1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30ccb778e1SNeil Horman This options enables the fips boot option which is 31ccb778e1SNeil Horman required if you want to system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER 565cde0af2SHerbert Xu tristate 576a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 640a2e821dSHuang Ying select CRYPTO_WORKQUEUE 655cde0af2SHerbert Xu 66055bcee3SHerbert Xuconfig CRYPTO_HASH 67055bcee3SHerbert Xu tristate 686a0fcbb4SHerbert Xu select CRYPTO_HASH2 69055bcee3SHerbert Xu select CRYPTO_ALGAPI 70055bcee3SHerbert Xu 716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 726a0fcbb4SHerbert Xu tristate 736a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 746a0fcbb4SHerbert Xu 7517f0f4a4SNeil Hormanconfig CRYPTO_RNG 7617f0f4a4SNeil Horman tristate 776a0fcbb4SHerbert Xu select CRYPTO_RNG2 7817f0f4a4SNeil Horman select CRYPTO_ALGAPI 7917f0f4a4SNeil Horman 806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 816a0fcbb4SHerbert Xu tristate 826a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 836a0fcbb4SHerbert Xu 84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 85401e4238SHerbert Xu tristate 86401e4238SHerbert Xu select CRYPTO_DRBG_MENU 87401e4238SHerbert Xu 883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 893c339ab8STadeusz Struk tristate 903c339ab8STadeusz Struk select CRYPTO_ALGAPI2 913c339ab8STadeusz Struk 923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 933c339ab8STadeusz Struk tristate 943c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 953c339ab8STadeusz Struk select CRYPTO_ALGAPI 963c339ab8STadeusz Struk 974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 984e5f2c40SSalvatore Benedetto tristate 994e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 1004e5f2c40SSalvatore Benedetto 1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1024e5f2c40SSalvatore Benedetto tristate 1034e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1044e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1054e5f2c40SSalvatore Benedetto 1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1072ebda74fSGiovanni Cabiddu tristate 1082ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1098cd579d2SBart Van Assche select SGL_ALLOC 1102ebda74fSGiovanni Cabiddu 1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1122ebda74fSGiovanni Cabiddu tristate 1132ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1142ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1152ebda74fSGiovanni Cabiddu 116cfc2bb32STadeusz Strukconfig CRYPTO_RSA 117cfc2bb32STadeusz Struk tristate "RSA algorithm" 118425e0172STadeusz Struk select CRYPTO_AKCIPHER 11958446fefSTadeusz Struk select CRYPTO_MANAGER 120cfc2bb32STadeusz Struk select MPILIB 121cfc2bb32STadeusz Struk select ASN1 122cfc2bb32STadeusz Struk help 123cfc2bb32STadeusz Struk Generic implementation of the RSA public key algorithm. 124cfc2bb32STadeusz Struk 125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH 126802c7f1cSSalvatore Benedetto tristate "Diffie-Hellman algorithm" 127802c7f1cSSalvatore Benedetto select CRYPTO_KPP 128802c7f1cSSalvatore Benedetto select MPILIB 129802c7f1cSSalvatore Benedetto help 130802c7f1cSSalvatore Benedetto Generic implementation of the Diffie-Hellman algorithm. 131802c7f1cSSalvatore Benedetto 1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH 1333c4b2390SSalvatore Benedetto tristate "ECDH algorithm" 134b5b90077SHauke Mehrtens select CRYPTO_KPP 1356755fd26STudor-Dan Ambarus select CRYPTO_RNG_DEFAULT 1363c4b2390SSalvatore Benedetto help 1373c4b2390SSalvatore Benedetto Generic implementation of the ECDH algorithm 138802c7f1cSSalvatore Benedetto 1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1402b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1416a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1422b8c19dbSHerbert Xu help 1432b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1442b8c19dbSHerbert Xu cbc(aes). 1452b8c19dbSHerbert Xu 1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1476a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1486a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1496a0fcbb4SHerbert Xu select CRYPTO_HASH2 1506a0fcbb4SHerbert Xu select CRYPTO_BLKCIPHER2 151946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1524e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1532ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1546a0fcbb4SHerbert Xu 155a38f7907SSteffen Klassertconfig CRYPTO_USER 156a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1575db017aaSHerbert Xu depends on NET 158a38f7907SSteffen Klassert select CRYPTO_MANAGER 159a38f7907SSteffen Klassert help 160d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 161a38f7907SSteffen Klassert cbc(aes). 162a38f7907SSteffen Klassert 163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 164326a6346SHerbert Xu bool "Disable run-time self tests" 16500ca28a5SHerbert Xu default y 16600ca28a5SHerbert Xu depends on CRYPTO_MANAGER2 1670b767f96SAlexander Shishkin help 168326a6346SHerbert Xu Disable run-time self tests that normally take place at 169326a6346SHerbert Xu algorithm registration. 1700b767f96SAlexander Shishkin 171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 17208c70fc3SJussi Kivilinna tristate "GF(2^128) multiplication functions" 173584fffc8SSebastian Siewior help 174584fffc8SSebastian Siewior Efficient table driven implementation of multiplications in the 175584fffc8SSebastian Siewior field GF(2^128). This is needed by some cypher modes. This 176584fffc8SSebastian Siewior option will be selected automatically if you select such a 177584fffc8SSebastian Siewior cipher mode. Only select this option by hand if you expect to load 178584fffc8SSebastian Siewior an external module that requires these functions. 179584fffc8SSebastian Siewior 180584fffc8SSebastian Siewiorconfig CRYPTO_NULL 181584fffc8SSebastian Siewior tristate "Null algorithms" 182149a3971SHerbert Xu select CRYPTO_NULL2 183584fffc8SSebastian Siewior help 184584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 185584fffc8SSebastian Siewior 186149a3971SHerbert Xuconfig CRYPTO_NULL2 187dd43c4e9SHerbert Xu tristate 188149a3971SHerbert Xu select CRYPTO_ALGAPI2 189149a3971SHerbert Xu select CRYPTO_BLKCIPHER2 190149a3971SHerbert Xu select CRYPTO_HASH2 191149a3971SHerbert Xu 1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1933b4afaf2SKees Cook tristate "Parallel crypto engine" 1943b4afaf2SKees Cook depends on SMP 1955068c7a8SSteffen Klassert select PADATA 1965068c7a8SSteffen Klassert select CRYPTO_MANAGER 1975068c7a8SSteffen Klassert select CRYPTO_AEAD 1985068c7a8SSteffen Klassert help 1995068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 2005068c7a8SSteffen Klassert algorithm that executes in kernel threads. 2015068c7a8SSteffen Klassert 20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE 20325c38d3fSHuang Ying tristate 20425c38d3fSHuang Ying 205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 206584fffc8SSebastian Siewior tristate "Software async crypto daemon" 207584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 208b8a28251SLoc Ho select CRYPTO_HASH 209584fffc8SSebastian Siewior select CRYPTO_MANAGER 210254eff77SHuang Ying select CRYPTO_WORKQUEUE 211584fffc8SSebastian Siewior help 212584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 213584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 214584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 215584fffc8SSebastian Siewior 2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD 2171e65b81aSTim Chen tristate "Software async multi-buffer crypto daemon" 2181e65b81aSTim Chen select CRYPTO_BLKCIPHER 2191e65b81aSTim Chen select CRYPTO_HASH 2201e65b81aSTim Chen select CRYPTO_MANAGER 2211e65b81aSTim Chen select CRYPTO_WORKQUEUE 2221e65b81aSTim Chen help 2231e65b81aSTim Chen This is a generic software asynchronous crypto daemon that 2241e65b81aSTim Chen provides the kernel thread to assist multi-buffer crypto 2251e65b81aSTim Chen algorithms for submitting jobs and flushing jobs in multi-buffer 2261e65b81aSTim Chen crypto algorithms. Multi-buffer crypto algorithms are executed 2271e65b81aSTim Chen in the context of this kernel thread and drivers can post 2280e56673bSTed Percival their crypto request asynchronously to be processed by this daemon. 2291e65b81aSTim Chen 230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 231584fffc8SSebastian Siewior tristate "Authenc support" 232584fffc8SSebastian Siewior select CRYPTO_AEAD 233584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 234584fffc8SSebastian Siewior select CRYPTO_MANAGER 235584fffc8SSebastian Siewior select CRYPTO_HASH 236e94c6a7aSHerbert Xu select CRYPTO_NULL 237584fffc8SSebastian Siewior help 238584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 239584fffc8SSebastian Siewior This is required for IPSec. 240584fffc8SSebastian Siewior 241584fffc8SSebastian Siewiorconfig CRYPTO_TEST 242584fffc8SSebastian Siewior tristate "Testing module" 243584fffc8SSebastian Siewior depends on m 244da7f033dSHerbert Xu select CRYPTO_MANAGER 245584fffc8SSebastian Siewior help 246584fffc8SSebastian Siewior Quick & dirty crypto test module. 247584fffc8SSebastian Siewior 248266d0516SHerbert Xuconfig CRYPTO_SIMD 249266d0516SHerbert Xu tristate 250266d0516SHerbert Xu select CRYPTO_CRYPTD 251266d0516SHerbert Xu 252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86 253596d8750SJussi Kivilinna tristate 254596d8750SJussi Kivilinna depends on X86 255065ce327SHerbert Xu select CRYPTO_BLKCIPHER 256596d8750SJussi Kivilinna 257735d37b5SBaolin Wangconfig CRYPTO_ENGINE 258735d37b5SBaolin Wang tristate 259735d37b5SBaolin Wang 260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 261584fffc8SSebastian Siewior 262584fffc8SSebastian Siewiorconfig CRYPTO_CCM 263584fffc8SSebastian Siewior tristate "CCM support" 264584fffc8SSebastian Siewior select CRYPTO_CTR 265f15f05b0SArd Biesheuvel select CRYPTO_HASH 266584fffc8SSebastian Siewior select CRYPTO_AEAD 267584fffc8SSebastian Siewior help 268584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 269584fffc8SSebastian Siewior 270584fffc8SSebastian Siewiorconfig CRYPTO_GCM 271584fffc8SSebastian Siewior tristate "GCM/GMAC support" 272584fffc8SSebastian Siewior select CRYPTO_CTR 273584fffc8SSebastian Siewior select CRYPTO_AEAD 2749382d97aSHuang Ying select CRYPTO_GHASH 2759489667dSJussi Kivilinna select CRYPTO_NULL 276584fffc8SSebastian Siewior help 277584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 278584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 279584fffc8SSebastian Siewior 28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 28171ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 28271ebc4d1SMartin Willi select CRYPTO_CHACHA20 28371ebc4d1SMartin Willi select CRYPTO_POLY1305 28471ebc4d1SMartin Willi select CRYPTO_AEAD 28571ebc4d1SMartin Willi help 28671ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 28771ebc4d1SMartin Willi 28871ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 28971ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 29071ebc4d1SMartin Willi IETF protocols. 29171ebc4d1SMartin Willi 292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 293f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 294f606a88eSOndrej Mosnacek select CRYPTO_AEAD 295f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 296f606a88eSOndrej Mosnacek help 297f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 298f606a88eSOndrej Mosnacek 299f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L 300f606a88eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm" 301f606a88eSOndrej Mosnacek select CRYPTO_AEAD 302f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 303f606a88eSOndrej Mosnacek help 304f606a88eSOndrej Mosnacek Support for the AEGIS-128L dedicated AEAD algorithm. 