xref: /linux/crypto/Kconfig (revision 2d16803c562ecc644803d42ba98a8e0aef9c014e)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
18920b0442SJason A. Donenfeld	select LIB_MEMNEQ
191da177e4SLinus Torvalds	help
201da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
211da177e4SLinus Torvalds
22cce9e06dSHerbert Xuif CRYPTO
23cce9e06dSHerbert Xu
24584fffc8SSebastian Siewiorcomment "Crypto core or helper"
25584fffc8SSebastian Siewior
26ccb778e1SNeil Hormanconfig CRYPTO_FIPS
27ccb778e1SNeil Horman	bool "FIPS 200 compliance"
28f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
291f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
30ccb778e1SNeil Horman	help
31d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
32d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
33ccb778e1SNeil Horman	  certification.  You should say no unless you know what
34e84c5480SChuck Ebbert	  this is.
35ccb778e1SNeil Horman
36cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
37cce9e06dSHerbert Xu	tristate
386a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
39cce9e06dSHerbert Xu	help
40cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
41cce9e06dSHerbert Xu
426a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
436a0fcbb4SHerbert Xu	tristate
446a0fcbb4SHerbert Xu
451ae97820SHerbert Xuconfig CRYPTO_AEAD
461ae97820SHerbert Xu	tristate
476a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
481ae97820SHerbert Xu	select CRYPTO_ALGAPI
491ae97820SHerbert Xu
506a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
516a0fcbb4SHerbert Xu	tristate
526a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
53149a3971SHerbert Xu	select CRYPTO_NULL2
54149a3971SHerbert Xu	select CRYPTO_RNG2
556a0fcbb4SHerbert Xu
56b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER
575cde0af2SHerbert Xu	tristate
58b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
595cde0af2SHerbert Xu	select CRYPTO_ALGAPI
606a0fcbb4SHerbert Xu
61b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2
626a0fcbb4SHerbert Xu	tristate
636a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
646a0fcbb4SHerbert Xu	select CRYPTO_RNG2
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
1162b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1172b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1186a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1192b8c19dbSHerbert Xu	help
1202b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1212b8c19dbSHerbert Xu	  cbc(aes).
1222b8c19dbSHerbert Xu
1236a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1246a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1256a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1266a0fcbb4SHerbert Xu	select CRYPTO_HASH2
127b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
128946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1294e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1302ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1316a0fcbb4SHerbert Xu
132a38f7907SSteffen Klassertconfig CRYPTO_USER
133a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1345db017aaSHerbert Xu	depends on NET
135a38f7907SSteffen Klassert	select CRYPTO_MANAGER
136a38f7907SSteffen Klassert	help
137d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
138a38f7907SSteffen Klassert	  cbc(aes).
139a38f7907SSteffen Klassert
140326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
141326a6346SHerbert Xu	bool "Disable run-time self tests"
14200ca28a5SHerbert Xu	default y
1430b767f96SAlexander Shishkin	help
144326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
145326a6346SHerbert Xu	  algorithm registration.
1460b767f96SAlexander Shishkin
1475b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1485b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1496569e309SJason A. Donenfeld	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
1505b2706a4SEric Biggers	help
1515b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1525b2706a4SEric Biggers	  including randomized fuzz tests.
1535b2706a4SEric Biggers
1545b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1555b2706a4SEric Biggers	  longer to run than the normal self tests.
1565b2706a4SEric Biggers
157584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
158e590e132SEric Biggers	tristate
159584fffc8SSebastian Siewior
160584fffc8SSebastian Siewiorconfig CRYPTO_NULL
161584fffc8SSebastian Siewior	tristate "Null algorithms"
162149a3971SHerbert Xu	select CRYPTO_NULL2
163584fffc8SSebastian Siewior	help
164584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
165584fffc8SSebastian Siewior
166149a3971SHerbert Xuconfig CRYPTO_NULL2
167dd43c4e9SHerbert Xu	tristate
168149a3971SHerbert Xu	select CRYPTO_ALGAPI2
169b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
170149a3971SHerbert Xu	select CRYPTO_HASH2
171149a3971SHerbert Xu
1725068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1733b4afaf2SKees Cook	tristate "Parallel crypto engine"
1743b4afaf2SKees Cook	depends on SMP
1755068c7a8SSteffen Klassert	select PADATA
1765068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1775068c7a8SSteffen Klassert	select CRYPTO_AEAD
1785068c7a8SSteffen Klassert	help
1795068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1805068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1815068c7a8SSteffen Klassert
182584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
183584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
184b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
185b8a28251SLoc Ho	select CRYPTO_HASH
186584fffc8SSebastian Siewior	select CRYPTO_MANAGER
187584fffc8SSebastian Siewior	help
188584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
189584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
190584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
191584fffc8SSebastian Siewior
192584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
193584fffc8SSebastian Siewior	tristate "Authenc support"
194584fffc8SSebastian Siewior	select CRYPTO_AEAD
195b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
196584fffc8SSebastian Siewior	select CRYPTO_MANAGER
197584fffc8SSebastian Siewior	select CRYPTO_HASH
198e94c6a7aSHerbert Xu	select CRYPTO_NULL
199584fffc8SSebastian Siewior	help
200584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
201584fffc8SSebastian Siewior	  This is required for IPSec.
202584fffc8SSebastian Siewior
203584fffc8SSebastian Siewiorconfig CRYPTO_TEST
204584fffc8SSebastian Siewior	tristate "Testing module"
20500ea27f1SArd Biesheuvel	depends on m || EXPERT
206da7f033dSHerbert Xu	select CRYPTO_MANAGER
207584fffc8SSebastian Siewior	help
208584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
209584fffc8SSebastian Siewior
210266d0516SHerbert Xuconfig CRYPTO_SIMD
211266d0516SHerbert Xu	tristate
212266d0516SHerbert Xu	select CRYPTO_CRYPTD
213266d0516SHerbert Xu
214735d37b5SBaolin Wangconfig CRYPTO_ENGINE
215735d37b5SBaolin Wang	tristate
216735d37b5SBaolin Wang
2173d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2183d6228a5SVitaly Chikunov
2193d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2203d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2213d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2223d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2233d6228a5SVitaly Chikunov	select MPILIB
2243d6228a5SVitaly Chikunov	select ASN1
2253d6228a5SVitaly Chikunov	help
2263d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2273d6228a5SVitaly Chikunov
2283d6228a5SVitaly Chikunovconfig CRYPTO_DH
2293d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2303d6228a5SVitaly Chikunov	select CRYPTO_KPP
2313d6228a5SVitaly Chikunov	select MPILIB
2323d6228a5SVitaly Chikunov	help
2333d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2343d6228a5SVitaly Chikunov
2357dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS
2367dce5981SNicolai Stange	bool "Support for RFC 7919 FFDHE group parameters"
2377dce5981SNicolai Stange	depends on CRYPTO_DH
2381e207964SNicolai Stange	select CRYPTO_RNG_DEFAULT
2397dce5981SNicolai Stange	help
2407dce5981SNicolai Stange	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
2417dce5981SNicolai Stange
2424a2289daSVitaly Chikunovconfig CRYPTO_ECC
2434a2289daSVitaly Chikunov	tristate
24438aa192aSArnd Bergmann	select CRYPTO_RNG_DEFAULT
2454a2289daSVitaly Chikunov
2463d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2473d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2484a2289daSVitaly Chikunov	select CRYPTO_ECC
2493d6228a5SVitaly Chikunov	select CRYPTO_KPP
2503d6228a5SVitaly Chikunov	help
2513d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2523d6228a5SVitaly Chikunov
2534e660291SStefan Bergerconfig CRYPTO_ECDSA
2544e660291SStefan Berger	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
2554e660291SStefan Berger	select CRYPTO_ECC
2564e660291SStefan Berger	select CRYPTO_AKCIPHER
2574e660291SStefan Berger	select ASN1
2584e660291SStefan Berger	help
2594e660291SStefan Berger	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
2604e660291SStefan Berger	  is A NIST cryptographic standard algorithm. Only signature verification
2614e660291SStefan Berger	  is implemented.
2624e660291SStefan Berger
2630d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2640d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2650d7a7864SVitaly Chikunov	select CRYPTO_ECC
2660d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2670d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2681036633eSVitaly Chikunov	select OID_REGISTRY
2691036633eSVitaly Chikunov	select ASN1
2700d7a7864SVitaly Chikunov	help
2710d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2720d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2730d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2740d7a7864SVitaly Chikunov	  is implemented.
