xref: /linux/crypto/Kconfig (revision 2808f17319155256498badd5acd9609aaa3f13b6)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2171e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2181e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2191e65b81aSTim Chen	select CRYPTO_HASH
2201e65b81aSTim Chen	select CRYPTO_MANAGER
2211e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2221e65b81aSTim Chen	help
2231e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2241e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2251e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2261e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2271e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2280e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2291e65b81aSTim Chen
230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
231584fffc8SSebastian Siewior	tristate "Authenc support"
232584fffc8SSebastian Siewior	select CRYPTO_AEAD
233584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
234584fffc8SSebastian Siewior	select CRYPTO_MANAGER
235584fffc8SSebastian Siewior	select CRYPTO_HASH
236e94c6a7aSHerbert Xu	select CRYPTO_NULL
237584fffc8SSebastian Siewior	help
238584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
239584fffc8SSebastian Siewior	  This is required for IPSec.
240584fffc8SSebastian Siewior
241584fffc8SSebastian Siewiorconfig CRYPTO_TEST
242584fffc8SSebastian Siewior	tristate "Testing module"
243584fffc8SSebastian Siewior	depends on m
244da7f033dSHerbert Xu	select CRYPTO_MANAGER
245584fffc8SSebastian Siewior	help
246584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
247584fffc8SSebastian Siewior
248266d0516SHerbert Xuconfig CRYPTO_SIMD
249266d0516SHerbert Xu	tristate
250266d0516SHerbert Xu	select CRYPTO_CRYPTD
251266d0516SHerbert Xu
252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
253596d8750SJussi Kivilinna	tristate
254596d8750SJussi Kivilinna	depends on X86
255065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
256596d8750SJussi Kivilinna
257735d37b5SBaolin Wangconfig CRYPTO_ENGINE
258735d37b5SBaolin Wang	tristate
259735d37b5SBaolin Wang
260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
261584fffc8SSebastian Siewior
262584fffc8SSebastian Siewiorconfig CRYPTO_CCM
263584fffc8SSebastian Siewior	tristate "CCM support"
264584fffc8SSebastian Siewior	select CRYPTO_CTR
265f15f05b0SArd Biesheuvel	select CRYPTO_HASH
266584fffc8SSebastian Siewior	select CRYPTO_AEAD
267584fffc8SSebastian Siewior	help
268584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
269584fffc8SSebastian Siewior
270584fffc8SSebastian Siewiorconfig CRYPTO_GCM
271584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
272584fffc8SSebastian Siewior	select CRYPTO_CTR
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
2749382d97aSHuang Ying	select CRYPTO_GHASH
2759489667dSJussi Kivilinna	select CRYPTO_NULL
276584fffc8SSebastian Siewior	help
277584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
278584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
279584fffc8SSebastian Siewior
28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28171ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28271ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28371ebc4d1SMartin Willi	select CRYPTO_POLY1305
28471ebc4d1SMartin Willi	select CRYPTO_AEAD
28571ebc4d1SMartin Willi	help
28671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28771ebc4d1SMartin Willi
28871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29071ebc4d1SMartin Willi	  IETF protocols.
29171ebc4d1SMartin Willi
292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
293f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
294f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
295f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
296f606a88eSOndrej Mosnacek	help
297f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
298f606a88eSOndrej Mosnacek
299f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
300f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
301f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
302f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
303f606a88eSOndrej Mosnacek	help
304f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
305f606a88eSOndrej Mosnacek
306f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
307f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
308f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
309f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
310f606a88eSOndrej Mosnacek	help
311f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
312f606a88eSOndrej Mosnacek
3131d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3141d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3151d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3161d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3171d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3181d373d4eSOndrej Mosnacek	help
3191d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
3201d373d4eSOndrej Mosnacek
3211d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
3221d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3231d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3241d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3251d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3261d373d4eSOndrej Mosnacek	help
3271d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
3281d373d4eSOndrej Mosnacek
3291d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
3301d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3311d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3321d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
3331d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
3341d373d4eSOndrej Mosnacek	help
3351d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
3361d373d4eSOndrej Mosnacek
337396be41fSOndrej Mosnacekconfig CRYPTO_MORUS640
338396be41fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm"
339396be41fSOndrej Mosnacek	select CRYPTO_AEAD
340396be41fSOndrej Mosnacek	help
341396be41fSOndrej Mosnacek	  Support for the MORUS-640 dedicated AEAD algorithm.
342396be41fSOndrej Mosnacek
34356e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS640_GLUE
344*2808f173SOndrej Mosnacek	tristate
345*2808f173SOndrej Mosnacek	depends on X86
34656e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
34756e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
34856e8e57fSOndrej Mosnacek	help
34956e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
35056e8e57fSOndrej Mosnacek	  algorithm.
35156e8e57fSOndrej Mosnacek
3526ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS640_SSE2
3536ecc9d9fSOndrej Mosnacek	tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
3546ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3556ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3566ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS640_GLUE
3576ecc9d9fSOndrej Mosnacek	help
3586ecc9d9fSOndrej Mosnacek	  SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
3596ecc9d9fSOndrej Mosnacek
360396be41fSOndrej Mosnacekconfig CRYPTO_MORUS1280
361396be41fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm"
362396be41fSOndrej Mosnacek	select CRYPTO_AEAD
363396be41fSOndrej Mosnacek	help
364396be41fSOndrej Mosnacek	  Support for the MORUS-1280 dedicated AEAD algorithm.
365396be41fSOndrej Mosnacek
36656e8e57fSOndrej Mosnacekconfig CRYPTO_MORUS1280_GLUE
367*2808f173SOndrej Mosnacek	tristate
368*2808f173SOndrej Mosnacek	depends on X86
36956e8e57fSOndrej Mosnacek	select CRYPTO_AEAD
37056e8e57fSOndrej Mosnacek	select CRYPTO_CRYPTD
37156e8e57fSOndrej Mosnacek	help
37256e8e57fSOndrej Mosnacek	  Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
37356e8e57fSOndrej Mosnacek	  algorithm.
37456e8e57fSOndrej Mosnacek
3756ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_SSE2
3766ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
3776ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3786ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3796ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3806ecc9d9fSOndrej Mosnacek	help
3816ecc9d9fSOndrej Mosnacek	  SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
3826ecc9d9fSOndrej Mosnacek	  algorithm.
3836ecc9d9fSOndrej Mosnacek
3846ecc9d9fSOndrej Mosnacekconfig CRYPTO_MORUS1280_AVX2
3856ecc9d9fSOndrej Mosnacek	tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
3866ecc9d9fSOndrej Mosnacek	depends on X86 && 64BIT
3876ecc9d9fSOndrej Mosnacek	select CRYPTO_AEAD
3886ecc9d9fSOndrej Mosnacek	select CRYPTO_MORUS1280_GLUE
3896ecc9d9fSOndrej Mosnacek	help
3906ecc9d9fSOndrej Mosnacek	  AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
3916ecc9d9fSOndrej Mosnacek	  algorithm.
