SIMD 132755a7e88fSArd Biesheuvel imply CRYPTO_XTS 1328d9b1d2e7SJussi Kivilinna help 1329d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1330d9b1d2e7SJussi Kivilinna 1331d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1332d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1333d9b1d2e7SJussi Kivilinna 1334d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1335d9b1d2e7SJussi Kivilinna 1336d9b1d2e7SJussi Kivilinna See also: 1337d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1338d9b1d2e7SJussi Kivilinna 1339f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1340f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1341f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1342f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1343f3f935a7SJussi Kivilinna help 1344f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1345f3f935a7SJussi Kivilinna 1346f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1347f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1348f3f935a7SJussi Kivilinna 1349f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1350f3f935a7SJussi Kivilinna 1351f3f935a7SJussi Kivilinna See also: 1352f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1353f3f935a7SJussi Kivilinna 135481658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 135581658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 135681658ad0SDavid S. Miller depends on SPARC64 135781658ad0SDavid S. Miller select CRYPTO_ALGAPI 1358b95bba5dSEric Biggers select CRYPTO_SKCIPHER 135981658ad0SDavid S. Miller help 136081658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 136181658ad0SDavid S. Miller 136281658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 136381658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 136481658ad0SDavid S. Miller 136581658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 136681658ad0SDavid S. Miller 136781658ad0SDavid S. Miller See also: 136881658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 136981658ad0SDavid S. Miller 1370044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1371044ab525SJussi Kivilinna tristate 1372044ab525SJussi Kivilinna help 1373044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1374044ab525SJussi Kivilinna generic c and the assembler implementations. 1375044ab525SJussi Kivilinna 1376584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1377584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1378584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1379044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1380584fffc8SSebastian Siewior help 1381584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1382584fffc8SSebastian Siewior described in RFC2144. 1383584fffc8SSebastian Siewior 13844d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13854d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13864d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1387b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13884d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13891e63183aSEric Biggers select CRYPTO_CAST_COMMON 13901e63183aSEric Biggers select CRYPTO_SIMD 1391e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 13924d6d6a2cSJohannes Goetzfried help 13934d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13944d6d6a2cSJohannes Goetzfried described in RFC2144. 13954d6d6a2cSJohannes Goetzfried 13964d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13974d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13984d6d6a2cSJohannes Goetzfried 1399584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1400584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1401584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1402044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1403584fffc8SSebastian Siewior help 1404584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1405584fffc8SSebastian Siewior described in RFC2612. 1406584fffc8SSebastian Siewior 14074ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 14084ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 14094ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1410b95bba5dSEric Biggers select CRYPTO_SKCIPHER 14114ea1277dSJohannes Goetzfried select CRYPTO_CAST6 14124bd96924SEric Biggers select CRYPTO_CAST_COMMON 14134bd96924SEric Biggers select CRYPTO_SIMD 14142cc0fedbSArd Biesheuvel imply CRYPTO_XTS 14157a6623ccSArd Biesheuvel imply CRYPTO_CTR 14164ea1277dSJohannes Goetzfried help 14174ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 14184ea1277dSJohannes Goetzfried described in RFC2612. 14194ea1277dSJohannes Goetzfried 14204ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 14214ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14224ea1277dSJohannes Goetzfried 1423584fffc8SSebastian Siewiorconfig CRYPTO_DES 1424584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1425584fffc8SSebastian Siewior select CRYPTO_ALGAPI 142604007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1427584fffc8SSebastian Siewior help 1428584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1429584fffc8SSebastian Siewior 1430c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1431c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 143297da37b3SDave Jones depends on SPARC64 1433c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 143404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1435b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1436c5aac2dfSDavid S. Miller help 1437c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1438c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1439c5aac2dfSDavid S. Miller 14406574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14416574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14426574e6c6SJussi Kivilinna depends on X86 && 64BIT 1443b95bba5dSEric Biggers select CRYPTO_SKCIPHER 144404007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1445768db5feSArd Biesheuvel imply CRYPTO_CTR 14466574e6c6SJussi Kivilinna help 14476574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14486574e6c6SJussi Kivilinna 14496574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14506574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14516574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14526574e6c6SJussi Kivilinna one that processes three blocks parallel. 