2750d7a7864SVitaly Chikunov
276ea7ecb66STianjia Zhangconfig CRYPTO_SM2
277ea7ecb66STianjia Zhang	tristate "SM2 algorithm"
278d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
279ea7ecb66STianjia Zhang	select CRYPTO_AKCIPHER
280ea7ecb66STianjia Zhang	select CRYPTO_MANAGER
281ea7ecb66STianjia Zhang	select MPILIB
282ea7ecb66STianjia Zhang	select ASN1
283ea7ecb66STianjia Zhang	help
284ea7ecb66STianjia Zhang	  Generic implementation of the SM2 public key algorithm. It was
285ea7ecb66STianjia Zhang	  published by State Encryption Management Bureau, China.
286ea7ecb66STianjia Zhang	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
287ea7ecb66STianjia Zhang
288ea7ecb66STianjia Zhang	  References:
289ea7ecb66STianjia Zhang	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
290ea7ecb66STianjia Zhang	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
291ea7ecb66STianjia Zhang	  http://www.gmbz.org.cn/main/bzlb.html
292ea7ecb66STianjia Zhang
293ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519
294ee772cb6SArd Biesheuvel	tristate "Curve25519 algorithm"
295ee772cb6SArd Biesheuvel	select CRYPTO_KPP
296ee772cb6SArd Biesheuvel	select CRYPTO_LIB_CURVE25519_GENERIC
297ee772cb6SArd Biesheuvel
298bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86
299bb611bdfSJason A. Donenfeld	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
300bb611bdfSJason A. Donenfeld	depends on X86 && 64BIT
301bb611bdfSJason A. Donenfeld	select CRYPTO_LIB_CURVE25519_GENERIC
302bb611bdfSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
303bb611bdfSJason A. Donenfeld
304584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
305584fffc8SSebastian Siewior
306584fffc8SSebastian Siewiorconfig CRYPTO_CCM
307584fffc8SSebastian Siewior	tristate "CCM support"
308584fffc8SSebastian Siewior	select CRYPTO_CTR
309f15f05b0SArd Biesheuvel	select CRYPTO_HASH
310584fffc8SSebastian Siewior	select CRYPTO_AEAD
311c8a3315aSEric Biggers	select CRYPTO_MANAGER
312584fffc8SSebastian Siewior	help
313584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
314584fffc8SSebastian Siewior
315584fffc8SSebastian Siewiorconfig CRYPTO_GCM
316584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
317584fffc8SSebastian Siewior	select CRYPTO_CTR
318584fffc8SSebastian Siewior	select CRYPTO_AEAD
3199382d97aSHuang Ying	select CRYPTO_GHASH
3209489667dSJussi Kivilinna	select CRYPTO_NULL
321c8a3315aSEric Biggers	select CRYPTO_MANAGER
322584fffc8SSebastian Siewior	help
323584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
324584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
325584fffc8SSebastian Siewior
32671ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
32771ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
32871ebc4d1SMartin Willi	select CRYPTO_CHACHA20
32971ebc4d1SMartin Willi	select CRYPTO_POLY1305
33071ebc4d1SMartin Willi	select CRYPTO_AEAD
331c8a3315aSEric Biggers	select CRYPTO_MANAGER
33271ebc4d1SMartin Willi	help
33371ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
33471ebc4d1SMartin Willi
33571ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
33671ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
33771ebc4d1SMartin Willi	  IETF protocols.
33871ebc4d1SMartin Willi
339f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
340f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
341f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
342f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
343f606a88eSOndrej Mosnacek	help
344f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
345f606a88eSOndrej Mosnacek
346a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
347a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
348a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
349a4397635SArd Biesheuvel	default y
350a4397635SArd Biesheuvel
3511d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3521d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3531d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3541d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
355de272ca7SEric Biggers	select CRYPTO_SIMD
3561d373d4eSOndrej Mosnacek	help
3574e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3581d373d4eSOndrej Mosnacek
359584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
360584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
361584fffc8SSebastian Siewior	select CRYPTO_AEAD
362b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
363856e3f40SHerbert Xu	select CRYPTO_NULL
364401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
365c8a3315aSEric Biggers	select CRYPTO_MANAGER
366584fffc8SSebastian Siewior	help
367584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
368584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
369584fffc8SSebastian Siewior
370a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
371a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
372a10f554fSHerbert Xu	select CRYPTO_AEAD
373a10f554fSHerbert Xu	select CRYPTO_NULL
374401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
375c8a3315aSEric Biggers	select CRYPTO_MANAGER
376a10f554fSHerbert Xu	help
377a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
378a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
379a10f554fSHerbert Xu	  algorithm for CBC.
380a10f554fSHerbert Xu
381584fffc8SSebastian Siewiorcomment "Block modes"
382584fffc8SSebastian Siewior
383584fffc8SSebastian Siewiorconfig CRYPTO_CBC
384584fffc8SSebastian Siewior	tristate "CBC support"
385b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
386584fffc8SSebastian Siewior	select CRYPTO_MANAGER
387584fffc8SSebastian Siewior	help
388584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
389584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
390584fffc8SSebastian Siewior
391a7d85e06SJames Bottomleyconfig CRYPTO_CFB
392a7d85e06SJames Bottomley	tristate "CFB support"
393b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
394a7d85e06SJames Bottomley	select CRYPTO_MANAGER
395a7d85e06SJames Bottomley	help
396a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
397a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
398a7d85e06SJames Bottomley
399584fffc8SSebastian Siewiorconfig CRYPTO_CTR
400584fffc8SSebastian Siewior	tristate "CTR support"
401b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
402584fffc8SSebastian Siewior	select CRYPTO_MANAGER
403584fffc8SSebastian Siewior	help
404584fffc8SSebastian Siewior	  CTR: Counter mode
405584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
406584fffc8SSebastian Siewior
407584fffc8SSebastian Siewiorconfig CRYPTO_CTS
408584fffc8SSebastian Siewior	tristate "CTS support"
409b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
410c8a3315aSEric Biggers	select CRYPTO_MANAGER
411584fffc8SSebastian Siewior	help
412584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
413584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
414ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
415ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
416ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
417584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
418584fffc8SSebastian Siewior	  for AES encryption.
419584fffc8SSebastian Siewior
420ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
421ecd6d5c9SGilad Ben-Yossef
422584fffc8SSebastian Siewiorconfig CRYPTO_ECB
423584fffc8SSebastian Siewior	tristate "ECB support"
424b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
425584fffc8SSebastian Siewior	select CRYPTO_MANAGER
426584fffc8SSebastian Siewior	help
427584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
428584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
429584fffc8SSebastian Siewior	  the input block by block.
430584fffc8SSebastian Siewior
431584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4322470a2b2SJussi Kivilinna	tristate "LRW support"
433b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
434584fffc8SSebastian Siewior	select CRYPTO_MANAGER
435584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
436f60bbbbeSHerbert Xu	select CRYPTO_ECB
437584fffc8SSebastian Siewior	help
438584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
439584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
440584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
441584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
442584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
443584fffc8SSebastian Siewior
444e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
445e497c518SGilad Ben-Yossef	tristate "OFB support"
446b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
447e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
448e497c518SGilad Ben-Yossef	help
449e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
450e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
451e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
452e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
453e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
454e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
455e497c518SGilad Ben-Yossef
456584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
457584fffc8SSebastian Siewior	tristate "PCBC support"
458b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
459584fffc8SSebastian Siewior	select CRYPTO_MANAGER
460584fffc8SSebastian Siewior	help
461584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
462584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
463584fffc8SSebastian Siewior
46417fee07aSNathan Huckleberryconfig CRYPTO_XCTR
46517fee07aSNathan Huckleberry	tristate
46617fee07aSNathan Huckleberry	select CRYPTO_SKCIPHER
46717fee07aSNathan Huckleberry	select CRYPTO_MANAGER
46817fee07aSNathan Huckleberry	help
46917fee07aSNathan Huckleberry	  XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode
47017fee07aSNathan Huckleberry	  using XORs and little-endian addition rather than big-endian arithmetic.
47117fee07aSNathan Huckleberry	  XCTR mode is used to implement HCTR2.
