1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 18920b0442SJason A. Donenfeld select LIB_MEMNEQ 191da177e4SLinus Torvalds help 201da177e4SLinus Torvalds This option provides the core Cryptographic API. 211da177e4SLinus Torvalds 22cce9e06dSHerbert Xuif CRYPTO 23cce9e06dSHerbert Xu 24584fffc8SSebastian Siewiorcomment "Crypto core or helper" 25584fffc8SSebastian Siewior 26ccb778e1SNeil Hormanconfig CRYPTO_FIPS 27ccb778e1SNeil Horman bool "FIPS 200 compliance" 28f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 291f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 30ccb778e1SNeil Horman help 31d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 32d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 33ccb778e1SNeil Horman certification. You should say no unless you know what 34e84c5480SChuck Ebbert this is. 35ccb778e1SNeil Horman 36cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 37cce9e06dSHerbert Xu tristate 386a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 39cce9e06dSHerbert Xu help 40cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 41cce9e06dSHerbert Xu 426a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 436a0fcbb4SHerbert Xu tristate 446a0fcbb4SHerbert Xu 451ae97820SHerbert Xuconfig CRYPTO_AEAD 461ae97820SHerbert Xu tristate 476a0fcbb4SHerbert Xu select CRYPTO_AEAD2 481ae97820SHerbert Xu select CRYPTO_ALGAPI 491ae97820SHerbert Xu 506a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 516a0fcbb4SHerbert Xu tristate 526a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 53149a3971SHerbert Xu select CRYPTO_NULL2 54149a3971SHerbert Xu select CRYPTO_RNG2 556a0fcbb4SHerbert Xu 56b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 575cde0af2SHerbert Xu tristate 58b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 595cde0af2SHerbert Xu select CRYPTO_ALGAPI 606a0fcbb4SHerbert Xu 61b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 626a0fcbb4SHerbert Xu tristate 636a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 646a0fcbb4SHerbert Xu select CRYPTO_RNG2 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1172b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1186a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1192b8c19dbSHerbert Xu help 1202b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1212b8c19dbSHerbert Xu cbc(aes). 1222b8c19dbSHerbert Xu 1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1246a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1256a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1266a0fcbb4SHerbert Xu select CRYPTO_HASH2 127b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 128946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1294e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1302ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1316a0fcbb4SHerbert Xu 132a38f7907SSteffen Klassertconfig CRYPTO_USER 133a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1345db017aaSHerbert Xu depends on NET 135a38f7907SSteffen Klassert select CRYPTO_MANAGER 136a38f7907SSteffen Klassert help 137d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 138a38f7907SSteffen Klassert cbc(aes). 139a38f7907SSteffen Klassert 140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 141326a6346SHerbert Xu bool "Disable run-time self tests" 14200ca28a5SHerbert Xu default y 1430b767f96SAlexander Shishkin help 144326a6346SHerbert Xu Disable run-time self tests that normally take place at 145326a6346SHerbert Xu algorithm registration. 1460b767f96SAlexander Shishkin 1475b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1485b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1496569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1505b2706a4SEric Biggers help 1515b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1525b2706a4SEric Biggers including randomized fuzz tests. 1535b2706a4SEric Biggers 1545b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1555b2706a4SEric Biggers longer to run than the normal self tests. 1565b2706a4SEric Biggers 157584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 158e590e132SEric Biggers tristate 159584fffc8SSebastian Siewior 160584fffc8SSebastian Siewiorconfig CRYPTO_NULL 161584fffc8SSebastian Siewior tristate "Null algorithms" 162149a3971SHerbert Xu select CRYPTO_NULL2 163584fffc8SSebastian Siewior help 164584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 165584fffc8SSebastian Siewior 166149a3971SHerbert Xuconfig CRYPTO_NULL2 167dd43c4e9SHerbert Xu tristate 168149a3971SHerbert Xu select CRYPTO_ALGAPI2 169b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 170149a3971SHerbert Xu select CRYPTO_HASH2 171149a3971SHerbert Xu 1725068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1733b4afaf2SKees Cook tristate "Parallel crypto engine" 1743b4afaf2SKees Cook depends on SMP 1755068c7a8SSteffen Klassert select PADATA 1765068c7a8SSteffen Klassert select CRYPTO_MANAGER 1775068c7a8SSteffen Klassert select CRYPTO_AEAD 1785068c7a8SSteffen Klassert help 1795068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1805068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1815068c7a8SSteffen Klassert 182584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 183584fffc8SSebastian Siewior tristate "Software async crypto daemon" 184b95bba5dSEric Biggers select CRYPTO_SKCIPHER 185b8a28251SLoc Ho select CRYPTO_HASH 186584fffc8SSebastian Siewior select CRYPTO_MANAGER 187584fffc8SSebastian Siewior help 188584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 189584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 190584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 191584fffc8SSebastian Siewior 192584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 193584fffc8SSebastian Siewior tristate "Authenc support" 194584fffc8SSebastian Siewior select CRYPTO_AEAD 195b95bba5dSEric Biggers select CRYPTO_SKCIPHER 196584fffc8SSebastian Siewior select CRYPTO_MANAGER 197584fffc8SSebastian Siewior select CRYPTO_HASH 198e94c6a7aSHerbert Xu select CRYPTO_NULL 199584fffc8SSebastian Siewior help 200584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 201584fffc8SSebastian Siewior This is required for IPSec. 202584fffc8SSebastian Siewior 203584fffc8SSebastian Siewiorconfig CRYPTO_TEST 204584fffc8SSebastian Siewior tristate "Testing module" 20500ea27f1SArd Biesheuvel depends on m || EXPERT 206da7f033dSHerbert Xu select CRYPTO_MANAGER 207584fffc8SSebastian Siewior help 208584fffc8SSebastian Siewior Quick & dirty crypto test module. 209584fffc8SSebastian Siewior 210266d0516SHerbert Xuconfig CRYPTO_SIMD 211266d0516SHerbert Xu tristate 212266d0516SHerbert Xu select CRYPTO_CRYPTD 213266d0516SHerbert Xu 214735d37b5SBaolin Wangconfig CRYPTO_ENGINE 215735d37b5SBaolin Wang tristate 216735d37b5SBaolin Wang 2173d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2183d6228a5SVitaly Chikunov 2193d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2203d6228a5SVitaly Chikunov tristate "RSA algorithm" 2213d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2223d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2233d6228a5SVitaly Chikunov select MPILIB 2243d6228a5SVitaly Chikunov select ASN1 2253d6228a5SVitaly Chikunov help 2263d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2273d6228a5SVitaly Chikunov 2283d6228a5SVitaly Chikunovconfig CRYPTO_DH 2293d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2303d6228a5SVitaly Chikunov select CRYPTO_KPP 2313d6228a5SVitaly Chikunov select MPILIB 2323d6228a5SVitaly Chikunov help 2333d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2343d6228a5SVitaly Chikunov 2357dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS 2367dce5981SNicolai Stange bool "Support for RFC 7919 FFDHE group parameters" 2377dce5981SNicolai Stange depends on CRYPTO_DH 2381e207964SNicolai Stange select CRYPTO_RNG_DEFAULT 2397dce5981SNicolai Stange help 2407dce5981SNicolai Stange Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 2417dce5981SNicolai Stange 2424a2289daSVitaly Chikunovconfig CRYPTO_ECC 2434a2289daSVitaly Chikunov tristate 24438aa192aSArnd Bergmann select CRYPTO_RNG_DEFAULT 2454a2289daSVitaly Chikunov 2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2473d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2484a2289daSVitaly Chikunov select CRYPTO_ECC 2493d6228a5SVitaly Chikunov select CRYPTO_KPP 2503d6228a5SVitaly Chikunov help 2513d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2523d6228a5SVitaly Chikunov 2534e660291SStefan Bergerconfig CRYPTO_ECDSA 2544e660291SStefan Berger tristate "ECDSA (NIST P192, P256 etc.) algorithm" 2554e660291SStefan Berger select CRYPTO_ECC 2564e660291SStefan Berger select CRYPTO_AKCIPHER 2574e660291SStefan Berger select ASN1 2584e660291SStefan Berger help 2594e660291SStefan Berger Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 2604e660291SStefan Berger is A NIST cryptographic standard algorithm. Only signature verification 2614e660291SStefan Berger is implemented. 2624e660291SStefan Berger 2630d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2640d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2650d7a7864SVitaly Chikunov select CRYPTO_ECC 2660d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2670d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2681036633eSVitaly Chikunov select OID_REGISTRY 2691036633eSVitaly Chikunov select ASN1 2700d7a7864SVitaly Chikunov help 2710d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2720d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2730d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2740d7a7864SVitaly Chikunov is implemented. 2750d7a7864SVitaly Chikunov 276ea7ecb66STianjia Zhangconfig CRYPTO_SM2 277ea7ecb66STianjia Zhang tristate "SM2 algorithm" 278d2825fa9SJason A. Donenfeld select CRYPTO_SM3 279ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 280ea7ecb66STianjia Zhang select CRYPTO_MANAGER 281ea7ecb66STianjia Zhang select MPILIB 282ea7ecb66STianjia Zhang select ASN1 283ea7ecb66STianjia Zhang help 284ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 285ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 286ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 287ea7ecb66STianjia Zhang 288ea7ecb66STianjia Zhang References: 289ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 290ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 291ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 292ea7ecb66STianjia Zhang 293ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 294ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 295ee772cb6SArd Biesheuvel select CRYPTO_KPP 296ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 297ee772cb6SArd Biesheuvel 298bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 299bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 300bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 301bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 302bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 303bb611bdfSJason A. Donenfeld 304584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 305584fffc8SSebastian Siewior 306584fffc8SSebastian Siewiorconfig CRYPTO_CCM 307584fffc8SSebastian Siewior tristate "CCM support" 308584fffc8SSebastian Siewior select CRYPTO_CTR 309f15f05b0SArd Biesheuvel select CRYPTO_HASH 310584fffc8SSebastian Siewior select CRYPTO_AEAD 311c8a3315aSEric Biggers select CRYPTO_MANAGER 312584fffc8SSebastian Siewior help 313584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 314584fffc8SSebastian Siewior 315584fffc8SSebastian Siewiorconfig CRYPTO_GCM 316584fffc8SSebastian Siewior tristate "GCM/GMAC support" 317584fffc8SSebastian Siewior select CRYPTO_CTR 318584fffc8SSebastian Siewior select CRYPTO_AEAD 3199382d97aSHuang Ying select CRYPTO_GHASH 3209489667dSJussi Kivilinna select CRYPTO_NULL 321c8a3315aSEric Biggers select CRYPTO_MANAGER 322584fffc8SSebastian Siewior help 323584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 324584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 325584fffc8SSebastian Siewior 32671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 32771ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 32871ebc4d1SMartin Willi select CRYPTO_CHACHA20 32971ebc4d1SMartin Willi select CRYPTO_POLY1305 33071ebc4d1SMartin Willi select CRYPTO_AEAD 331c8a3315aSEric Biggers select CRYPTO_MANAGER 33271ebc4d1SMartin Willi help 33371ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 33471ebc4d1SMartin Willi 33571ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 33671ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 33771ebc4d1SMartin Willi IETF protocols. 