3926ecc9d9fSOndrej Mosnacek
393584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
394584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
395584fffc8SSebastian Siewior	select CRYPTO_AEAD
396584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
397856e3f40SHerbert Xu	select CRYPTO_NULL
398401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
399584fffc8SSebastian Siewior	help
400584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
401584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
402584fffc8SSebastian Siewior
403a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
404a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
405a10f554fSHerbert Xu	select CRYPTO_AEAD
406a10f554fSHerbert Xu	select CRYPTO_NULL
407401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
4083491244cSHerbert Xu	default m
409a10f554fSHerbert Xu	help
410a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
411a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
412a10f554fSHerbert Xu	  algorithm for CBC.
413a10f554fSHerbert Xu
414584fffc8SSebastian Siewiorcomment "Block modes"
415584fffc8SSebastian Siewior
416584fffc8SSebastian Siewiorconfig CRYPTO_CBC
417584fffc8SSebastian Siewior	tristate "CBC support"
418584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
419584fffc8SSebastian Siewior	select CRYPTO_MANAGER
420584fffc8SSebastian Siewior	help
421584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
422584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
423584fffc8SSebastian Siewior
424a7d85e06SJames Bottomleyconfig CRYPTO_CFB
425a7d85e06SJames Bottomley	tristate "CFB support"
426a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
427a7d85e06SJames Bottomley	select CRYPTO_MANAGER
428a7d85e06SJames Bottomley	help
429a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
430a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
431a7d85e06SJames Bottomley
432584fffc8SSebastian Siewiorconfig CRYPTO_CTR
433584fffc8SSebastian Siewior	tristate "CTR support"
434584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
435584fffc8SSebastian Siewior	select CRYPTO_SEQIV
436584fffc8SSebastian Siewior	select CRYPTO_MANAGER
437584fffc8SSebastian Siewior	help
438584fffc8SSebastian Siewior	  CTR: Counter mode
439584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
440584fffc8SSebastian Siewior
441584fffc8SSebastian Siewiorconfig CRYPTO_CTS
442584fffc8SSebastian Siewior	tristate "CTS support"
443584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
444584fffc8SSebastian Siewior	help
445584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
446584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
447584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
448584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
449584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
450584fffc8SSebastian Siewior	  for AES encryption.
451584fffc8SSebastian Siewior
452584fffc8SSebastian Siewiorconfig CRYPTO_ECB
453584fffc8SSebastian Siewior	tristate "ECB support"
454584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
455584fffc8SSebastian Siewior	select CRYPTO_MANAGER
456584fffc8SSebastian Siewior	help
457584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
458584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
459584fffc8SSebastian Siewior	  the input block by block.
460584fffc8SSebastian Siewior
461584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4622470a2b2SJussi Kivilinna	tristate "LRW support"
463584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
464584fffc8SSebastian Siewior	select CRYPTO_MANAGER
465584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
466584fffc8SSebastian Siewior	help
467584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
468584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
469584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
470584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
471584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
472584fffc8SSebastian Siewior
473584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
474584fffc8SSebastian Siewior	tristate "PCBC support"
475584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
476584fffc8SSebastian Siewior	select CRYPTO_MANAGER
477584fffc8SSebastian Siewior	help
478584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
479584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
480584fffc8SSebastian Siewior
481584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4825bcf8e6dSJussi Kivilinna	tristate "XTS support"
483584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
484584fffc8SSebastian Siewior	select CRYPTO_MANAGER
48512cb3a1cSMilan Broz	select CRYPTO_ECB
486584fffc8SSebastian Siewior	help
487584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
488584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
489584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
490584fffc8SSebastian Siewior
4911c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4921c49678eSStephan Mueller	tristate "Key wrapping support"
4931c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
4941c49678eSStephan Mueller	help
4951c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4961c49678eSStephan Mueller	  padding.
4971c49678eSStephan Mueller
498584fffc8SSebastian Siewiorcomment "Hash modes"
499584fffc8SSebastian Siewior
50093b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
50193b5e86aSJussi Kivilinna	tristate "CMAC support"
50293b5e86aSJussi Kivilinna	select CRYPTO_HASH
50393b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
50493b5e86aSJussi Kivilinna	help
50593b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
50693b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
50793b5e86aSJussi Kivilinna
50893b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
50993b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
51093b5e86aSJussi Kivilinna
5111da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5128425165dSHerbert Xu	tristate "HMAC support"
5130796ae06SHerbert Xu	select CRYPTO_HASH
51443518407SHerbert Xu	select CRYPTO_MANAGER
5151da177e4SLinus Torvalds	help
5161da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5171da177e4SLinus Torvalds	  This is required for IPSec.
5181da177e4SLinus Torvalds
519333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
520333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
521333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
522333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
523333b0d7eSKazunori MIYAZAWA	help
524333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
525333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
526333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
527333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
528333b0d7eSKazunori MIYAZAWA
529f1939f7cSShane Wangconfig CRYPTO_VMAC
530f1939f7cSShane Wang	tristate "VMAC support"
531f1939f7cSShane Wang	select CRYPTO_HASH
532f1939f7cSShane Wang	select CRYPTO_MANAGER
533f1939f7cSShane Wang	help
534f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
535f1939f7cSShane Wang	  very high speed on 64-bit architectures.
536f1939f7cSShane Wang
537f1939f7cSShane Wang	  See also:
538f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
539f1939f7cSShane Wang
540584fffc8SSebastian Siewiorcomment "Digest"
541584fffc8SSebastian Siewior
542584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
543584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
5445773a3e6SHerbert Xu	select CRYPTO_HASH
5456a0962b2SDarrick J. Wong	select CRC32
5461da177e4SLinus Torvalds	help
547584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
548584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
54969c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
5501da177e4SLinus Torvalds
5518cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
5528cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
5538cb51ba8SAustin Zhang	depends on X86
5548cb51ba8SAustin Zhang	select CRYPTO_HASH
5558cb51ba8SAustin Zhang	help
5568cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5578cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5588cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5598cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5608cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5618cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5628cb51ba8SAustin Zhang
5637cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5646dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
565c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5666dd7a82cSAnton Blanchard	select CRYPTO_HASH
5676dd7a82cSAnton Blanchard	select CRC32
5686dd7a82cSAnton Blanchard	help
5696dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5706dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5716dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5726dd7a82cSAnton Blanchard
5736dd7a82cSAnton Blanchard
574442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
575442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
576442a7c40SDavid S. Miller	depends on SPARC64
577442a7c40SDavid S. Miller	select CRYPTO_HASH
578442a7c40SDavid S. Miller	select CRC32
579442a7c40SDavid S. Miller	help
580442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
581442a7c40SDavid S. Miller	  when available.