47217fee07aSNathan Huckleberry
473584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4745bcf8e6dSJussi Kivilinna	tristate "XTS support"
475b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
476584fffc8SSebastian Siewior	select CRYPTO_MANAGER
47712cb3a1cSMilan Broz	select CRYPTO_ECB
478584fffc8SSebastian Siewior	help
479584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
480584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
481584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
482584fffc8SSebastian Siewior
4831c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4841c49678eSStephan Mueller	tristate "Key wrapping support"
485b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
486c8a3315aSEric Biggers	select CRYPTO_MANAGER
4871c49678eSStephan Mueller	help
4881c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4891c49678eSStephan Mueller	  padding.
4901c49678eSStephan Mueller
49126609a21SEric Biggersconfig CRYPTO_NHPOLY1305
49226609a21SEric Biggers	tristate
49326609a21SEric Biggers	select CRYPTO_HASH
49448ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
49526609a21SEric Biggers
496012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
497012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
498012c8238SEric Biggers	depends on X86 && 64BIT
499012c8238SEric Biggers	select CRYPTO_NHPOLY1305
500012c8238SEric Biggers	help
501012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
502012c8238SEric Biggers	  Adiantum encryption mode.
503012c8238SEric Biggers
5040f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
5050f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
5060f961f9fSEric Biggers	depends on X86 && 64BIT
5070f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
5080f961f9fSEric Biggers	help
5090f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5100f961f9fSEric Biggers	  Adiantum encryption mode.
5110f961f9fSEric Biggers
512059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
513059c2a4dSEric Biggers	tristate "Adiantum support"
514059c2a4dSEric Biggers	select CRYPTO_CHACHA20
51548ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
516059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
517c8a3315aSEric Biggers	select CRYPTO_MANAGER
518059c2a4dSEric Biggers	help
519059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
520059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
521059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
522059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
523059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
524059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
525059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
526059c2a4dSEric Biggers	  AES-XTS.
527059c2a4dSEric Biggers
528059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
529059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
530059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
531059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
532059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
533059c2a4dSEric Biggers
534059c2a4dSEric Biggers	  If unsure, say N.
535059c2a4dSEric Biggers
5367ff554ceSNathan Huckleberryconfig CRYPTO_HCTR2
5377ff554ceSNathan Huckleberry	tristate "HCTR2 support"
5387ff554ceSNathan Huckleberry	select CRYPTO_XCTR
5397ff554ceSNathan Huckleberry	select CRYPTO_POLYVAL
5407ff554ceSNathan Huckleberry	select CRYPTO_MANAGER
5417ff554ceSNathan Huckleberry	help
5427ff554ceSNathan Huckleberry	  HCTR2 is a length-preserving encryption mode for storage encryption that
5437ff554ceSNathan Huckleberry	  is efficient on processors with instructions to accelerate AES and
5447ff554ceSNathan Huckleberry	  carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and
5457ff554ceSNathan Huckleberry	  ARM processors with the ARMv8 crypto extensions.
5467ff554ceSNathan Huckleberry
547be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
548be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
549be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
550be1eb7f7SArd Biesheuvel	help
551be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
552be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
553be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
554be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
555be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
556be1eb7f7SArd Biesheuvel	  encryption.
557be1eb7f7SArd Biesheuvel
558be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
559ab3d436bSGeert Uytterhoeven	  instantiated either as an skcipher or as an AEAD (depending on the
560be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
561be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
562ab3d436bSGeert Uytterhoeven	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
563be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
564be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
565be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
566be1eb7f7SArd Biesheuvel
567be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
568be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
569be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
570be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
571be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
572be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
573be1eb7f7SArd Biesheuvel	  block encryption)
574be1eb7f7SArd Biesheuvel
575584fffc8SSebastian Siewiorcomment "Hash modes"
576584fffc8SSebastian Siewior
57793b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
57893b5e86aSJussi Kivilinna	tristate "CMAC support"
57993b5e86aSJussi Kivilinna	select CRYPTO_HASH
58093b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
58193b5e86aSJussi Kivilinna	help
58293b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
58393b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
58493b5e86aSJussi Kivilinna
58593b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
58693b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
58793b5e86aSJussi Kivilinna
5881da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5898425165dSHerbert Xu	tristate "HMAC support"
5900796ae06SHerbert Xu	select CRYPTO_HASH
59143518407SHerbert Xu	select CRYPTO_MANAGER
5921da177e4SLinus Torvalds	help
5931da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5941da177e4SLinus Torvalds	  This is required for IPSec.
5951da177e4SLinus Torvalds
596333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
597333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
598333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
599333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
600333b0d7eSKazunori MIYAZAWA	help
601333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
6029332a9e7SAlexander A. Klimov		https://www.ietf.org/rfc/rfc3566.txt
603333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
604333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
605333b0d7eSKazunori MIYAZAWA
606f1939f7cSShane Wangconfig CRYPTO_VMAC
607f1939f7cSShane Wang	tristate "VMAC support"
608f1939f7cSShane Wang	select CRYPTO_HASH
609f1939f7cSShane Wang	select CRYPTO_MANAGER
610f1939f7cSShane Wang	help
611f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
612f1939f7cSShane Wang	  very high speed on 64-bit architectures.
613f1939f7cSShane Wang
614f1939f7cSShane Wang	  See also:
6159332a9e7SAlexander A. Klimov	  <https://fastcrypto.org/vmac>
616f1939f7cSShane Wang
617584fffc8SSebastian Siewiorcomment "Digest"
618584fffc8SSebastian Siewior
619584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
620584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6215773a3e6SHerbert Xu	select CRYPTO_HASH
6226a0962b2SDarrick J. Wong	select CRC32
6231da177e4SLinus Torvalds	help
624584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
625584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
62669c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6271da177e4SLinus Torvalds
6288cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6298cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6308cb51ba8SAustin Zhang	depends on X86
6318cb51ba8SAustin Zhang	select CRYPTO_HASH
6328cb51ba8SAustin Zhang	help
6338cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6348cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6358cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6368cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6378cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6388cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6398cb51ba8SAustin Zhang
6407cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6416dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
642c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6436dd7a82cSAnton Blanchard	select CRYPTO_HASH
6446dd7a82cSAnton Blanchard	select CRC32
6456dd7a82cSAnton Blanchard	help
6466dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6476dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6486dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6496dd7a82cSAnton Blanchard
6506dd7a82cSAnton Blanchard
651442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
652442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
653442a7c40SDavid S. Miller	depends on SPARC64
654442a7c40SDavid S. Miller	select CRYPTO_HASH
655442a7c40SDavid S. Miller	select CRC32
656442a7c40SDavid S. Miller	help
657442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
658442a7c40SDavid S. Miller	  when available.
659442a7c40SDavid S. Miller
66078c37d19SAlexander Boykoconfig CRYPTO_CRC32
66178c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
66278c37d19SAlexander Boyko	select CRYPTO_HASH
66378c37d19SAlexander Boyko	select CRC32
66478c37d19SAlexander Boyko	help
66578c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
66678c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
66778c37d19SAlexander Boyko
66878c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
66978c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
67078c37d19SAlexander Boyko	depends on X86
67178c37d19SAlexander Boyko	select CRYPTO_HASH
67278c37d19SAlexander Boyko	select CRC32
67378c37d19SAlexander Boyko	help
67478c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
67578c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
67678c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
677af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
67878c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
67978c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
68078c37d19SAlexander Boyko
6814a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6824a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6834a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6844a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6854a5dc51eSMarcin Nowakowski	help
6864a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6874a5dc51eSMarcin Nowakowski	  instructions, when available.
6884a5dc51eSMarcin Nowakowski
6894a5dc51eSMarcin Nowakowski
69067882e76SNikolay Borisovconfig CRYPTO_XXHASH
69167882e76SNikolay Borisov	tristate "xxHash hash algorithm"
69267882e76SNikolay Borisov	select CRYPTO_HASH
69367882e76SNikolay Borisov	select XXHASH
69467882e76SNikolay Borisov	help
69567882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
69667882e76SNikolay Borisov	  speeds close to RAM limits.