33871ebc4d1SMartin Willi 339f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 340f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 341f606a88eSOndrej Mosnacek select CRYPTO_AEAD 342f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 343f606a88eSOndrej Mosnacek help 344f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 345f606a88eSOndrej Mosnacek 346a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 347a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 348a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 349a4397635SArd Biesheuvel default y 350a4397635SArd Biesheuvel 3511d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3521d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3531d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3541d373d4eSOndrej Mosnacek select CRYPTO_AEAD 355de272ca7SEric Biggers select CRYPTO_SIMD 3561d373d4eSOndrej Mosnacek help 3574e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3581d373d4eSOndrej Mosnacek 359584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 360584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 361584fffc8SSebastian Siewior select CRYPTO_AEAD 362b95bba5dSEric Biggers select CRYPTO_SKCIPHER 363856e3f40SHerbert Xu select CRYPTO_NULL 364401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 365c8a3315aSEric Biggers select CRYPTO_MANAGER 366584fffc8SSebastian Siewior help 367584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 368584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 369584fffc8SSebastian Siewior 370a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 371a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 372a10f554fSHerbert Xu select CRYPTO_AEAD 373a10f554fSHerbert Xu select CRYPTO_NULL 374401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 375c8a3315aSEric Biggers select CRYPTO_MANAGER 376a10f554fSHerbert Xu help 377a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 378a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 379a10f554fSHerbert Xu algorithm for CBC. 380a10f554fSHerbert Xu 381584fffc8SSebastian Siewiorcomment "Block modes" 382584fffc8SSebastian Siewior 383584fffc8SSebastian Siewiorconfig CRYPTO_CBC 384584fffc8SSebastian Siewior tristate "CBC support" 385b95bba5dSEric Biggers select CRYPTO_SKCIPHER 386584fffc8SSebastian Siewior select CRYPTO_MANAGER 387584fffc8SSebastian Siewior help 388584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 389584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 390584fffc8SSebastian Siewior 391a7d85e06SJames Bottomleyconfig CRYPTO_CFB 392a7d85e06SJames Bottomley tristate "CFB support" 393b95bba5dSEric Biggers select CRYPTO_SKCIPHER 394a7d85e06SJames Bottomley select CRYPTO_MANAGER 395a7d85e06SJames Bottomley help 396a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 397a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 398a7d85e06SJames Bottomley 399584fffc8SSebastian Siewiorconfig CRYPTO_CTR 400584fffc8SSebastian Siewior tristate "CTR support" 401b95bba5dSEric Biggers select CRYPTO_SKCIPHER 402584fffc8SSebastian Siewior select CRYPTO_MANAGER 403584fffc8SSebastian Siewior help 404584fffc8SSebastian Siewior CTR: Counter mode 405584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 406584fffc8SSebastian Siewior 407584fffc8SSebastian Siewiorconfig CRYPTO_CTS 408584fffc8SSebastian Siewior tristate "CTS support" 409b95bba5dSEric Biggers select CRYPTO_SKCIPHER 410c8a3315aSEric Biggers select CRYPTO_MANAGER 411584fffc8SSebastian Siewior help 412584fffc8SSebastian Siewior CTS: Cipher Text Stealing 413584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 414ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 415ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 416ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 417584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 418584fffc8SSebastian Siewior for AES encryption. 419584fffc8SSebastian Siewior 420ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 421ecd6d5c9SGilad Ben-Yossef 422584fffc8SSebastian Siewiorconfig CRYPTO_ECB 423584fffc8SSebastian Siewior tristate "ECB support" 424b95bba5dSEric Biggers select CRYPTO_SKCIPHER 425584fffc8SSebastian Siewior select CRYPTO_MANAGER 426584fffc8SSebastian Siewior help 427584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 428584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 429584fffc8SSebastian Siewior the input block by block. 430584fffc8SSebastian Siewior 431584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4322470a2b2SJussi Kivilinna tristate "LRW support" 433b95bba5dSEric Biggers select CRYPTO_SKCIPHER 434584fffc8SSebastian Siewior select CRYPTO_MANAGER 435584fffc8SSebastian Siewior select CRYPTO_GF128MUL 436f60bbbbeSHerbert Xu select CRYPTO_ECB 437584fffc8SSebastian Siewior help 438584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 439584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 440584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 441584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 442584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 443584fffc8SSebastian Siewior 444e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 445e497c518SGilad Ben-Yossef tristate "OFB support" 446b95bba5dSEric Biggers select CRYPTO_SKCIPHER 447e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 448e497c518SGilad Ben-Yossef help 449e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 450e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 451e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 452e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 453e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 454e497c518SGilad Ben-Yossef normally even when applied before encryption. 455e497c518SGilad Ben-Yossef 456584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 457584fffc8SSebastian Siewior tristate "PCBC support" 458b95bba5dSEric Biggers select CRYPTO_SKCIPHER 459584fffc8SSebastian Siewior select CRYPTO_MANAGER 460584fffc8SSebastian Siewior help 461584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 462584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 463584fffc8SSebastian Siewior 46417fee07aSNathan Huckleberryconfig CRYPTO_XCTR 46517fee07aSNathan Huckleberry tristate 46617fee07aSNathan Huckleberry select CRYPTO_SKCIPHER 46717fee07aSNathan Huckleberry select CRYPTO_MANAGER 46817fee07aSNathan Huckleberry help 46917fee07aSNathan Huckleberry XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode 47017fee07aSNathan Huckleberry using XORs and little-endian addition rather than big-endian arithmetic. 47117fee07aSNathan Huckleberry XCTR mode is used to implement HCTR2. 47217fee07aSNathan Huckleberry 473584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4745bcf8e6dSJussi Kivilinna tristate "XTS support" 475b95bba5dSEric Biggers select CRYPTO_SKCIPHER 476584fffc8SSebastian Siewior select CRYPTO_MANAGER 47712cb3a1cSMilan Broz select CRYPTO_ECB 478584fffc8SSebastian Siewior help 479584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 480584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 481584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 482584fffc8SSebastian Siewior 4831c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4841c49678eSStephan Mueller tristate "Key wrapping support" 485b95bba5dSEric Biggers select CRYPTO_SKCIPHER 486c8a3315aSEric Biggers select CRYPTO_MANAGER 4871c49678eSStephan Mueller help 4881c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4891c49678eSStephan Mueller padding. 4901c49678eSStephan Mueller 49126609a21SEric Biggersconfig CRYPTO_NHPOLY1305 49226609a21SEric Biggers tristate 49326609a21SEric Biggers select CRYPTO_HASH 49448ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 49526609a21SEric Biggers 496012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 497012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 498012c8238SEric Biggers depends on X86 && 64BIT 499012c8238SEric Biggers select CRYPTO_NHPOLY1305 500012c8238SEric Biggers help 501012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 502012c8238SEric Biggers Adiantum encryption mode. 503012c8238SEric Biggers 5040f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5050f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5060f961f9fSEric Biggers depends on X86 && 64BIT 5070f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5080f961f9fSEric Biggers help 5090f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5100f961f9fSEric Biggers Adiantum encryption mode. 5110f961f9fSEric Biggers 512059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 513059c2a4dSEric Biggers tristate "Adiantum support" 514059c2a4dSEric Biggers select CRYPTO_CHACHA20 51548ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 516059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 517c8a3315aSEric Biggers select CRYPTO_MANAGER 518059c2a4dSEric Biggers help 519059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 520059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 521059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 522059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 523059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 524059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 525059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 526059c2a4dSEric Biggers AES-XTS. 527059c2a4dSEric Biggers 528059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 529059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 530059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 531059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 532059c2a4dSEric Biggers security than XTS, subject to the security bound. 533059c2a4dSEric Biggers 534059c2a4dSEric Biggers If unsure, say N. 535059c2a4dSEric Biggers 5367ff554ceSNathan Huckleberryconfig CRYPTO_HCTR2 5377ff554ceSNathan Huckleberry tristate "HCTR2 support" 5387ff554ceSNathan Huckleberry select CRYPTO_XCTR 5397ff554ceSNathan Huckleberry select CRYPTO_POLYVAL 5407ff554ceSNathan Huckleberry select CRYPTO_MANAGER 5417ff554ceSNathan Huckleberry help 5427ff554ceSNathan Huckleberry HCTR2 is a length-preserving encryption mode for storage encryption that 5437ff554ceSNathan Huckleberry is efficient on processors with instructions to accelerate AES and 5447ff554ceSNathan Huckleberry carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and 5457ff554ceSNathan Huckleberry ARM processors with the ARMv8 crypto extensions. 5467ff554ceSNathan Huckleberry 547be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 548be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 549be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 550be1eb7f7SArd Biesheuvel help 551be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 552be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 553be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 554be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 555be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 556be1eb7f7SArd Biesheuvel encryption. 