xref: /linux/crypto/Kconfig (revision 1e207964566738b49b003e80063fd712af75b82c)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30d99324c2SGeert Uytterhoeven	  This option enables the fips boot option which is
31d99324c2SGeert Uytterhoeven	  required if you want the system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER
565cde0af2SHerbert Xu	tristate
57b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1088cd579d2SBart Van Assche	select SGL_ALLOC
1092ebda74fSGiovanni Cabiddu
1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1112ebda74fSGiovanni Cabiddu	tristate
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1142ebda74fSGiovanni Cabiddu
1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1162b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1176a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1182b8c19dbSHerbert Xu	help
1192b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1202b8c19dbSHerbert Xu	  cbc(aes).
1212b8c19dbSHerbert Xu
1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1236a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1246a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1256a0fcbb4SHerbert Xu	select CRYPTO_HASH2
126b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
127946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1284e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1292ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1306a0fcbb4SHerbert Xu
131a38f7907SSteffen Klassertconfig CRYPTO_USER
132a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1335db017aaSHerbert Xu	depends on NET
134a38f7907SSteffen Klassert	select CRYPTO_MANAGER
135a38f7907SSteffen Klassert	help
136d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
137a38f7907SSteffen Klassert	  cbc(aes).
138a38f7907SSteffen Klassert
139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
140326a6346SHerbert Xu	bool "Disable run-time self tests"
14100ca28a5SHerbert Xu	default y
1420b767f96SAlexander Shishkin	help
143326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
144326a6346SHerbert Xu	  algorithm registration.
1450b767f96SAlexander Shishkin
1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS
1475b2706a4SEric Biggers	bool "Enable extra run-time crypto self tests"
1486569e309SJason A. Donenfeld	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
1495b2706a4SEric Biggers	help
1505b2706a4SEric Biggers	  Enable extra run-time self tests of registered crypto algorithms,
1515b2706a4SEric Biggers	  including randomized fuzz tests.
1525b2706a4SEric Biggers
1535b2706a4SEric Biggers	  This is intended for developer use only, as these tests take much
1545b2706a4SEric Biggers	  longer to run than the normal self tests.
1555b2706a4SEric Biggers
156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
157e590e132SEric Biggers	tristate
158584fffc8SSebastian Siewior
159584fffc8SSebastian Siewiorconfig CRYPTO_NULL
160584fffc8SSebastian Siewior	tristate "Null algorithms"
161149a3971SHerbert Xu	select CRYPTO_NULL2
162584fffc8SSebastian Siewior	help
163584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
164584fffc8SSebastian Siewior
165149a3971SHerbert Xuconfig CRYPTO_NULL2
166dd43c4e9SHerbert Xu	tristate
167149a3971SHerbert Xu	select CRYPTO_ALGAPI2
168b95bba5dSEric Biggers	select CRYPTO_SKCIPHER2
169149a3971SHerbert Xu	select CRYPTO_HASH2
170149a3971SHerbert Xu
1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1723b4afaf2SKees Cook	tristate "Parallel crypto engine"
1733b4afaf2SKees Cook	depends on SMP
1745068c7a8SSteffen Klassert	select PADATA
1755068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1765068c7a8SSteffen Klassert	select CRYPTO_AEAD
1775068c7a8SSteffen Klassert	help
1785068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1795068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1805068c7a8SSteffen Klassert
181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
182584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
183b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
184b8a28251SLoc Ho	select CRYPTO_HASH
185584fffc8SSebastian Siewior	select CRYPTO_MANAGER
186584fffc8SSebastian Siewior	help
187584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
188584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
189584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
190584fffc8SSebastian Siewior
191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
192584fffc8SSebastian Siewior	tristate "Authenc support"
193584fffc8SSebastian Siewior	select CRYPTO_AEAD
194b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
195584fffc8SSebastian Siewior	select CRYPTO_MANAGER
196584fffc8SSebastian Siewior	select CRYPTO_HASH
197e94c6a7aSHerbert Xu	select CRYPTO_NULL
198584fffc8SSebastian Siewior	help
199584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
200584fffc8SSebastian Siewior	  This is required for IPSec.
201584fffc8SSebastian Siewior
202584fffc8SSebastian Siewiorconfig CRYPTO_TEST
203584fffc8SSebastian Siewior	tristate "Testing module"
20400ea27f1SArd Biesheuvel	depends on m || EXPERT
205da7f033dSHerbert Xu	select CRYPTO_MANAGER
206584fffc8SSebastian Siewior	help
207584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
208584fffc8SSebastian Siewior
209266d0516SHerbert Xuconfig CRYPTO_SIMD
210266d0516SHerbert Xu	tristate
211266d0516SHerbert Xu	select CRYPTO_CRYPTD
212266d0516SHerbert Xu
213735d37b5SBaolin Wangconfig CRYPTO_ENGINE
214735d37b5SBaolin Wang	tristate
215735d37b5SBaolin Wang
2163d6228a5SVitaly Chikunovcomment "Public-key cryptography"
2173d6228a5SVitaly Chikunov
2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA
2193d6228a5SVitaly Chikunov	tristate "RSA algorithm"
2203d6228a5SVitaly Chikunov	select CRYPTO_AKCIPHER
2213d6228a5SVitaly Chikunov	select CRYPTO_MANAGER
2223d6228a5SVitaly Chikunov	select MPILIB
2233d6228a5SVitaly Chikunov	select ASN1
2243d6228a5SVitaly Chikunov	help
2253d6228a5SVitaly Chikunov	  Generic implementation of the RSA public key algorithm.
2263d6228a5SVitaly Chikunov
2273d6228a5SVitaly Chikunovconfig CRYPTO_DH
2283d6228a5SVitaly Chikunov	tristate "Diffie-Hellman algorithm"
2293d6228a5SVitaly Chikunov	select CRYPTO_KPP
2303d6228a5SVitaly Chikunov	select MPILIB
2313d6228a5SVitaly Chikunov	help
2323d6228a5SVitaly Chikunov	  Generic implementation of the Diffie-Hellman algorithm.
2333d6228a5SVitaly Chikunov
2347dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS
2357dce5981SNicolai Stange	bool "Support for RFC 7919 FFDHE group parameters"
2367dce5981SNicolai Stange	depends on CRYPTO_DH
237*1e207964SNicolai Stange	select CRYPTO_RNG_DEFAULT
2387dce5981SNicolai Stange	help
2397dce5981SNicolai Stange	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
2407dce5981SNicolai Stange
2414a2289daSVitaly Chikunovconfig CRYPTO_ECC
2424a2289daSVitaly Chikunov	tristate
24338aa192aSArnd Bergmann	select CRYPTO_RNG_DEFAULT
2444a2289daSVitaly Chikunov
2453d6228a5SVitaly Chikunovconfig CRYPTO_ECDH
2463d6228a5SVitaly Chikunov	tristate "ECDH algorithm"
2474a2289daSVitaly Chikunov	select CRYPTO_ECC
2483d6228a5SVitaly Chikunov	select CRYPTO_KPP
2493d6228a5SVitaly Chikunov	help
2503d6228a5SVitaly Chikunov	  Generic implementation of the ECDH algorithm
2513d6228a5SVitaly Chikunov
2524e660291SStefan Bergerconfig CRYPTO_ECDSA
2534e660291SStefan Berger	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
2544e660291SStefan Berger	select CRYPTO_ECC
2554e660291SStefan Berger	select CRYPTO_AKCIPHER
2564e660291SStefan Berger	select ASN1
2574e660291SStefan Berger	help
2584e660291SStefan Berger	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
2594e660291SStefan Berger	  is A NIST cryptographic standard algorithm. Only signature verification
2604e660291SStefan Berger	  is implemented.
2614e660291SStefan Berger
2620d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA
2630d7a7864SVitaly Chikunov	tristate "EC-RDSA (GOST 34.10) algorithm"
2640d7a7864SVitaly Chikunov	select CRYPTO_ECC
2650d7a7864SVitaly Chikunov	select CRYPTO_AKCIPHER
2660d7a7864SVitaly Chikunov	select CRYPTO_STREEBOG
2671036633eSVitaly Chikunov	select OID_REGISTRY
2681036633eSVitaly Chikunov	select ASN1
2690d7a7864SVitaly Chikunov	help
2700d7a7864SVitaly Chikunov	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
2710d7a7864SVitaly Chikunov	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
2720d7a7864SVitaly Chikunov	  standard algorithms (called GOST algorithms). Only signature verification
2730d7a7864SVitaly Chikunov	  is implemented.