582442a7c40SDavid S. Miller
58378c37d19SAlexander Boykoconfig CRYPTO_CRC32
58478c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
58578c37d19SAlexander Boyko	select CRYPTO_HASH
58678c37d19SAlexander Boyko	select CRC32
58778c37d19SAlexander Boyko	help
58878c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
58978c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
59078c37d19SAlexander Boyko
59178c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
59278c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
59378c37d19SAlexander Boyko	depends on X86
59478c37d19SAlexander Boyko	select CRYPTO_HASH
59578c37d19SAlexander Boyko	select CRC32
59678c37d19SAlexander Boyko	help
59778c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
59878c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
59978c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
60078c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
60178c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
60278c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
60378c37d19SAlexander Boyko
6044a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6054a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6064a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6074a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6084a5dc51eSMarcin Nowakowski	help
6094a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6104a5dc51eSMarcin Nowakowski	  instructions, when available.
6114a5dc51eSMarcin Nowakowski
6124a5dc51eSMarcin Nowakowski
61368411521SHerbert Xuconfig CRYPTO_CRCT10DIF
61468411521SHerbert Xu	tristate "CRCT10DIF algorithm"
61568411521SHerbert Xu	select CRYPTO_HASH
61668411521SHerbert Xu	help
61768411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
61868411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
61968411521SHerbert Xu	  transforms to be used if they are available.
62068411521SHerbert Xu
62168411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
62268411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
62368411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
62468411521SHerbert Xu	select CRYPTO_HASH
62568411521SHerbert Xu	help
62668411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
62768411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
62868411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
62968411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
63068411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
63168411521SHerbert Xu
632b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
633b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
634b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
635b01df1c1SDaniel Axtens	select CRYPTO_HASH
636b01df1c1SDaniel Axtens	help
637b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
638b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
639b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
640b01df1c1SDaniel Axtens
641146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
642146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
643146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
644146c8688SDaniel Axtens	help
645146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
646146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
647146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
648146c8688SDaniel Axtens
6492cdc6899SHuang Yingconfig CRYPTO_GHASH
6502cdc6899SHuang Ying	tristate "GHASH digest algorithm"
6512cdc6899SHuang Ying	select CRYPTO_GF128MUL
652578c60fbSArnd Bergmann	select CRYPTO_HASH
6532cdc6899SHuang Ying	help
6542cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
6552cdc6899SHuang Ying
656f979e014SMartin Williconfig CRYPTO_POLY1305
657f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
658578c60fbSArnd Bergmann	select CRYPTO_HASH
659f979e014SMartin Willi	help
660f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
661f979e014SMartin Willi
662f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
663f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
664f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
665f979e014SMartin Willi
666c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
667b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
668c70f4abeSMartin Willi	depends on X86 && 64BIT
669c70f4abeSMartin Willi	select CRYPTO_POLY1305
670c70f4abeSMartin Willi	help
671c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
672c70f4abeSMartin Willi
673c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
674c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
675c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
676c70f4abeSMartin Willi	  instructions.
677c70f4abeSMartin Willi
6781da177e4SLinus Torvaldsconfig CRYPTO_MD4
6791da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
680808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6811da177e4SLinus Torvalds	help
6821da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
6831da177e4SLinus Torvalds
6841da177e4SLinus Torvaldsconfig CRYPTO_MD5
6851da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
68614b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6871da177e4SLinus Torvalds	help
6881da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
6891da177e4SLinus Torvalds
690d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
691d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
692d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
693d69e75deSAaro Koskinen	select CRYPTO_MD5
694d69e75deSAaro Koskinen	select CRYPTO_HASH
695d69e75deSAaro Koskinen	help
696d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
697d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
698d69e75deSAaro Koskinen
699e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
700e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
701e8e59953SMarkus Stockhausen	depends on PPC
702e8e59953SMarkus Stockhausen	select CRYPTO_HASH
703e8e59953SMarkus Stockhausen	help
704e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
705e8e59953SMarkus Stockhausen	  in PPC assembler.
706e8e59953SMarkus Stockhausen
707fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
708fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
709fa4dfedcSDavid S. Miller	depends on SPARC64
710fa4dfedcSDavid S. Miller	select CRYPTO_MD5
711fa4dfedcSDavid S. Miller	select CRYPTO_HASH
712fa4dfedcSDavid S. Miller	help
713fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
714fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
715fa4dfedcSDavid S. Miller
716584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
717584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
71819e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
719584fffc8SSebastian Siewior	help
720584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
721584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
722584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
723584fffc8SSebastian Siewior	  of the algorithm.
724584fffc8SSebastian Siewior
72582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
72682798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
7277c4468bcSHerbert Xu	select CRYPTO_HASH
72882798f90SAdrian-Ken Rueegsegger	help
72982798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
73082798f90SAdrian-Ken Rueegsegger
73182798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
73235ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
73382798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
73482798f90SAdrian-Ken Rueegsegger
73582798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7366d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
73782798f90SAdrian-Ken Rueegsegger
73882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
73982798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
740e5835fbaSHerbert Xu	select CRYPTO_HASH
74182798f90SAdrian-Ken Rueegsegger	help
74282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
74382798f90SAdrian-Ken Rueegsegger
74482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
74582798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
746b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
747b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
74882798f90SAdrian-Ken Rueegsegger
749b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
750b6d44341SAdrian Bunk	  against RIPEMD-160.
751534fe2c1SAdrian-Ken Rueegsegger
752534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7536d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
754534fe2c1SAdrian-Ken Rueegsegger
755534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
756534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
757d8a5e2e9SHerbert Xu	select CRYPTO_HASH
758534fe2c1SAdrian-Ken Rueegsegger	help
759b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
760b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
761b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
762b6d44341SAdrian Bunk	  (than RIPEMD-128).
763534fe2c1SAdrian-Ken Rueegsegger
764534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7656d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
766534fe2c1SAdrian-Ken Rueegsegger
767534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
768534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
7693b8efb4cSHerbert Xu	select CRYPTO_HASH
770534fe2c1SAdrian-Ken Rueegsegger	help
771b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
772b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
773b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
774b6d44341SAdrian Bunk	  (than RIPEMD-160).
775534fe2c1SAdrian-Ken Rueegsegger
77682798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7776d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
77882798f90SAdrian-Ken Rueegsegger
7791da177e4SLinus Torvaldsconfig CRYPTO_SHA1
7801da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
78154ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7821da177e4SLinus Torvalds	help
7831da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
7841da177e4SLinus Torvalds
78566be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
786e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
78766be8951SMathias Krause	depends on X86 && 64BIT
78866be8951SMathias Krause	select CRYPTO_SHA1
78966be8951SMathias Krause	select CRYPTO_HASH
79066be8951SMathias Krause	help
79166be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
79266be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
793e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
794e38b6b7fStim	  when available.