557be1eb7f7SArd Biesheuvel 558be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 559ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 560be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 561be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 562ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 563be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 564be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 565be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 566be1eb7f7SArd Biesheuvel 567be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 568be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 569be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 570be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 571be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 572be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 573be1eb7f7SArd Biesheuvel block encryption) 574be1eb7f7SArd Biesheuvel 575584fffc8SSebastian Siewiorcomment "Hash modes" 576584fffc8SSebastian Siewior 57793b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 57893b5e86aSJussi Kivilinna tristate "CMAC support" 57993b5e86aSJussi Kivilinna select CRYPTO_HASH 58093b5e86aSJussi Kivilinna select CRYPTO_MANAGER 58193b5e86aSJussi Kivilinna help 58293b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 58393b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 58493b5e86aSJussi Kivilinna 58593b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 58693b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 58793b5e86aSJussi Kivilinna 5881da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5898425165dSHerbert Xu tristate "HMAC support" 5900796ae06SHerbert Xu select CRYPTO_HASH 59143518407SHerbert Xu select CRYPTO_MANAGER 5921da177e4SLinus Torvalds help 5931da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5941da177e4SLinus Torvalds This is required for IPSec. 5951da177e4SLinus Torvalds 596333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 597333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 598333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 599333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 600333b0d7eSKazunori MIYAZAWA help 601333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 6029332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 603333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 604333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 605333b0d7eSKazunori MIYAZAWA 606f1939f7cSShane Wangconfig CRYPTO_VMAC 607f1939f7cSShane Wang tristate "VMAC support" 608f1939f7cSShane Wang select CRYPTO_HASH 609f1939f7cSShane Wang select CRYPTO_MANAGER 610f1939f7cSShane Wang help 611f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 612f1939f7cSShane Wang very high speed on 64-bit architectures. 613f1939f7cSShane Wang 614f1939f7cSShane Wang See also: 6159332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 616f1939f7cSShane Wang 617584fffc8SSebastian Siewiorcomment "Digest" 618584fffc8SSebastian Siewior 619584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 620584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6215773a3e6SHerbert Xu select CRYPTO_HASH 6226a0962b2SDarrick J. Wong select CRC32 6231da177e4SLinus Torvalds help 624584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 625584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 62669c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6271da177e4SLinus Torvalds 6288cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6298cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6308cb51ba8SAustin Zhang depends on X86 6318cb51ba8SAustin Zhang select CRYPTO_HASH 6328cb51ba8SAustin Zhang help 6338cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6348cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6358cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6368cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6378cb51ba8SAustin Zhang gain performance compared with software implementation. 6388cb51ba8SAustin Zhang Module will be crc32c-intel. 6398cb51ba8SAustin Zhang 6407cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6416dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 642c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6436dd7a82cSAnton Blanchard select CRYPTO_HASH 6446dd7a82cSAnton Blanchard select CRC32 6456dd7a82cSAnton Blanchard help 6466dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6476dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6486dd7a82cSAnton Blanchard and newer processors for improved performance. 6496dd7a82cSAnton Blanchard 6506dd7a82cSAnton Blanchard 651442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 652442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 653442a7c40SDavid S. Miller depends on SPARC64 654442a7c40SDavid S. Miller select CRYPTO_HASH 655442a7c40SDavid S. Miller select CRC32 656442a7c40SDavid S. Miller help 657442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 658442a7c40SDavid S. Miller when available. 659442a7c40SDavid S. Miller 66078c37d19SAlexander Boykoconfig CRYPTO_CRC32 66178c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 66278c37d19SAlexander Boyko select CRYPTO_HASH 66378c37d19SAlexander Boyko select CRC32 66478c37d19SAlexander Boyko help 66578c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 66678c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 66778c37d19SAlexander Boyko 66878c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 66978c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 67078c37d19SAlexander Boyko depends on X86 67178c37d19SAlexander Boyko select CRYPTO_HASH 67278c37d19SAlexander Boyko select CRC32 67378c37d19SAlexander Boyko help 67478c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 67578c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 67678c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 677af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 67878c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 67978c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 68078c37d19SAlexander Boyko 6814a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6824a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6834a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6844a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6854a5dc51eSMarcin Nowakowski help 6864a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6874a5dc51eSMarcin Nowakowski instructions, when available. 6884a5dc51eSMarcin Nowakowski 6894a5dc51eSMarcin Nowakowski 69067882e76SNikolay Borisovconfig CRYPTO_XXHASH 69167882e76SNikolay Borisov tristate "xxHash hash algorithm" 69267882e76SNikolay Borisov select CRYPTO_HASH 69367882e76SNikolay Borisov select XXHASH 69467882e76SNikolay Borisov help 69567882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 69667882e76SNikolay Borisov speeds close to RAM limits. 69767882e76SNikolay Borisov 69891d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 69991d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 70091d68933SDavid Sterba select CRYPTO_HASH 70191d68933SDavid Sterba help 70291d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 70391d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 70491d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 70591d68933SDavid Sterba 70691d68933SDavid Sterba This module provides the following algorithms: 70791d68933SDavid Sterba 70891d68933SDavid Sterba - blake2b-160 70991d68933SDavid Sterba - blake2b-256 71091d68933SDavid Sterba - blake2b-384 71191d68933SDavid Sterba - blake2b-512 71291d68933SDavid Sterba 71391d68933SDavid Sterba See https://blake2.net for further information. 71491d68933SDavid Sterba 715ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 716*2d16803cSJason A. Donenfeld bool "BLAKE2s digest algorithm (x86 accelerated version)" 717ed0356edSJason A. Donenfeld depends on X86 && 64BIT 718ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 719ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 720ed0356edSJason A. Donenfeld 72168411521SHerbert Xuconfig CRYPTO_CRCT10DIF 72268411521SHerbert Xu tristate "CRCT10DIF algorithm" 72368411521SHerbert Xu select CRYPTO_HASH 72468411521SHerbert Xu help 72568411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 72668411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 72768411521SHerbert Xu transforms to be used if they are available. 72868411521SHerbert Xu 72968411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 73068411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 73168411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 73268411521SHerbert Xu select CRYPTO_HASH 73368411521SHerbert Xu help 73468411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 73568411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 73668411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 737af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 73868411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 73968411521SHerbert Xu 740b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 741b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 742b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 743b01df1c1SDaniel Axtens select CRYPTO_HASH 744b01df1c1SDaniel Axtens help 745b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 746b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 747b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 748b01df1c1SDaniel Axtens 749f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT 750f3813f4bSKeith Busch tristate "Rocksoft Model CRC64 algorithm" 751f3813f4bSKeith Busch depends on CRC64 752f3813f4bSKeith Busch select CRYPTO_HASH 753f3813f4bSKeith Busch 754146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 755146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 756146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 757146c8688SDaniel Axtens help 758146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 759146c8688SDaniel Axtens POWER8 vpmsum instructions. 760146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 761146c8688SDaniel Axtens 7622cdc6899SHuang Yingconfig CRYPTO_GHASH 7638dfa20fcSEric Biggers tristate "GHASH hash function" 7642cdc6899SHuang Ying select CRYPTO_GF128MUL 765578c60fbSArnd Bergmann select CRYPTO_HASH 7662cdc6899SHuang Ying help 7678dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7688dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7692cdc6899SHuang Ying 770f3c923a0SNathan Huckleberryconfig CRYPTO_POLYVAL 771f3c923a0SNathan Huckleberry tristate 772f3c923a0SNathan Huckleberry select CRYPTO_GF128MUL 773f3c923a0SNathan Huckleberry select CRYPTO_HASH 774f3c923a0SNathan Huckleberry help 775f3c923a0SNathan Huckleberry POLYVAL is the hash function used in HCTR2. It is not a general-purpose 776f3c923a0SNathan Huckleberry cryptographic hash function. 777f3c923a0SNathan Huckleberry 77834f7f6c3SNathan Huckleberryconfig CRYPTO_POLYVAL_CLMUL_NI 77934f7f6c3SNathan Huckleberry tristate "POLYVAL hash function (CLMUL-NI accelerated)" 78034f7f6c3SNathan Huckleberry depends on X86 && 64BIT 78134f7f6c3SNathan Huckleberry select CRYPTO_POLYVAL 78234f7f6c3SNathan Huckleberry help 78334f7f6c3SNathan Huckleberry This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is 78434f7f6c3SNathan Huckleberry used to efficiently implement HCTR2 on x86-64 processors that support 78534f7f6c3SNathan Huckleberry carry-less multiplication instructions. 