2740d7a7864SVitaly Chikunov
275ea7ecb66STianjia Zhangconfig CRYPTO_SM2
276ea7ecb66STianjia Zhang	tristate "SM2 algorithm"
27711400469STianjia Zhang	select CRYPTO_LIB_SM3
278ea7ecb66STianjia Zhang	select CRYPTO_AKCIPHER
279ea7ecb66STianjia Zhang	select CRYPTO_MANAGER
280ea7ecb66STianjia Zhang	select MPILIB
281ea7ecb66STianjia Zhang	select ASN1
282ea7ecb66STianjia Zhang	help
283ea7ecb66STianjia Zhang	  Generic implementation of the SM2 public key algorithm. It was
284ea7ecb66STianjia Zhang	  published by State Encryption Management Bureau, China.
285ea7ecb66STianjia Zhang	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
286ea7ecb66STianjia Zhang
287ea7ecb66STianjia Zhang	  References:
288ea7ecb66STianjia Zhang	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
289ea7ecb66STianjia Zhang	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
290ea7ecb66STianjia Zhang	  http://www.gmbz.org.cn/main/bzlb.html
291ea7ecb66STianjia Zhang
292ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519
293ee772cb6SArd Biesheuvel	tristate "Curve25519 algorithm"
294ee772cb6SArd Biesheuvel	select CRYPTO_KPP
295ee772cb6SArd Biesheuvel	select CRYPTO_LIB_CURVE25519_GENERIC
296ee772cb6SArd Biesheuvel
297bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86
298bb611bdfSJason A. Donenfeld	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
299bb611bdfSJason A. Donenfeld	depends on X86 && 64BIT
300bb611bdfSJason A. Donenfeld	select CRYPTO_LIB_CURVE25519_GENERIC
301bb611bdfSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
302bb611bdfSJason A. Donenfeld
303584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
304584fffc8SSebastian Siewior
305584fffc8SSebastian Siewiorconfig CRYPTO_CCM
306584fffc8SSebastian Siewior	tristate "CCM support"
307584fffc8SSebastian Siewior	select CRYPTO_CTR
308f15f05b0SArd Biesheuvel	select CRYPTO_HASH
309584fffc8SSebastian Siewior	select CRYPTO_AEAD
310c8a3315aSEric Biggers	select CRYPTO_MANAGER
311584fffc8SSebastian Siewior	help
312584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
313584fffc8SSebastian Siewior
314584fffc8SSebastian Siewiorconfig CRYPTO_GCM
315584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
316584fffc8SSebastian Siewior	select CRYPTO_CTR
317584fffc8SSebastian Siewior	select CRYPTO_AEAD
3189382d97aSHuang Ying	select CRYPTO_GHASH
3199489667dSJussi Kivilinna	select CRYPTO_NULL
320c8a3315aSEric Biggers	select CRYPTO_MANAGER
321584fffc8SSebastian Siewior	help
322584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
323584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
324584fffc8SSebastian Siewior
32571ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
32671ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
32771ebc4d1SMartin Willi	select CRYPTO_CHACHA20
32871ebc4d1SMartin Willi	select CRYPTO_POLY1305
32971ebc4d1SMartin Willi	select CRYPTO_AEAD
330c8a3315aSEric Biggers	select CRYPTO_MANAGER
33171ebc4d1SMartin Willi	help
33271ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
33371ebc4d1SMartin Willi
33471ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
33571ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
33671ebc4d1SMartin Willi	  IETF protocols.
33771ebc4d1SMartin Willi
338f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
339f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
340f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
341f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
342f606a88eSOndrej Mosnacek	help
343f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
344f606a88eSOndrej Mosnacek
345a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD
346a4397635SArd Biesheuvel	bool "Support SIMD acceleration for AEGIS-128"
347a4397635SArd Biesheuvel	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
348a4397635SArd Biesheuvel	default y
349a4397635SArd Biesheuvel
3501d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
3511d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
3521d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
3531d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
354de272ca7SEric Biggers	select CRYPTO_SIMD
3551d373d4eSOndrej Mosnacek	help
3564e5180ebSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
3571d373d4eSOndrej Mosnacek
358584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
359584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
360584fffc8SSebastian Siewior	select CRYPTO_AEAD
361b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
362856e3f40SHerbert Xu	select CRYPTO_NULL
363401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
364c8a3315aSEric Biggers	select CRYPTO_MANAGER
365584fffc8SSebastian Siewior	help
366584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
367584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
368584fffc8SSebastian Siewior
369a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
370a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
371a10f554fSHerbert Xu	select CRYPTO_AEAD
372a10f554fSHerbert Xu	select CRYPTO_NULL
373401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
374c8a3315aSEric Biggers	select CRYPTO_MANAGER
375a10f554fSHerbert Xu	help
376a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
377a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
378a10f554fSHerbert Xu	  algorithm for CBC.
379a10f554fSHerbert Xu
380584fffc8SSebastian Siewiorcomment "Block modes"
381584fffc8SSebastian Siewior
382584fffc8SSebastian Siewiorconfig CRYPTO_CBC
383584fffc8SSebastian Siewior	tristate "CBC support"
384b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
385584fffc8SSebastian Siewior	select CRYPTO_MANAGER
386584fffc8SSebastian Siewior	help
387584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
388584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
389584fffc8SSebastian Siewior
390a7d85e06SJames Bottomleyconfig CRYPTO_CFB
391a7d85e06SJames Bottomley	tristate "CFB support"
392b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
393a7d85e06SJames Bottomley	select CRYPTO_MANAGER
394a7d85e06SJames Bottomley	help
395a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
396a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
397a7d85e06SJames Bottomley
398584fffc8SSebastian Siewiorconfig CRYPTO_CTR
399584fffc8SSebastian Siewior	tristate "CTR support"
400b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
401584fffc8SSebastian Siewior	select CRYPTO_MANAGER
402584fffc8SSebastian Siewior	help
403584fffc8SSebastian Siewior	  CTR: Counter mode
404584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
405584fffc8SSebastian Siewior
406584fffc8SSebastian Siewiorconfig CRYPTO_CTS
407584fffc8SSebastian Siewior	tristate "CTS support"
408b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
409c8a3315aSEric Biggers	select CRYPTO_MANAGER
410584fffc8SSebastian Siewior	help
411584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
412584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
413ecd6d5c9SGilad Ben-Yossef	  Section 8 of rfc2040 and referenced by rfc3962
414ecd6d5c9SGilad Ben-Yossef	  (rfc3962 includes errata information in its Appendix A) or
415ecd6d5c9SGilad Ben-Yossef	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
416584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
417584fffc8SSebastian Siewior	  for AES encryption.
418584fffc8SSebastian Siewior
419ecd6d5c9SGilad Ben-Yossef	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
420ecd6d5c9SGilad Ben-Yossef
421584fffc8SSebastian Siewiorconfig CRYPTO_ECB
422584fffc8SSebastian Siewior	tristate "ECB support"
423b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
424584fffc8SSebastian Siewior	select CRYPTO_MANAGER
425584fffc8SSebastian Siewior	help
426584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
427584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
428584fffc8SSebastian Siewior	  the input block by block.
429584fffc8SSebastian Siewior
430584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4312470a2b2SJussi Kivilinna	tristate "LRW support"
432b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
433584fffc8SSebastian Siewior	select CRYPTO_MANAGER
434584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
435f60bbbbeSHerbert Xu	select CRYPTO_ECB
436584fffc8SSebastian Siewior	help
437584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
438584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
439584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
440584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
441584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
442584fffc8SSebastian Siewior
443e497c518SGilad Ben-Yossefconfig CRYPTO_OFB
444e497c518SGilad Ben-Yossef	tristate "OFB support"
445b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
446e497c518SGilad Ben-Yossef	select CRYPTO_MANAGER
447e497c518SGilad Ben-Yossef	help
448e497c518SGilad Ben-Yossef	  OFB: the Output Feedback mode makes a block cipher into a synchronous
449e497c518SGilad Ben-Yossef	  stream cipher. It generates keystream blocks, which are then XORed
450e497c518SGilad Ben-Yossef	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
451e497c518SGilad Ben-Yossef	  ciphertext produces a flipped bit in the plaintext at the same
452e497c518SGilad Ben-Yossef	  location. This property allows many error correcting codes to function
453e497c518SGilad Ben-Yossef	  normally even when applied before encryption.