69767882e76SNikolay Borisov
69891d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
69991d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
70091d68933SDavid Sterba	select CRYPTO_HASH
70191d68933SDavid Sterba	help
70291d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
70391d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
70491d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
70591d68933SDavid Sterba
70691d68933SDavid Sterba	  This module provides the following algorithms:
70791d68933SDavid Sterba
70891d68933SDavid Sterba	  - blake2b-160
70991d68933SDavid Sterba	  - blake2b-256
71091d68933SDavid Sterba	  - blake2b-384
71191d68933SDavid Sterba	  - blake2b-512
71291d68933SDavid Sterba
71391d68933SDavid Sterba	  See https://blake2.net for further information.
71491d68933SDavid Sterba
715ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86
716*2d16803cSJason A. Donenfeld	bool "BLAKE2s digest algorithm (x86 accelerated version)"
717ed0356edSJason A. Donenfeld	depends on X86 && 64BIT
718ed0356edSJason A. Donenfeld	select CRYPTO_LIB_BLAKE2S_GENERIC
719ed0356edSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
720ed0356edSJason A. Donenfeld
72168411521SHerbert Xuconfig CRYPTO_CRCT10DIF
72268411521SHerbert Xu	tristate "CRCT10DIF algorithm"
72368411521SHerbert Xu	select CRYPTO_HASH
72468411521SHerbert Xu	help
72568411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
72668411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
72768411521SHerbert Xu	  transforms to be used if they are available.
72868411521SHerbert Xu
72968411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
73068411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
73168411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
73268411521SHerbert Xu	select CRYPTO_HASH
73368411521SHerbert Xu	help
73468411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
73568411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
73668411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
737af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
73868411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
73968411521SHerbert Xu
740b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
741b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
742b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
743b01df1c1SDaniel Axtens	select CRYPTO_HASH
744b01df1c1SDaniel Axtens	help
745b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
746b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
747b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
748b01df1c1SDaniel Axtens
749f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT
750f3813f4bSKeith Busch	tristate "Rocksoft Model CRC64 algorithm"
751f3813f4bSKeith Busch	depends on CRC64
752f3813f4bSKeith Busch	select CRYPTO_HASH
753f3813f4bSKeith Busch
754146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
755146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
756146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
757146c8688SDaniel Axtens	help
758146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
759146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
760146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
761146c8688SDaniel Axtens
7622cdc6899SHuang Yingconfig CRYPTO_GHASH
7638dfa20fcSEric Biggers	tristate "GHASH hash function"
7642cdc6899SHuang Ying	select CRYPTO_GF128MUL
765578c60fbSArnd Bergmann	select CRYPTO_HASH
7662cdc6899SHuang Ying	help
7678dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
7688dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
7692cdc6899SHuang Ying
770f3c923a0SNathan Huckleberryconfig CRYPTO_POLYVAL
771f3c923a0SNathan Huckleberry	tristate
772f3c923a0SNathan Huckleberry	select CRYPTO_GF128MUL
773f3c923a0SNathan Huckleberry	select CRYPTO_HASH
774f3c923a0SNathan Huckleberry	help
775f3c923a0SNathan Huckleberry	  POLYVAL is the hash function used in HCTR2.  It is not a general-purpose
776f3c923a0SNathan Huckleberry	  cryptographic hash function.
777f3c923a0SNathan Huckleberry
77834f7f6c3SNathan Huckleberryconfig CRYPTO_POLYVAL_CLMUL_NI
77934f7f6c3SNathan Huckleberry	tristate "POLYVAL hash function (CLMUL-NI accelerated)"
78034f7f6c3SNathan Huckleberry	depends on X86 && 64BIT
78134f7f6c3SNathan Huckleberry	select CRYPTO_POLYVAL
78234f7f6c3SNathan Huckleberry	help
78334f7f6c3SNathan Huckleberry	  This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is
78434f7f6c3SNathan Huckleberry	  used to efficiently implement HCTR2 on x86-64 processors that support
78534f7f6c3SNathan Huckleberry	  carry-less multiplication instructions.
78634f7f6c3SNathan Huckleberry
787f979e014SMartin Williconfig CRYPTO_POLY1305
788f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
789578c60fbSArnd Bergmann	select CRYPTO_HASH
79048ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
791f979e014SMartin Willi	help
792f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
793f979e014SMartin Willi
794f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
795f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
796f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
797f979e014SMartin Willi
798c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
799b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
800c70f4abeSMartin Willi	depends on X86 && 64BIT
8011b2c6a51SArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
802f0e89bcfSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
803c70f4abeSMartin Willi	help
804c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
805c70f4abeSMartin Willi
806c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
807c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
808c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
809c70f4abeSMartin Willi	  instructions.
810c70f4abeSMartin Willi
811a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS
812a11d055eSArd Biesheuvel	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
8136c810cf2SMaciej W. Rozycki	depends on MIPS
814a11d055eSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
815a11d055eSArd Biesheuvel
8161da177e4SLinus Torvaldsconfig CRYPTO_MD4
8171da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
818808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8191da177e4SLinus Torvalds	help
8201da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
8211da177e4SLinus Torvalds
8221da177e4SLinus Torvaldsconfig CRYPTO_MD5
8231da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
82414b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8251da177e4SLinus Torvalds	help
8261da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
8271da177e4SLinus Torvalds
828d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
829d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
830d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
831d69e75deSAaro Koskinen	select CRYPTO_MD5
832d69e75deSAaro Koskinen	select CRYPTO_HASH
833d69e75deSAaro Koskinen	help
834d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
835d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
836d69e75deSAaro Koskinen
837e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
838e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
839e8e59953SMarkus Stockhausen	depends on PPC
840e8e59953SMarkus Stockhausen	select CRYPTO_HASH
841e8e59953SMarkus Stockhausen	help
842e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
843e8e59953SMarkus Stockhausen	  in PPC assembler.
844e8e59953SMarkus Stockhausen
845fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
846fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
847fa4dfedcSDavid S. Miller	depends on SPARC64
848fa4dfedcSDavid S. Miller	select CRYPTO_MD5
849fa4dfedcSDavid S. Miller	select CRYPTO_HASH
850fa4dfedcSDavid S. Miller	help
851fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
852fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
853fa4dfedcSDavid S. Miller
854584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
855584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
85619e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
857584fffc8SSebastian Siewior	help
858584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
859584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
860584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
861584fffc8SSebastian Siewior	  of the algorithm.
862584fffc8SSebastian Siewior
86382798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
86482798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
865e5835fbaSHerbert Xu	select CRYPTO_HASH
86682798f90SAdrian-Ken Rueegsegger	help
86782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
86882798f90SAdrian-Ken Rueegsegger
86982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
87082798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
871b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
872b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
87382798f90SAdrian-Ken Rueegsegger
874b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
875b6d44341SAdrian Bunk	  against RIPEMD-160.
876534fe2c1SAdrian-Ken Rueegsegger
877534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8789332a9e7SAlexander A. Klimov	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
879534fe2c1SAdrian-Ken Rueegsegger
8801da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8811da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
88254ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8831da177e4SLinus Torvalds	help
8841da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8851da177e4SLinus Torvalds
88666be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
887e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
88866be8951SMathias Krause	depends on X86 && 64BIT
88966be8951SMathias Krause	select CRYPTO_SHA1
89066be8951SMathias Krause	select CRYPTO_HASH
89166be8951SMathias Krause	help
89266be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
89366be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
894e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
895e38b6b7fStim	  when available.
89666be8951SMathias Krause
8978275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
898e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8998275d1aaSTim Chen	depends on X86 && 64BIT
9008275d1aaSTim Chen	select CRYPTO_SHA256
9018275d1aaSTim Chen	select CRYPTO_HASH
9028275d1aaSTim Chen	help
9038275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
9048275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
9058275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
906e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
907e38b6b7fStim	  Instructions) when available.
9088275d1aaSTim Chen
90987de4579STim Chenconfig CRYPTO_SHA512_SSSE3
91087de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
91187de4579STim Chen	depends on X86 && 64BIT
91287de4579STim Chen	select CRYPTO_SHA512
91387de4579STim Chen	select CRYPTO_HASH
91487de4579STim Chen	help
91587de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
91687de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
91787de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
91887de4579STim Chen	  version 2 (AVX2) instructions, when available.