14536574e6c6SJussi Kivilinna 1454584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1455584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1456584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1457b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1458584fffc8SSebastian Siewior help 1459584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1460584fffc8SSebastian Siewior 1461584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1462584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 14631674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1464584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1465584fffc8SSebastian Siewior help 1466584fffc8SSebastian Siewior Khazad cipher algorithm. 1467584fffc8SSebastian Siewior 1468584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1469584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1470584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1471584fffc8SSebastian Siewior 1472584fffc8SSebastian Siewior See also: 14736d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1474e2ee95b8SHye-Shik Chang 1475c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1476aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14775fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1478b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1479c08d0e64SMartin Willi help 1480aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1481c08d0e64SMartin Willi 1482c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1483c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1484de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 14859332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1486c08d0e64SMartin Willi 1487de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1488de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1489de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1490de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1491de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1492de61d7aeSEric Biggers 1493aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1494aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1495aa762409SEric Biggers in some performance-sensitive scenarios. 1496aa762409SEric Biggers 1497c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14984af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1499c9320b6dSMartin Willi depends on X86 && 64BIT 1500b95bba5dSEric Biggers select CRYPTO_SKCIPHER 150128e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 150284e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1503c9320b6dSMartin Willi help 15047a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 15057a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1506c9320b6dSMartin Willi 15073a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 15083a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 15093a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1510660eda8dSEric Biggers select CRYPTO_SKCIPHER 15113a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 15123a2f58f3SArd Biesheuvel 1513584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1514584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 15151674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1516584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1517584fffc8SSebastian Siewior help 1518584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1519584fffc8SSebastian Siewior 1520584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1521584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1522584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1523584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1524584fffc8SSebastian Siewior 1525584fffc8SSebastian Siewior See also: 1526584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1527584fffc8SSebastian Siewior 1528584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1529584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1530584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1531584fffc8SSebastian Siewior help 1532584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1533584fffc8SSebastian Siewior 1534584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1535784506a1SArd Biesheuvel of 8 bits. 1536584fffc8SSebastian Siewior 1537584fffc8SSebastian Siewior See also: 15389332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1539584fffc8SSebastian Siewior 1540937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1541937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1542937c30d7SJussi Kivilinna depends on X86 && 64BIT 1543b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1544937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1545e0f409dcSEric Biggers select CRYPTO_SIMD 15462e9440aeSArd Biesheuvel imply CRYPTO_CTR 1547937c30d7SJussi Kivilinna help 