454e497c518SGilad Ben-Yossef
455584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
456584fffc8SSebastian Siewior	tristate "PCBC support"
457b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
458584fffc8SSebastian Siewior	select CRYPTO_MANAGER
459584fffc8SSebastian Siewior	help
460584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
461584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
462584fffc8SSebastian Siewior
463584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4645bcf8e6dSJussi Kivilinna	tristate "XTS support"
465b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
466584fffc8SSebastian Siewior	select CRYPTO_MANAGER
46712cb3a1cSMilan Broz	select CRYPTO_ECB
468584fffc8SSebastian Siewior	help
469584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
470584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
471584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
472584fffc8SSebastian Siewior
4731c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4741c49678eSStephan Mueller	tristate "Key wrapping support"
475b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
476c8a3315aSEric Biggers	select CRYPTO_MANAGER
4771c49678eSStephan Mueller	help
4781c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4791c49678eSStephan Mueller	  padding.
4801c49678eSStephan Mueller
48126609a21SEric Biggersconfig CRYPTO_NHPOLY1305
48226609a21SEric Biggers	tristate
48326609a21SEric Biggers	select CRYPTO_HASH
48448ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
48526609a21SEric Biggers
486012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2
487012c8238SEric Biggers	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
488012c8238SEric Biggers	depends on X86 && 64BIT
489012c8238SEric Biggers	select CRYPTO_NHPOLY1305
490012c8238SEric Biggers	help
491012c8238SEric Biggers	  SSE2 optimized implementation of the hash function used by the
492012c8238SEric Biggers	  Adiantum encryption mode.
493012c8238SEric Biggers
4940f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2
4950f961f9fSEric Biggers	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
4960f961f9fSEric Biggers	depends on X86 && 64BIT
4970f961f9fSEric Biggers	select CRYPTO_NHPOLY1305
4980f961f9fSEric Biggers	help
4990f961f9fSEric Biggers	  AVX2 optimized implementation of the hash function used by the
5000f961f9fSEric Biggers	  Adiantum encryption mode.
5010f961f9fSEric Biggers
502059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM
503059c2a4dSEric Biggers	tristate "Adiantum support"
504059c2a4dSEric Biggers	select CRYPTO_CHACHA20
50548ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
506059c2a4dSEric Biggers	select CRYPTO_NHPOLY1305
507c8a3315aSEric Biggers	select CRYPTO_MANAGER
508059c2a4dSEric Biggers	help
509059c2a4dSEric Biggers	  Adiantum is a tweakable, length-preserving encryption mode
510059c2a4dSEric Biggers	  designed for fast and secure disk encryption, especially on
511059c2a4dSEric Biggers	  CPUs without dedicated crypto instructions.  It encrypts
512059c2a4dSEric Biggers	  each sector using the XChaCha12 stream cipher, two passes of
513059c2a4dSEric Biggers	  an ε-almost-∆-universal hash function, and an invocation of
514059c2a4dSEric Biggers	  the AES-256 block cipher on a single 16-byte block.  On CPUs
515059c2a4dSEric Biggers	  without AES instructions, Adiantum is much faster than
516059c2a4dSEric Biggers	  AES-XTS.
517059c2a4dSEric Biggers
518059c2a4dSEric Biggers	  Adiantum's security is provably reducible to that of its
519059c2a4dSEric Biggers	  underlying stream and block ciphers, subject to a security
520059c2a4dSEric Biggers	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
521059c2a4dSEric Biggers	  mode, so it actually provides an even stronger notion of
522059c2a4dSEric Biggers	  security than XTS, subject to the security bound.
523059c2a4dSEric Biggers
524059c2a4dSEric Biggers	  If unsure, say N.
525059c2a4dSEric Biggers
526be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV
527be1eb7f7SArd Biesheuvel	tristate "ESSIV support for block encryption"
528be1eb7f7SArd Biesheuvel	select CRYPTO_AUTHENC
529be1eb7f7SArd Biesheuvel	help
530be1eb7f7SArd Biesheuvel	  Encrypted salt-sector initialization vector (ESSIV) is an IV
531be1eb7f7SArd Biesheuvel	  generation method that is used in some cases by fscrypt and/or
532be1eb7f7SArd Biesheuvel	  dm-crypt. It uses the hash of the block encryption key as the
533be1eb7f7SArd Biesheuvel	  symmetric key for a block encryption pass applied to the input
534be1eb7f7SArd Biesheuvel	  IV, making low entropy IV sources more suitable for block
535be1eb7f7SArd Biesheuvel	  encryption.
536be1eb7f7SArd Biesheuvel
537be1eb7f7SArd Biesheuvel	  This driver implements a crypto API template that can be
538ab3d436bSGeert Uytterhoeven	  instantiated either as an skcipher or as an AEAD (depending on the
539be1eb7f7SArd Biesheuvel	  type of the first template argument), and which defers encryption
540be1eb7f7SArd Biesheuvel	  and decryption requests to the encapsulated cipher after applying
541ab3d436bSGeert Uytterhoeven	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
542be1eb7f7SArd Biesheuvel	  that the keys are presented in the same format used by the authenc
543be1eb7f7SArd Biesheuvel	  template, and that the IV appears at the end of the authenticated
544be1eb7f7SArd Biesheuvel	  associated data (AAD) region (which is how dm-crypt uses it.)
545be1eb7f7SArd Biesheuvel
546be1eb7f7SArd Biesheuvel	  Note that the use of ESSIV is not recommended for new deployments,
547be1eb7f7SArd Biesheuvel	  and so this only needs to be enabled when interoperability with
548be1eb7f7SArd Biesheuvel	  existing encrypted volumes of filesystems is required, or when
549be1eb7f7SArd Biesheuvel	  building for a particular system that requires it (e.g., when
550be1eb7f7SArd Biesheuvel	  the SoC in question has accelerated CBC but not XTS, making CBC
551be1eb7f7SArd Biesheuvel	  combined with ESSIV the only feasible mode for h/w accelerated
552be1eb7f7SArd Biesheuvel	  block encryption)
553be1eb7f7SArd Biesheuvel
554584fffc8SSebastian Siewiorcomment "Hash modes"
555584fffc8SSebastian Siewior
55693b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
55793b5e86aSJussi Kivilinna	tristate "CMAC support"
55893b5e86aSJussi Kivilinna	select CRYPTO_HASH
55993b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
56093b5e86aSJussi Kivilinna	help
56193b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
56293b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
56393b5e86aSJussi Kivilinna
56493b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
56593b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
56693b5e86aSJussi Kivilinna
5671da177e4SLinus Torvaldsconfig CRYPTO_HMAC
5688425165dSHerbert Xu	tristate "HMAC support"
5690796ae06SHerbert Xu	select CRYPTO_HASH
57043518407SHerbert Xu	select CRYPTO_MANAGER
5711da177e4SLinus Torvalds	help
5721da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
5731da177e4SLinus Torvalds	  This is required for IPSec.
5741da177e4SLinus Torvalds
575333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
576333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
577333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
578333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
579333b0d7eSKazunori MIYAZAWA	help
580333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
5819332a9e7SAlexander A. Klimov		https://www.ietf.org/rfc/rfc3566.txt
582333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
583333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
584333b0d7eSKazunori MIYAZAWA
585f1939f7cSShane Wangconfig CRYPTO_VMAC
586f1939f7cSShane Wang	tristate "VMAC support"
587f1939f7cSShane Wang	select CRYPTO_HASH
588f1939f7cSShane Wang	select CRYPTO_MANAGER
589f1939f7cSShane Wang	help
590f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
591f1939f7cSShane Wang	  very high speed on 64-bit architectures.