79566be8951SMathias Krause
7968275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
797e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
7988275d1aaSTim Chen	depends on X86 && 64BIT
7998275d1aaSTim Chen	select CRYPTO_SHA256
8008275d1aaSTim Chen	select CRYPTO_HASH
8018275d1aaSTim Chen	help
8028275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8038275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8048275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
805e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
806e38b6b7fStim	  Instructions) when available.
8078275d1aaSTim Chen
80887de4579STim Chenconfig CRYPTO_SHA512_SSSE3
80987de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
81087de4579STim Chen	depends on X86 && 64BIT
81187de4579STim Chen	select CRYPTO_SHA512
81287de4579STim Chen	select CRYPTO_HASH
81387de4579STim Chen	help
81487de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
81587de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
81687de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
81787de4579STim Chen	  version 2 (AVX2) instructions, when available.
81887de4579STim Chen
819efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
820efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
821efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
822efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
823efdb6f6eSAaro Koskinen	select CRYPTO_HASH
824efdb6f6eSAaro Koskinen	help
825efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
826efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
827efdb6f6eSAaro Koskinen
8284ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
8294ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
8304ff28d4cSDavid S. Miller	depends on SPARC64
8314ff28d4cSDavid S. Miller	select CRYPTO_SHA1
8324ff28d4cSDavid S. Miller	select CRYPTO_HASH
8334ff28d4cSDavid S. Miller	help
8344ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8354ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
8364ff28d4cSDavid S. Miller
837323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
838323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
839323a6bf1SMichael Ellerman	depends on PPC
840323a6bf1SMichael Ellerman	help
841323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
842323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
843323a6bf1SMichael Ellerman
844d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
845d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
846d9850fc5SMarkus Stockhausen	depends on PPC && SPE
847d9850fc5SMarkus Stockhausen	help
848d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
849d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
850d9850fc5SMarkus Stockhausen
8511e65b81aSTim Chenconfig CRYPTO_SHA1_MB
8521e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8531e65b81aSTim Chen	depends on X86 && 64BIT
8541e65b81aSTim Chen	select CRYPTO_SHA1
8551e65b81aSTim Chen	select CRYPTO_HASH
8561e65b81aSTim Chen	select CRYPTO_MCRYPTD
8571e65b81aSTim Chen	help
8581e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8591e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
8601e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
8611e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
8621e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
8631e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
8641e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
8651e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
8661e65b81aSTim Chen
8679be7e244SMegha Deyconfig CRYPTO_SHA256_MB
8689be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8699be7e244SMegha Dey	depends on X86 && 64BIT
8709be7e244SMegha Dey	select CRYPTO_SHA256
8719be7e244SMegha Dey	select CRYPTO_HASH
8729be7e244SMegha Dey	select CRYPTO_MCRYPTD
8739be7e244SMegha Dey	help
8749be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8759be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
8769be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
8779be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
8789be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
8799be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
8809be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
8819be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
8829be7e244SMegha Dey
883026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
884026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
885026bb8aaSMegha Dey        depends on X86 && 64BIT
886026bb8aaSMegha Dey        select CRYPTO_SHA512
887026bb8aaSMegha Dey        select CRYPTO_HASH
888026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
889026bb8aaSMegha Dey        help
890026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
891026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
892026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
893026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
894026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
895026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
896026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
897026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
898026bb8aaSMegha Dey
8991da177e4SLinus Torvaldsconfig CRYPTO_SHA256
900cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
90150e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
9021da177e4SLinus Torvalds	help
9031da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9041da177e4SLinus Torvalds
9051da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9061da177e4SLinus Torvalds	  security against collision attacks.
9071da177e4SLinus Torvalds
908cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
909cd12fb90SJonathan Lynch	  of security against collision attacks.
910cd12fb90SJonathan Lynch
9112ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9122ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9132ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9142ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9152ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9162ecc1e95SMarkus Stockhausen	help
9172ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9182ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9192ecc1e95SMarkus Stockhausen
920efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
921efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
922efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
923efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
924efdb6f6eSAaro Koskinen	select CRYPTO_HASH
925efdb6f6eSAaro Koskinen	help
926efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
927efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
928efdb6f6eSAaro Koskinen
92986c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
93086c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
93186c93b24SDavid S. Miller	depends on SPARC64
93286c93b24SDavid S. Miller	select CRYPTO_SHA256
93386c93b24SDavid S. Miller	select CRYPTO_HASH
93486c93b24SDavid S. Miller	help
93586c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
93686c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
93786c93b24SDavid S. Miller
9381da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9391da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
940bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9411da177e4SLinus Torvalds	help
9421da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9431da177e4SLinus Torvalds
9441da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9451da177e4SLinus Torvalds	  security against collision attacks.
9461da177e4SLinus Torvalds
9471da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9481da177e4SLinus Torvalds	  of security against collision attacks.
9491da177e4SLinus Torvalds
950efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
951efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
952efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
953efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
954efdb6f6eSAaro Koskinen	select CRYPTO_HASH
955efdb6f6eSAaro Koskinen	help
956efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
957efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
958efdb6f6eSAaro Koskinen
959775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
960775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
961775e0c69SDavid S. Miller	depends on SPARC64
962775e0c69SDavid S. Miller	select CRYPTO_SHA512
963775e0c69SDavid S. Miller	select CRYPTO_HASH
964775e0c69SDavid S. Miller	help
965775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
966775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
967775e0c69SDavid S. Miller
96853964b9eSJeff Garzikconfig CRYPTO_SHA3
96953964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
97053964b9eSJeff Garzik	select CRYPTO_HASH
97153964b9eSJeff Garzik	help
97253964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
97353964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
97453964b9eSJeff Garzik
97553964b9eSJeff Garzik	  References:
97653964b9eSJeff Garzik	  http://keccak.noekeon.org/
97753964b9eSJeff Garzik
9784f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9794f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9804f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9814f0fc160SGilad Ben-Yossef	help
9824f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9834f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9844f0fc160SGilad Ben-Yossef
9854f0fc160SGilad Ben-Yossef	  References:
9864f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9874f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9884f0fc160SGilad Ben-Yossef
9891da177e4SLinus Torvaldsconfig CRYPTO_TGR192
9901da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
991f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9921da177e4SLinus Torvalds	help
9931da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
9941da177e4SLinus Torvalds
9951da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
9961da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
9971da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
9981da177e4SLinus Torvalds
9991da177e4SLinus Torvalds	  See also:
10001da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
10011da177e4SLinus Torvalds
1002584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1003584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10044946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10051da177e4SLinus Torvalds	help
1006584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10071da177e4SLinus Torvalds
1008584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1009584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10101da177e4SLinus Torvalds
10111da177e4SLinus Torvalds	  See also:
10126d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10131da177e4SLinus Torvalds
10140e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10150e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
10168af00860SRichard Weinberger	depends on X86 && 64BIT
10170e1227d3SHuang Ying	select CRYPTO_CRYPTD
10180e1227d3SHuang Ying	help
10190e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
10200e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
10210e1227d3SHuang Ying
1022584fffc8SSebastian Siewiorcomment "Ciphers"
10231da177e4SLinus Torvalds
10241da177e4SLinus Torvaldsconfig CRYPTO_AES
10251da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1026cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10271da177e4SLinus Torvalds	help
10281da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10291da177e4SLinus Torvalds	  algorithm.