305f606a88eSOndrej Mosnacek 306f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256 307f606a88eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm" 308f606a88eSOndrej Mosnacek select CRYPTO_AEAD 309f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 310f606a88eSOndrej Mosnacek help 311f606a88eSOndrej Mosnacek Support for the AEGIS-256 dedicated AEAD algorithm. 312f606a88eSOndrej Mosnacek 3131d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3141d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3151d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3161d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3171d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3181d373d4eSOndrej Mosnacek help 3191d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm. 3201d373d4eSOndrej Mosnacek 3211d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2 3221d373d4eSOndrej Mosnacek tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3231d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3241d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3251d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3261d373d4eSOndrej Mosnacek help 3271d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm. 3281d373d4eSOndrej Mosnacek 3291d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2 3301d373d4eSOndrej Mosnacek tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3311d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3321d373d4eSOndrej Mosnacek select CRYPTO_AEAD 3331d373d4eSOndrej Mosnacek select CRYPTO_CRYPTD 3341d373d4eSOndrej Mosnacek help 3351d373d4eSOndrej Mosnacek AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm. 3361d373d4eSOndrej Mosnacek 337396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640 338396be41fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm" 339396be41fSOndrej Mosnacek select CRYPTO_AEAD 340396be41fSOndrej Mosnacek help 341396be41fSOndrej Mosnacek Support for the MORUS-640 dedicated AEAD algorithm. 342396be41fSOndrej Mosnacek 34356e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE 344*2808f173SOndrej Mosnacek tristate 345*2808f173SOndrej Mosnacek depends on X86 34656e8e57fSOndrej Mosnacek select CRYPTO_AEAD 34756e8e57fSOndrej Mosnacek select CRYPTO_CRYPTD 34856e8e57fSOndrej Mosnacek help 34956e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 35056e8e57fSOndrej Mosnacek algorithm. 35156e8e57fSOndrej Mosnacek 3526ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2 3536ecc9d9fSOndrej Mosnacek tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 3546ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3556ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3566ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS640_GLUE 3576ecc9d9fSOndrej Mosnacek help 3586ecc9d9fSOndrej Mosnacek SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 3596ecc9d9fSOndrej Mosnacek 360396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280 361396be41fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm" 362396be41fSOndrej Mosnacek select CRYPTO_AEAD 363396be41fSOndrej Mosnacek help 364396be41fSOndrej Mosnacek Support for the MORUS-1280 dedicated AEAD algorithm. 365396be41fSOndrej Mosnacek 36656e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE 367*2808f173SOndrej Mosnacek tristate 368*2808f173SOndrej Mosnacek depends on X86 36956e8e57fSOndrej Mosnacek select CRYPTO_AEAD 37056e8e57fSOndrej Mosnacek select CRYPTO_CRYPTD 37156e8e57fSOndrej Mosnacek help 37256e8e57fSOndrej Mosnacek Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 37356e8e57fSOndrej Mosnacek algorithm. 37456e8e57fSOndrej Mosnacek 3756ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2 3766ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 3776ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3786ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3796ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3806ecc9d9fSOndrej Mosnacek help 3816ecc9d9fSOndrej Mosnacek SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 3826ecc9d9fSOndrej Mosnacek algorithm. 3836ecc9d9fSOndrej Mosnacek 3846ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2 3856ecc9d9fSOndrej Mosnacek tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 3866ecc9d9fSOndrej Mosnacek depends on X86 && 64BIT 3876ecc9d9fSOndrej Mosnacek select CRYPTO_AEAD 3886ecc9d9fSOndrej Mosnacek select CRYPTO_MORUS1280_GLUE 3896ecc9d9fSOndrej Mosnacek help 3906ecc9d9fSOndrej Mosnacek AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 3916ecc9d9fSOndrej Mosnacek algorithm. 3926ecc9d9fSOndrej Mosnacek 393584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 394584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 395584fffc8SSebastian Siewior select CRYPTO_AEAD 396584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 397856e3f40SHerbert Xu select CRYPTO_NULL 398401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 399584fffc8SSebastian Siewior help 400584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 401584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 402584fffc8SSebastian Siewior 403a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 404a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 405a10f554fSHerbert Xu select CRYPTO_AEAD 406a10f554fSHerbert Xu select CRYPTO_NULL 407401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 4083491244cSHerbert Xu default m 409a10f554fSHerbert Xu help 410a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 411a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 412a10f554fSHerbert Xu algorithm for CBC. 413a10f554fSHerbert Xu 414584fffc8SSebastian Siewiorcomment "Block modes" 415584fffc8SSebastian Siewior 416584fffc8SSebastian Siewiorconfig CRYPTO_CBC 417584fffc8SSebastian Siewior tristate "CBC support" 418584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 419584fffc8SSebastian Siewior select CRYPTO_MANAGER 420584fffc8SSebastian Siewior help 421584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 422584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 423584fffc8SSebastian Siewior 424a7d85e06SJames Bottomleyconfig CRYPTO_CFB 425a7d85e06SJames Bottomley tristate "CFB support" 426a7d85e06SJames Bottomley select CRYPTO_BLKCIPHER 427a7d85e06SJames Bottomley select CRYPTO_MANAGER 428a7d85e06SJames Bottomley help 429a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 430a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 431a7d85e06SJames Bottomley 432584fffc8SSebastian Siewiorconfig CRYPTO_CTR 433584fffc8SSebastian Siewior tristate "CTR support" 434584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 435584fffc8SSebastian Siewior select CRYPTO_SEQIV 436584fffc8SSebastian Siewior select CRYPTO_MANAGER 437584fffc8SSebastian Siewior help 438584fffc8SSebastian Siewior CTR: Counter mode 439584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 440584fffc8SSebastian Siewior 441584fffc8SSebastian Siewiorconfig CRYPTO_CTS 442584fffc8SSebastian Siewior tristate "CTS support" 443584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 444584fffc8SSebastian Siewior help 445584fffc8SSebastian Siewior CTS: Cipher Text Stealing 446584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 447584fffc8SSebastian Siewior Section 8 of rfc2040 and referenced by rfc3962. 448584fffc8SSebastian Siewior (rfc3962 includes errata information in its Appendix A) 449584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 450584fffc8SSebastian Siewior for AES encryption. 451584fffc8SSebastian Siewior 452584fffc8SSebastian Siewiorconfig CRYPTO_ECB 453584fffc8SSebastian Siewior tristate "ECB support" 454584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 455584fffc8SSebastian Siewior select CRYPTO_MANAGER 456584fffc8SSebastian Siewior help 457584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 458584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 459584fffc8SSebastian Siewior the input block by block. 460584fffc8SSebastian Siewior 461584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4622470a2b2SJussi Kivilinna tristate "LRW support" 463584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 464584fffc8SSebastian Siewior select CRYPTO_MANAGER 465584fffc8SSebastian Siewior select CRYPTO_GF128MUL 466584fffc8SSebastian Siewior help 467584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 468584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 469584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 470584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 471584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 472584fffc8SSebastian Siewior 473584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 474584fffc8SSebastian Siewior tristate "PCBC support" 475584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 476584fffc8SSebastian Siewior select CRYPTO_MANAGER 477584fffc8SSebastian Siewior help 478584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 479584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 480584fffc8SSebastian Siewior 481584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4825bcf8e6dSJussi Kivilinna tristate "XTS support" 483584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 484584fffc8SSebastian Siewior select CRYPTO_MANAGER 48512cb3a1cSMilan Broz select CRYPTO_ECB 486584fffc8SSebastian Siewior help 487584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 488584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 489584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 490584fffc8SSebastian Siewior 4911c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4921c49678eSStephan Mueller tristate "Key wrapping support" 4931c49678eSStephan Mueller select CRYPTO_BLKCIPHER 4941c49678eSStephan Mueller help 4951c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4961c49678eSStephan Mueller padding. 4971c49678eSStephan Mueller 498584fffc8SSebastian Siewiorcomment "Hash modes" 499584fffc8SSebastian Siewior 50093b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 50193b5e86aSJussi Kivilinna tristate "CMAC support" 50293b5e86aSJussi Kivilinna select CRYPTO_HASH 50393b5e86aSJussi Kivilinna select CRYPTO_MANAGER 50493b5e86aSJussi Kivilinna help 50593b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 50693b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 50793b5e86aSJussi Kivilinna 50893b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 50993b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 51093b5e86aSJussi Kivilinna 5111da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5128425165dSHerbert Xu tristate "HMAC support" 5130796ae06SHerbert Xu select CRYPTO_HASH 51443518407SHerbert Xu select CRYPTO_MANAGER 5151da177e4SLinus Torvalds help 5161da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5171da177e4SLinus Torvalds This is required for IPSec. 5181da177e4SLinus Torvalds 519333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 520333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 521333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 522333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 523333b0d7eSKazunori MIYAZAWA help 524333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 525333b0d7eSKazunori MIYAZAWA http://www.ietf.org/rfc/rfc3566.txt 526333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 527333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 528333b0d7eSKazunori MIYAZAWA 529f1939f7cSShane Wangconfig CRYPTO_VMAC 530f1939f7cSShane Wang tristate "VMAC support" 531f1939f7cSShane Wang select CRYPTO_HASH 532f1939f7cSShane Wang select CRYPTO_MANAGER 533f1939f7cSShane Wang help 534f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 535f1939f7cSShane Wang very high speed on 64-bit architectures. 