592f1939f7cSShane Wang
593f1939f7cSShane Wang	  See also:
5949332a9e7SAlexander A. Klimov	  <https://fastcrypto.org/vmac>
595f1939f7cSShane Wang
596584fffc8SSebastian Siewiorcomment "Digest"
597584fffc8SSebastian Siewior
598584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
599584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
6005773a3e6SHerbert Xu	select CRYPTO_HASH
6016a0962b2SDarrick J. Wong	select CRC32
6021da177e4SLinus Torvalds	help
603584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
604584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
60569c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
6061da177e4SLinus Torvalds
6078cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
6088cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
6098cb51ba8SAustin Zhang	depends on X86
6108cb51ba8SAustin Zhang	select CRYPTO_HASH
6118cb51ba8SAustin Zhang	help
6128cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
6138cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
6148cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
6158cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
6168cb51ba8SAustin Zhang	  gain performance compared with software implementation.
6178cb51ba8SAustin Zhang	  Module will be crc32c-intel.
6188cb51ba8SAustin Zhang
6197cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
6206dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
621c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
6226dd7a82cSAnton Blanchard	select CRYPTO_HASH
6236dd7a82cSAnton Blanchard	select CRC32
6246dd7a82cSAnton Blanchard	help
6256dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
6266dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
6276dd7a82cSAnton Blanchard	  and newer processors for improved performance.
6286dd7a82cSAnton Blanchard
6296dd7a82cSAnton Blanchard
630442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
631442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
632442a7c40SDavid S. Miller	depends on SPARC64
633442a7c40SDavid S. Miller	select CRYPTO_HASH
634442a7c40SDavid S. Miller	select CRC32
635442a7c40SDavid S. Miller	help
636442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
637442a7c40SDavid S. Miller	  when available.
638442a7c40SDavid S. Miller
63978c37d19SAlexander Boykoconfig CRYPTO_CRC32
64078c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
64178c37d19SAlexander Boyko	select CRYPTO_HASH
64278c37d19SAlexander Boyko	select CRC32
64378c37d19SAlexander Boyko	help
64478c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
64578c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
64678c37d19SAlexander Boyko
64778c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
64878c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
64978c37d19SAlexander Boyko	depends on X86
65078c37d19SAlexander Boyko	select CRYPTO_HASH
65178c37d19SAlexander Boyko	select CRC32
65278c37d19SAlexander Boyko	help
65378c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
65478c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
65578c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
656af8cb01fShaco	  instruction. This option will create 'crc32-pclmul' module,
65778c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
65878c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
65978c37d19SAlexander Boyko
6604a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
6614a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
6624a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
6634a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
6644a5dc51eSMarcin Nowakowski	help
6654a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
6664a5dc51eSMarcin Nowakowski	  instructions, when available.
6674a5dc51eSMarcin Nowakowski
6684a5dc51eSMarcin Nowakowski
66967882e76SNikolay Borisovconfig CRYPTO_XXHASH
67067882e76SNikolay Borisov	tristate "xxHash hash algorithm"
67167882e76SNikolay Borisov	select CRYPTO_HASH
67267882e76SNikolay Borisov	select XXHASH
67367882e76SNikolay Borisov	help
67467882e76SNikolay Borisov	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
67567882e76SNikolay Borisov	  speeds close to RAM limits.
67667882e76SNikolay Borisov
67791d68933SDavid Sterbaconfig CRYPTO_BLAKE2B
67891d68933SDavid Sterba	tristate "BLAKE2b digest algorithm"
67991d68933SDavid Sterba	select CRYPTO_HASH
68091d68933SDavid Sterba	help
68191d68933SDavid Sterba	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
68291d68933SDavid Sterba	  optimized for 64bit platforms and can produce digests of any size
68391d68933SDavid Sterba	  between 1 to 64.  The keyed hash is also implemented.
68491d68933SDavid Sterba
68591d68933SDavid Sterba	  This module provides the following algorithms:
68691d68933SDavid Sterba
68791d68933SDavid Sterba	  - blake2b-160
68891d68933SDavid Sterba	  - blake2b-256
68991d68933SDavid Sterba	  - blake2b-384
69091d68933SDavid Sterba	  - blake2b-512
69191d68933SDavid Sterba
69291d68933SDavid Sterba	  See https://blake2.net for further information.
69391d68933SDavid Sterba
6947f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S
6957f9b0880SArd Biesheuvel	tristate "BLAKE2s digest algorithm"
6967f9b0880SArd Biesheuvel	select CRYPTO_LIB_BLAKE2S_GENERIC
6977f9b0880SArd Biesheuvel	select CRYPTO_HASH
6987f9b0880SArd Biesheuvel	help
6997f9b0880SArd Biesheuvel	  Implementation of cryptographic hash function BLAKE2s
7007f9b0880SArd Biesheuvel	  optimized for 8-32bit platforms and can produce digests of any size
7017f9b0880SArd Biesheuvel	  between 1 to 32.  The keyed hash is also implemented.
7027f9b0880SArd Biesheuvel
7037f9b0880SArd Biesheuvel	  This module provides the following algorithms:
7047f9b0880SArd Biesheuvel
7057f9b0880SArd Biesheuvel	  - blake2s-128
7067f9b0880SArd Biesheuvel	  - blake2s-160
7077f9b0880SArd Biesheuvel	  - blake2s-224
7087f9b0880SArd Biesheuvel	  - blake2s-256
7097f9b0880SArd Biesheuvel
7107f9b0880SArd Biesheuvel	  See https://blake2.net for further information.
7117f9b0880SArd Biesheuvel
712ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86
713ed0356edSJason A. Donenfeld	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
714ed0356edSJason A. Donenfeld	depends on X86 && 64BIT
715ed0356edSJason A. Donenfeld	select CRYPTO_LIB_BLAKE2S_GENERIC
716ed0356edSJason A. Donenfeld	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
717ed0356edSJason A. Donenfeld
71868411521SHerbert Xuconfig CRYPTO_CRCT10DIF
71968411521SHerbert Xu	tristate "CRCT10DIF algorithm"
72068411521SHerbert Xu	select CRYPTO_HASH
72168411521SHerbert Xu	help
72268411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
72368411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
72468411521SHerbert Xu	  transforms to be used if they are available.
72568411521SHerbert Xu
72668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
72768411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
72868411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
72968411521SHerbert Xu	select CRYPTO_HASH
73068411521SHerbert Xu	help
73168411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
73268411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
73368411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
734af8cb01fShaco	  'crct10dif-pclmul' module, which is faster when computing the
73568411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
73668411521SHerbert Xu
737b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
738b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
739b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
740b01df1c1SDaniel Axtens	select CRYPTO_HASH
741b01df1c1SDaniel Axtens	help
742b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
743b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
744b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
745b01df1c1SDaniel Axtens
746146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
747146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
748146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
749146c8688SDaniel Axtens	help
750146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
751146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
752146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
753146c8688SDaniel Axtens
7542cdc6899SHuang Yingconfig CRYPTO_GHASH
7558dfa20fcSEric Biggers	tristate "GHASH hash function"
7562cdc6899SHuang Ying	select CRYPTO_GF128MUL
757578c60fbSArnd Bergmann	select CRYPTO_HASH
7582cdc6899SHuang Ying	help
7598dfa20fcSEric Biggers	  GHASH is the hash function used in GCM (Galois/Counter Mode).
7608dfa20fcSEric Biggers	  It is not a general-purpose cryptographic hash function.
7612cdc6899SHuang Ying
762f979e014SMartin Williconfig CRYPTO_POLY1305
763f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
764578c60fbSArnd Bergmann	select CRYPTO_HASH
76548ea8c6eSArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
766f979e014SMartin Willi	help
767f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
768f979e014SMartin Willi
769f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
770f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
771f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
772f979e014SMartin Willi
773c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
774b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
775c70f4abeSMartin Willi	depends on X86 && 64BIT
7761b2c6a51SArd Biesheuvel	select CRYPTO_LIB_POLY1305_GENERIC
777f0e89bcfSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
778c70f4abeSMartin Willi	help
779c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
780c70f4abeSMartin Willi
781c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
782c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
783c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
784c70f4abeSMartin Willi	  instructions.