10301da177e4SLinus Torvalds
10311da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10321da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10331da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10341da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10351da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10361da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10371da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10381da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10391da177e4SLinus Torvalds
10401da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10411da177e4SLinus Torvalds
10421da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10431da177e4SLinus Torvalds
1044b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1045b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1046b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1047b5e0b032SArd Biesheuvel	help
1048b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1049b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1050b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1051b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1052b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1053b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1054b5e0b032SArd Biesheuvel
1055b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1056b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1057b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1058b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
1059b5e0b032SArd Biesheuvel	  block.
1060b5e0b032SArd Biesheuvel
10611da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10621da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1063cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1064cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10655157dea8SSebastian Siewior	select CRYPTO_AES
10661da177e4SLinus Torvalds	help
10671da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10681da177e4SLinus Torvalds	  algorithm.
10691da177e4SLinus Torvalds
10701da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10711da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10721da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10731da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10741da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10751da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10761da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10771da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10781da177e4SLinus Torvalds
10791da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10801da177e4SLinus Torvalds
10811da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10821da177e4SLinus Torvalds
1083a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1084a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1085cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1086cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
108781190b32SSebastian Siewior	select CRYPTO_AES
1088a2a892a2SAndreas Steinmetz	help
1089a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1090a2a892a2SAndreas Steinmetz	  algorithm.
1091a2a892a2SAndreas Steinmetz
1092a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1093a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1094a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1095a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1096a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1097a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1098a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1099a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1100a2a892a2SAndreas Steinmetz
1101a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1102a2a892a2SAndreas Steinmetz
1103a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1104a2a892a2SAndreas Steinmetz
110554b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
110654b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11078af00860SRichard Weinberger	depends on X86
110885671860SHerbert Xu	select CRYPTO_AEAD
11090d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
11100d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
111154b6a1bdSHuang Ying	select CRYPTO_ALGAPI
111285671860SHerbert Xu	select CRYPTO_BLKCIPHER
11137643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
111485671860SHerbert Xu	select CRYPTO_SIMD
111554b6a1bdSHuang Ying	help
111654b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
111754b6a1bdSHuang Ying
111854b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
111954b6a1bdSHuang Ying	  algorithm.
112054b6a1bdSHuang Ying
112154b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
112254b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
112354b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
112454b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
112554b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
112654b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
112754b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
112854b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
112954b6a1bdSHuang Ying
113054b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
113154b6a1bdSHuang Ying
113254b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
113354b6a1bdSHuang Ying
11340d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11350d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
11360d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
11370d258efbSMathias Krause	  acceleration for CTR.
11382cf4ac8bSHuang Ying
11399bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11409bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11419bf4852dSDavid S. Miller	depends on SPARC64
11429bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
11439bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
11449bf4852dSDavid S. Miller	help
11459bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11469bf4852dSDavid S. Miller
11479bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11489bf4852dSDavid S. Miller	  algorithm.
11499bf4852dSDavid S. Miller
11509bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11519bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11529bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11539bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11549bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11559bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11569bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11579bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11589bf4852dSDavid S. Miller
11599bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11609bf4852dSDavid S. Miller
11619bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11629bf4852dSDavid S. Miller
11639bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11649bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11659bf4852dSDavid S. Miller	  ECB and CBC.
11669bf4852dSDavid S. Miller
1167504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1168504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1169504c6143SMarkus Stockhausen	depends on PPC && SPE
1170504c6143SMarkus Stockhausen	help
1171504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1172504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1173504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1174504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1175504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1176504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1177504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1178504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1179504c6143SMarkus Stockhausen
11801da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11811da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1182cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11831da177e4SLinus Torvalds	help
11841da177e4SLinus Torvalds	  Anubis cipher algorithm.
11851da177e4SLinus Torvalds
11861da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11871da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11881da177e4SLinus Torvalds	  in the NESSIE competition.
11891da177e4SLinus Torvalds
11901da177e4SLinus Torvalds	  See also:
11916d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11926d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11931da177e4SLinus Torvalds
1194584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1195584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1196b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1197e2ee95b8SHye-Shik Chang	help
1198584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1199e2ee95b8SHye-Shik Chang
1200584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1201584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1202584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1203584fffc8SSebastian Siewior	  weakness of the algorithm.
1204584fffc8SSebastian Siewior
1205584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1206584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1207584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
120852ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1209584fffc8SSebastian Siewior	help
1210584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1211584fffc8SSebastian Siewior
1212584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1213584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1214584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1215e2ee95b8SHye-Shik Chang
1216e2ee95b8SHye-Shik Chang	  See also:
1217584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1218584fffc8SSebastian Siewior
121952ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
122052ba867cSJussi Kivilinna	tristate
122152ba867cSJussi Kivilinna	help
122252ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
122352ba867cSJussi Kivilinna	  generic c and the assembler implementations.