536f1939f7cSShane Wang 537f1939f7cSShane Wang See also: 538f1939f7cSShane Wang <http://fastcrypto.org/vmac> 539f1939f7cSShane Wang 540584fffc8SSebastian Siewiorcomment "Digest" 541584fffc8SSebastian Siewior 542584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 543584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 5445773a3e6SHerbert Xu select CRYPTO_HASH 5456a0962b2SDarrick J. Wong select CRC32 5461da177e4SLinus Torvalds help 547584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 548584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 54969c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 5501da177e4SLinus Torvalds 5518cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 5528cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 5538cb51ba8SAustin Zhang depends on X86 5548cb51ba8SAustin Zhang select CRYPTO_HASH 5558cb51ba8SAustin Zhang help 5568cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 5578cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 5588cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 5598cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 5608cb51ba8SAustin Zhang gain performance compared with software implementation. 5618cb51ba8SAustin Zhang Module will be crc32c-intel. 5628cb51ba8SAustin Zhang 5637cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 5646dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 565c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 5666dd7a82cSAnton Blanchard select CRYPTO_HASH 5676dd7a82cSAnton Blanchard select CRC32 5686dd7a82cSAnton Blanchard help 5696dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 5706dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 5716dd7a82cSAnton Blanchard and newer processors for improved performance. 5726dd7a82cSAnton Blanchard 5736dd7a82cSAnton Blanchard 574442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 575442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 576442a7c40SDavid S. Miller depends on SPARC64 577442a7c40SDavid S. Miller select CRYPTO_HASH 578442a7c40SDavid S. Miller select CRC32 579442a7c40SDavid S. Miller help 580442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 581442a7c40SDavid S. Miller when available. 582442a7c40SDavid S. Miller 58378c37d19SAlexander Boykoconfig CRYPTO_CRC32 58478c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 58578c37d19SAlexander Boyko select CRYPTO_HASH 58678c37d19SAlexander Boyko select CRC32 58778c37d19SAlexander Boyko help 58878c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 58978c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 59078c37d19SAlexander Boyko 59178c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 59278c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 59378c37d19SAlexander Boyko depends on X86 59478c37d19SAlexander Boyko select CRYPTO_HASH 59578c37d19SAlexander Boyko select CRC32 59678c37d19SAlexander Boyko help 59778c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 59878c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 59978c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 60078c37d19SAlexander Boyko instruction. This option will create 'crc32-plcmul' module, 60178c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 60278c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 60378c37d19SAlexander Boyko 6044a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6054a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6064a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6074a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6084a5dc51eSMarcin Nowakowski help 6094a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6104a5dc51eSMarcin Nowakowski instructions, when available. 6114a5dc51eSMarcin Nowakowski 6124a5dc51eSMarcin Nowakowski 61368411521SHerbert Xuconfig CRYPTO_CRCT10DIF 61468411521SHerbert Xu tristate "CRCT10DIF algorithm" 61568411521SHerbert Xu select CRYPTO_HASH 61668411521SHerbert Xu help 61768411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 61868411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 61968411521SHerbert Xu transforms to be used if they are available. 62068411521SHerbert Xu 62168411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 62268411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 62368411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 62468411521SHerbert Xu select CRYPTO_HASH 62568411521SHerbert Xu help 62668411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 62768411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 62868411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 62968411521SHerbert Xu 'crct10dif-plcmul' module, which is faster when computing the 63068411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 63168411521SHerbert Xu 632b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 633b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 634b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 635b01df1c1SDaniel Axtens select CRYPTO_HASH 636b01df1c1SDaniel Axtens help 637b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 638b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 639b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 640b01df1c1SDaniel Axtens 641146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 642146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 643146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 644146c8688SDaniel Axtens help 645146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 646146c8688SDaniel Axtens POWER8 vpmsum instructions. 647146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 648146c8688SDaniel Axtens 6492cdc6899SHuang Yingconfig CRYPTO_GHASH 6502cdc6899SHuang Ying tristate "GHASH digest algorithm" 6512cdc6899SHuang Ying select CRYPTO_GF128MUL 652578c60fbSArnd Bergmann select CRYPTO_HASH 6532cdc6899SHuang Ying help 6542cdc6899SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 6552cdc6899SHuang Ying 656f979e014SMartin Williconfig CRYPTO_POLY1305 657f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 658578c60fbSArnd Bergmann select CRYPTO_HASH 659f979e014SMartin Willi help 660f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 661f979e014SMartin Willi 662f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 663f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 664f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 665f979e014SMartin Willi 666c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 667b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 668c70f4abeSMartin Willi depends on X86 && 64BIT 669c70f4abeSMartin Willi select CRYPTO_POLY1305 670c70f4abeSMartin Willi help 671c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 672c70f4abeSMartin Willi 673c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 674c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 675c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 676c70f4abeSMartin Willi instructions. 677c70f4abeSMartin Willi 6781da177e4SLinus Torvaldsconfig CRYPTO_MD4 6791da177e4SLinus Torvalds tristate "MD4 digest algorithm" 680808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 6811da177e4SLinus Torvalds help 6821da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 6831da177e4SLinus Torvalds 6841da177e4SLinus Torvaldsconfig CRYPTO_MD5 6851da177e4SLinus Torvalds tristate "MD5 digest algorithm" 68614b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 6871da177e4SLinus Torvalds help 6881da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 6891da177e4SLinus Torvalds 690d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 691d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 692d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 693d69e75deSAaro Koskinen select CRYPTO_MD5 694d69e75deSAaro Koskinen select CRYPTO_HASH 695d69e75deSAaro Koskinen help 696d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 697d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 698d69e75deSAaro Koskinen 699e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 700e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 701e8e59953SMarkus Stockhausen depends on PPC 702e8e59953SMarkus Stockhausen select CRYPTO_HASH 703e8e59953SMarkus Stockhausen help 704e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 705e8e59953SMarkus Stockhausen in PPC assembler. 706e8e59953SMarkus Stockhausen 707fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 708fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 709fa4dfedcSDavid S. Miller depends on SPARC64 710fa4dfedcSDavid S. Miller select CRYPTO_MD5 711fa4dfedcSDavid S. Miller select CRYPTO_HASH 712fa4dfedcSDavid S. Miller help 713fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 714fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 715fa4dfedcSDavid S. Miller 716584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 717584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 71819e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 719584fffc8SSebastian Siewior help 720584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 721584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 722584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 723584fffc8SSebastian Siewior of the algorithm. 724584fffc8SSebastian Siewior 72582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128 72682798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-128 digest algorithm" 7277c4468bcSHerbert Xu select CRYPTO_HASH 72882798f90SAdrian-Ken Rueegsegger help 72982798f90SAdrian-Ken Rueegsegger RIPEMD-128 (ISO/IEC 10118-3:2004). 73082798f90SAdrian-Ken Rueegsegger 73182798f90SAdrian-Ken Rueegsegger RIPEMD-128 is a 128-bit cryptographic hash function. It should only 73235ed4b35SMichael Witten be used as a secure replacement for RIPEMD. For other use cases, 73382798f90SAdrian-Ken Rueegsegger RIPEMD-160 should be used. 73482798f90SAdrian-Ken Rueegsegger 73582798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7366d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 73782798f90SAdrian-Ken Rueegsegger 73882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 73982798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 740e5835fbaSHerbert Xu select CRYPTO_HASH 74182798f90SAdrian-Ken Rueegsegger help 74282798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 74382798f90SAdrian-Ken Rueegsegger 74482798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 74582798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 746b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 747b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 74882798f90SAdrian-Ken Rueegsegger 749b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 750b6d44341SAdrian Bunk against RIPEMD-160. 751534fe2c1SAdrian-Ken Rueegsegger 752534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7536d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 754534fe2c1SAdrian-Ken Rueegsegger 755534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256 756534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-256 digest algorithm" 757d8a5e2e9SHerbert Xu select CRYPTO_HASH 758534fe2c1SAdrian-Ken Rueegsegger help 759b6d44341SAdrian Bunk RIPEMD-256 is an optional extension of RIPEMD-128 with a 760b6d44341SAdrian Bunk 256 bit hash. It is intended for applications that require 761b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 762b6d44341SAdrian Bunk (than RIPEMD-128). 