785c70f4abeSMartin Willi
786a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS
787a11d055eSArd Biesheuvel	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
7886c810cf2SMaciej W. Rozycki	depends on MIPS
789a11d055eSArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_POLY1305
790a11d055eSArd Biesheuvel
7911da177e4SLinus Torvaldsconfig CRYPTO_MD4
7921da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
793808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7941da177e4SLinus Torvalds	help
7951da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
7961da177e4SLinus Torvalds
7971da177e4SLinus Torvaldsconfig CRYPTO_MD5
7981da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
79914b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8001da177e4SLinus Torvalds	help
8011da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
8021da177e4SLinus Torvalds
803d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
804d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
805d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
806d69e75deSAaro Koskinen	select CRYPTO_MD5
807d69e75deSAaro Koskinen	select CRYPTO_HASH
808d69e75deSAaro Koskinen	help
809d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
810d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
811d69e75deSAaro Koskinen
812e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
813e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
814e8e59953SMarkus Stockhausen	depends on PPC
815e8e59953SMarkus Stockhausen	select CRYPTO_HASH
816e8e59953SMarkus Stockhausen	help
817e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
818e8e59953SMarkus Stockhausen	  in PPC assembler.
819e8e59953SMarkus Stockhausen
820fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
821fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
822fa4dfedcSDavid S. Miller	depends on SPARC64
823fa4dfedcSDavid S. Miller	select CRYPTO_MD5
824fa4dfedcSDavid S. Miller	select CRYPTO_HASH
825fa4dfedcSDavid S. Miller	help
826fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
827fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
828fa4dfedcSDavid S. Miller
829584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
830584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
83119e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
832584fffc8SSebastian Siewior	help
833584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
834584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
835584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
836584fffc8SSebastian Siewior	  of the algorithm.
837584fffc8SSebastian Siewior
83882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
83982798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
840e5835fbaSHerbert Xu	select CRYPTO_HASH
84182798f90SAdrian-Ken Rueegsegger	help
84282798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
84382798f90SAdrian-Ken Rueegsegger
84482798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
84582798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
846b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
847b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
84882798f90SAdrian-Ken Rueegsegger
849b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
850b6d44341SAdrian Bunk	  against RIPEMD-160.
851534fe2c1SAdrian-Ken Rueegsegger
852534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
8539332a9e7SAlexander A. Klimov	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
854534fe2c1SAdrian-Ken Rueegsegger
8551da177e4SLinus Torvaldsconfig CRYPTO_SHA1
8561da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
85754ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8581da177e4SLinus Torvalds	help
8591da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
8601da177e4SLinus Torvalds
86166be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
862e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
86366be8951SMathias Krause	depends on X86 && 64BIT
86466be8951SMathias Krause	select CRYPTO_SHA1
86566be8951SMathias Krause	select CRYPTO_HASH
86666be8951SMathias Krause	help
86766be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
86866be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
869e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
870e38b6b7fStim	  when available.
87166be8951SMathias Krause
8728275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
873e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
8748275d1aaSTim Chen	depends on X86 && 64BIT
8758275d1aaSTim Chen	select CRYPTO_SHA256
8768275d1aaSTim Chen	select CRYPTO_HASH
8778275d1aaSTim Chen	help
8788275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
8798275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
8808275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
881e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
882e38b6b7fStim	  Instructions) when available.
8838275d1aaSTim Chen
88487de4579STim Chenconfig CRYPTO_SHA512_SSSE3
88587de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
88687de4579STim Chen	depends on X86 && 64BIT
88787de4579STim Chen	select CRYPTO_SHA512
88887de4579STim Chen	select CRYPTO_HASH
88987de4579STim Chen	help
89087de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
89187de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
89287de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
89387de4579STim Chen	  version 2 (AVX2) instructions, when available.
89487de4579STim Chen
895efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
896efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
897efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
898efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
899efdb6f6eSAaro Koskinen	select CRYPTO_HASH
900efdb6f6eSAaro Koskinen	help
901efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
902efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
903efdb6f6eSAaro Koskinen
9044ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
9054ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
9064ff28d4cSDavid S. Miller	depends on SPARC64
9074ff28d4cSDavid S. Miller	select CRYPTO_SHA1
9084ff28d4cSDavid S. Miller	select CRYPTO_HASH
9094ff28d4cSDavid S. Miller	help
9104ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
9114ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
9124ff28d4cSDavid S. Miller
913323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
914323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
915323a6bf1SMichael Ellerman	depends on PPC
916323a6bf1SMichael Ellerman	help
917323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
918323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
919323a6bf1SMichael Ellerman
920d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
921d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
922d9850fc5SMarkus Stockhausen	depends on PPC && SPE
923d9850fc5SMarkus Stockhausen	help
924d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
925d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
926d9850fc5SMarkus Stockhausen
9271da177e4SLinus Torvaldsconfig CRYPTO_SHA256
928cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
92950e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
93008c327f6SHans de Goede	select CRYPTO_LIB_SHA256
9311da177e4SLinus Torvalds	help
9321da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
9331da177e4SLinus Torvalds
9341da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
9351da177e4SLinus Torvalds	  security against collision attacks.
9361da177e4SLinus Torvalds
937cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
938cd12fb90SJonathan Lynch	  of security against collision attacks.
939cd12fb90SJonathan Lynch
9402ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
9412ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
9422ecc1e95SMarkus Stockhausen	depends on PPC && SPE
9432ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
9442ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
9452ecc1e95SMarkus Stockhausen	help
9462ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
9472ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
9482ecc1e95SMarkus Stockhausen
949efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
950efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
951efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
952efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
953efdb6f6eSAaro Koskinen	select CRYPTO_HASH
954efdb6f6eSAaro Koskinen	help
955efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
956efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
957efdb6f6eSAaro Koskinen
95886c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
95986c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
96086c93b24SDavid S. Miller	depends on SPARC64
96186c93b24SDavid S. Miller	select CRYPTO_SHA256
96286c93b24SDavid S. Miller	select CRYPTO_HASH
96386c93b24SDavid S. Miller	help
96486c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
96586c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
96686c93b24SDavid S. Miller
9671da177e4SLinus Torvaldsconfig CRYPTO_SHA512
9681da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
969bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9701da177e4SLinus Torvalds	help
9711da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
9721da177e4SLinus Torvalds
9731da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
9741da177e4SLinus Torvalds	  security against collision attacks.
9751da177e4SLinus Torvalds
9761da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
9771da177e4SLinus Torvalds	  of security against collision attacks.
9781da177e4SLinus Torvalds
979efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
980efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
981efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
982efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
983efdb6f6eSAaro Koskinen	select CRYPTO_HASH
984efdb6f6eSAaro Koskinen	help
985efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
986efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
987efdb6f6eSAaro Koskinen
988775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
989775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
990775e0c69SDavid S. Miller	depends on SPARC64
991775e0c69SDavid S. Miller	select CRYPTO_SHA512
992775e0c69SDavid S. Miller	select CRYPTO_HASH
993775e0c69SDavid S. Miller	help
994775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
995775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
996775e0c69SDavid S. Miller
99753964b9eSJeff Garzikconfig CRYPTO_SHA3
99853964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
99953964b9eSJeff Garzik	select CRYPTO_HASH
100053964b9eSJeff Garzik	help
100153964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
100253964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
100353964b9eSJeff Garzik
100453964b9eSJeff Garzik	  References:
100553964b9eSJeff Garzik	  http://keccak.noekeon.org/
100653964b9eSJeff Garzik
10074f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
10084f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
10094f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
1010b4784a45STianjia Zhang	select CRYPTO_LIB_SM3
10114f0fc160SGilad Ben-Yossef	help
10124f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
10134f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
10144f0fc160SGilad Ben-Yossef
10154f0fc160SGilad Ben-Yossef	  References:
10164f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
10174f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
10184f0fc160SGilad Ben-Yossef
1019930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64
1020930ab34dSTianjia Zhang	tristate "SM3 digest algorithm (x86_64/AVX)"
1021930ab34dSTianjia Zhang	depends on X86 && 64BIT
1022930ab34dSTianjia Zhang	select CRYPTO_HASH
1023930ab34dSTianjia Zhang	select CRYPTO_LIB_SM3
1024930ab34dSTianjia Zhang	help
1025930ab34dSTianjia Zhang	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1026930ab34dSTianjia Zhang	  It is part of the Chinese Commercial Cryptography suite. This is
1027930ab34dSTianjia Zhang	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1028930ab34dSTianjia Zhang	  when available.