122452ba867cSJussi Kivilinna
122552ba867cSJussi Kivilinna	  See also:
122652ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
122752ba867cSJussi Kivilinna
122864b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
122964b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1230f21a7c19SAl Viro	depends on X86 && 64BIT
1231c1679171SEric Biggers	select CRYPTO_BLKCIPHER
123264b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
123364b94ceaSJussi Kivilinna	help
123464b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
123564b94ceaSJussi Kivilinna
123664b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
123764b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
123864b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
123964b94ceaSJussi Kivilinna
124064b94ceaSJussi Kivilinna	  See also:
124164b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
124264b94ceaSJussi Kivilinna
1243584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1244584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1245584fffc8SSebastian Siewior	depends on CRYPTO
1246584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1247584fffc8SSebastian Siewior	help
1248584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1249584fffc8SSebastian Siewior
1250584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1251584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1252584fffc8SSebastian Siewior
1253584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1254584fffc8SSebastian Siewior
1255584fffc8SSebastian Siewior	  See also:
1256584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1257584fffc8SSebastian Siewior
12580b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12590b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1260f21a7c19SAl Viro	depends on X86 && 64BIT
12610b95ec56SJussi Kivilinna	depends on CRYPTO
12621af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1263964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12640b95ec56SJussi Kivilinna	help
12650b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12660b95ec56SJussi Kivilinna
12670b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12680b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12690b95ec56SJussi Kivilinna
12700b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12710b95ec56SJussi Kivilinna
12720b95ec56SJussi Kivilinna	  See also:
12730b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12740b95ec56SJussi Kivilinna
1275d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1276d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1277d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1278d9b1d2e7SJussi Kivilinna	depends on CRYPTO
127944893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1280d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
128144893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
128244893bc2SEric Biggers	select CRYPTO_SIMD
1283d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1284d9b1d2e7SJussi Kivilinna	help
1285d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1286d9b1d2e7SJussi Kivilinna
1287d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1288d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1289d9b1d2e7SJussi Kivilinna
1290d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1291d9b1d2e7SJussi Kivilinna
1292d9b1d2e7SJussi Kivilinna	  See also:
1293d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1294d9b1d2e7SJussi Kivilinna
1295f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1296f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1297f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1298f3f935a7SJussi Kivilinna	depends on CRYPTO
1299f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1300f3f935a7SJussi Kivilinna	help
1301f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1302f3f935a7SJussi Kivilinna
1303f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1304f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1305f3f935a7SJussi Kivilinna
1306f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1307f3f935a7SJussi Kivilinna
1308f3f935a7SJussi Kivilinna	  See also:
1309f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1310f3f935a7SJussi Kivilinna
131181658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
131281658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
131381658ad0SDavid S. Miller	depends on SPARC64
131481658ad0SDavid S. Miller	depends on CRYPTO
131581658ad0SDavid S. Miller	select CRYPTO_ALGAPI
131681658ad0SDavid S. Miller	help
131781658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
131881658ad0SDavid S. Miller
131981658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
132081658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
132181658ad0SDavid S. Miller
132281658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
132381658ad0SDavid S. Miller
132481658ad0SDavid S. Miller	  See also:
132581658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
132681658ad0SDavid S. Miller
1327044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1328044ab525SJussi Kivilinna	tristate
1329044ab525SJussi Kivilinna	help
1330044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1331044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1332044ab525SJussi Kivilinna
1333584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1334584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1335584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1336044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1337584fffc8SSebastian Siewior	help
1338584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1339584fffc8SSebastian Siewior	  described in RFC2144.
1340584fffc8SSebastian Siewior
13414d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13424d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13434d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
13441e63183aSEric Biggers	select CRYPTO_BLKCIPHER
13454d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13461e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13471e63183aSEric Biggers	select CRYPTO_SIMD
13484d6d6a2cSJohannes Goetzfried	help
13494d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13504d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13514d6d6a2cSJohannes Goetzfried
13524d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13534d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13544d6d6a2cSJohannes Goetzfried
1355584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1356584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1357584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1358044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1359584fffc8SSebastian Siewior	help
1360584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1361584fffc8SSebastian Siewior	  described in RFC2612.
1362584fffc8SSebastian Siewior
13634ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13644ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13654ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13664bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13674ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13684bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13694bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13704bd96924SEric Biggers	select CRYPTO_SIMD
13714ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13724ea1277dSJohannes Goetzfried	help
13734ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13744ea1277dSJohannes Goetzfried	  described in RFC2612.
13754ea1277dSJohannes Goetzfried
13764ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13774ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13784ea1277dSJohannes Goetzfried
1379584fffc8SSebastian Siewiorconfig CRYPTO_DES
1380584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1381584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1382584fffc8SSebastian Siewior	help
1383584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1384584fffc8SSebastian Siewior
1385c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1386c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
138797da37b3SDave Jones	depends on SPARC64
1388c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1389c5aac2dfSDavid S. Miller	select CRYPTO_DES
1390c5aac2dfSDavid S. Miller	help
1391c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1392c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1393c5aac2dfSDavid S. Miller
13946574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13956574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13966574e6c6SJussi Kivilinna	depends on X86 && 64BIT
139709c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
13986574e6c6SJussi Kivilinna	select CRYPTO_DES
13996574e6c6SJussi Kivilinna	help
14006574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14016574e6c6SJussi Kivilinna
14026574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14036574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14046574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14056574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14066574e6c6SJussi Kivilinna
1407584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1408584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1409584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1410584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1411584fffc8SSebastian Siewior	help
1412584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1413584fffc8SSebastian Siewior
1414584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1415584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1416584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1417584fffc8SSebastian Siewior	help
1418584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1419584fffc8SSebastian Siewior
1420584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1421584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1422584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1423584fffc8SSebastian Siewior
1424584fffc8SSebastian Siewior	  See also:
14256d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1426e2ee95b8SHye-Shik Chang
14272407d608STan Swee Hengconfig CRYPTO_SALSA20
14283b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
14292407d608STan Swee Heng	select CRYPTO_BLKCIPHER
14302407d608STan Swee Heng	help
14312407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
14322407d608STan Swee Heng
14332407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14342407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14352407d608STan Swee Heng
14362407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14372407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14381da177e4SLinus Torvalds
1439974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
14403b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1441974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1442974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1443c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
1444974e4b75STan Swee Heng	help
1445974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1446974e4b75STan Swee Heng
1447974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1448974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1449974e4b75STan Swee Heng
1450974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1451974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1452974e4b75STan Swee Heng
14539a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
14543b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
14559a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
14569a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
1457c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
14589a7dafbbSTan Swee Heng	help
14599a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
14609a7dafbbSTan Swee Heng
14619a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14629a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14639a7dafbbSTan Swee Heng
14649a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14659a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14669a7dafbbSTan Swee Heng
1467c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1468c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1469c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1470c08d0e64SMartin Willi	help
1471c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1472c08d0e64SMartin Willi
1473c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1474c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1475c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1476c08d0e64SMartin Willi
1477c08d0e64SMartin Willi	  See also:
1478c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1479c08d0e64SMartin Willi
1480c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14813d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1482c9320b6dSMartin Willi	depends on X86 && 64BIT
1483c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1484c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1485c9320b6dSMartin Willi	help
1486c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1487c9320b6dSMartin Willi
1488c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1489c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1490c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1491c9320b6dSMartin Willi
1492c9320b6dSMartin Willi	  See also:
1493c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1494c9320b6dSMartin Willi
1495584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1496584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1497584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1498584fffc8SSebastian Siewior	help
1499584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1500584fffc8SSebastian Siewior
1501584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1502584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1503584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1504584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1505584fffc8SSebastian Siewior
1506584fffc8SSebastian Siewior	  See also:
1507584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1508584fffc8SSebastian Siewior
1509584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1510584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1511584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1512584fffc8SSebastian Siewior	help
1513584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1514584fffc8SSebastian Siewior
1515584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1516584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1517584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1518584fffc8SSebastian Siewior
1519584fffc8SSebastian Siewior	  See also:
1520584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1521584fffc8SSebastian Siewior
1522937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1523937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1524937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1525e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1526596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1527937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1528e0f409dcSEric Biggers	select CRYPTO_SIMD
1529937c30d7SJussi Kivilinna	help
1530937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1531937c30d7SJussi Kivilinna
1532937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1533937c30d7SJussi Kivilinna	  of 8 bits.