763534fe2c1SAdrian-Ken Rueegsegger 764534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7656d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 766534fe2c1SAdrian-Ken Rueegsegger 767534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320 768534fe2c1SAdrian-Ken Rueegsegger tristate "RIPEMD-320 digest algorithm" 7693b8efb4cSHerbert Xu select CRYPTO_HASH 770534fe2c1SAdrian-Ken Rueegsegger help 771b6d44341SAdrian Bunk RIPEMD-320 is an optional extension of RIPEMD-160 with a 772b6d44341SAdrian Bunk 320 bit hash. It is intended for applications that require 773b6d44341SAdrian Bunk longer hash-results, without needing a larger security level 774b6d44341SAdrian Bunk (than RIPEMD-160). 775534fe2c1SAdrian-Ken Rueegsegger 77682798f90SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 7776d8de74cSJustin P. Mattock See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 77882798f90SAdrian-Ken Rueegsegger 7791da177e4SLinus Torvaldsconfig CRYPTO_SHA1 7801da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 78154ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 7821da177e4SLinus Torvalds help 7831da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 7841da177e4SLinus Torvalds 78566be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 786e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 78766be8951SMathias Krause depends on X86 && 64BIT 78866be8951SMathias Krause select CRYPTO_SHA1 78966be8951SMathias Krause select CRYPTO_HASH 79066be8951SMathias Krause help 79166be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 79266be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 793e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 794e38b6b7fStim when available. 79566be8951SMathias Krause 7968275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 797e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 7988275d1aaSTim Chen depends on X86 && 64BIT 7998275d1aaSTim Chen select CRYPTO_SHA256 8008275d1aaSTim Chen select CRYPTO_HASH 8018275d1aaSTim Chen help 8028275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8038275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8048275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 805e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 806e38b6b7fStim Instructions) when available. 8078275d1aaSTim Chen 80887de4579STim Chenconfig CRYPTO_SHA512_SSSE3 80987de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 81087de4579STim Chen depends on X86 && 64BIT 81187de4579STim Chen select CRYPTO_SHA512 81287de4579STim Chen select CRYPTO_HASH 81387de4579STim Chen help 81487de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 81587de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 81687de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 81787de4579STim Chen version 2 (AVX2) instructions, when available. 81887de4579STim Chen 819efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 820efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 821efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 822efdb6f6eSAaro Koskinen select CRYPTO_SHA1 823efdb6f6eSAaro Koskinen select CRYPTO_HASH 824efdb6f6eSAaro Koskinen help 825efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 826efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 827efdb6f6eSAaro Koskinen 8284ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 8294ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 8304ff28d4cSDavid S. Miller depends on SPARC64 8314ff28d4cSDavid S. Miller select CRYPTO_SHA1 8324ff28d4cSDavid S. Miller select CRYPTO_HASH 8334ff28d4cSDavid S. Miller help 8344ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8354ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 8364ff28d4cSDavid S. Miller 837323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 838323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 839323a6bf1SMichael Ellerman depends on PPC 840323a6bf1SMichael Ellerman help 841323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 842323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 843323a6bf1SMichael Ellerman 844d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 845d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 846d9850fc5SMarkus Stockhausen depends on PPC && SPE 847d9850fc5SMarkus Stockhausen help 848d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 849d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 850d9850fc5SMarkus Stockhausen 8511e65b81aSTim Chenconfig CRYPTO_SHA1_MB 8521e65b81aSTim Chen tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 8531e65b81aSTim Chen depends on X86 && 64BIT 8541e65b81aSTim Chen select CRYPTO_SHA1 8551e65b81aSTim Chen select CRYPTO_HASH 8561e65b81aSTim Chen select CRYPTO_MCRYPTD 8571e65b81aSTim Chen help 8581e65b81aSTim Chen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8591e65b81aSTim Chen using multi-buffer technique. This algorithm computes on 8601e65b81aSTim Chen multiple data lanes concurrently with SIMD instructions for 8611e65b81aSTim Chen better throughput. It should not be enabled by default but 8621e65b81aSTim Chen used when there is significant amount of work to keep the keep 8631e65b81aSTim Chen the data lanes filled to get performance benefit. If the data 8641e65b81aSTim Chen lanes remain unfilled, a flush operation will be initiated to 8651e65b81aSTim Chen process the crypto jobs, adding a slight latency. 8661e65b81aSTim Chen 8679be7e244SMegha Deyconfig CRYPTO_SHA256_MB 8689be7e244SMegha Dey tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 8699be7e244SMegha Dey depends on X86 && 64BIT 8709be7e244SMegha Dey select CRYPTO_SHA256 8719be7e244SMegha Dey select CRYPTO_HASH 8729be7e244SMegha Dey select CRYPTO_MCRYPTD 8739be7e244SMegha Dey help 8749be7e244SMegha Dey SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 8759be7e244SMegha Dey using multi-buffer technique. This algorithm computes on 8769be7e244SMegha Dey multiple data lanes concurrently with SIMD instructions for 8779be7e244SMegha Dey better throughput. It should not be enabled by default but 8789be7e244SMegha Dey used when there is significant amount of work to keep the keep 8799be7e244SMegha Dey the data lanes filled to get performance benefit. If the data 8809be7e244SMegha Dey lanes remain unfilled, a flush operation will be initiated to 8819be7e244SMegha Dey process the crypto jobs, adding a slight latency. 8829be7e244SMegha Dey 883026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB 884026bb8aaSMegha Dey tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 885026bb8aaSMegha Dey depends on X86 && 64BIT 886026bb8aaSMegha Dey select CRYPTO_SHA512 887026bb8aaSMegha Dey select CRYPTO_HASH 888026bb8aaSMegha Dey select CRYPTO_MCRYPTD 889026bb8aaSMegha Dey help 890026bb8aaSMegha Dey SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 891026bb8aaSMegha Dey using multi-buffer technique. This algorithm computes on 892026bb8aaSMegha Dey multiple data lanes concurrently with SIMD instructions for 893026bb8aaSMegha Dey better throughput. It should not be enabled by default but 894026bb8aaSMegha Dey used when there is significant amount of work to keep the keep 895026bb8aaSMegha Dey the data lanes filled to get performance benefit. If the data 896026bb8aaSMegha Dey lanes remain unfilled, a flush operation will be initiated to 897026bb8aaSMegha Dey process the crypto jobs, adding a slight latency. 898026bb8aaSMegha Dey 8991da177e4SLinus Torvaldsconfig CRYPTO_SHA256 900cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 90150e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 9021da177e4SLinus Torvalds help 9031da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9041da177e4SLinus Torvalds 9051da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9061da177e4SLinus Torvalds security against collision attacks. 9071da177e4SLinus Torvalds 908cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 909cd12fb90SJonathan Lynch of security against collision attacks. 910cd12fb90SJonathan Lynch 9112ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9122ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9132ecc1e95SMarkus Stockhausen depends on PPC && SPE 9142ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9152ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9162ecc1e95SMarkus Stockhausen help 9172ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9182ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9192ecc1e95SMarkus Stockhausen 920efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 921efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 922efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 923efdb6f6eSAaro Koskinen select CRYPTO_SHA256 924efdb6f6eSAaro Koskinen select CRYPTO_HASH 925efdb6f6eSAaro Koskinen help 926efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 927efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 928efdb6f6eSAaro Koskinen 92986c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 93086c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 93186c93b24SDavid S. Miller depends on SPARC64 93286c93b24SDavid S. Miller select CRYPTO_SHA256 93386c93b24SDavid S. Miller select CRYPTO_HASH 93486c93b24SDavid S. Miller help 93586c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 93686c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 93786c93b24SDavid S. Miller 9381da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9391da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 940bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9411da177e4SLinus Torvalds help 9421da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9431da177e4SLinus Torvalds 9441da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9451da177e4SLinus Torvalds security against collision attacks. 9461da177e4SLinus Torvalds 9471da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9481da177e4SLinus Torvalds of security against collision attacks. 9491da177e4SLinus Torvalds 950efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 951efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 952efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 953efdb6f6eSAaro Koskinen select CRYPTO_SHA512 954efdb6f6eSAaro Koskinen select CRYPTO_HASH 955efdb6f6eSAaro Koskinen help 956efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 957efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 958efdb6f6eSAaro Koskinen 959775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 960775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 961775e0c69SDavid S. Miller depends on SPARC64 962775e0c69SDavid S. Miller select CRYPTO_SHA512 963775e0c69SDavid S. Miller select CRYPTO_HASH 964775e0c69SDavid S. Miller help 965775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 966775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 967775e0c69SDavid S. Miller 96853964b9eSJeff Garzikconfig CRYPTO_SHA3 96953964b9eSJeff Garzik tristate "SHA3 digest algorithm" 97053964b9eSJeff Garzik select CRYPTO_HASH 97153964b9eSJeff Garzik help 97253964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 97353964b9eSJeff Garzik cryptographic sponge function family called Keccak. 97453964b9eSJeff Garzik 97553964b9eSJeff Garzik References: 97653964b9eSJeff Garzik http://keccak.noekeon.org/ 97753964b9eSJeff Garzik 9784f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 9794f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 9804f0fc160SGilad Ben-Yossef select CRYPTO_HASH 9814f0fc160SGilad Ben-Yossef help 9824f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 9834f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 9844f0fc160SGilad Ben-Yossef 9854f0fc160SGilad Ben-Yossef References: 9864f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 9874f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 9884f0fc160SGilad Ben-Yossef 9891da177e4SLinus Torvaldsconfig CRYPTO_TGR192 9901da177e4SLinus Torvalds tristate "Tiger digest algorithms" 991f63fbd3dSAdrian-Ken Rueegsegger select CRYPTO_HASH 9921da177e4SLinus Torvalds help 9931da177e4SLinus Torvalds Tiger hash algorithm 192, 160 and 128-bit hashes 9941da177e4SLinus Torvalds 9951da177e4SLinus Torvalds Tiger is a hash function optimized for 64-bit processors while 9961da177e4SLinus Torvalds still having decent performance on 32-bit processors. 