1029930ab34dSTianjia Zhang
1030930ab34dSTianjia Zhang	  If unsure, say N.
1031930ab34dSTianjia Zhang
1032fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG
1033fe18957eSVitaly Chikunov	tristate "Streebog Hash Function"
1034fe18957eSVitaly Chikunov	select CRYPTO_HASH
1035fe18957eSVitaly Chikunov	help
1036fe18957eSVitaly Chikunov	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1037fe18957eSVitaly Chikunov	  cryptographic standard algorithms (called GOST algorithms).
1038fe18957eSVitaly Chikunov	  This setting enables two hash algorithms with 256 and 512 bits output.
1039fe18957eSVitaly Chikunov
1040fe18957eSVitaly Chikunov	  References:
1041fe18957eSVitaly Chikunov	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1042fe18957eSVitaly Chikunov	  https://tools.ietf.org/html/rfc6986
1043fe18957eSVitaly Chikunov
1044584fffc8SSebastian Siewiorconfig CRYPTO_WP512
1045584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
10464946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
10471da177e4SLinus Torvalds	help
1048584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
10491da177e4SLinus Torvalds
1050584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1051584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
10521da177e4SLinus Torvalds
10531da177e4SLinus Torvalds	  See also:
10546d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
10551da177e4SLinus Torvalds
10560e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
10578dfa20fcSEric Biggers	tristate "GHASH hash function (CLMUL-NI accelerated)"
10588af00860SRichard Weinberger	depends on X86 && 64BIT
10590e1227d3SHuang Ying	select CRYPTO_CRYPTD
10600e1227d3SHuang Ying	help
10618dfa20fcSEric Biggers	  This is the x86_64 CLMUL-NI accelerated implementation of
10628dfa20fcSEric Biggers	  GHASH, the hash function used in GCM (Galois/Counter mode).
10630e1227d3SHuang Ying
1064584fffc8SSebastian Siewiorcomment "Ciphers"
10651da177e4SLinus Torvalds
10661da177e4SLinus Torvaldsconfig CRYPTO_AES
10671da177e4SLinus Torvalds	tristate "AES cipher algorithms"
1068cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10695bb12d78SArd Biesheuvel	select CRYPTO_LIB_AES
10701da177e4SLinus Torvalds	help
10711da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10721da177e4SLinus Torvalds	  algorithm.
10731da177e4SLinus Torvalds
10741da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10751da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10761da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10771da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10781da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10791da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10801da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10811da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10821da177e4SLinus Torvalds
10831da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10841da177e4SLinus Torvalds
10851da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
10861da177e4SLinus Torvalds
1087b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
1088b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
1089b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
1090e59c1c98SArd Biesheuvel	select CRYPTO_LIB_AES
1091b5e0b032SArd Biesheuvel	help
1092b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
1093b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
1094b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
1095b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1096b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
1097b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
1098b5e0b032SArd Biesheuvel
1099b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1100b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1101b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1102b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
11030a6a40c2SEric Biggers	  block. Interrupts are also disabled to avoid races where cachelines
11040a6a40c2SEric Biggers	  are evicted when the CPU is interrupted to do something else.
1105b5e0b032SArd Biesheuvel
110654b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
110754b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
11088af00860SRichard Weinberger	depends on X86
110985671860SHerbert Xu	select CRYPTO_AEAD
11102c53fd11SArd Biesheuvel	select CRYPTO_LIB_AES
111154b6a1bdSHuang Ying	select CRYPTO_ALGAPI
1112b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
111385671860SHerbert Xu	select CRYPTO_SIMD
111454b6a1bdSHuang Ying	help
111554b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
111654b6a1bdSHuang Ying
111754b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
111854b6a1bdSHuang Ying	  algorithm.
111954b6a1bdSHuang Ying
112054b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
112154b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
112254b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
112354b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
112454b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
112554b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
112654b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
112754b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
112854b6a1bdSHuang Ying
112954b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
113054b6a1bdSHuang Ying
113154b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
113254b6a1bdSHuang Ying
11330d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
11340d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
1135944585a6SArd Biesheuvel	  ECB, CBC, LRW, XTS. The 64 bit version has additional
11360d258efbSMathias Krause	  acceleration for CTR.
11372cf4ac8bSHuang Ying
11389bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
11399bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
11409bf4852dSDavid S. Miller	depends on SPARC64
1141b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
11429bf4852dSDavid S. Miller	help
11439bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
11449bf4852dSDavid S. Miller
11459bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
11469bf4852dSDavid S. Miller	  algorithm.
11479bf4852dSDavid S. Miller
11489bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
11499bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
11509bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
11519bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
11529bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
11539bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11549bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11559bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11569bf4852dSDavid S. Miller
11579bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11589bf4852dSDavid S. Miller
11599bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11609bf4852dSDavid S. Miller
11619bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11629bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11639bf4852dSDavid S. Miller	  ECB and CBC.
11649bf4852dSDavid S. Miller
1165504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1166504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1167504c6143SMarkus Stockhausen	depends on PPC && SPE
1168b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1169504c6143SMarkus Stockhausen	help
1170504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1171504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1172504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1173504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1174504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1175504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1176504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1177504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1178504c6143SMarkus Stockhausen
11791da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11801da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
11811674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1182cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11831da177e4SLinus Torvalds	help
11841da177e4SLinus Torvalds	  Anubis cipher algorithm.
11851da177e4SLinus Torvalds
11861da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11871da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11881da177e4SLinus Torvalds	  in the NESSIE competition.
11891da177e4SLinus Torvalds
11901da177e4SLinus Torvalds	  See also:
11916d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11926d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11931da177e4SLinus Torvalds
1194584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1195584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
11969ace6771SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1197b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1198dc51f257SArd Biesheuvel	select CRYPTO_LIB_ARC4
1199e2ee95b8SHye-Shik Chang	help
1200584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1201e2ee95b8SHye-Shik Chang
1202584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1203584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1204584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1205584fffc8SSebastian Siewior	  weakness of the algorithm.
1206584fffc8SSebastian Siewior
1207584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1208584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1209584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
121052ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1211584fffc8SSebastian Siewior	help
1212584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1213584fffc8SSebastian Siewior
1214584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1215584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1216584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1217e2ee95b8SHye-Shik Chang
1218e2ee95b8SHye-Shik Chang	  See also:
12199332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
1220584fffc8SSebastian Siewior
122152ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
122252ba867cSJussi Kivilinna	tristate
122352ba867cSJussi Kivilinna	help
122452ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
122552ba867cSJussi Kivilinna	  generic c and the assembler implementations.