1548937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1549937c30d7SJussi Kivilinna 1550937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1551937c30d7SJussi Kivilinna of 8 bits. 1552937c30d7SJussi Kivilinna 15531e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1554937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1555937c30d7SJussi Kivilinna 1556937c30d7SJussi Kivilinna See also: 15579332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1558937c30d7SJussi Kivilinna 1559251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1560251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1561251496dbSJussi Kivilinna depends on X86 && !64BIT 1562b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1563251496dbSJussi Kivilinna select CRYPTO_SERPENT 1564e0f409dcSEric Biggers select CRYPTO_SIMD 15652e9440aeSArd Biesheuvel imply CRYPTO_CTR 1566251496dbSJussi Kivilinna help 1567251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1568251496dbSJussi Kivilinna 1569251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1570251496dbSJussi Kivilinna of 8 bits. 1571251496dbSJussi Kivilinna 1572251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1573251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1574251496dbSJussi Kivilinna 1575251496dbSJussi Kivilinna See also: 15769332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1577251496dbSJussi Kivilinna 15787efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15797efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15807efe4076SJohannes Goetzfried depends on X86 && 64BIT 1581b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15827efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1583e16bf974SEric Biggers select CRYPTO_SIMD 15849ec0af8aSArd Biesheuvel imply CRYPTO_XTS 15852e9440aeSArd Biesheuvel imply CRYPTO_CTR 15867efe4076SJohannes Goetzfried help 15877efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15887efe4076SJohannes Goetzfried 15897efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15907efe4076SJohannes Goetzfried of 8 bits. 15917efe4076SJohannes Goetzfried 15927efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15937efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15947efe4076SJohannes Goetzfried 15957efe4076SJohannes Goetzfried See also: 15969332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 15977efe4076SJohannes Goetzfried 159856d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 159956d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 160056d76c96SJussi Kivilinna depends on X86 && 64BIT 160156d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 160256d76c96SJussi Kivilinna help 160356d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 160456d76c96SJussi Kivilinna 160556d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 160656d76c96SJussi Kivilinna of 8 bits. 160756d76c96SJussi Kivilinna 160856d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 160956d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 161056d76c96SJussi Kivilinna 161156d76c96SJussi Kivilinna See also: 16129332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 161356d76c96SJussi Kivilinna 1614747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1615d2825fa9SJason A. Donenfeld tristate 1616d2825fa9SJason A. Donenfeld 1617d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC 1618747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1619747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1620d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1621747c8ce4SGilad Ben-Yossef help 1622747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1623747c8ce4SGilad Ben-Yossef 1624747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1625747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1626747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1627747c8ce4SGilad Ben-Yossef 1628747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1629747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1630747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1631747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1632747c8ce4SGilad Ben-Yossef 1633747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1634747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1635747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1636747c8ce4SGilad Ben-Yossef 1637747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1638747c8ce4SGilad Ben-Yossef 1639747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1640747c8ce4SGilad Ben-Yossef 1641747c8ce4SGilad Ben-Yossef If unsure, say N. 1642747c8ce4SGilad Ben-Yossef 1643a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64 1644a7ee22eeSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1645a7ee22eeSTianjia Zhang depends on X86 && 64BIT 1646a7ee22eeSTianjia Zhang select CRYPTO_SKCIPHER 1647a7ee22eeSTianjia Zhang select CRYPTO_SIMD 1648a7ee22eeSTianjia Zhang select CRYPTO_ALGAPI 1649d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1650a7ee22eeSTianjia Zhang help 1651a7ee22eeSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1652a7ee22eeSTianjia Zhang 1653a7ee22eeSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1654a7ee22eeSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 1655a7ee22eeSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 1656a7ee22eeSTianjia Zhang 1657a7ee22eeSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX/x86_64 1658a7ee22eeSTianjia Zhang instruction set for block cipher. Through two affine transforms, 1659a7ee22eeSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1660a7ee22eeSTianjia Zhang effect of instruction acceleration. 