9971da177e4SLinus Torvalds Tiger was developed by Ross Anderson and Eli Biham. 9981da177e4SLinus Torvalds 9991da177e4SLinus Torvalds See also: 10001da177e4SLinus Torvalds <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 10011da177e4SLinus Torvalds 1002584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1003584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10044946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10051da177e4SLinus Torvalds help 1006584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10071da177e4SLinus Torvalds 1008584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1009584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10101da177e4SLinus Torvalds 10111da177e4SLinus Torvalds See also: 10126d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10131da177e4SLinus Torvalds 10140e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10150e1227d3SHuang Ying tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 10168af00860SRichard Weinberger depends on X86 && 64BIT 10170e1227d3SHuang Ying select CRYPTO_CRYPTD 10180e1227d3SHuang Ying help 10190e1227d3SHuang Ying GHASH is message digest algorithm for GCM (Galois/Counter Mode). 10200e1227d3SHuang Ying The implementation is accelerated by CLMUL-NI of Intel. 10210e1227d3SHuang Ying 1022584fffc8SSebastian Siewiorcomment "Ciphers" 10231da177e4SLinus Torvalds 10241da177e4SLinus Torvaldsconfig CRYPTO_AES 10251da177e4SLinus Torvalds tristate "AES cipher algorithms" 1026cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10271da177e4SLinus Torvalds help 10281da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10291da177e4SLinus Torvalds algorithm. 10301da177e4SLinus Torvalds 10311da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10321da177e4SLinus Torvalds both hardware and software across a wide range of computing 10331da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10341da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10351da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10361da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10371da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10381da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10391da177e4SLinus Torvalds 10401da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10411da177e4SLinus Torvalds 10421da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10431da177e4SLinus Torvalds 1044b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1045b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1046b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1047b5e0b032SArd Biesheuvel help 1048b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1049b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1050b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1051b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1052b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1053b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1054b5e0b032SArd Biesheuvel 1055b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1056b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1057b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1058b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 1059b5e0b032SArd Biesheuvel block. 1060b5e0b032SArd Biesheuvel 10611da177e4SLinus Torvaldsconfig CRYPTO_AES_586 10621da177e4SLinus Torvalds tristate "AES cipher algorithms (i586)" 1063cce9e06dSHerbert Xu depends on (X86 || UML_X86) && !64BIT 1064cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10655157dea8SSebastian Siewior select CRYPTO_AES 10661da177e4SLinus Torvalds help 10671da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10681da177e4SLinus Torvalds algorithm. 10691da177e4SLinus Torvalds 10701da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10711da177e4SLinus Torvalds both hardware and software across a wide range of computing 10721da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10731da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10741da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10751da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10761da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10771da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10781da177e4SLinus Torvalds 10791da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10801da177e4SLinus Torvalds 10811da177e4SLinus Torvalds See <http://csrc.nist.gov/encryption/aes/> for more information. 10821da177e4SLinus Torvalds 1083a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64 1084a2a892a2SAndreas Steinmetz tristate "AES cipher algorithms (x86_64)" 1085cce9e06dSHerbert Xu depends on (X86 || UML_X86) && 64BIT 1086cce9e06dSHerbert Xu select CRYPTO_ALGAPI 108781190b32SSebastian Siewior select CRYPTO_AES 1088a2a892a2SAndreas Steinmetz help 1089a2a892a2SAndreas Steinmetz AES cipher algorithms (FIPS-197). AES uses the Rijndael 1090a2a892a2SAndreas Steinmetz algorithm. 1091a2a892a2SAndreas Steinmetz 1092a2a892a2SAndreas Steinmetz Rijndael appears to be consistently a very good performer in 1093a2a892a2SAndreas Steinmetz both hardware and software across a wide range of computing 1094a2a892a2SAndreas Steinmetz environments regardless of its use in feedback or non-feedback 1095a2a892a2SAndreas Steinmetz modes. Its key setup time is excellent, and its key agility is 1096a2a892a2SAndreas Steinmetz good. Rijndael's very low memory requirements make it very well 1097a2a892a2SAndreas Steinmetz suited for restricted-space environments, in which it also 1098a2a892a2SAndreas Steinmetz demonstrates excellent performance. Rijndael's operations are 1099a2a892a2SAndreas Steinmetz among the easiest to defend against power and timing attacks. 1100a2a892a2SAndreas Steinmetz 1101a2a892a2SAndreas Steinmetz The AES specifies three key sizes: 128, 192 and 256 bits 1102a2a892a2SAndreas Steinmetz 1103a2a892a2SAndreas Steinmetz See <http://csrc.nist.gov/encryption/aes/> for more information. 1104a2a892a2SAndreas Steinmetz 110554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 110654b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11078af00860SRichard Weinberger depends on X86 110885671860SHerbert Xu select CRYPTO_AEAD 11090d258efbSMathias Krause select CRYPTO_AES_X86_64 if 64BIT 11100d258efbSMathias Krause select CRYPTO_AES_586 if !64BIT 111154b6a1bdSHuang Ying select CRYPTO_ALGAPI 111285671860SHerbert Xu select CRYPTO_BLKCIPHER 11137643a11aSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 if 64BIT 111485671860SHerbert Xu select CRYPTO_SIMD 111554b6a1bdSHuang Ying help 111654b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 111754b6a1bdSHuang Ying 111854b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 111954b6a1bdSHuang Ying algorithm. 112054b6a1bdSHuang Ying 112154b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 112254b6a1bdSHuang Ying both hardware and software across a wide range of computing 112354b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 112454b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 112554b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 112654b6a1bdSHuang Ying suited for restricted-space environments, in which it also 112754b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 112854b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 112954b6a1bdSHuang Ying 113054b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 113154b6a1bdSHuang Ying 113254b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 113354b6a1bdSHuang Ying 11340d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11350d258efbSMathias Krause for some popular block cipher mode is supported too, including 11360d258efbSMathias Krause ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 11370d258efbSMathias Krause acceleration for CTR. 11382cf4ac8bSHuang Ying 11399bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11409bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11419bf4852dSDavid S. Miller depends on SPARC64 11429bf4852dSDavid S. Miller select CRYPTO_CRYPTD 11439bf4852dSDavid S. Miller select CRYPTO_ALGAPI 11449bf4852dSDavid S. Miller help 11459bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11469bf4852dSDavid S. Miller 11479bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11489bf4852dSDavid S. Miller algorithm. 11499bf4852dSDavid S. Miller 11509bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11519bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11529bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11539bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11549bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11559bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11569bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11579bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11589bf4852dSDavid S. Miller 11599bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11609bf4852dSDavid S. Miller 11619bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11629bf4852dSDavid S. Miller 11639bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11649bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11659bf4852dSDavid S. Miller ECB and CBC. 11669bf4852dSDavid S. Miller 1167504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1168504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1169504c6143SMarkus Stockhausen depends on PPC && SPE 1170504c6143SMarkus Stockhausen help 1171504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1172504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1173504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1174504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1175504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1176504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1177504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1178504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1179504c6143SMarkus Stockhausen 11801da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11811da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 1182cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11831da177e4SLinus Torvalds help 11841da177e4SLinus Torvalds Anubis cipher algorithm. 11851da177e4SLinus Torvalds 11861da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11871da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11881da177e4SLinus Torvalds in the NESSIE competition. 11891da177e4SLinus Torvalds 11901da177e4SLinus Torvalds See also: 11916d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11926d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11931da177e4SLinus Torvalds 1194584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1195584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 1196b9b0f080SSebastian Andrzej Siewior select CRYPTO_BLKCIPHER 1197e2ee95b8SHye-Shik Chang help 1198584fffc8SSebastian Siewior ARC4 cipher algorithm. 1199e2ee95b8SHye-Shik Chang 1200584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1201584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1202584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1203584fffc8SSebastian Siewior weakness of the algorithm. 