122652ba867cSJussi Kivilinna
122752ba867cSJussi Kivilinna	  See also:
12289332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
122952ba867cSJussi Kivilinna
123064b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
123164b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1232f21a7c19SAl Viro	depends on X86 && 64BIT
1233b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
123464b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1235c0a64926SArd Biesheuvel	imply CRYPTO_CTR
123664b94ceaSJussi Kivilinna	help
123764b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
123864b94ceaSJussi Kivilinna
123964b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
124064b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
124164b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
124264b94ceaSJussi Kivilinna
124364b94ceaSJussi Kivilinna	  See also:
12449332a9e7SAlexander A. Klimov	  <https://www.schneier.com/blowfish.html>
124564b94ceaSJussi Kivilinna
1246584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1247584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1248584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1249584fffc8SSebastian Siewior	help
1250584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1251584fffc8SSebastian Siewior
1252584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1253584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1254584fffc8SSebastian Siewior
1255584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1256584fffc8SSebastian Siewior
1257584fffc8SSebastian Siewior	  See also:
1258584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1259584fffc8SSebastian Siewior
12600b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12610b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1262f21a7c19SAl Viro	depends on X86 && 64BIT
1263b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1264a1f91ecfSArd Biesheuvel	imply CRYPTO_CTR
12650b95ec56SJussi Kivilinna	help
12660b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12670b95ec56SJussi Kivilinna
12680b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12690b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12700b95ec56SJussi Kivilinna
12710b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12720b95ec56SJussi Kivilinna
12730b95ec56SJussi Kivilinna	  See also:
12740b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12750b95ec56SJussi Kivilinna
1276d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1277d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1278d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1279b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1280d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
128144893bc2SEric Biggers	select CRYPTO_SIMD
128255a7e88fSArd Biesheuvel	imply CRYPTO_XTS
1283d9b1d2e7SJussi Kivilinna	help
1284d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1285d9b1d2e7SJussi Kivilinna
1286d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1287d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1288d9b1d2e7SJussi Kivilinna
1289d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1290d9b1d2e7SJussi Kivilinna
1291d9b1d2e7SJussi Kivilinna	  See also:
1292d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1293d9b1d2e7SJussi Kivilinna
1294f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1295f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1296f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1297f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1298f3f935a7SJussi Kivilinna	help
1299f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1300f3f935a7SJussi Kivilinna
1301f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1302f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1303f3f935a7SJussi Kivilinna
1304f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1305f3f935a7SJussi Kivilinna
1306f3f935a7SJussi Kivilinna	  See also:
1307f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1308f3f935a7SJussi Kivilinna
130981658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
131081658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
131181658ad0SDavid S. Miller	depends on SPARC64
131281658ad0SDavid S. Miller	select CRYPTO_ALGAPI
1313b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
131481658ad0SDavid S. Miller	help
131581658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
131681658ad0SDavid S. Miller
131781658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
131881658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
131981658ad0SDavid S. Miller
132081658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
132181658ad0SDavid S. Miller
132281658ad0SDavid S. Miller	  See also:
132381658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
132481658ad0SDavid S. Miller
1325044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1326044ab525SJussi Kivilinna	tristate
1327044ab525SJussi Kivilinna	help
1328044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1329044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1330044ab525SJussi Kivilinna
1331584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1332584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1333584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1334044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1335584fffc8SSebastian Siewior	help
1336584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1337584fffc8SSebastian Siewior	  described in RFC2144.
1338584fffc8SSebastian Siewior
13394d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
13404d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
13414d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
1342b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13434d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
13441e63183aSEric Biggers	select CRYPTO_CAST_COMMON
13451e63183aSEric Biggers	select CRYPTO_SIMD
1346e2d60e2fSArd Biesheuvel	imply CRYPTO_CTR
13474d6d6a2cSJohannes Goetzfried	help
13484d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
13494d6d6a2cSJohannes Goetzfried	  described in RFC2144.
13504d6d6a2cSJohannes Goetzfried
13514d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
13524d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
13534d6d6a2cSJohannes Goetzfried
1354584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1355584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1356584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1357044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1358584fffc8SSebastian Siewior	help
1359584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1360584fffc8SSebastian Siewior	  described in RFC2612.
1361584fffc8SSebastian Siewior
13624ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13634ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13644ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
1365b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
13664ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13674bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13684bd96924SEric Biggers	select CRYPTO_SIMD
13692cc0fedbSArd Biesheuvel	imply CRYPTO_XTS
13707a6623ccSArd Biesheuvel	imply CRYPTO_CTR
13714ea1277dSJohannes Goetzfried	help
13724ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13734ea1277dSJohannes Goetzfried	  described in RFC2612.
13744ea1277dSJohannes Goetzfried
13754ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13764ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13774ea1277dSJohannes Goetzfried
1378584fffc8SSebastian Siewiorconfig CRYPTO_DES
1379584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1380584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
138104007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1382584fffc8SSebastian Siewior	help
1383584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1384584fffc8SSebastian Siewior
1385c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1386c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
138797da37b3SDave Jones	depends on SPARC64
1388c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
138904007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1390b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1391c5aac2dfSDavid S. Miller	help
1392c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1393c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1394c5aac2dfSDavid S. Miller
13956574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13966574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13976574e6c6SJussi Kivilinna	depends on X86 && 64BIT
1398b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
139904007b0eSArd Biesheuvel	select CRYPTO_LIB_DES
1400768db5feSArd Biesheuvel	imply CRYPTO_CTR
14016574e6c6SJussi Kivilinna	help
14026574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
14036574e6c6SJussi Kivilinna
14046574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
14056574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
14066574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
14076574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
14086574e6c6SJussi Kivilinna
1409584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1410584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1411584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1412b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1413584fffc8SSebastian Siewior	help
1414584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1415584fffc8SSebastian Siewior
1416584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1417584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
14181674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1419584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1420584fffc8SSebastian Siewior	help
1421584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1422584fffc8SSebastian Siewior
1423584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1424584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1425584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1426584fffc8SSebastian Siewior
1427584fffc8SSebastian Siewior	  See also:
14286d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1429e2ee95b8SHye-Shik Chang
1430c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1431aa762409SEric Biggers	tristate "ChaCha stream cipher algorithms"
14325fb8ef25SArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
1433b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1434c08d0e64SMartin Willi	help
1435aa762409SEric Biggers	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1436c08d0e64SMartin Willi
1437c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1438c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1439de61d7aeSEric Biggers	  This is the portable C implementation of ChaCha20.  See also:
14409332a9e7SAlexander A. Klimov	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1441c08d0e64SMartin Willi
1442de61d7aeSEric Biggers	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1443de61d7aeSEric Biggers	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1444de61d7aeSEric Biggers	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1445de61d7aeSEric Biggers	  while provably retaining ChaCha20's security.  See also:
1446de61d7aeSEric Biggers	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1447de61d7aeSEric Biggers
1448aa762409SEric Biggers	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1449aa762409SEric Biggers	  reduced security margin but increased performance.  It can be needed
1450aa762409SEric Biggers	  in some performance-sensitive scenarios.
1451aa762409SEric Biggers
1452c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14534af78261SEric Biggers	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1454c9320b6dSMartin Willi	depends on X86 && 64BIT
1455b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
145628e8d89bSArd Biesheuvel	select CRYPTO_LIB_CHACHA_GENERIC
145784e03fa3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1458c9320b6dSMartin Willi	help
14597a507d62SEric Biggers	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
14607a507d62SEric Biggers	  XChaCha20, and XChaCha12 stream ciphers.
1461c9320b6dSMartin Willi
14623a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS
14633a2f58f3SArd Biesheuvel	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
14643a2f58f3SArd Biesheuvel	depends on CPU_MIPS32_R2
1465660eda8dSEric Biggers	select CRYPTO_SKCIPHER
14663a2f58f3SArd Biesheuvel	select CRYPTO_ARCH_HAVE_LIB_CHACHA
14673a2f58f3SArd Biesheuvel
1468584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1469584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
14701674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1471584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1472584fffc8SSebastian Siewior	help
1473584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1474584fffc8SSebastian Siewior
1475584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1476584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1477584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1478584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1479584fffc8SSebastian Siewior
1480584fffc8SSebastian Siewior	  See also:
1481584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1482584fffc8SSebastian Siewior
1483584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1484584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1485584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1486584fffc8SSebastian Siewior	help
1487584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1488584fffc8SSebastian Siewior
1489584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1490784506a1SArd Biesheuvel	  of 8 bits.
1491584fffc8SSebastian Siewior
1492584fffc8SSebastian Siewior	  See also:
14939332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1494584fffc8SSebastian Siewior
1495937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1496937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1497937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1498b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1499937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1500e0f409dcSEric Biggers	select CRYPTO_SIMD
15012e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1502937c30d7SJussi Kivilinna	help
1503937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1504937c30d7SJussi Kivilinna
1505937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1506937c30d7SJussi Kivilinna	  of 8 bits.
1507937c30d7SJussi Kivilinna
15081e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1509937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1510937c30d7SJussi Kivilinna
1511937c30d7SJussi Kivilinna	  See also:
15129332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1513937c30d7SJussi Kivilinna
1514251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1515251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1516251496dbSJussi Kivilinna	depends on X86 && !64BIT
1517b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
1518251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1519e0f409dcSEric Biggers	select CRYPTO_SIMD
15202e9440aeSArd Biesheuvel	imply CRYPTO_CTR
1521251496dbSJussi Kivilinna	help
1522251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1523251496dbSJussi Kivilinna
1524251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1525251496dbSJussi Kivilinna	  of 8 bits.