1661a7ee22eeSTianjia Zhang 1662a7ee22eeSTianjia Zhang If unsure, say N. 1663a7ee22eeSTianjia Zhang 16645b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64 16655b2efa2bSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 16665b2efa2bSTianjia Zhang depends on X86 && 64BIT 16675b2efa2bSTianjia Zhang select CRYPTO_SKCIPHER 16685b2efa2bSTianjia Zhang select CRYPTO_SIMD 16695b2efa2bSTianjia Zhang select CRYPTO_ALGAPI 1670d2825fa9SJason A. Donenfeld select CRYPTO_SM4 16715b2efa2bSTianjia Zhang select CRYPTO_SM4_AESNI_AVX_X86_64 16725b2efa2bSTianjia Zhang help 16735b2efa2bSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 16745b2efa2bSTianjia Zhang 16755b2efa2bSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 16765b2efa2bSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 16775b2efa2bSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 16785b2efa2bSTianjia Zhang 16795b2efa2bSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX2/x86_64 16805b2efa2bSTianjia Zhang instruction set for block cipher. Through two affine transforms, 16815b2efa2bSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 16825b2efa2bSTianjia Zhang effect of instruction acceleration. 16835b2efa2bSTianjia Zhang 16845b2efa2bSTianjia Zhang If unsure, say N. 16855b2efa2bSTianjia Zhang 1686584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1687584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 16881674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1689584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1690584fffc8SSebastian Siewior help 1691584fffc8SSebastian Siewior TEA cipher algorithm. 1692584fffc8SSebastian Siewior 1693584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1694584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1695584fffc8SSebastian Siewior little memory. 1696584fffc8SSebastian Siewior 1697584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1698584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1699584fffc8SSebastian Siewior in the TEA algorithm. 1700584fffc8SSebastian Siewior 1701584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1702584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1703584fffc8SSebastian Siewior 1704584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1705584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1706584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1707584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1708584fffc8SSebastian Siewior help 1709584fffc8SSebastian Siewior Twofish cipher algorithm. 1710584fffc8SSebastian Siewior 1711584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1712584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1713584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1714584fffc8SSebastian Siewior bits. 1715584fffc8SSebastian Siewior 1716584fffc8SSebastian Siewior See also: 17179332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1718584fffc8SSebastian Siewior 1719584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1720584fffc8SSebastian Siewior tristate 1721584fffc8SSebastian Siewior help 1722584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1723584fffc8SSebastian Siewior generic c and the assembler implementations. 1724584fffc8SSebastian Siewior 1725584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1726584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1727584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1728584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1729584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1730f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1731584fffc8SSebastian Siewior help 1732584fffc8SSebastian Siewior Twofish cipher algorithm. 1733584fffc8SSebastian Siewior 1734584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1735584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1736584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1737584fffc8SSebastian Siewior bits. 1738584fffc8SSebastian Siewior 1739584fffc8SSebastian Siewior See also: 17409332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1741584fffc8SSebastian Siewior 1742584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1743584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1744584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1745584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1746584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1747f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1748584fffc8SSebastian Siewior help 1749584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1750584fffc8SSebastian Siewior 1751584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1752584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1753584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1754584fffc8SSebastian Siewior bits. 1755584fffc8SSebastian Siewior 1756584fffc8SSebastian Siewior See also: 17579332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1758584fffc8SSebastian Siewior 17598280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17608280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1761f21a7c19SAl Viro depends on X86 && 64BIT 1762b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17638280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17648280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 17658280daadSJussi Kivilinna help 17668280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17678280daadSJussi Kivilinna 17688280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17698280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17708280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17718280daadSJussi