91987de4579STim Chen
920efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
921efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
922efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
923efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
924efdb6f6eSAaro Koskinen	select CRYPTO_HASH
925efdb6f6eSAaro Koskinen	help
926efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
927efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
928efdb6f6eSAaro Koskinen
9294ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9304ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9314ff28d4cSDavid S. Miller	depends on SPARC64
9324ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9334ff28d4cSDavid S. Miller	select CRYPTO_HASH
9344ff28d4cSDavid S. Miller	help
9354ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9364ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9374ff28d4cSDavid S. Miller
938323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
939323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
940323a6bf1SMichael Ellerman	depends on PPC
941323a6bf1SMichael Ellerman	help
942323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
943323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
944323a6bf1SMichael Ellerman
945d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
946d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
947d9850fc5SMarkus Stockhausen	depends on PPC && SPE
948d9850fc5SMarkus Stockhausen	help
949d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
950d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
951d9850fc5SMarkus Stockhausen
9521da177e4SLinus Torvaldsconfig CRYPTO_SHA256
953cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
95450e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
95508c327f6SHans de Goede	select CRYPTO_LIB_SHA256
9561da177e4SLinus Torvalds	help
9571da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9581da177e4SLinus Torvalds
9591da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9601da177e4SLinus Torvalds	  security against collision attacks.
9611da177e4SLinus Torvalds
962cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
963cd12fb90SJonathan Lynch	  of security against collision attacks.
964cd12fb90SJonathan Lynch
9652ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9662ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9672ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9682ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9692ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9702ecc1e95SMarkus Stockhausen	help
9712ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9722ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9732ecc1e95SMarkus Stockhausen
974efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
975efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
976efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
977efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
978efdb6f6eSAaro Koskinen	select CRYPTO_HASH
979efdb6f6eSAaro Koskinen	help
980efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
981efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
982efdb6f6eSAaro Koskinen
98386c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
98486c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
98586c93b24SDavid S. Miller	depends on SPARC64
98686c93b24SDavid S. Miller	select CRYPTO_SHA256
98786c93b24SDavid S. Miller	select CRYPTO_HASH
98886c93b24SDavid S. Miller	help
98986c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
99086c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
99186c93b24SDavid S. Miller
9921da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9931da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
994bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9951da177e4SLinus Torvalds	help
9961da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9971da177e4SLinus Torvalds
9981da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9991da177e4SLinus Torvalds	  security against collision attacks.
10001da177e4SLinus Torvalds
10011da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
10021da177e4SLinus Torvalds	  of security against collision attacks.
10031da177e4SLinus Torvalds
1004efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
1005efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
1006efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
1007efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
1008efdb6f6eSAaro Koskinen	select CRYPTO_HASH
1009efdb6f6eSAaro Koskinen	help
1010efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1011efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
1012efdb6f6eSAaro Koskinen
1013775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
1014775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
1015775e0c69SDavid S. Miller	depends on SPARC64
1016775e0c69SDavid S. Miller	select CRYPTO_SHA512
1017775e0c69SDavid S. Miller	select CRYPTO_HASH
1018775e0c69SDavid S. Miller	help
1019775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1020775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
1021775e0c69SDavid S. Miller
102253964b9eSJeff Garzikconfig CRYPTO_SHA3
102353964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
102453964b9eSJeff Garzik	select CRYPTO_HASH
102553964b9eSJeff Garzik	help
102653964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
102753964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
102853964b9eSJeff Garzik
102953964b9eSJeff Garzik	  References:
103053964b9eSJeff Garzik	  http://keccak.noekeon.org/
103153964b9eSJeff Garzik
10324f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
1033d2825fa9SJason A. Donenfeld	tristate
1034d2825fa9SJason A. Donenfeld
1035d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC
10364f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10374f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
1038d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
10394f0fc160SGilad Ben-Yossef	help
10404f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10414f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10424f0fc160SGilad Ben-Yossef
10434f0fc160SGilad Ben-Yossef	  References:
10444f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10454f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10464f0fc160SGilad Ben-Yossef
1047930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64
1048930ab34dSTianjia Zhang	tristate "SM3 digest algorithm (x86_64/AVX)"
1049930ab34dSTianjia Zhang	depends on X86 && 64BIT
1050930ab34dSTianjia Zhang	select CRYPTO_HASH
1051d2825fa9SJason A. Donenfeld	select CRYPTO_SM3
1052930ab34dSTianjia Zhang	help
1053930ab34dSTianjia Zhang	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1054930ab34dSTianjia Zhang	  It is part of the Chinese Commercial Cryptography suite. This is
1055930ab34dSTianjia Zhang	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1056930ab34dSTianjia Zhang	  when available.
1057930ab34dSTianjia Zhang
1058930ab34dSTianjia Zhang	  If unsure, say N.
1059930ab34dSTianjia Zhang
1060fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1061fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1062fe18957eSVitaly Chikunov	select CRYPTO_HASH
1063fe18957eSVitaly Chikunov	help
1064fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1065fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1066fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1067fe18957eSVitaly Chikunov
1068fe18957eSVitaly Chikunov	  References:
1069fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1070fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1071fe18957eSVitaly Chikunov
1072584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1073584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10744946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10751da177e4SLinus Torvalds	help
1076584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10771da177e4SLinus Torvalds
1078584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1079584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10801da177e4SLinus Torvalds
10811da177e4SLinus Torvalds	  See also:
10826d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10831da177e4SLinus Torvalds
10840e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10858dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
10868af00860SRichard Weinberger	depends on X86 && 64BIT
10870e1227d3SHuang Ying	select CRYPTO_CRYPTD
10880e1227d3SHuang Ying	help
10898dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
10908dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
10910e1227d3SHuang Ying
1092584fffc8SSebastian Siewiorcomment "Ciphers"
10931da177e4SLinus Torvalds
10941da177e4SLinus Torvaldsconfig CRYPTO_AES
10951da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1096cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10975bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
10981da177e4SLinus Torvalds	help
10991da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11001da177e4SLinus Torvalds	  algorithm.
11011da177e4SLinus Torvalds
11021da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
11031da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
11041da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
11051da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
11061da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
11071da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
11081da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
11091da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
11101da177e4SLinus Torvalds
11111da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
11121da177e4SLinus Torvalds
11131da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
11141da177e4SLinus Torvalds
1115b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1116b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1117b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1118e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1119b5e0b032SArd Biesheuvel	help
1120b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1121b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1122b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1123b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1124b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1125b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1126b5e0b032SArd Biesheuvel
1127b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1128b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1129b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1130b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
11310a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
11320a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1133b5e0b032SArd Biesheuvel
113454b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
113554b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11368af00860SRichard Weinberger	depends on X86
113785671860SHerbert Xu	select CRYPTO_AEAD
11382c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
113954b6a1bdSHuang Ying	select CRYPTO_ALGAPI
1140b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
114185671860SHerbert Xu	select CRYPTO_SIMD
114254b6a1bdSHuang Ying	help
114354b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
114454b6a1bdSHuang Ying
114554b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
114654b6a1bdSHuang Ying	  algorithm.
114754b6a1bdSHuang Ying
114854b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
114954b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
115054b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
115154b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
115254b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
115354b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
115454b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
115554b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
115654b6a1bdSHuang Ying
115754b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
115854b6a1bdSHuang Ying
115954b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
116054b6a1bdSHuang Ying
11610d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11620d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1163944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1164fd94fcf0SNathan Huckleberry	  acceleration for CTR and XCTR.
11652cf4ac8bSHuang Ying
11669bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11679bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11689bf4852dSDavid S. Miller	depends on SPARC64
1169b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
11709bf4852dSDavid S. Miller	help
11719bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11729bf4852dSDavid S. Miller
11739bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11749bf4852dSDavid S. Miller	  algorithm.
11759bf4852dSDavid S. Miller
11769bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11779bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11789bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11799bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11809bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11819bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11829bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11839bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11849bf4852dSDavid S. Miller
11859bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11869bf4852dSDavid S. Miller
11879bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11889bf4852dSDavid S. Miller
11899bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11909bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11919bf4852dSDavid S. Miller	  ECB and CBC.
11929bf4852dSDavid S. Miller
1193504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1194504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1195504c6143SMarkus Stockhausen	depends on PPC && SPE
1196b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1197504c6143SMarkus Stockhausen	help
1198504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1199504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1200504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1201504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1202504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1203504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1204504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1205504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1206504c6143SMarkus Stockhausen
12071da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
12081da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
12091674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1210cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
12111da177e4SLinus Torvalds	help
12121da177e4SLinus Torvalds	  Anubis cipher algorithm.
12131da177e4SLinus Torvalds
12141da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
12151da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
12161da177e4SLinus Torvalds	  in the NESSIE competition.