78634f7f6c3SNathan Huckleberry 787f979e014SMartin Williconfig CRYPTO_POLY1305 788f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 789578c60fbSArnd Bergmann select CRYPTO_HASH 79048ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 791f979e014SMartin Willi help 792f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 793f979e014SMartin Willi 794f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 795f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 796f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 797f979e014SMartin Willi 798c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 799b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 800c70f4abeSMartin Willi depends on X86 && 64BIT 8011b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 802f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 803c70f4abeSMartin Willi help 804c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 805c70f4abeSMartin Willi 806c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 807c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 808c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 809c70f4abeSMartin Willi instructions. 810c70f4abeSMartin Willi 811a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 812a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 8136c810cf2SMaciej W. Rozycki depends on MIPS 814a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 815a11d055eSArd Biesheuvel 8161da177e4SLinus Torvaldsconfig CRYPTO_MD4 8171da177e4SLinus Torvalds tristate "MD4 digest algorithm" 818808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 8191da177e4SLinus Torvalds help 8201da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 8211da177e4SLinus Torvalds 8221da177e4SLinus Torvaldsconfig CRYPTO_MD5 8231da177e4SLinus Torvalds tristate "MD5 digest algorithm" 82414b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 8251da177e4SLinus Torvalds help 8261da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 8271da177e4SLinus Torvalds 828d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 829d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 830d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 831d69e75deSAaro Koskinen select CRYPTO_MD5 832d69e75deSAaro Koskinen select CRYPTO_HASH 833d69e75deSAaro Koskinen help 834d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 835d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 836d69e75deSAaro Koskinen 837e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 838e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 839e8e59953SMarkus Stockhausen depends on PPC 840e8e59953SMarkus Stockhausen select CRYPTO_HASH 841e8e59953SMarkus Stockhausen help 842e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 843e8e59953SMarkus Stockhausen in PPC assembler. 844e8e59953SMarkus Stockhausen 845fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 846fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 847fa4dfedcSDavid S. Miller depends on SPARC64 848fa4dfedcSDavid S. Miller select CRYPTO_MD5 849fa4dfedcSDavid S. Miller select CRYPTO_HASH 850fa4dfedcSDavid S. Miller help 851fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 852fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 853fa4dfedcSDavid S. Miller 854584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 855584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 85619e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 857584fffc8SSebastian Siewior help 858584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 859584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 860584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 861584fffc8SSebastian Siewior of the algorithm. 862584fffc8SSebastian Siewior 86382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 86482798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 865e5835fbaSHerbert Xu select CRYPTO_HASH 86682798f90SAdrian-Ken Rueegsegger help 86782798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 86882798f90SAdrian-Ken Rueegsegger 86982798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 87082798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 871b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 872b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 87382798f90SAdrian-Ken Rueegsegger 874b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 875b6d44341SAdrian Bunk against RIPEMD-160. 876534fe2c1SAdrian-Ken Rueegsegger 877534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8789332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 879534fe2c1SAdrian-Ken Rueegsegger 8801da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8811da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 88254ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8831da177e4SLinus Torvalds help 8841da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8851da177e4SLinus Torvalds 88666be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 887e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 88866be8951SMathias Krause depends on X86 && 64BIT 88966be8951SMathias Krause select CRYPTO_SHA1 89066be8951SMathias Krause select CRYPTO_HASH 89166be8951SMathias Krause help 89266be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 89366be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 894e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 895e38b6b7fStim when available. 89666be8951SMathias Krause 8978275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 898e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8998275d1aaSTim Chen depends on X86 && 64BIT 9008275d1aaSTim Chen select CRYPTO_SHA256 9018275d1aaSTim Chen select CRYPTO_HASH 9028275d1aaSTim Chen help 9038275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 9048275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 9058275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 906e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 907e38b6b7fStim Instructions) when available. 9088275d1aaSTim Chen 90987de4579STim Chenconfig CRYPTO_SHA512_SSSE3 91087de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 91187de4579STim Chen depends on X86 && 64BIT 91287de4579STim Chen select CRYPTO_SHA512 91387de4579STim Chen select CRYPTO_HASH 91487de4579STim Chen help 91587de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 91687de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 91787de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 91887de4579STim Chen version 2 (AVX2) instructions, when available. 91987de4579STim Chen 920efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 921efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 922efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 923efdb6f6eSAaro Koskinen select CRYPTO_SHA1 924efdb6f6eSAaro Koskinen select CRYPTO_HASH 925efdb6f6eSAaro Koskinen help 926efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 927efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 928efdb6f6eSAaro Koskinen 9294ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9304ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9314ff28d4cSDavid S. Miller depends on SPARC64 9324ff28d4cSDavid S. Miller select CRYPTO_SHA1 9334ff28d4cSDavid S. Miller select CRYPTO_HASH 9344ff28d4cSDavid S. Miller help 9354ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9364ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9374ff28d4cSDavid S. Miller 938323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 939323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 940323a6bf1SMichael Ellerman depends on PPC 941323a6bf1SMichael Ellerman help 942323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 943323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 944323a6bf1SMichael Ellerman 945d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 946d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 947d9850fc5SMarkus Stockhausen depends on PPC && SPE 948d9850fc5SMarkus Stockhausen help 949d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 950d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 951d9850fc5SMarkus Stockhausen 9521da177e4SLinus Torvaldsconfig CRYPTO_SHA256 953cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 95450e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 95508c327f6SHans de Goede select CRYPTO_LIB_SHA256 9561da177e4SLinus Torvalds help 9571da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9581da177e4SLinus Torvalds 9591da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9601da177e4SLinus Torvalds security against collision attacks. 9611da177e4SLinus Torvalds 962cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 963cd12fb90SJonathan Lynch of security against collision attacks. 964cd12fb90SJonathan Lynch 9652ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9662ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9672ecc1e95SMarkus Stockhausen depends on PPC && SPE 9682ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9692ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9702ecc1e95SMarkus Stockhausen help 9712ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9722ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9732ecc1e95SMarkus Stockhausen 974efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 975efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 976efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 977efdb6f6eSAaro Koskinen select CRYPTO_SHA256 978efdb6f6eSAaro Koskinen select CRYPTO_HASH 979efdb6f6eSAaro Koskinen help 980efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 981efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 982efdb6f6eSAaro Koskinen 98386c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 98486c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 98586c93b24SDavid S. Miller depends on SPARC64 98686c93b24SDavid S. Miller select CRYPTO_SHA256 98786c93b24SDavid S. Miller select CRYPTO_HASH 98886c93b24SDavid S. Miller help 98986c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 99086c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 99186c93b24SDavid S. Miller 9921da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9931da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 994bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9951da177e4SLinus Torvalds help 9961da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9971da177e4SLinus Torvalds 9981da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9991da177e4SLinus Torvalds security against collision attacks. 10001da177e4SLinus Torvalds 10011da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 10021da177e4SLinus Torvalds of security against collision attacks. 10031da177e4SLinus Torvalds 1004efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 1005efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 1006efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 1007efdb6f6eSAaro Koskinen select CRYPTO_SHA512 1008efdb6f6eSAaro Koskinen select CRYPTO_HASH 1009efdb6f6eSAaro Koskinen help 1010efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 1011efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 1012efdb6f6eSAaro Koskinen 1013775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 1014775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1015775e0c69SDavid S. Miller depends on SPARC64 1016775e0c69SDavid S. Miller select CRYPTO_SHA512 1017775e0c69SDavid S. Miller select CRYPTO_HASH 1018775e0c69SDavid S. Miller help 1019775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 1020775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1021775e0c69SDavid S. Miller 102253964b9eSJeff Garzikconfig CRYPTO_SHA3 102353964b9eSJeff Garzik tristate "SHA3 digest algorithm" 102453964b9eSJeff Garzik select CRYPTO_HASH 102553964b9eSJeff Garzik help 102653964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 102753964b9eSJeff Garzik cryptographic sponge function family called Keccak. 