1534937c30d7SJussi Kivilinna
15351e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1536937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1537937c30d7SJussi Kivilinna
1538937c30d7SJussi Kivilinna	  See also:
1539937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1540937c30d7SJussi Kivilinna
1541251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1542251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1543251496dbSJussi Kivilinna	depends on X86 && !64BIT
1544e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1545596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1546251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1547e0f409dcSEric Biggers	select CRYPTO_SIMD
1548251496dbSJussi Kivilinna	help
1549251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1550251496dbSJussi Kivilinna
1551251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1552251496dbSJussi Kivilinna	  of 8 bits.
1553251496dbSJussi Kivilinna
1554251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1555251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1556251496dbSJussi Kivilinna
1557251496dbSJussi Kivilinna	  See also:
1558251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1559251496dbSJussi Kivilinna
15607efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15617efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15627efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1563e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15641d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15657efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1566e16bf974SEric Biggers	select CRYPTO_SIMD
15677efe4076SJohannes Goetzfried	select CRYPTO_XTS
15687efe4076SJohannes Goetzfried	help
15697efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15707efe4076SJohannes Goetzfried
15717efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15727efe4076SJohannes Goetzfried	  of 8 bits.
15737efe4076SJohannes Goetzfried
15747efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15757efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15767efe4076SJohannes Goetzfried
15777efe4076SJohannes Goetzfried	  See also:
15787efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15797efe4076SJohannes Goetzfried
158056d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
158156d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
158256d76c96SJussi Kivilinna	depends on X86 && 64BIT
158356d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
158456d76c96SJussi Kivilinna	help
158556d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
158656d76c96SJussi Kivilinna
158756d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
158856d76c96SJussi Kivilinna	  of 8 bits.
158956d76c96SJussi Kivilinna
159056d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
159156d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
159256d76c96SJussi Kivilinna
159356d76c96SJussi Kivilinna	  See also:
159456d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
159556d76c96SJussi Kivilinna
1596747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1597747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1598747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1599747c8ce4SGilad Ben-Yossef	help
1600747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1601747c8ce4SGilad Ben-Yossef
1602747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1603747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1604747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1605747c8ce4SGilad Ben-Yossef
1606747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1607747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1608747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1609747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1610747c8ce4SGilad Ben-Yossef
1611747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1612747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1613747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1614747c8ce4SGilad Ben-Yossef
1615747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1616747c8ce4SGilad Ben-Yossef
1617747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1618747c8ce4SGilad Ben-Yossef
1619747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1620747c8ce4SGilad Ben-Yossef
1621da7a0ab5SEric Biggersconfig CRYPTO_SPECK
1622da7a0ab5SEric Biggers	tristate "Speck cipher algorithm"
1623da7a0ab5SEric Biggers	select CRYPTO_ALGAPI
1624da7a0ab5SEric Biggers	help
1625da7a0ab5SEric Biggers	  Speck is a lightweight block cipher that is tuned for optimal
1626da7a0ab5SEric Biggers	  performance in software (rather than hardware).
1627da7a0ab5SEric Biggers
1628da7a0ab5SEric Biggers	  Speck may not be as secure as AES, and should only be used on systems
1629da7a0ab5SEric Biggers	  where AES is not fast enough.
1630da7a0ab5SEric Biggers
1631da7a0ab5SEric Biggers	  See also: <https://eprint.iacr.org/2013/404.pdf>
1632da7a0ab5SEric Biggers
1633da7a0ab5SEric Biggers	  If unsure, say N.
1634da7a0ab5SEric Biggers
1635584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1636584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1637584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1638584fffc8SSebastian Siewior	help
1639584fffc8SSebastian Siewior	  TEA cipher algorithm.
1640584fffc8SSebastian Siewior
1641584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1642584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1643584fffc8SSebastian Siewior	  little memory.
1644584fffc8SSebastian Siewior
1645584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1646584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1647584fffc8SSebastian Siewior	  in the TEA algorithm.
1648584fffc8SSebastian Siewior
1649584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1650584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1651584fffc8SSebastian Siewior
1652584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1653584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1654584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1655584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1656584fffc8SSebastian Siewior	help
1657584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1658584fffc8SSebastian Siewior
1659584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1660584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1661584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1662584fffc8SSebastian Siewior	  bits.
1663584fffc8SSebastian Siewior
1664584fffc8SSebastian Siewior	  See also:
1665584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1666584fffc8SSebastian Siewior
1667584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1668584fffc8SSebastian Siewior	tristate
1669584fffc8SSebastian Siewior	help
1670584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1671584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1672584fffc8SSebastian Siewior
1673584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1674584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1675584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1676584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1677584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1678584fffc8SSebastian Siewior	help
1679584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1680584fffc8SSebastian Siewior
1681584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1682584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1683584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1684584fffc8SSebastian Siewior	  bits.
1685584fffc8SSebastian Siewior
1686584fffc8SSebastian Siewior	  See also:
1687584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1688584fffc8SSebastian Siewior
1689584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1690584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1691584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1692584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1693584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1694584fffc8SSebastian Siewior	help
1695584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1696584fffc8SSebastian Siewior
1697584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1698584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1699584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1700584fffc8SSebastian Siewior	  bits.
1701584fffc8SSebastian Siewior
1702584fffc8SSebastian Siewior	  See also:
1703584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1704584fffc8SSebastian Siewior
17058280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17068280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1707f21a7c19SAl Viro	depends on X86 && 64BIT
170837992fa4SEric Biggers	select CRYPTO_BLKCIPHER
17098280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17108280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1711414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17128280daadSJussi Kivilinna	help
17138280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17148280daadSJussi Kivilinna
17158280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17168280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17178280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17188280daadSJussi Kivilinna	  bits.
17198280daadSJussi Kivilinna
17208280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17218280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17228280daadSJussi Kivilinna
17238280daadSJussi Kivilinna	  See also:
17248280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
17258280daadSJussi Kivilinna
1726107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1727107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1728107778b5SJohannes Goetzfried	depends on X86 && 64BIT
17290e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1730a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
17310e6ab46dSEric Biggers	select CRYPTO_SIMD
1732107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1733107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1734107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1735107778b5SJohannes Goetzfried	help
1736107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1737107778b5SJohannes Goetzfried
1738107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1739107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1740107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1741107778b5SJohannes Goetzfried	  bits.