12171da177e4SLinus Torvalds
12181da177e4SLinus Torvalds	  See also:
12196d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
12206d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
12211da177e4SLinus Torvalds
1222584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1223584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
12249ace6771SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1225b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1226dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1227e2ee95b8SHye-Shik Chang	help
1228584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1229e2ee95b8SHye-Shik Chang
1230584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1231584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1232584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1233584fffc8SSebastian Siewior	  weakness of the algorithm.
1234584fffc8SSebastian Siewior
1235584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1236584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1237584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
123852ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1239584fffc8SSebastian Siewior	help
1240584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1241584fffc8SSebastian Siewior
1242584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1243584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1244584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1245e2ee95b8SHye-Shik Chang
1246e2ee95b8SHye-Shik Chang	  See also:
12479332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
1248584fffc8SSebastian Siewior
124952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
125052ba867cSJussi Kivilinna	tristate
125152ba867cSJussi Kivilinna	help
125252ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
125352ba867cSJussi Kivilinna	  generic c and the assembler implementations.
125452ba867cSJussi Kivilinna
125552ba867cSJussi Kivilinna	  See also:
12569332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
125752ba867cSJussi Kivilinna
125864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
125964b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1260f21a7c19SAl Viro	depends on X86 && 64BIT
1261b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
126264b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1263c0a64926SArd Biesheuvel	imply CRYPTO_CTR
126464b94ceaSJussi Kivilinna	help
126564b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
126664b94ceaSJussi Kivilinna
126764b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
126864b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
126964b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
127064b94ceaSJussi Kivilinna
127164b94ceaSJussi Kivilinna	  See also:
12729332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
127364b94ceaSJussi Kivilinna
1274584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1275584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1276584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1277584fffc8SSebastian Siewior	help
1278584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1279584fffc8SSebastian Siewior
1280584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1281584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1282584fffc8SSebastian Siewior
1283584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1284584fffc8SSebastian Siewior
1285584fffc8SSebastian Siewior	  See also:
1286584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1287584fffc8SSebastian Siewior
12880b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12890b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1290f21a7c19SAl Viro	depends on X86 && 64BIT
1291b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1292a1f91ecfSArd Biesheuvel	imply CRYPTO_CTR
12930b95ec56SJussi Kivilinna	help
12940b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12950b95ec56SJussi Kivilinna
12960b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12970b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12980b95ec56SJussi Kivilinna
12990b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
13000b95ec56SJussi Kivilinna
13010b95ec56SJussi Kivilinna	  See also:
13020b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
13030b95ec56SJussi Kivilinna
1304d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1305d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1306d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1307b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1308d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
130944893bc2SEric Biggers	select CRYPTO_SIMD
131055a7e88fSArd Biesheuvel	imply CRYPTO_XTS
1311d9b1d2e7SJussi Kivilinna	help
1312d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1313d9b1d2e7SJussi Kivilinna
1314d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1315d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1316d9b1d2e7SJussi Kivilinna
1317d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1318d9b1d2e7SJussi Kivilinna
1319d9b1d2e7SJussi Kivilinna	  See also:
1320d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1321d9b1d2e7SJussi Kivilinna
1322f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1323f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1324f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1325f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1326f3f935a7SJussi Kivilinna	help
1327f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1328f3f935a7SJussi Kivilinna
1329f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1330f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1331f3f935a7SJussi Kivilinna
1332f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1333f3f935a7SJussi Kivilinna
1334f3f935a7SJussi Kivilinna	  See also:
1335f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1336f3f935a7SJussi Kivilinna
133781658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
133881658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
133981658ad0SDavid S. Miller	depends on SPARC64
134081658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1341b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
134281658ad0SDavid S. Miller	help
134381658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
134481658ad0SDavid S. Miller
134581658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
134681658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
134781658ad0SDavid S. Miller
134881658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
134981658ad0SDavid S. Miller
135081658ad0SDavid S. Miller	  See also:
135181658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
135281658ad0SDavid S. Miller
1353044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1354044ab525SJussi Kivilinna	tristate
1355044ab525SJussi Kivilinna	help
1356044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1357044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1358044ab525SJussi Kivilinna
1359584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1360584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1361584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1362044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1363584fffc8SSebastian Siewior	help
1364584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1365584fffc8SSebastian Siewior	  described in RFC2144.
1366584fffc8SSebastian Siewior
13674d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13684d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13694d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
1370b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13714d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13721e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13731e63183aSEric Biggers	select CRYPTO_SIMD
1374e2d60e2fSArd Biesheuvel	imply CRYPTO_CTR
13754d6d6a2cSJohannes Goetzfried	help
13764d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13774d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13784d6d6a2cSJohannes Goetzfried
13794d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13804d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13814d6d6a2cSJohannes Goetzfried
1382584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1383584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1384584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1385044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1386584fffc8SSebastian Siewior	help
1387584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1388584fffc8SSebastian Siewior	  described in RFC2612.
1389584fffc8SSebastian Siewior
13904ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13914ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13924ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1393b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13944ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13954bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13964bd96924SEric Biggers	select CRYPTO_SIMD
13972cc0fedbSArd Biesheuvel	imply CRYPTO_XTS
13987a6623ccSArd Biesheuvel	imply CRYPTO_CTR
13994ea1277dSJohannes Goetzfried	help
14004ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
14014ea1277dSJohannes Goetzfried	  described in RFC2612.
14024ea1277dSJohannes Goetzfried
14034ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
14044ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14054ea1277dSJohannes Goetzfried
1406584fffc8SSebastian Siewiorconfig CRYPTO_DES
1407584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1408584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
140904007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1410584fffc8SSebastian Siewior	help
1411584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1412584fffc8SSebastian Siewior
1413c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1414c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
141597da37b3SDave Jones	depends on SPARC64
1416c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
141704007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1418b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1419c5aac2dfSDavid S. Miller	help
1420c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1421c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1422c5aac2dfSDavid S. Miller
14236574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
14246574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
14256574e6c6SJussi Kivilinna	depends on X86 && 64BIT
1426b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
142704007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1428768db5feSArd Biesheuvel	imply CRYPTO_CTR
14296574e6c6SJussi Kivilinna	help
14306574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14316574e6c6SJussi Kivilinna
14326574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14336574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14346574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14356574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14366574e6c6SJussi Kivilinna
1437584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1438584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1439584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1440b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1441584fffc8SSebastian Siewior	help
1442584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1443584fffc8SSebastian Siewior
1444584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1445584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
14461674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1447584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1448584fffc8SSebastian Siewior	help
1449584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1450584fffc8SSebastian Siewior
1451584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1452584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1453584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1454584fffc8SSebastian Siewior
1455584fffc8SSebastian Siewior	  See also:
14566d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1457e2ee95b8SHye-Shik Chang
1458c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1459aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
14605fb8ef25SArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
1461b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1462c08d0e64SMartin Willi	help
1463aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1464c08d0e64SMartin Willi
1465c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1466c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1467de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
14689332a9e7SAlexander A. Klimov	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1469c08d0e64SMartin Willi
1470de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1471de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1472de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1473de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1474de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1475de61d7aeSEric Biggers
1476aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1477aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1478aa762409SEric Biggers	  in some performance-sensitive scenarios.
1479aa762409SEric Biggers
1480c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14814af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1482c9320b6dSMartin Willi	depends on X86 && 64BIT
1483b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
148428e8d89bSArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
148584e03fa3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1486c9320b6dSMartin Willi	help
14877a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14887a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1489c9320b6dSMartin Willi
14903a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS
14913a2f58f3SArd Biesheuvel	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
14923a2f58f3SArd Biesheuvel	depends on CPU_MIPS32_R2
1493660eda8dSEric Biggers	select CRYPTO_SKCIPHER
14943a2f58f3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
14953a2f58f3SArd Biesheuvel
1496584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1497584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
14981674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1499584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1500584fffc8SSebastian Siewior	help
1501584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1502584fffc8SSebastian Siewior
1503584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1504584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1505584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1506584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1507584fffc8SSebastian Siewior
1508584fffc8SSebastian Siewior	  See also:
1509584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1510584fffc8SSebastian Siewior
1511584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1512584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1513584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1514584fffc8SSebastian Siewior	help
1515584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1516584fffc8SSebastian Siewior
1517584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1518784506a1SArd Biesheuvel	  of 8 bits.