Kivilinna bits. 17728280daadSJussi Kivilinna 17738280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17748280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17758280daadSJussi Kivilinna 17768280daadSJussi Kivilinna See also: 17779332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 17788280daadSJussi Kivilinna 1779107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1780107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1781107778b5SJohannes Goetzfried depends on X86 && 64BIT 1782b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17830e6ab46dSEric Biggers select CRYPTO_SIMD 1784107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1785107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1786107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1787da4df93aSArd Biesheuvel imply CRYPTO_XTS 1788107778b5SJohannes Goetzfried help 1789107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1790107778b5SJohannes Goetzfried 1791107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1792107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1793107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1794107778b5SJohannes Goetzfried bits. 1795107778b5SJohannes Goetzfried 1796107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1797107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1798107778b5SJohannes Goetzfried 1799107778b5SJohannes Goetzfried See also: 18009332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1801107778b5SJohannes Goetzfried 1802584fffc8SSebastian Siewiorcomment "Compression" 1803584fffc8SSebastian Siewior 18041da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 18051da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1806cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1807f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 18081da177e4SLinus Torvalds select ZLIB_INFLATE 18091da177e4SLinus Torvalds select ZLIB_DEFLATE 18101da177e4SLinus Torvalds help 18111da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 18121da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 18131da177e4SLinus Torvalds 18141da177e4SLinus Torvalds You will most probably want this if using IPSec. 18151da177e4SLinus Torvalds 18160b77abb3SZoltan Sogorconfig CRYPTO_LZO 18170b77abb3SZoltan Sogor tristate "LZO compression algorithm" 18180b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1819ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 18200b77abb3SZoltan Sogor select LZO_COMPRESS 18210b77abb3SZoltan Sogor select LZO_DECOMPRESS 18220b77abb3SZoltan Sogor help 18230b77abb3SZoltan Sogor This is the LZO algorithm. 18240b77abb3SZoltan Sogor 182535a1fc18SSeth Jenningsconfig CRYPTO_842 182635a1fc18SSeth Jennings tristate "842 compression algorithm" 18272062c5b6SDan Streetman select CRYPTO_ALGAPI 18286a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 18292062c5b6SDan Streetman select 842_COMPRESS 18302062c5b6SDan Streetman select 842_DECOMPRESS 183135a1fc18SSeth Jennings help 183235a1fc18SSeth Jennings This is the 842 algorithm. 183335a1fc18SSeth Jennings 18340ea8530dSChanho Minconfig CRYPTO_LZ4 18350ea8530dSChanho Min tristate "LZ4 compression algorithm" 18360ea8530dSChanho Min select CRYPTO_ALGAPI 18378cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 18380ea8530dSChanho Min select LZ4_COMPRESS 18390ea8530dSChanho Min select LZ4_DECOMPRESS 18400ea8530dSChanho Min help 18410ea8530dSChanho Min This is the LZ4 algorithm. 18420ea8530dSChanho Min 18430ea8530dSChanho Minconfig CRYPTO_LZ4HC 18440ea8530dSChanho Min tristate "LZ4HC compression algorithm" 18450ea8530dSChanho Min select CRYPTO_ALGAPI 184691d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 18470ea8530dSChanho Min select LZ4HC_COMPRESS 18480ea8530dSChanho Min select LZ4_DECOMPRESS 18490ea8530dSChanho Min help 18500ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 18510ea8530dSChanho Min 1852d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1853d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1854d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1855d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1856d28fc3dbSNick Terrell select ZSTD_COMPRESS 1857d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1858d28fc3dbSNick Terrell help 1859d28fc3dbSNick Terrell This is the zstd algorithm. 1860d28fc3dbSNick Terrell 186117f0f4a4SNeil Hormancomment "Random Number Generation" 186217f0f4a4SNeil Horman 186317f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 186417f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 186517f0f4a4SNeil Horman select CRYPTO_AES 186617f0f4a4SNeil Horman select CRYPTO_RNG 186717f0f4a4SNeil Horman help 186817f0f4a4SNeil Horman This option enables the generic pseudo random number generator 186917f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18707dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18717dd607e8SJiri Kosina CRYPTO_FIPS is selected 187217f0f4a4SNeil Horman 1873f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1874419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1875419090c6SStephan Mueller help 1876419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1877419090c6SStephan Mueller more of the DRBG types must be selected. 