1742107778b5SJohannes Goetzfried
1743107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1744107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1745107778b5SJohannes Goetzfried
1746107778b5SJohannes Goetzfried	  See also:
1747107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1748107778b5SJohannes Goetzfried
1749584fffc8SSebastian Siewiorcomment "Compression"
1750584fffc8SSebastian Siewior
17511da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17521da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1753cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1754f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17551da177e4SLinus Torvalds	select ZLIB_INFLATE
17561da177e4SLinus Torvalds	select ZLIB_DEFLATE
17571da177e4SLinus Torvalds	help
17581da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17591da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17601da177e4SLinus Torvalds
17611da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17621da177e4SLinus Torvalds
17630b77abb3SZoltan Sogorconfig CRYPTO_LZO
17640b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17650b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1766ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17670b77abb3SZoltan Sogor	select LZO_COMPRESS
17680b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17690b77abb3SZoltan Sogor	help
17700b77abb3SZoltan Sogor	  This is the LZO algorithm.
17710b77abb3SZoltan Sogor
177235a1fc18SSeth Jenningsconfig CRYPTO_842
177335a1fc18SSeth Jennings	tristate "842 compression algorithm"
17742062c5b6SDan Streetman	select CRYPTO_ALGAPI
17756a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17762062c5b6SDan Streetman	select 842_COMPRESS
17772062c5b6SDan Streetman	select 842_DECOMPRESS
177835a1fc18SSeth Jennings	help
177935a1fc18SSeth Jennings	  This is the 842 algorithm.
178035a1fc18SSeth Jennings
17810ea8530dSChanho Minconfig CRYPTO_LZ4
17820ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17830ea8530dSChanho Min	select CRYPTO_ALGAPI
17848cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17850ea8530dSChanho Min	select LZ4_COMPRESS
17860ea8530dSChanho Min	select LZ4_DECOMPRESS
17870ea8530dSChanho Min	help
17880ea8530dSChanho Min	  This is the LZ4 algorithm.
17890ea8530dSChanho Min
17900ea8530dSChanho Minconfig CRYPTO_LZ4HC
17910ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17920ea8530dSChanho Min	select CRYPTO_ALGAPI
179391d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17940ea8530dSChanho Min	select LZ4HC_COMPRESS
17950ea8530dSChanho Min	select LZ4_DECOMPRESS
17960ea8530dSChanho Min	help
17970ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17980ea8530dSChanho Min
1799d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1800d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1801d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1802d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1803d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1804d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1805d28fc3dbSNick Terrell	help
1806d28fc3dbSNick Terrell	  This is the zstd algorithm.
1807d28fc3dbSNick Terrell
180817f0f4a4SNeil Hormancomment "Random Number Generation"
180917f0f4a4SNeil Horman
181017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
181117f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
181217f0f4a4SNeil Horman	select CRYPTO_AES
181317f0f4a4SNeil Horman	select CRYPTO_RNG
181417f0f4a4SNeil Horman	help
181517f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
181617f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18177dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18187dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
181917f0f4a4SNeil Horman
1820f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1821419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1822419090c6SStephan Mueller	help
1823419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1824419090c6SStephan Mueller	  more of the DRBG types must be selected.
1825419090c6SStephan Mueller
1826f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1827419090c6SStephan Mueller
1828419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1829401e4238SHerbert Xu	bool
1830419090c6SStephan Mueller	default y
1831419090c6SStephan Mueller	select CRYPTO_HMAC
1832826775bbSHerbert Xu	select CRYPTO_SHA256
1833419090c6SStephan Mueller
1834419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1835419090c6SStephan Mueller	bool "Enable Hash DRBG"
1836826775bbSHerbert Xu	select CRYPTO_SHA256
1837419090c6SStephan Mueller	help
1838419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1839419090c6SStephan Mueller
1840419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1841419090c6SStephan Mueller	bool "Enable CTR DRBG"
1842419090c6SStephan Mueller	select CRYPTO_AES
184335591285SStephan Mueller	depends on CRYPTO_CTR
1844419090c6SStephan Mueller	help
1845419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1846419090c6SStephan Mueller
1847f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1848f2c89a10SHerbert Xu	tristate
1849401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1850f2c89a10SHerbert Xu	select CRYPTO_RNG
1851bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1852f2c89a10SHerbert Xu
1853f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1854419090c6SStephan Mueller
1855bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1856bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18572f313e02SArnd Bergmann	select CRYPTO_RNG
1858bb5530e4SStephan Mueller	help
1859bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1860bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1861bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1862bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1863bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1864bb5530e4SStephan Mueller
186503c8efc1SHerbert Xuconfig CRYPTO_USER_API
186603c8efc1SHerbert Xu	tristate
186703c8efc1SHerbert Xu
1868fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1869fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18707451708fSHerbert Xu	depends on NET
1871fe869cdbSHerbert Xu	select CRYPTO_HASH
1872fe869cdbSHerbert Xu	select CRYPTO_USER_API
1873fe869cdbSHerbert Xu	help
1874fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1875fe869cdbSHerbert Xu	  algorithms.
1876fe869cdbSHerbert Xu
18778ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18788ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18797451708fSHerbert Xu	depends on NET
18808ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18818ff59090SHerbert Xu	select CRYPTO_USER_API
18828ff59090SHerbert Xu	help
18838ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18848ff59090SHerbert Xu	  key cipher algorithms.
18858ff59090SHerbert Xu
18862f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18872f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18882f375538SStephan Mueller	depends on NET
18892f375538SStephan Mueller	select CRYPTO_RNG
18902f375538SStephan Mueller	select CRYPTO_USER_API
18912f375538SStephan Mueller	help
18922f375538SStephan Mueller	  This option enables the user-spaces interface for random
18932f375538SStephan Mueller	  number generator algorithms.
18942f375538SStephan Mueller
1895b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1896b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1897b64a2d95SHerbert Xu	depends on NET
1898b64a2d95SHerbert Xu	select CRYPTO_AEAD
189972548b09SStephan Mueller	select CRYPTO_BLKCIPHER
190072548b09SStephan Mueller	select CRYPTO_NULL
1901b64a2d95SHerbert Xu	select CRYPTO_USER_API
1902b64a2d95SHerbert Xu	help
1903b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1904b64a2d95SHerbert Xu	  cipher algorithms.
1905b64a2d95SHerbert Xu
1906ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1907ee08997fSDmitry Kasatkin	bool
1908ee08997fSDmitry Kasatkin
19091da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1910964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1911cfc411e7SDavid Howellssource certs/Kconfig
19121da177e4SLinus Torvalds
1913cce9e06dSHerbert Xuendif	# if CRYPTO
1914