1519584fffc8SSebastian Siewior
1520584fffc8SSebastian Siewior	  See also:
15219332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1522584fffc8SSebastian Siewior
1523937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1524937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1525937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1526b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1527937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1528e0f409dcSEric Biggers	select CRYPTO_SIMD
15292e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1530937c30d7SJussi Kivilinna	help
1531937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1532937c30d7SJussi Kivilinna
1533937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1534937c30d7SJussi Kivilinna	  of 8 bits.
1535937c30d7SJussi Kivilinna
15361e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1537937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1538937c30d7SJussi Kivilinna
1539937c30d7SJussi Kivilinna	  See also:
15409332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1541937c30d7SJussi Kivilinna
1542251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1543251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1544251496dbSJussi Kivilinna	depends on X86 && !64BIT
1545b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1546251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1547e0f409dcSEric Biggers	select CRYPTO_SIMD
15482e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1549251496dbSJussi Kivilinna	help
1550251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1551251496dbSJussi Kivilinna
1552251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1553251496dbSJussi Kivilinna	  of 8 bits.
1554251496dbSJussi Kivilinna
1555251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1556251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1557251496dbSJussi Kivilinna
1558251496dbSJussi Kivilinna	  See also:
15599332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1560251496dbSJussi Kivilinna
15617efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15627efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15637efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1564b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
15657efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1566e16bf974SEric Biggers	select CRYPTO_SIMD
15679ec0af8aSArd Biesheuvel	imply CRYPTO_XTS
15682e9440aeSArd Biesheuvel	imply CRYPTO_CTR
15697efe4076SJohannes Goetzfried	help
15707efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15717efe4076SJohannes Goetzfried
15727efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15737efe4076SJohannes Goetzfried	  of 8 bits.
15747efe4076SJohannes Goetzfried
15757efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15767efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15777efe4076SJohannes Goetzfried
15787efe4076SJohannes Goetzfried	  See also:
15799332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
15807efe4076SJohannes Goetzfried
158156d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
158256d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
158356d76c96SJussi Kivilinna	depends on X86 && 64BIT
158456d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
158556d76c96SJussi Kivilinna	help
158656d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
158756d76c96SJussi Kivilinna
158856d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
158956d76c96SJussi Kivilinna	  of 8 bits.
159056d76c96SJussi Kivilinna
159156d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
159256d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
159356d76c96SJussi Kivilinna
159456d76c96SJussi Kivilinna	  See also:
15959332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
159656d76c96SJussi Kivilinna
1597747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1598d2825fa9SJason A. Donenfeld	tristate
1599d2825fa9SJason A. Donenfeld
1600d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC
1601747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1602747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1603d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1604747c8ce4SGilad Ben-Yossef	help
1605747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1606747c8ce4SGilad Ben-Yossef
1607747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1608747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1609747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1610747c8ce4SGilad Ben-Yossef
1611747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1612747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1613747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1614747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1615747c8ce4SGilad Ben-Yossef
1616747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1617747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1618747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1619747c8ce4SGilad Ben-Yossef
1620747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1621747c8ce4SGilad Ben-Yossef
1622747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1623747c8ce4SGilad Ben-Yossef
1624747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1625747c8ce4SGilad Ben-Yossef
1626a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64
1627a7ee22eeSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1628a7ee22eeSTianjia Zhang	depends on X86 && 64BIT
1629a7ee22eeSTianjia Zhang	select CRYPTO_SKCIPHER
1630a7ee22eeSTianjia Zhang	select CRYPTO_SIMD
1631a7ee22eeSTianjia Zhang	select CRYPTO_ALGAPI
1632d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
1633a7ee22eeSTianjia Zhang	help
1634a7ee22eeSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1635a7ee22eeSTianjia Zhang
1636a7ee22eeSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1637a7ee22eeSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
1638a7ee22eeSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
1639a7ee22eeSTianjia Zhang
1640a7ee22eeSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1641a7ee22eeSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
1642a7ee22eeSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1643a7ee22eeSTianjia Zhang	  effect of instruction acceleration.
1644a7ee22eeSTianjia Zhang
1645a7ee22eeSTianjia Zhang	  If unsure, say N.
1646a7ee22eeSTianjia Zhang
16475b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64
16485b2efa2bSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
16495b2efa2bSTianjia Zhang	depends on X86 && 64BIT
16505b2efa2bSTianjia Zhang	select CRYPTO_SKCIPHER
16515b2efa2bSTianjia Zhang	select CRYPTO_SIMD
16525b2efa2bSTianjia Zhang	select CRYPTO_ALGAPI
1653d2825fa9SJason A. Donenfeld	select CRYPTO_SM4
16545b2efa2bSTianjia Zhang	select CRYPTO_SM4_AESNI_AVX_X86_64
16555b2efa2bSTianjia Zhang	help
16565b2efa2bSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
16575b2efa2bSTianjia Zhang
16585b2efa2bSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
16595b2efa2bSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
16605b2efa2bSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
16615b2efa2bSTianjia Zhang
16625b2efa2bSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
16635b2efa2bSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
16645b2efa2bSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
16655b2efa2bSTianjia Zhang	  effect of instruction acceleration.
16665b2efa2bSTianjia Zhang
16675b2efa2bSTianjia Zhang	  If unsure, say N.
16685b2efa2bSTianjia Zhang
1669584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1670584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
16711674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1672584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1673584fffc8SSebastian Siewior	help
1674584fffc8SSebastian Siewior	  TEA cipher algorithm.
1675584fffc8SSebastian Siewior
1676584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1677584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1678584fffc8SSebastian Siewior	  little memory.
1679584fffc8SSebastian Siewior
1680584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1681584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1682584fffc8SSebastian Siewior	  in the TEA algorithm.
1683584fffc8SSebastian Siewior
1684584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1685584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1686584fffc8SSebastian Siewior
1687584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1688584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1689584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1690584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1691584fffc8SSebastian Siewior	help
1692584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1693584fffc8SSebastian Siewior
1694584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1695584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1696584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1697584fffc8SSebastian Siewior	  bits.
1698584fffc8SSebastian Siewior
1699584fffc8SSebastian Siewior	  See also:
17009332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1701584fffc8SSebastian Siewior
1702584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1703584fffc8SSebastian Siewior	tristate
1704584fffc8SSebastian Siewior	help
1705584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1706584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1707584fffc8SSebastian Siewior
1708584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1709584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1710584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1711584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1712584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1713f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1714584fffc8SSebastian Siewior	help
1715584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1716584fffc8SSebastian Siewior
1717584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1718584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1719584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1720584fffc8SSebastian Siewior	  bits.
1721584fffc8SSebastian Siewior
1722584fffc8SSebastian Siewior	  See also:
17239332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1724584fffc8SSebastian Siewior
1725584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1726584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1727584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1728584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1729584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1730f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1731584fffc8SSebastian Siewior	help
1732584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1733584fffc8SSebastian Siewior
1734584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1735584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1736584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1737584fffc8SSebastian Siewior	  bits.
1738584fffc8SSebastian Siewior
1739584fffc8SSebastian Siewior	  See also:
17409332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1741584fffc8SSebastian Siewior
17428280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17438280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1744f21a7c19SAl Viro	depends on X86 && 64BIT
1745b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17468280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17478280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
17488280daadSJussi Kivilinna	help
17498280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17508280daadSJussi Kivilinna
17518280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17528280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17538280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17548280daadSJussi Kivilinna	  bits.
17558280daadSJussi Kivilinna
17568280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17578280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17588280daadSJussi Kivilinna
17598280daadSJussi Kivilinna	  See also:
17609332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
17618280daadSJussi Kivilinna
1762107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1763107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1764107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1765b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17660e6ab46dSEric Biggers	select CRYPTO_SIMD
1767107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1768107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1769107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1770da4df93aSArd Biesheuvel	imply CRYPTO_XTS
1771107778b5SJohannes Goetzfried	help
1772107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1773107778b5SJohannes Goetzfried
1774107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1775107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1776107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1777107778b5SJohannes Goetzfried	  bits.