102853964b9eSJeff Garzik 102953964b9eSJeff Garzik References: 103053964b9eSJeff Garzik http://keccak.noekeon.org/ 103153964b9eSJeff Garzik 10324f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 1033d2825fa9SJason A. Donenfeld tristate 1034d2825fa9SJason A. Donenfeld 1035d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC 10364f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10374f0fc160SGilad Ben-Yossef select CRYPTO_HASH 1038d2825fa9SJason A. Donenfeld select CRYPTO_SM3 10394f0fc160SGilad Ben-Yossef help 10404f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10414f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10424f0fc160SGilad Ben-Yossef 10434f0fc160SGilad Ben-Yossef References: 10444f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10454f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10464f0fc160SGilad Ben-Yossef 1047930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64 1048930ab34dSTianjia Zhang tristate "SM3 digest algorithm (x86_64/AVX)" 1049930ab34dSTianjia Zhang depends on X86 && 64BIT 1050930ab34dSTianjia Zhang select CRYPTO_HASH 1051d2825fa9SJason A. Donenfeld select CRYPTO_SM3 1052930ab34dSTianjia Zhang help 1053930ab34dSTianjia Zhang SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1054930ab34dSTianjia Zhang It is part of the Chinese Commercial Cryptography suite. This is 1055930ab34dSTianjia Zhang SM3 optimized implementation using Advanced Vector Extensions (AVX) 1056930ab34dSTianjia Zhang when available. 1057930ab34dSTianjia Zhang 1058930ab34dSTianjia Zhang If unsure, say N. 1059930ab34dSTianjia Zhang 1060fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1061fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1062fe18957eSVitaly Chikunov select CRYPTO_HASH 1063fe18957eSVitaly Chikunov help 1064fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1065fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1066fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1067fe18957eSVitaly Chikunov 1068fe18957eSVitaly Chikunov References: 1069fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1070fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1071fe18957eSVitaly Chikunov 1072584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1073584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10744946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10751da177e4SLinus Torvalds help 1076584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10771da177e4SLinus Torvalds 1078584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1079584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10801da177e4SLinus Torvalds 10811da177e4SLinus Torvalds See also: 10826d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10831da177e4SLinus Torvalds 10840e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10858dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10868af00860SRichard Weinberger depends on X86 && 64BIT 10870e1227d3SHuang Ying select CRYPTO_CRYPTD 10880e1227d3SHuang Ying help 10898dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10908dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10910e1227d3SHuang Ying 1092584fffc8SSebastian Siewiorcomment "Ciphers" 10931da177e4SLinus Torvalds 10941da177e4SLinus Torvaldsconfig CRYPTO_AES 10951da177e4SLinus Torvalds tristate "AES cipher algorithms" 1096cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10975bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10981da177e4SLinus Torvalds help 10991da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 11001da177e4SLinus Torvalds algorithm. 11011da177e4SLinus Torvalds 11021da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 11031da177e4SLinus Torvalds both hardware and software across a wide range of computing 11041da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 11051da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 11061da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 11071da177e4SLinus Torvalds suited for restricted-space environments, in which it also 11081da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 11091da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 11101da177e4SLinus Torvalds 11111da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11121da177e4SLinus Torvalds 11131da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 11141da177e4SLinus Torvalds 1115b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1116b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1117b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1118e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1119b5e0b032SArd Biesheuvel help 1120b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1121b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1122b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1123b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1124b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1125b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1126b5e0b032SArd Biesheuvel 1127b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1128b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1129b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1130b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11310a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11320a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1133b5e0b032SArd Biesheuvel 113454b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 113554b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11368af00860SRichard Weinberger depends on X86 113785671860SHerbert Xu select CRYPTO_AEAD 11382c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 113954b6a1bdSHuang Ying select CRYPTO_ALGAPI 1140b95bba5dSEric Biggers select CRYPTO_SKCIPHER 114185671860SHerbert Xu select CRYPTO_SIMD 114254b6a1bdSHuang Ying help 114354b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 114454b6a1bdSHuang Ying 114554b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 114654b6a1bdSHuang Ying algorithm. 114754b6a1bdSHuang Ying 114854b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 114954b6a1bdSHuang Ying both hardware and software across a wide range of computing 115054b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 115154b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 115254b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 115354b6a1bdSHuang Ying suited for restricted-space environments, in which it also 115454b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 115554b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 115654b6a1bdSHuang Ying 115754b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 115854b6a1bdSHuang Ying 115954b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 116054b6a1bdSHuang Ying 11610d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11620d258efbSMathias Krause for some popular block cipher mode is supported too, including 1163944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 1164fd94fcf0SNathan Huckleberry acceleration for CTR and XCTR. 11652cf4ac8bSHuang Ying 11669bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11679bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11689bf4852dSDavid S. Miller depends on SPARC64 1169b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11709bf4852dSDavid S. Miller help 11719bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11729bf4852dSDavid S. Miller 11739bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11749bf4852dSDavid S. Miller algorithm. 11759bf4852dSDavid S. Miller 11769bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11779bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11789bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11799bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11809bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11819bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11829bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11839bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11849bf4852dSDavid S. Miller 11859bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11869bf4852dSDavid S. Miller 11879bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11889bf4852dSDavid S. Miller 11899bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11909bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11919bf4852dSDavid S. Miller ECB and CBC. 11929bf4852dSDavid S. Miller 1193504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1194504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1195504c6143SMarkus Stockhausen depends on PPC && SPE 1196b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1197504c6143SMarkus Stockhausen help 1198504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1199504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1200504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1201504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1202504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1203504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1204504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1205504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1206504c6143SMarkus Stockhausen 12071da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 12081da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 12091674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1210cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12111da177e4SLinus Torvalds help 12121da177e4SLinus Torvalds Anubis cipher algorithm. 12131da177e4SLinus Torvalds 12141da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12151da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12161da177e4SLinus Torvalds in the NESSIE competition. 12171da177e4SLinus Torvalds 12181da177e4SLinus Torvalds See also: 12196d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12206d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12211da177e4SLinus Torvalds 1222584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1223584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 12249ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1225b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1226dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1227e2ee95b8SHye-Shik Chang help 1228584fffc8SSebastian Siewior ARC4 cipher algorithm. 1229e2ee95b8SHye-Shik Chang 1230584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1231584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1232584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1233584fffc8SSebastian Siewior weakness of the algorithm. 1234584fffc8SSebastian Siewior 1235584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1236584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1237584fffc8SSebastian Siewior select CRYPTO_ALGAPI 123852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1239584fffc8SSebastian Siewior help 1240584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1241584fffc8SSebastian Siewior 1242584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1243584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1244584fffc8SSebastian Siewior designed for use on "large microprocessors". 1245e2ee95b8SHye-Shik Chang 1246e2ee95b8SHye-Shik Chang See also: 12479332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1248584fffc8SSebastian Siewior 124952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 125052ba867cSJussi Kivilinna tristate 125152ba867cSJussi Kivilinna help 125252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 125352ba867cSJussi Kivilinna generic c and the assembler implementations. 125452ba867cSJussi Kivilinna 125552ba867cSJussi Kivilinna See also: 12569332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 125752ba867cSJussi Kivilinna 125864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 125964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1260f21a7c19SAl Viro depends on X86 && 64BIT 1261b95bba5dSEric Biggers select CRYPTO_SKCIPHER 126264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1263c0a64926SArd Biesheuvel imply CRYPTO_CTR 126464b94ceaSJussi Kivilinna help 126564b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 126664b94ceaSJussi Kivilinna 126764b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 126864b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 126964b94ceaSJussi Kivilinna designed for use on "large microprocessors". 