1878419090c6SStephan Mueller 1879f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1880419090c6SStephan Mueller 1881419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1882401e4238SHerbert Xu bool 1883419090c6SStephan Mueller default y 1884419090c6SStephan Mueller select CRYPTO_HMAC 18855261cdf4SStephan Mueller select CRYPTO_SHA512 1886419090c6SStephan Mueller 1887419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1888419090c6SStephan Mueller bool "Enable Hash DRBG" 1889826775bbSHerbert Xu select CRYPTO_SHA256 1890419090c6SStephan Mueller help 1891419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1892419090c6SStephan Mueller 1893419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1894419090c6SStephan Mueller bool "Enable CTR DRBG" 1895419090c6SStephan Mueller select CRYPTO_AES 1896d6fc1a45SCorentin Labbe select CRYPTO_CTR 1897419090c6SStephan Mueller help 1898419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1899419090c6SStephan Mueller 1900f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1901f2c89a10SHerbert Xu tristate 1902401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1903f2c89a10SHerbert Xu select CRYPTO_RNG 1904bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1905f2c89a10SHerbert Xu 1906f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1907419090c6SStephan Mueller 1908bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1909bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 19102f313e02SArnd Bergmann select CRYPTO_RNG 1911bb5530e4SStephan Mueller help 1912bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1913bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1914bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1915bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1916bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1917bb5530e4SStephan Mueller 1918026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR 1919026a733eSStephan Müller tristate 1920a88592ccSHerbert Xu select CRYPTO_HMAC 1921304b4aceSStephan Müller select CRYPTO_SHA256 1922026a733eSStephan Müller 192303c8efc1SHerbert Xuconfig CRYPTO_USER_API 192403c8efc1SHerbert Xu tristate 192503c8efc1SHerbert Xu 1926fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1927fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 19287451708fSHerbert Xu depends on NET 1929fe869cdbSHerbert Xu select CRYPTO_HASH 1930fe869cdbSHerbert Xu select CRYPTO_USER_API 1931fe869cdbSHerbert Xu help 1932fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1933fe869cdbSHerbert Xu algorithms. 1934fe869cdbSHerbert Xu 19358ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 19368ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 19377451708fSHerbert Xu depends on NET 1938b95bba5dSEric Biggers select CRYPTO_SKCIPHER 19398ff59090SHerbert Xu select CRYPTO_USER_API 19408ff59090SHerbert Xu help 19418ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 19428ff59090SHerbert Xu key cipher algorithms. 19438ff59090SHerbert Xu 19442f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 19452f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 19462f375538SStephan Mueller depends on NET 19472f375538SStephan Mueller select CRYPTO_RNG 19482f375538SStephan Mueller select CRYPTO_USER_API 19492f375538SStephan Mueller help 19502f375538SStephan Mueller This option enables the user-spaces interface for random 19512f375538SStephan Mueller number generator algorithms. 19522f375538SStephan Mueller 195377ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 195477ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 195577ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 195677ebdabeSElena Petrova help 195777ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 195877ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 195977ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 196077ebdabeSElena Petrova no unless you know what this is. 196177ebdabeSElena Petrova 1962b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1963b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1964b64a2d95SHerbert Xu depends on NET 1965b64a2d95SHerbert Xu select CRYPTO_AEAD 1966b95bba5dSEric Biggers select CRYPTO_SKCIPHER 196772548b09SStephan Mueller select CRYPTO_NULL 1968b64a2d95SHerbert Xu select CRYPTO_USER_API 1969b64a2d95SHerbert Xu help 1970b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1971b64a2d95SHerbert Xu cipher algorithms. 1972b64a2d95SHerbert Xu 19739ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 19749ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 19759ace6771SArd Biesheuvel depends on CRYPTO_USER_API 19769ace6771SArd Biesheuvel default y 19779ace6771SArd Biesheuvel help 19789ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 19799ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 19809ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 19819ace6771SArd Biesheuvel 1982cac5818cSCorentin Labbeconfig CRYPTO_STATS 1983cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1984a6a31385SCorentin Labbe depends on CRYPTO_USER 1985cac5818cSCorentin Labbe help 1986cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1987cac5818cSCorentin Labbe This will collect: 1988cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1989cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1990cac5818cSCorentin Labbe - size and numbers of hash operations 1991cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1992cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1993cac5818cSCorentin Labbe 1994ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1995ee08997fSDmitry Kasatkin bool 1996ee08997fSDmitry Kasatkin 19971da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19988636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19998636a1f9SMasahiro Yamadasource "certs/Kconfig" 20001da177e4SLinus Torvalds 2001cce9e06dSHerbert Xuendif # if CRYPTO 2002