1204584fffc8SSebastian Siewior 1205584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1206584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1207584fffc8SSebastian Siewior select CRYPTO_ALGAPI 120852ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1209584fffc8SSebastian Siewior help 1210584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1211584fffc8SSebastian Siewior 1212584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1213584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1214584fffc8SSebastian Siewior designed for use on "large microprocessors". 1215e2ee95b8SHye-Shik Chang 1216e2ee95b8SHye-Shik Chang See also: 1217584fffc8SSebastian Siewior <http://www.schneier.com/blowfish.html> 1218584fffc8SSebastian Siewior 121952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 122052ba867cSJussi Kivilinna tristate 122152ba867cSJussi Kivilinna help 122252ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 122352ba867cSJussi Kivilinna generic c and the assembler implementations. 122452ba867cSJussi Kivilinna 122552ba867cSJussi Kivilinna See also: 122652ba867cSJussi Kivilinna <http://www.schneier.com/blowfish.html> 122752ba867cSJussi Kivilinna 122864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 122964b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1230f21a7c19SAl Viro depends on X86 && 64BIT 1231c1679171SEric Biggers select CRYPTO_BLKCIPHER 123264b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 123364b94ceaSJussi Kivilinna help 123464b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 123564b94ceaSJussi Kivilinna 123664b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 123764b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 123864b94ceaSJussi Kivilinna designed for use on "large microprocessors". 123964b94ceaSJussi Kivilinna 124064b94ceaSJussi Kivilinna See also: 124164b94ceaSJussi Kivilinna <http://www.schneier.com/blowfish.html> 124264b94ceaSJussi Kivilinna 1243584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1244584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1245584fffc8SSebastian Siewior depends on CRYPTO 1246584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1247584fffc8SSebastian Siewior help 1248584fffc8SSebastian Siewior Camellia cipher algorithms module. 1249584fffc8SSebastian Siewior 1250584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1251584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1252584fffc8SSebastian Siewior 1253584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1254584fffc8SSebastian Siewior 1255584fffc8SSebastian Siewior See also: 1256584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1257584fffc8SSebastian Siewior 12580b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12590b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1260f21a7c19SAl Viro depends on X86 && 64BIT 12610b95ec56SJussi Kivilinna depends on CRYPTO 12621af6d037SEric Biggers select CRYPTO_BLKCIPHER 1263964263afSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 12640b95ec56SJussi Kivilinna help 12650b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12660b95ec56SJussi Kivilinna 12670b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12680b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12690b95ec56SJussi Kivilinna 12700b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12710b95ec56SJussi Kivilinna 12720b95ec56SJussi Kivilinna See also: 12730b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12740b95ec56SJussi Kivilinna 1275d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1276d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1277d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1278d9b1d2e7SJussi Kivilinna depends on CRYPTO 127944893bc2SEric Biggers select CRYPTO_BLKCIPHER 1280d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 128144893bc2SEric Biggers select CRYPTO_GLUE_HELPER_X86 128244893bc2SEric Biggers select CRYPTO_SIMD 1283d9b1d2e7SJussi Kivilinna select CRYPTO_XTS 1284d9b1d2e7SJussi Kivilinna help 1285d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1286d9b1d2e7SJussi Kivilinna 1287d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1288d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1289d9b1d2e7SJussi Kivilinna 1290d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1291d9b1d2e7SJussi Kivilinna 1292d9b1d2e7SJussi Kivilinna See also: 1293d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1294d9b1d2e7SJussi Kivilinna 1295f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1296f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1297f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1298f3f935a7SJussi Kivilinna depends on CRYPTO 1299f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1300f3f935a7SJussi Kivilinna help 1301f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1302f3f935a7SJussi Kivilinna 1303f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1304f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1305f3f935a7SJussi Kivilinna 1306f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1307f3f935a7SJussi Kivilinna 1308f3f935a7SJussi Kivilinna See also: 1309f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1310f3f935a7SJussi Kivilinna 131181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 131281658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 131381658ad0SDavid S. Miller depends on SPARC64 131481658ad0SDavid S. Miller depends on CRYPTO 131581658ad0SDavid S. Miller select CRYPTO_ALGAPI 131681658ad0SDavid S. Miller help 131781658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 131881658ad0SDavid S. Miller 131981658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 132081658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 132181658ad0SDavid S. Miller 132281658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 132381658ad0SDavid S. Miller 132481658ad0SDavid S. Miller See also: 132581658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 132681658ad0SDavid S. Miller 1327044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1328044ab525SJussi Kivilinna tristate 1329044ab525SJussi Kivilinna help 1330044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1331044ab525SJussi Kivilinna generic c and the assembler implementations. 1332044ab525SJussi Kivilinna 1333584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1334584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1335584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1336044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1337584fffc8SSebastian Siewior help 1338584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1339584fffc8SSebastian Siewior described in RFC2144. 1340584fffc8SSebastian Siewior 13414d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13424d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13434d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 13441e63183aSEric Biggers select CRYPTO_BLKCIPHER 13454d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13461e63183aSEric Biggers select CRYPTO_CAST_COMMON 13471e63183aSEric Biggers select CRYPTO_SIMD 13484d6d6a2cSJohannes Goetzfried help 13494d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13504d6d6a2cSJohannes Goetzfried described in RFC2144. 13514d6d6a2cSJohannes Goetzfried 13524d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13534d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13544d6d6a2cSJohannes Goetzfried 1355584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1356584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1357584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1358044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1359584fffc8SSebastian Siewior help 1360584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1361584fffc8SSebastian Siewior described in RFC2612. 1362584fffc8SSebastian Siewior 13634ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13644ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13654ea1277dSJohannes Goetzfried depends on X86 && 64BIT 13664bd96924SEric Biggers select CRYPTO_BLKCIPHER 13674ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13684bd96924SEric Biggers select CRYPTO_CAST_COMMON 13694bd96924SEric Biggers select CRYPTO_GLUE_HELPER_X86 13704bd96924SEric Biggers select CRYPTO_SIMD 13714ea1277dSJohannes Goetzfried select CRYPTO_XTS 13724ea1277dSJohannes Goetzfried help 13734ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13744ea1277dSJohannes Goetzfried described in RFC2612. 13754ea1277dSJohannes Goetzfried 13764ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13774ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13784ea1277dSJohannes Goetzfried 1379584fffc8SSebastian Siewiorconfig CRYPTO_DES 1380584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1381584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1382584fffc8SSebastian Siewior help 1383584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1384584fffc8SSebastian Siewior 1385c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1386c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 138797da37b3SDave Jones depends on SPARC64 1388c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 1389c5aac2dfSDavid S. Miller select CRYPTO_DES 1390c5aac2dfSDavid S. Miller help 1391c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1392c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1393c5aac2dfSDavid S. Miller 13946574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13956574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13966574e6c6SJussi Kivilinna depends on X86 && 64BIT 139709c0f03bSEric Biggers select CRYPTO_BLKCIPHER 13986574e6c6SJussi Kivilinna select CRYPTO_DES 13996574e6c6SJussi Kivilinna help 14006574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14016574e6c6SJussi Kivilinna 14026574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14036574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14046574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14056574e6c6SJussi Kivilinna one that processes three blocks parallel. 14066574e6c6SJussi Kivilinna 1407584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1408584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1409584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1410584fffc8SSebastian Siewior select CRYPTO_BLKCIPHER 1411584fffc8SSebastian Siewior help 1412584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1413584fffc8SSebastian Siewior 1414584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1415584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 1416584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1417584fffc8SSebastian Siewior help 1418584fffc8SSebastian Siewior Khazad cipher algorithm. 1419584fffc8SSebastian Siewior 1420584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1421584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1422584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1423584fffc8SSebastian Siewior 1424584fffc8SSebastian Siewior See also: 14256d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1426e2ee95b8SHye-Shik Chang 14272407d608STan Swee Hengconfig CRYPTO_SALSA20 14283b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm" 14292407d608STan Swee Heng select CRYPTO_BLKCIPHER 14302407d608STan Swee Heng help 14312407d608STan Swee Heng Salsa20 stream cipher algorithm. 14322407d608STan Swee Heng 14332407d608STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14342407d608STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14352407d608STan Swee Heng 14362407d608STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14372407d608STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14381da177e4SLinus Torvalds 1439974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586 14403b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (i586)" 1441974e4b75STan Swee Heng depends on (X86 || UML_X86) && !64BIT 1442974e4b75STan Swee Heng select CRYPTO_BLKCIPHER 1443c9a3ff8fSEric Biggers select CRYPTO_SALSA20 1444974e4b75STan Swee Heng help 1445974e4b75STan Swee Heng Salsa20 stream cipher algorithm. 