127064b94ceaSJussi Kivilinna 127164b94ceaSJussi Kivilinna See also: 12729332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 127364b94ceaSJussi Kivilinna 1274584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1275584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1276584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1277584fffc8SSebastian Siewior help 1278584fffc8SSebastian Siewior Camellia cipher algorithms module. 1279584fffc8SSebastian Siewior 1280584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1281584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1282584fffc8SSebastian Siewior 1283584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1284584fffc8SSebastian Siewior 1285584fffc8SSebastian Siewior See also: 1286584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1287584fffc8SSebastian Siewior 12880b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12890b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1290f21a7c19SAl Viro depends on X86 && 64BIT 1291b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1292a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 12930b95ec56SJussi Kivilinna help 12940b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12950b95ec56SJussi Kivilinna 12960b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12970b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12980b95ec56SJussi Kivilinna 12990b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 13000b95ec56SJussi Kivilinna 13010b95ec56SJussi Kivilinna See also: 13020b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 13030b95ec56SJussi Kivilinna 1304d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1305d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1306d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1307b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1308d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 130944893bc2SEric Biggers select CRYPTO_SIMD 131055a7e88fSArd Biesheuvel imply CRYPTO_XTS 1311d9b1d2e7SJussi Kivilinna help 1312d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1313d9b1d2e7SJussi Kivilinna 1314d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1315d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1316d9b1d2e7SJussi Kivilinna 1317d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1318d9b1d2e7SJussi Kivilinna 1319d9b1d2e7SJussi Kivilinna See also: 1320d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1321d9b1d2e7SJussi Kivilinna 1322f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1323f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1324f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1325f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1326f3f935a7SJussi Kivilinna help 1327f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1328f3f935a7SJussi Kivilinna 1329f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1330f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1331f3f935a7SJussi Kivilinna 1332f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1333f3f935a7SJussi Kivilinna 1334f3f935a7SJussi Kivilinna See also: 1335f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1336f3f935a7SJussi Kivilinna 133781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 133881658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 133981658ad0SDavid S. Miller depends on SPARC64 134081658ad0SDavid S. Miller select CRYPTO_ALGAPI 1341b95bba5dSEric Biggers select CRYPTO_SKCIPHER 134281658ad0SDavid S. Miller help 134381658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 134481658ad0SDavid S. Miller 134581658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 134681658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 134781658ad0SDavid S. Miller 134881658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 134981658ad0SDavid S. Miller 135081658ad0SDavid S. Miller See also: 135181658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 135281658ad0SDavid S. Miller 1353044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1354044ab525SJussi Kivilinna tristate 1355044ab525SJussi Kivilinna help 1356044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1357044ab525SJussi Kivilinna generic c and the assembler implementations. 1358044ab525SJussi Kivilinna 1359584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1360584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1361584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1362044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1363584fffc8SSebastian Siewior help 1364584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1365584fffc8SSebastian Siewior described in RFC2144. 1366584fffc8SSebastian Siewior 13674d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13684d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13694d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1370b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13714d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13721e63183aSEric Biggers select CRYPTO_CAST_COMMON 13731e63183aSEric Biggers select CRYPTO_SIMD 1374e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 13754d6d6a2cSJohannes Goetzfried help 13764d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13774d6d6a2cSJohannes Goetzfried described in RFC2144. 13784d6d6a2cSJohannes Goetzfried 13794d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13804d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13814d6d6a2cSJohannes Goetzfried 1382584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1383584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1384584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1385044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1386584fffc8SSebastian Siewior help 1387584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1388584fffc8SSebastian Siewior described in RFC2612. 1389584fffc8SSebastian Siewior 13904ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13914ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13924ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1393b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13944ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13954bd96924SEric Biggers select CRYPTO_CAST_COMMON 13964bd96924SEric Biggers select CRYPTO_SIMD 13972cc0fedbSArd Biesheuvel imply CRYPTO_XTS 13987a6623ccSArd Biesheuvel imply CRYPTO_CTR 13994ea1277dSJohannes Goetzfried help 14004ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 14014ea1277dSJohannes Goetzfried described in RFC2612. 14024ea1277dSJohannes Goetzfried 14034ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 14044ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 14054ea1277dSJohannes Goetzfried 1406584fffc8SSebastian Siewiorconfig CRYPTO_DES 1407584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1408584fffc8SSebastian Siewior select CRYPTO_ALGAPI 140904007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1410584fffc8SSebastian Siewior help 1411584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1412584fffc8SSebastian Siewior 1413c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1414c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 141597da37b3SDave Jones depends on SPARC64 1416c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 141704007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1418b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1419c5aac2dfSDavid S. Miller help 1420c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1421c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1422c5aac2dfSDavid S. Miller 14236574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14246574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14256574e6c6SJussi Kivilinna depends on X86 && 64BIT 1426b95bba5dSEric Biggers select CRYPTO_SKCIPHER 142704007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1428768db5feSArd Biesheuvel imply CRYPTO_CTR 14296574e6c6SJussi Kivilinna help 14306574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14316574e6c6SJussi Kivilinna 14326574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14336574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14346574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14356574e6c6SJussi Kivilinna one that processes three blocks parallel. 14366574e6c6SJussi Kivilinna 1437584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1438584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1439584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1440b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1441584fffc8SSebastian Siewior help 1442584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1443584fffc8SSebastian Siewior 1444584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1445584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 14461674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1447584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1448584fffc8SSebastian Siewior help 1449584fffc8SSebastian Siewior Khazad cipher algorithm. 1450584fffc8SSebastian Siewior 1451584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1452584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1453584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1454584fffc8SSebastian Siewior 1455584fffc8SSebastian Siewior See also: 14566d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1457e2ee95b8SHye-Shik Chang 1458c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1459aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14605fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1461b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1462c08d0e64SMartin Willi help 1463aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1464c08d0e64SMartin Willi 1465c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1466c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1467de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 14689332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1469c08d0e64SMartin Willi 1470de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1471de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1472de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1473de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1474de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1475de61d7aeSEric Biggers 1476aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1477aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1478aa762409SEric Biggers in some performance-sensitive scenarios. 