1778107778b5SJohannes Goetzfried
1779107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1780107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1781107778b5SJohannes Goetzfried
1782107778b5SJohannes Goetzfried	  See also:
17839332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1784107778b5SJohannes Goetzfried
1785584fffc8SSebastian Siewiorcomment "Compression"
1786584fffc8SSebastian Siewior
17871da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17881da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1789cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1790f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17911da177e4SLinus Torvalds	select ZLIB_INFLATE
17921da177e4SLinus Torvalds	select ZLIB_DEFLATE
17931da177e4SLinus Torvalds	help
17941da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17951da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17961da177e4SLinus Torvalds
17971da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17981da177e4SLinus Torvalds
17990b77abb3SZoltan Sogorconfig CRYPTO_LZO
18000b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
18010b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1802ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
18030b77abb3SZoltan Sogor	select LZO_COMPRESS
18040b77abb3SZoltan Sogor	select LZO_DECOMPRESS
18050b77abb3SZoltan Sogor	help
18060b77abb3SZoltan Sogor	  This is the LZO algorithm.
18070b77abb3SZoltan Sogor
180835a1fc18SSeth Jenningsconfig CRYPTO_842
180935a1fc18SSeth Jennings	tristate "842 compression algorithm"
18102062c5b6SDan Streetman	select CRYPTO_ALGAPI
18116a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
18122062c5b6SDan Streetman	select 842_COMPRESS
18132062c5b6SDan Streetman	select 842_DECOMPRESS
181435a1fc18SSeth Jennings	help
181535a1fc18SSeth Jennings	  This is the 842 algorithm.
181635a1fc18SSeth Jennings
18170ea8530dSChanho Minconfig CRYPTO_LZ4
18180ea8530dSChanho Min	tristate "LZ4 compression algorithm"
18190ea8530dSChanho Min	select CRYPTO_ALGAPI
18208cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
18210ea8530dSChanho Min	select LZ4_COMPRESS
18220ea8530dSChanho Min	select LZ4_DECOMPRESS
18230ea8530dSChanho Min	help
18240ea8530dSChanho Min	  This is the LZ4 algorithm.
18250ea8530dSChanho Min
18260ea8530dSChanho Minconfig CRYPTO_LZ4HC
18270ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
18280ea8530dSChanho Min	select CRYPTO_ALGAPI
182991d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
18300ea8530dSChanho Min	select LZ4HC_COMPRESS
18310ea8530dSChanho Min	select LZ4_DECOMPRESS
18320ea8530dSChanho Min	help
18330ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
18340ea8530dSChanho Min
1835d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1836d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1837d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1838d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1839d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1840d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1841d28fc3dbSNick Terrell	help
1842d28fc3dbSNick Terrell	  This is the zstd algorithm.
1843d28fc3dbSNick Terrell
184417f0f4a4SNeil Hormancomment "Random Number Generation"
184517f0f4a4SNeil Horman
184617f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
184717f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
184817f0f4a4SNeil Horman	select CRYPTO_AES
184917f0f4a4SNeil Horman	select CRYPTO_RNG
185017f0f4a4SNeil Horman	help
185117f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
185217f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18537dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18547dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
185517f0f4a4SNeil Horman
1856f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1857419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1858419090c6SStephan Mueller	help
1859419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1860419090c6SStephan Mueller	  more of the DRBG types must be selected.
1861419090c6SStephan Mueller
1862f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1863419090c6SStephan Mueller
1864419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1865401e4238SHerbert Xu	bool
1866419090c6SStephan Mueller	default y
1867419090c6SStephan Mueller	select CRYPTO_HMAC
18685261cdf4SStephan Mueller	select CRYPTO_SHA512
1869419090c6SStephan Mueller
1870419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1871419090c6SStephan Mueller	bool "Enable Hash DRBG"
1872826775bbSHerbert Xu	select CRYPTO_SHA256
1873419090c6SStephan Mueller	help
1874419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1875419090c6SStephan Mueller
1876419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1877419090c6SStephan Mueller	bool "Enable CTR DRBG"
1878419090c6SStephan Mueller	select CRYPTO_AES
1879d6fc1a45SCorentin Labbe	select CRYPTO_CTR
1880419090c6SStephan Mueller	help
1881419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1882419090c6SStephan Mueller
1883f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1884f2c89a10SHerbert Xu	tristate
1885401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1886f2c89a10SHerbert Xu	select CRYPTO_RNG
1887bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1888f2c89a10SHerbert Xu
1889f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1890419090c6SStephan Mueller
1891bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1892bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18932f313e02SArnd Bergmann	select CRYPTO_RNG
1894bb5530e4SStephan Mueller	help
1895bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1896bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1897bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1898bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1899bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1900bb5530e4SStephan Mueller
1901026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR
1902026a733eSStephan Müller	tristate
1903a88592ccSHerbert Xu	select CRYPTO_HMAC
1904304b4aceSStephan Müller	select CRYPTO_SHA256
1905026a733eSStephan Müller
190603c8efc1SHerbert Xuconfig CRYPTO_USER_API
190703c8efc1SHerbert Xu	tristate
190803c8efc1SHerbert Xu
1909fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1910fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
19117451708fSHerbert Xu	depends on NET
1912fe869cdbSHerbert Xu	select CRYPTO_HASH
1913fe869cdbSHerbert Xu	select CRYPTO_USER_API
1914fe869cdbSHerbert Xu	help
1915fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1916fe869cdbSHerbert Xu	  algorithms.
1917fe869cdbSHerbert Xu
19188ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
19198ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
19207451708fSHerbert Xu	depends on NET
1921b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
19228ff59090SHerbert Xu	select CRYPTO_USER_API
19238ff59090SHerbert Xu	help
19248ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
19258ff59090SHerbert Xu	  key cipher algorithms.
19268ff59090SHerbert Xu
19272f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
19282f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
19292f375538SStephan Mueller	depends on NET
19302f375538SStephan Mueller	select CRYPTO_RNG
19312f375538SStephan Mueller	select CRYPTO_USER_API
19322f375538SStephan Mueller	help
19332f375538SStephan Mueller	  This option enables the user-spaces interface for random
19342f375538SStephan Mueller	  number generator algorithms.
19352f375538SStephan Mueller
193677ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP
193777ebdabeSElena Petrova	bool "Enable CAVP testing of DRBG"
193877ebdabeSElena Petrova	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
193977ebdabeSElena Petrova	help
194077ebdabeSElena Petrova	  This option enables extra API for CAVP testing via the user-space
194177ebdabeSElena Petrova	  interface: resetting of DRBG entropy, and providing Additional Data.
194277ebdabeSElena Petrova	  This should only be enabled for CAVP testing. You should say
194377ebdabeSElena Petrova	  no unless you know what this is.
194477ebdabeSElena Petrova
1945b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1946b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1947b64a2d95SHerbert Xu	depends on NET
1948b64a2d95SHerbert Xu	select CRYPTO_AEAD
1949b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
195072548b09SStephan Mueller	select CRYPTO_NULL
1951b64a2d95SHerbert Xu	select CRYPTO_USER_API
1952b64a2d95SHerbert Xu	help
1953b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1954b64a2d95SHerbert Xu	  cipher algorithms.
1955b64a2d95SHerbert Xu
19569ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE
19579ace6771SArd Biesheuvel	bool "Enable obsolete cryptographic algorithms for userspace"
19589ace6771SArd Biesheuvel	depends on CRYPTO_USER_API
19599ace6771SArd Biesheuvel	default y
19609ace6771SArd Biesheuvel	help
19619ace6771SArd Biesheuvel	  Allow obsolete cryptographic algorithms to be selected that have
19629ace6771SArd Biesheuvel	  already been phased out from internal use by the kernel, and are
19639ace6771SArd Biesheuvel	  only useful for userspace clients that still rely on them.
19649ace6771SArd Biesheuvel
1965cac5818cSCorentin Labbeconfig CRYPTO_STATS
1966cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1967a6a31385SCorentin Labbe	depends on CRYPTO_USER
1968cac5818cSCorentin Labbe	help
1969cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1970cac5818cSCorentin Labbe	  This will collect:
1971cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1972cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1973cac5818cSCorentin Labbe	  - size and numbers of hash operations
1974cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1975cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1976cac5818cSCorentin Labbe
1977ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1978ee08997fSDmitry Kasatkin	bool
1979ee08997fSDmitry Kasatkin
19801da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19818636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19828636a1f9SMasahiro Yamadasource "certs/Kconfig"
19831da177e4SLinus Torvalds
1984cce9e06dSHerbert Xuendif	# if CRYPTO
1985