1446974e4b75STan Swee Heng 1447974e4b75STan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1448974e4b75STan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1449974e4b75STan Swee Heng 1450974e4b75STan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 1451974e4b75STan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1452974e4b75STan Swee Heng 14539a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64 14543b4afaf2SKees Cook tristate "Salsa20 stream cipher algorithm (x86_64)" 14559a7dafbbSTan Swee Heng depends on (X86 || UML_X86) && 64BIT 14569a7dafbbSTan Swee Heng select CRYPTO_BLKCIPHER 1457c9a3ff8fSEric Biggers select CRYPTO_SALSA20 14589a7dafbbSTan Swee Heng help 14599a7dafbbSTan Swee Heng Salsa20 stream cipher algorithm. 14609a7dafbbSTan Swee Heng 14619a7dafbbSTan Swee Heng Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 14629a7dafbbSTan Swee Heng Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 14639a7dafbbSTan Swee Heng 14649a7dafbbSTan Swee Heng The Salsa20 stream cipher algorithm is designed by Daniel J. 14659a7dafbbSTan Swee Heng Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 14669a7dafbbSTan Swee Heng 1467c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1468c08d0e64SMartin Willi tristate "ChaCha20 cipher algorithm" 1469c08d0e64SMartin Willi select CRYPTO_BLKCIPHER 1470c08d0e64SMartin Willi help 1471c08d0e64SMartin Willi ChaCha20 cipher algorithm, RFC7539. 1472c08d0e64SMartin Willi 1473c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1474c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1475c08d0e64SMartin Willi This is the portable C implementation of ChaCha20. 1476c08d0e64SMartin Willi 1477c08d0e64SMartin Willi See also: 1478c08d0e64SMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1479c08d0e64SMartin Willi 1480c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14813d1e93cdSMartin Willi tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1482c9320b6dSMartin Willi depends on X86 && 64BIT 1483c9320b6dSMartin Willi select CRYPTO_BLKCIPHER 1484c9320b6dSMartin Willi select CRYPTO_CHACHA20 1485c9320b6dSMartin Willi help 1486c9320b6dSMartin Willi ChaCha20 cipher algorithm, RFC7539. 1487c9320b6dSMartin Willi 1488c9320b6dSMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1489c9320b6dSMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1490c9320b6dSMartin Willi This is the x86_64 assembler implementation using SIMD instructions. 1491c9320b6dSMartin Willi 1492c9320b6dSMartin Willi See also: 1493c9320b6dSMartin Willi <http://cr.yp.to/chacha/chacha-20080128.pdf> 1494c9320b6dSMartin Willi 1495584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1496584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 1497584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1498584fffc8SSebastian Siewior help 1499584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1500584fffc8SSebastian Siewior 1501584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1502584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1503584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1504584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1505584fffc8SSebastian Siewior 1506584fffc8SSebastian Siewior See also: 1507584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1508584fffc8SSebastian Siewior 1509584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1510584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1511584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1512584fffc8SSebastian Siewior help 1513584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1514584fffc8SSebastian Siewior 1515584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1516584fffc8SSebastian Siewior of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1517584fffc8SSebastian Siewior variant of Serpent for compatibility with old kerneli.org code. 1518584fffc8SSebastian Siewior 1519584fffc8SSebastian Siewior See also: 1520584fffc8SSebastian Siewior <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1521584fffc8SSebastian Siewior 1522937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1523937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1524937c30d7SJussi Kivilinna depends on X86 && 64BIT 1525e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1526596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1527937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1528e0f409dcSEric Biggers select CRYPTO_SIMD 1529937c30d7SJussi Kivilinna help 1530937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1531937c30d7SJussi Kivilinna 1532937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1533937c30d7SJussi Kivilinna of 8 bits. 1534937c30d7SJussi Kivilinna 15351e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1536937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1537937c30d7SJussi Kivilinna 1538937c30d7SJussi Kivilinna See also: 1539937c30d7SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1540937c30d7SJussi Kivilinna 1541251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1542251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1543251496dbSJussi Kivilinna depends on X86 && !64BIT 1544e0f409dcSEric Biggers select CRYPTO_BLKCIPHER 1545596d8750SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 1546251496dbSJussi Kivilinna select CRYPTO_SERPENT 1547e0f409dcSEric Biggers select CRYPTO_SIMD 1548251496dbSJussi Kivilinna help 1549251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1550251496dbSJussi Kivilinna 1551251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1552251496dbSJussi Kivilinna of 8 bits. 1553251496dbSJussi Kivilinna 1554251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1555251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1556251496dbSJussi Kivilinna 1557251496dbSJussi Kivilinna See also: 1558251496dbSJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1559251496dbSJussi Kivilinna 15607efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15617efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15627efe4076SJohannes Goetzfried depends on X86 && 64BIT 1563e16bf974SEric Biggers select CRYPTO_BLKCIPHER 15641d0debbdSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 15657efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1566e16bf974SEric Biggers select CRYPTO_SIMD 15677efe4076SJohannes Goetzfried select CRYPTO_XTS 15687efe4076SJohannes Goetzfried help 15697efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15707efe4076SJohannes Goetzfried 15717efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15727efe4076SJohannes Goetzfried of 8 bits. 15737efe4076SJohannes Goetzfried 15747efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15757efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15767efe4076SJohannes Goetzfried 15777efe4076SJohannes Goetzfried See also: 15787efe4076SJohannes Goetzfried <http://www.cl.cam.ac.uk/~rja14/serpent.html> 15797efe4076SJohannes Goetzfried 158056d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 158156d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 158256d76c96SJussi Kivilinna depends on X86 && 64BIT 158356d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 158456d76c96SJussi Kivilinna help 158556d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 158656d76c96SJussi Kivilinna 158756d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 158856d76c96SJussi Kivilinna of 8 bits. 158956d76c96SJussi Kivilinna 159056d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 159156d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 159256d76c96SJussi Kivilinna 159356d76c96SJussi Kivilinna See also: 159456d76c96SJussi Kivilinna <http://www.cl.cam.ac.uk/~rja14/serpent.html> 159556d76c96SJussi Kivilinna 1596747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1597747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1598747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1599747c8ce4SGilad Ben-Yossef help 1600747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1601747c8ce4SGilad Ben-Yossef 1602747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1603747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1604747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1605747c8ce4SGilad Ben-Yossef 1606747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1607747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1608747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1609747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1610747c8ce4SGilad Ben-Yossef 1611747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1612747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1613747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1614747c8ce4SGilad Ben-Yossef 1615747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1616747c8ce4SGilad Ben-Yossef 1617747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1618747c8ce4SGilad Ben-Yossef 1619747c8ce4SGilad Ben-Yossef If unsure, say N. 1620747c8ce4SGilad Ben-Yossef 1621da7a0ab5SEric Biggersconfig CRYPTO_SPECK 1622da7a0ab5SEric Biggers tristate "Speck cipher algorithm" 1623da7a0ab5SEric Biggers select CRYPTO_ALGAPI 1624da7a0ab5SEric Biggers help 1625da7a0ab5SEric Biggers Speck is a lightweight block cipher that is tuned for optimal 1626da7a0ab5SEric Biggers performance in software (rather than hardware). 1627da7a0ab5SEric Biggers 1628da7a0ab5SEric Biggers Speck may not be as secure as AES, and should only be used on systems 1629da7a0ab5SEric Biggers where AES is not fast enough. 1630da7a0ab5SEric Biggers 1631da7a0ab5SEric Biggers See also: <https://eprint.iacr.org/2013/404.pdf> 1632da7a0ab5SEric Biggers 1633da7a0ab5SEric Biggers If unsure, say N. 1634da7a0ab5SEric Biggers 1635584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1636584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 1637584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1638584fffc8SSebastian Siewior help 1639584fffc8SSebastian Siewior TEA cipher algorithm. 1640584fffc8SSebastian Siewior 1641584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1642584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1643584fffc8SSebastian Siewior little memory. 1644584fffc8SSebastian Siewior 1645584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1646584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1647584fffc8SSebastian Siewior in the TEA algorithm. 1648584fffc8SSebastian Siewior 1649584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1650584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1651584fffc8SSebastian Siewior 1652584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1653584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1654584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1655584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1656584fffc8SSebastian Siewior help 1657584fffc8SSebastian Siewior Twofish cipher algorithm. 1658584fffc8SSebastian Siewior 1659584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1660584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1661584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1662584fffc8SSebastian Siewior bits. 1663584fffc8SSebastian Siewior 1664584fffc8SSebastian Siewior See also: 1665584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1666584fffc8SSebastian Siewior 1667584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1668584fffc8SSebastian Siewior tristate 1669584fffc8SSebastian Siewior help 1670584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1671584fffc8SSebastian Siewior generic c and the assembler implementations. 