1479aa762409SEric Biggers 1480c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14814af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1482c9320b6dSMartin Willi depends on X86 && 64BIT 1483b95bba5dSEric Biggers select CRYPTO_SKCIPHER 148428e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 148584e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1486c9320b6dSMartin Willi help 14877a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14887a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1489c9320b6dSMartin Willi 14903a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14913a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14923a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1493660eda8dSEric Biggers select CRYPTO_SKCIPHER 14943a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14953a2f58f3SArd Biesheuvel 1496584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1497584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 14981674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1499584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1500584fffc8SSebastian Siewior help 1501584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1502584fffc8SSebastian Siewior 1503584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1504584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1505584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1506584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1507584fffc8SSebastian Siewior 1508584fffc8SSebastian Siewior See also: 1509584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1510584fffc8SSebastian Siewior 1511584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1512584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1513584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1514584fffc8SSebastian Siewior help 1515584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1516584fffc8SSebastian Siewior 1517584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1518784506a1SArd Biesheuvel of 8 bits. 1519584fffc8SSebastian Siewior 1520584fffc8SSebastian Siewior See also: 15219332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1522584fffc8SSebastian Siewior 1523937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1524937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1525937c30d7SJussi Kivilinna depends on X86 && 64BIT 1526b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1527937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1528e0f409dcSEric Biggers select CRYPTO_SIMD 15292e9440aeSArd Biesheuvel imply CRYPTO_CTR 1530937c30d7SJussi Kivilinna help 1531937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1532937c30d7SJussi Kivilinna 1533937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1534937c30d7SJussi Kivilinna of 8 bits. 1535937c30d7SJussi Kivilinna 15361e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1537937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1538937c30d7SJussi Kivilinna 1539937c30d7SJussi Kivilinna See also: 15409332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1541937c30d7SJussi Kivilinna 1542251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1543251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1544251496dbSJussi Kivilinna depends on X86 && !64BIT 1545b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1546251496dbSJussi Kivilinna select CRYPTO_SERPENT 1547e0f409dcSEric Biggers select CRYPTO_SIMD 15482e9440aeSArd Biesheuvel imply CRYPTO_CTR 1549251496dbSJussi Kivilinna help 1550251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1551251496dbSJussi Kivilinna 1552251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1553251496dbSJussi Kivilinna of 8 bits. 1554251496dbSJussi Kivilinna 1555251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1556251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1557251496dbSJussi Kivilinna 1558251496dbSJussi Kivilinna See also: 15599332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1560251496dbSJussi Kivilinna 15617efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15627efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15637efe4076SJohannes Goetzfried depends on X86 && 64BIT 1564b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15657efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1566e16bf974SEric Biggers select CRYPTO_SIMD 15679ec0af8aSArd Biesheuvel imply CRYPTO_XTS 15682e9440aeSArd Biesheuvel imply CRYPTO_CTR 15697efe4076SJohannes Goetzfried help 15707efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15717efe4076SJohannes Goetzfried 15727efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15737efe4076SJohannes Goetzfried of 8 bits. 15747efe4076SJohannes Goetzfried 15757efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15767efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15777efe4076SJohannes Goetzfried 15787efe4076SJohannes Goetzfried See also: 15799332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 15807efe4076SJohannes Goetzfried 158156d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 158256d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 158356d76c96SJussi Kivilinna depends on X86 && 64BIT 158456d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 158556d76c96SJussi Kivilinna help 158656d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 158756d76c96SJussi Kivilinna 158856d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 158956d76c96SJussi Kivilinna of 8 bits. 159056d76c96SJussi Kivilinna 159156d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 159256d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 159356d76c96SJussi Kivilinna 159456d76c96SJussi Kivilinna See also: 15959332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 159656d76c96SJussi Kivilinna 1597747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1598d2825fa9SJason A. Donenfeld tristate 1599d2825fa9SJason A. Donenfeld 1600d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC 1601747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1602747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1603d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1604747c8ce4SGilad Ben-Yossef help 1605747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1606747c8ce4SGilad Ben-Yossef 1607747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1608747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1609747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1610747c8ce4SGilad Ben-Yossef 1611747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1612747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1613747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1614747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1615747c8ce4SGilad Ben-Yossef 1616747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1617747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1618747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1619747c8ce4SGilad Ben-Yossef 1620747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1621747c8ce4SGilad Ben-Yossef 1622747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1623747c8ce4SGilad Ben-Yossef 1624747c8ce4SGilad Ben-Yossef If unsure, say N. 1625747c8ce4SGilad Ben-Yossef 1626a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64 1627a7ee22eeSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1628a7ee22eeSTianjia Zhang depends on X86 && 64BIT 1629a7ee22eeSTianjia Zhang select CRYPTO_SKCIPHER 1630a7ee22eeSTianjia Zhang select CRYPTO_SIMD 1631a7ee22eeSTianjia Zhang select CRYPTO_ALGAPI 1632d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1633a7ee22eeSTianjia Zhang help 1634a7ee22eeSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1635a7ee22eeSTianjia Zhang 1636a7ee22eeSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1637a7ee22eeSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 1638a7ee22eeSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 1639a7ee22eeSTianjia Zhang 1640a7ee22eeSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX/x86_64 1641a7ee22eeSTianjia Zhang instruction set for block cipher. Through two affine transforms, 1642a7ee22eeSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1643a7ee22eeSTianjia Zhang effect of instruction acceleration. 1644a7ee22eeSTianjia Zhang 1645a7ee22eeSTianjia Zhang If unsure, say N. 1646a7ee22eeSTianjia Zhang 16475b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64 16485b2efa2bSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 16495b2efa2bSTianjia Zhang depends on X86 && 64BIT 16505b2efa2bSTianjia Zhang select CRYPTO_SKCIPHER 16515b2efa2bSTianjia Zhang select CRYPTO_SIMD 16525b2efa2bSTianjia Zhang select CRYPTO_ALGAPI 1653d2825fa9SJason A. Donenfeld select CRYPTO_SM4 16545b2efa2bSTianjia Zhang select CRYPTO_SM4_AESNI_AVX_X86_64 16555b2efa2bSTianjia Zhang help 16565b2efa2bSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 16575b2efa2bSTianjia Zhang 16585b2efa2bSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 16595b2efa2bSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 16605b2efa2bSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 16615b2efa2bSTianjia Zhang 16625b2efa2bSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX2/x86_64 16635b2efa2bSTianjia Zhang instruction set for block cipher. Through two affine transforms, 16645b2efa2bSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 16655b2efa2bSTianjia Zhang effect of instruction acceleration. 16665b2efa2bSTianjia Zhang 16675b2efa2bSTianjia Zhang If unsure, say N. 16685b2efa2bSTianjia Zhang 1669584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1670584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 16711674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1672584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1673584fffc8SSebastian Siewior help 1674584fffc8SSebastian Siewior TEA cipher algorithm. 1675584fffc8SSebastian Siewior 1676584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1677584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1678584fffc8SSebastian Siewior little memory. 1679584fffc8SSebastian Siewior 1680584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1681584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1682584fffc8SSebastian Siewior in the TEA algorithm. 1683584fffc8SSebastian Siewior 1684584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1685584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1686584fffc8SSebastian Siewior 1687584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1688584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1689584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1690584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1691584fffc8SSebastian Siewior help 1692584fffc8SSebastian Siewior Twofish cipher algorithm. 1693584fffc8SSebastian Siewior 1694584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1695584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1696584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1697584fffc8SSebastian Siewior bits. 1698584fffc8SSebastian Siewior 1699584fffc8SSebastian Siewior See also: 17009332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1701584fffc8SSebastian Siewior 1702584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1703584fffc8SSebastian Siewior tristate 1704584fffc8SSebastian Siewior help 1705584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1706584fffc8SSebastian Siewior generic c and the assembler implementations. 1707584fffc8SSebastian Siewior 1708584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1709584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1710584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1711584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1712584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1713f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1714584fffc8SSebastian Siewior help 1715584fffc8SSebastian Siewior Twofish cipher algorithm. 1716584fffc8SSebastian Siewior 1717584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1718584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1719584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1720584fffc8SSebastian Siewior bits. 1721584fffc8SSebastian Siewior 1722584fffc8SSebastian Siewior See also: 17239332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1724584fffc8SSebastian Siewior 1725584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1726584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1727584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1728584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1729584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1730f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1731584fffc8SSebastian Siewior help 1732584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1733584fffc8SSebastian Siewior 1734584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1735584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1736584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1737584fffc8SSebastian Siewior bits. 1738584fffc8SSebastian Siewior 1739584fffc8SSebastian Siewior See also: 17409332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1741584fffc8SSebastian Siewior 17428280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17438280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1744f21a7c19SAl Viro depends on X86 && 64BIT 1745b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17468280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17478280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 17488280daadSJussi Kivilinna help 17498280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17508280daadSJussi Kivilinna 17518280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17528280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17538280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17548280daadSJussi Kivilinna bits. 17558280daadSJussi Kivilinna 17568280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17578280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17588280daadSJussi Kivilinna 17598280daadSJussi Kivilinna See also: 17609332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 17618280daadSJussi Kivilinna 1762107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1763107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1764107778b5SJohannes Goetzfried depends on X86 && 64BIT 1765b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17660e6ab46dSEric Biggers select CRYPTO_SIMD 1767107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1768107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1769107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1770da4df93aSArd Biesheuvel imply CRYPTO_XTS 1771107778b5SJohannes Goetzfried help 1772107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1773107778b5SJohannes Goetzfried 1774107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1775107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1776107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1777107778b5SJohannes Goetzfried bits. 1778107778b5SJohannes Goetzfried 1779107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1780107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1781107778b5SJohannes Goetzfried 1782107778b5SJohannes Goetzfried See also: 17839332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1784107778b5SJohannes Goetzfried 1785584fffc8SSebastian Siewiorcomment "Compression" 1786584fffc8SSebastian Siewior 17871da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17881da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1789cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1790f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17911da177e4SLinus Torvalds select ZLIB_INFLATE 17921da177e4SLinus Torvalds select ZLIB_DEFLATE 17931da177e4SLinus Torvalds help 17941da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17951da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17961da177e4SLinus Torvalds 17971da177e4SLinus Torvalds You will most probably want this if using IPSec. 17981da177e4SLinus Torvalds 17990b77abb3SZoltan Sogorconfig CRYPTO_LZO 18000b77abb3SZoltan Sogor tristate "LZO compression algorithm" 18010b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1802ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 18030b77abb3SZoltan Sogor select LZO_COMPRESS 18040b77abb3SZoltan Sogor select LZO_DECOMPRESS 18050b77abb3SZoltan Sogor help 18060b77abb3SZoltan Sogor This is the LZO algorithm. 18070b77abb3SZoltan Sogor 180835a1fc18SSeth Jenningsconfig CRYPTO_842 180935a1fc18SSeth Jennings tristate "842 compression algorithm" 18102062c5b6SDan Streetman select CRYPTO_ALGAPI 18116a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 18122062c5b6SDan Streetman select 842_COMPRESS 18132062c5b6SDan Streetman select 842_DECOMPRESS 181435a1fc18SSeth Jennings help 181535a1fc18SSeth Jennings This is the 842 algorithm. 181635a1fc18SSeth Jennings 18170ea8530dSChanho Minconfig CRYPTO_LZ4 18180ea8530dSChanho Min tristate "LZ4 compression algorithm" 18190ea8530dSChanho Min select CRYPTO_ALGAPI 18208cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 18210ea8530dSChanho Min select LZ4_COMPRESS 18220ea8530dSChanho Min select LZ4_DECOMPRESS 18230ea8530dSChanho Min help 18240ea8530dSChanho Min This is the LZ4 algorithm. 18250ea8530dSChanho Min 18260ea8530dSChanho Minconfig CRYPTO_LZ4HC 18270ea8530dSChanho Min tristate "LZ4HC compression algorithm" 18280ea8530dSChanho Min select CRYPTO_ALGAPI 182991d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 18300ea8530dSChanho Min select LZ4HC_COMPRESS 18310ea8530dSChanho Min select LZ4_DECOMPRESS 18320ea8530dSChanho Min help 18330ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 18340ea8530dSChanho Min 1835d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1836d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1837d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1838d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1839d28fc3dbSNick Terrell select ZSTD_COMPRESS 1840d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1841d28fc3dbSNick Terrell help 1842d28fc3dbSNick Terrell This is the zstd algorithm. 1843d28fc3dbSNick Terrell 184417f0f4a4SNeil Hormancomment "Random Number Generation" 184517f0f4a4SNeil Horman 184617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 184717f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 184817f0f4a4SNeil Horman select CRYPTO_AES 184917f0f4a4SNeil Horman select CRYPTO_RNG 185017f0f4a4SNeil Horman help 185117f0f4a4SNeil Horman This option enables the generic pseudo random number generator 185217f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18537dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18547dd607e8SJiri Kosina CRYPTO_FIPS is selected 185517f0f4a4SNeil Horman 1856f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1857419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1858419090c6SStephan Mueller help 1859419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1860419090c6SStephan Mueller more of the DRBG types must be selected. 1861419090c6SStephan Mueller 1862f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1863419090c6SStephan Mueller 1864419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1865401e4238SHerbert Xu bool 1866419090c6SStephan Mueller default y 1867419090c6SStephan Mueller select CRYPTO_HMAC 18685261cdf4SStephan Mueller select CRYPTO_SHA512 1869419090c6SStephan Mueller 1870419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1871419090c6SStephan Mueller bool "Enable Hash DRBG" 1872826775bbSHerbert Xu select CRYPTO_SHA256 1873419090c6SStephan Mueller help 1874419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1875419090c6SStephan Mueller 1876419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1877419090c6SStephan Mueller bool "Enable CTR DRBG" 1878419090c6SStephan Mueller select CRYPTO_AES 1879d6fc1a45SCorentin Labbe select CRYPTO_CTR 1880419090c6SStephan Mueller help 1881419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1882419090c6SStephan Mueller 1883f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1884f2c89a10SHerbert Xu tristate 1885401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1886f2c89a10SHerbert Xu select CRYPTO_RNG 1887bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1888f2c89a10SHerbert Xu 1889f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1890419090c6SStephan Mueller 1891bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1892bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18932f313e02SArnd Bergmann select CRYPTO_RNG 1894bb5530e4SStephan Mueller help 1895bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1896bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1897bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1898bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1899bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1900bb5530e4SStephan Mueller 1901026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR 1902026a733eSStephan Müller tristate 1903a88592ccSHerbert Xu select CRYPTO_HMAC 1904304b4aceSStephan Müller select CRYPTO_SHA256 1905026a733eSStephan Müller 190603c8efc1SHerbert Xuconfig CRYPTO_USER_API 190703c8efc1SHerbert Xu tristate 190803c8efc1SHerbert Xu 1909fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1910fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 19117451708fSHerbert Xu depends on NET 1912fe869cdbSHerbert Xu select CRYPTO_HASH 1913fe869cdbSHerbert Xu select CRYPTO_USER_API 1914fe869cdbSHerbert Xu help 1915fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1916fe869cdbSHerbert Xu algorithms. 1917fe869cdbSHerbert Xu 19188ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 19198ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 19207451708fSHerbert Xu depends on NET 1921b95bba5dSEric Biggers select CRYPTO_SKCIPHER 19228ff59090SHerbert Xu select CRYPTO_USER_API 19238ff59090SHerbert Xu help 19248ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 19258ff59090SHerbert Xu key cipher algorithms. 19268ff59090SHerbert Xu 19272f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 19282f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 19292f375538SStephan Mueller depends on NET 19302f375538SStephan Mueller select CRYPTO_RNG 19312f375538SStephan Mueller select CRYPTO_USER_API 19322f375538SStephan Mueller help 19332f375538SStephan Mueller This option enables the user-spaces interface for random 19342f375538SStephan Mueller number generator algorithms. 19352f375538SStephan Mueller 193677ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 193777ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 193877ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 193977ebdabeSElena Petrova help 194077ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 194177ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 194277ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 194377ebdabeSElena Petrova no unless you know what this is. 194477ebdabeSElena Petrova 1945b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1946b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1947b64a2d95SHerbert Xu depends on NET 1948b64a2d95SHerbert Xu select CRYPTO_AEAD 1949b95bba5dSEric Biggers select CRYPTO_SKCIPHER 195072548b09SStephan Mueller select CRYPTO_NULL 1951b64a2d95SHerbert Xu select CRYPTO_USER_API 1952b64a2d95SHerbert Xu help 1953b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1954b64a2d95SHerbert Xu cipher algorithms. 1955b64a2d95SHerbert Xu 19569ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 19579ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 19589ace6771SArd Biesheuvel depends on CRYPTO_USER_API 19599ace6771SArd Biesheuvel default y 19609ace6771SArd Biesheuvel help 19619ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 19629ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 19639ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 19649ace6771SArd Biesheuvel 1965cac5818cSCorentin Labbeconfig CRYPTO_STATS 1966cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1967a6a31385SCorentin Labbe depends on CRYPTO_USER 1968cac5818cSCorentin Labbe help 1969cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1970cac5818cSCorentin Labbe This will collect: 1971cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1972cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1973cac5818cSCorentin Labbe - size and numbers of hash operations 1974cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1975cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1976cac5818cSCorentin Labbe 1977ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1978ee08997fSDmitry Kasatkin bool 1979ee08997fSDmitry Kasatkin 19801da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19818636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19828636a1f9SMasahiro Yamadasource "certs/Kconfig" 19831da177e4SLinus Torvalds 1984cce9e06dSHerbert Xuendif # if CRYPTO 1985