1672584fffc8SSebastian Siewior 1673584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1674584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1675584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1676584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1677584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1678584fffc8SSebastian Siewior help 1679584fffc8SSebastian Siewior Twofish cipher algorithm. 1680584fffc8SSebastian Siewior 1681584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1682584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1683584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1684584fffc8SSebastian Siewior bits. 1685584fffc8SSebastian Siewior 1686584fffc8SSebastian Siewior See also: 1687584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1688584fffc8SSebastian Siewior 1689584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1690584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1691584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1692584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1693584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1694584fffc8SSebastian Siewior help 1695584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1696584fffc8SSebastian Siewior 1697584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1698584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1699584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1700584fffc8SSebastian Siewior bits. 1701584fffc8SSebastian Siewior 1702584fffc8SSebastian Siewior See also: 1703584fffc8SSebastian Siewior <http://www.schneier.com/twofish.html> 1704584fffc8SSebastian Siewior 17058280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17068280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1707f21a7c19SAl Viro depends on X86 && 64BIT 170837992fa4SEric Biggers select CRYPTO_BLKCIPHER 17098280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17108280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 1711414cb5e7SJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17128280daadSJussi Kivilinna help 17138280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17148280daadSJussi Kivilinna 17158280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17168280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17178280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17188280daadSJussi Kivilinna bits. 17198280daadSJussi Kivilinna 17208280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17218280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17228280daadSJussi Kivilinna 17238280daadSJussi Kivilinna See also: 17248280daadSJussi Kivilinna <http://www.schneier.com/twofish.html> 17258280daadSJussi Kivilinna 1726107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1727107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1728107778b5SJohannes Goetzfried depends on X86 && 64BIT 17290e6ab46dSEric Biggers select CRYPTO_BLKCIPHER 1730a7378d4eSJussi Kivilinna select CRYPTO_GLUE_HELPER_X86 17310e6ab46dSEric Biggers select CRYPTO_SIMD 1732107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1733107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1734107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1735107778b5SJohannes Goetzfried help 1736107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1737107778b5SJohannes Goetzfried 1738107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1739107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1740107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1741107778b5SJohannes Goetzfried bits. 1742107778b5SJohannes Goetzfried 1743107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1744107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1745107778b5SJohannes Goetzfried 1746107778b5SJohannes Goetzfried See also: 1747107778b5SJohannes Goetzfried <http://www.schneier.com/twofish.html> 1748107778b5SJohannes Goetzfried 1749584fffc8SSebastian Siewiorcomment "Compression" 1750584fffc8SSebastian Siewior 17511da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17521da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1753cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1754f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17551da177e4SLinus Torvalds select ZLIB_INFLATE 17561da177e4SLinus Torvalds select ZLIB_DEFLATE 17571da177e4SLinus Torvalds help 17581da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17591da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17601da177e4SLinus Torvalds 17611da177e4SLinus Torvalds You will most probably want this if using IPSec. 17621da177e4SLinus Torvalds 17630b77abb3SZoltan Sogorconfig CRYPTO_LZO 17640b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17650b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1766ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17670b77abb3SZoltan Sogor select LZO_COMPRESS 17680b77abb3SZoltan Sogor select LZO_DECOMPRESS 17690b77abb3SZoltan Sogor help 17700b77abb3SZoltan Sogor This is the LZO algorithm. 17710b77abb3SZoltan Sogor 177235a1fc18SSeth Jenningsconfig CRYPTO_842 177335a1fc18SSeth Jennings tristate "842 compression algorithm" 17742062c5b6SDan Streetman select CRYPTO_ALGAPI 17756a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17762062c5b6SDan Streetman select 842_COMPRESS 17772062c5b6SDan Streetman select 842_DECOMPRESS 177835a1fc18SSeth Jennings help 177935a1fc18SSeth Jennings This is the 842 algorithm. 178035a1fc18SSeth Jennings 17810ea8530dSChanho Minconfig CRYPTO_LZ4 17820ea8530dSChanho Min tristate "LZ4 compression algorithm" 17830ea8530dSChanho Min select CRYPTO_ALGAPI 17848cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17850ea8530dSChanho Min select LZ4_COMPRESS 17860ea8530dSChanho Min select LZ4_DECOMPRESS 17870ea8530dSChanho Min help 17880ea8530dSChanho Min This is the LZ4 algorithm. 17890ea8530dSChanho Min 17900ea8530dSChanho Minconfig CRYPTO_LZ4HC 17910ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17920ea8530dSChanho Min select CRYPTO_ALGAPI 179391d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17940ea8530dSChanho Min select LZ4HC_COMPRESS 17950ea8530dSChanho Min select LZ4_DECOMPRESS 17960ea8530dSChanho Min help 17970ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 17980ea8530dSChanho Min 1799d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1800d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1801d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1802d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1803d28fc3dbSNick Terrell select ZSTD_COMPRESS 1804d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1805d28fc3dbSNick Terrell help 1806d28fc3dbSNick Terrell This is the zstd algorithm. 1807d28fc3dbSNick Terrell 180817f0f4a4SNeil Hormancomment "Random Number Generation" 180917f0f4a4SNeil Horman 181017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 181117f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 181217f0f4a4SNeil Horman select CRYPTO_AES 181317f0f4a4SNeil Horman select CRYPTO_RNG 181417f0f4a4SNeil Horman help 181517f0f4a4SNeil Horman This option enables the generic pseudo random number generator 181617f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18177dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18187dd607e8SJiri Kosina CRYPTO_FIPS is selected 181917f0f4a4SNeil Horman 1820f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1821419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1822419090c6SStephan Mueller help 1823419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1824419090c6SStephan Mueller more of the DRBG types must be selected. 1825419090c6SStephan Mueller 1826f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1827419090c6SStephan Mueller 1828419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1829401e4238SHerbert Xu bool 1830419090c6SStephan Mueller default y 1831419090c6SStephan Mueller select CRYPTO_HMAC 1832826775bbSHerbert Xu select CRYPTO_SHA256 1833419090c6SStephan Mueller 1834419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1835419090c6SStephan Mueller bool "Enable Hash DRBG" 1836826775bbSHerbert Xu select CRYPTO_SHA256 1837419090c6SStephan Mueller help 1838419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1839419090c6SStephan Mueller 1840419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1841419090c6SStephan Mueller bool "Enable CTR DRBG" 1842419090c6SStephan Mueller select CRYPTO_AES 184335591285SStephan Mueller depends on CRYPTO_CTR 1844419090c6SStephan Mueller help 1845419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1846419090c6SStephan Mueller 1847f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1848f2c89a10SHerbert Xu tristate 1849401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1850f2c89a10SHerbert Xu select CRYPTO_RNG 1851bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1852f2c89a10SHerbert Xu 1853f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1854419090c6SStephan Mueller 1855bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1856bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18572f313e02SArnd Bergmann select CRYPTO_RNG 1858bb5530e4SStephan Mueller help 1859bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1860bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1861bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1862bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1863bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1864bb5530e4SStephan Mueller 186503c8efc1SHerbert Xuconfig CRYPTO_USER_API 186603c8efc1SHerbert Xu tristate 186703c8efc1SHerbert Xu 1868fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1869fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18707451708fSHerbert Xu depends on NET 1871fe869cdbSHerbert Xu select CRYPTO_HASH 1872fe869cdbSHerbert Xu select CRYPTO_USER_API 1873fe869cdbSHerbert Xu help 1874fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1875fe869cdbSHerbert Xu algorithms. 1876fe869cdbSHerbert Xu 18778ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18788ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18797451708fSHerbert Xu depends on NET 18808ff59090SHerbert Xu select CRYPTO_BLKCIPHER 18818ff59090SHerbert Xu select CRYPTO_USER_API 18828ff59090SHerbert Xu help 18838ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18848ff59090SHerbert Xu key cipher algorithms. 18858ff59090SHerbert Xu 18862f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18872f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18882f375538SStephan Mueller depends on NET 18892f375538SStephan Mueller select CRYPTO_RNG 18902f375538SStephan Mueller select CRYPTO_USER_API 18912f375538SStephan Mueller help 18922f375538SStephan Mueller This option enables the user-spaces interface for random 18932f375538SStephan Mueller number generator algorithms. 18942f375538SStephan Mueller 1895b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1896b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1897b64a2d95SHerbert Xu depends on NET 1898b64a2d95SHerbert Xu select CRYPTO_AEAD 189972548b09SStephan Mueller select CRYPTO_BLKCIPHER 190072548b09SStephan Mueller select CRYPTO_NULL 1901b64a2d95SHerbert Xu select CRYPTO_USER_API 1902b64a2d95SHerbert Xu help 1903b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1904b64a2d95SHerbert Xu cipher algorithms. 1905b64a2d95SHerbert Xu 1906ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1907ee08997fSDmitry Kasatkin bool 1908ee08997fSDmitry Kasatkin 19091da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 1910964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig 1911cfc411e7SDavid Howellssource certs/Kconfig 19121da177e4SLinus Torvalds 1913cce9e06dSHerbert Xuendif # if CRYPTO 1914