1526251496dbSJussi Kivilinna
1527251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1528251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1529251496dbSJussi Kivilinna
1530251496dbSJussi Kivilinna	  See also:
15319332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1532251496dbSJussi Kivilinna
15337efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15347efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15357efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1536b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
15377efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1538e16bf974SEric Biggers	select CRYPTO_SIMD
15399ec0af8aSArd Biesheuvel	imply CRYPTO_XTS
15402e9440aeSArd Biesheuvel	imply CRYPTO_CTR
15417efe4076SJohannes Goetzfried	help
15427efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15437efe4076SJohannes Goetzfried
15447efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15457efe4076SJohannes Goetzfried	  of 8 bits.
15467efe4076SJohannes Goetzfried
15477efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15487efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15497efe4076SJohannes Goetzfried
15507efe4076SJohannes Goetzfried	  See also:
15519332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
15527efe4076SJohannes Goetzfried
155356d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
155456d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
155556d76c96SJussi Kivilinna	depends on X86 && 64BIT
155656d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
155756d76c96SJussi Kivilinna	help
155856d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
155956d76c96SJussi Kivilinna
156056d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
156156d76c96SJussi Kivilinna	  of 8 bits.
156256d76c96SJussi Kivilinna
156356d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
156456d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
156556d76c96SJussi Kivilinna
156656d76c96SJussi Kivilinna	  See also:
15679332a9e7SAlexander A. Klimov	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
156856d76c96SJussi Kivilinna
1569747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1570747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1571747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
15722b31277aSTianjia Zhang	select CRYPTO_LIB_SM4
1573747c8ce4SGilad Ben-Yossef	help
1574747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1575747c8ce4SGilad Ben-Yossef
1576747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1577747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1578747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1579747c8ce4SGilad Ben-Yossef
1580747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1581747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1582747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1583747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1584747c8ce4SGilad Ben-Yossef
1585747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1586747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1587747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1588747c8ce4SGilad Ben-Yossef
1589747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1590747c8ce4SGilad Ben-Yossef
1591747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1592747c8ce4SGilad Ben-Yossef
1593747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1594747c8ce4SGilad Ben-Yossef
1595a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64
1596a7ee22eeSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1597a7ee22eeSTianjia Zhang	depends on X86 && 64BIT
1598a7ee22eeSTianjia Zhang	select CRYPTO_SKCIPHER
1599a7ee22eeSTianjia Zhang	select CRYPTO_SIMD
1600a7ee22eeSTianjia Zhang	select CRYPTO_ALGAPI
1601a7ee22eeSTianjia Zhang	select CRYPTO_LIB_SM4
1602a7ee22eeSTianjia Zhang	help
1603a7ee22eeSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1604a7ee22eeSTianjia Zhang
1605a7ee22eeSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1606a7ee22eeSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
1607a7ee22eeSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
1608a7ee22eeSTianjia Zhang
1609a7ee22eeSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1610a7ee22eeSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
1611a7ee22eeSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1612a7ee22eeSTianjia Zhang	  effect of instruction acceleration.
1613a7ee22eeSTianjia Zhang
1614a7ee22eeSTianjia Zhang	  If unsure, say N.
1615a7ee22eeSTianjia Zhang
16165b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64
16175b2efa2bSTianjia Zhang	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
16185b2efa2bSTianjia Zhang	depends on X86 && 64BIT
16195b2efa2bSTianjia Zhang	select CRYPTO_SKCIPHER
16205b2efa2bSTianjia Zhang	select CRYPTO_SIMD
16215b2efa2bSTianjia Zhang	select CRYPTO_ALGAPI
16225b2efa2bSTianjia Zhang	select CRYPTO_LIB_SM4
16235b2efa2bSTianjia Zhang	select CRYPTO_SM4_AESNI_AVX_X86_64
16245b2efa2bSTianjia Zhang	help
16255b2efa2bSTianjia Zhang	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
16265b2efa2bSTianjia Zhang
16275b2efa2bSTianjia Zhang	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
16285b2efa2bSTianjia Zhang	  Organization of State Commercial Administration of China (OSCCA)
16295b2efa2bSTianjia Zhang	  as an authorized cryptographic algorithms for the use within China.
16305b2efa2bSTianjia Zhang
16315b2efa2bSTianjia Zhang	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
16325b2efa2bSTianjia Zhang	  instruction set for block cipher. Through two affine transforms,
16335b2efa2bSTianjia Zhang	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
16345b2efa2bSTianjia Zhang	  effect of instruction acceleration.
16355b2efa2bSTianjia Zhang
16365b2efa2bSTianjia Zhang	  If unsure, say N.
16375b2efa2bSTianjia Zhang
1638584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1639584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
16401674aea5SArd Biesheuvel	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1641584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1642584fffc8SSebastian Siewior	help
1643584fffc8SSebastian Siewior	  TEA cipher algorithm.
1644584fffc8SSebastian Siewior
1645584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1646584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1647584fffc8SSebastian Siewior	  little memory.
1648584fffc8SSebastian Siewior
1649584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1650584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1651584fffc8SSebastian Siewior	  in the TEA algorithm.
1652584fffc8SSebastian Siewior
1653584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1654584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1655584fffc8SSebastian Siewior
1656584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1657584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1658584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1659584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1660584fffc8SSebastian Siewior	help
1661584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1662584fffc8SSebastian Siewior
1663584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1664584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1665584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1666584fffc8SSebastian Siewior	  bits.
1667584fffc8SSebastian Siewior
1668584fffc8SSebastian Siewior	  See also:
16699332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1670584fffc8SSebastian Siewior
1671584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1672584fffc8SSebastian Siewior	tristate
1673584fffc8SSebastian Siewior	help
1674584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1675584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1676584fffc8SSebastian Siewior
1677584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1678584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1679584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1680584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1681584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1682f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1683584fffc8SSebastian Siewior	help
1684584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1685584fffc8SSebastian Siewior
1686584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1687584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1688584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1689584fffc8SSebastian Siewior	  bits.
1690584fffc8SSebastian Siewior
1691584fffc8SSebastian Siewior	  See also:
16929332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1693584fffc8SSebastian Siewior
1694584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1695584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1696584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1697584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1698584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1699f43dcaf2SArd Biesheuvel	imply CRYPTO_CTR
1700584fffc8SSebastian Siewior	help
1701584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1702584fffc8SSebastian Siewior
1703584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1704584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1705584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1706584fffc8SSebastian Siewior	  bits.
1707584fffc8SSebastian Siewior
1708584fffc8SSebastian Siewior	  See also:
17099332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1710584fffc8SSebastian Siewior
17118280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
17128280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1713f21a7c19SAl Viro	depends on X86 && 64BIT
1714b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17158280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
17168280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
17178280daadSJussi Kivilinna	help
17188280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
17198280daadSJussi Kivilinna
17208280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
17218280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
17228280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
17238280daadSJussi Kivilinna	  bits.
17248280daadSJussi Kivilinna
17258280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
17268280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
17278280daadSJussi Kivilinna
17288280daadSJussi Kivilinna	  See also:
17299332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
17308280daadSJussi Kivilinna
1731107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1732107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1733107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1734b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
17350e6ab46dSEric Biggers	select CRYPTO_SIMD
1736107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1737107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1738107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1739da4df93aSArd Biesheuvel	imply CRYPTO_XTS
1740107778b5SJohannes Goetzfried	help
1741107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1742107778b5SJohannes Goetzfried
1743107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1744107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1745107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1746107778b5SJohannes Goetzfried	  bits.
1747107778b5SJohannes Goetzfried
1748107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1749107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1750107778b5SJohannes Goetzfried
1751107778b5SJohannes Goetzfried	  See also:
17529332a9e7SAlexander A. Klimov	  <https://www.schneier.com/twofish.html>
1753107778b5SJohannes Goetzfried
1754584fffc8SSebastian Siewiorcomment "Compression"
1755584fffc8SSebastian Siewior
17561da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
17571da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1758cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1759f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
17601da177e4SLinus Torvalds	select ZLIB_INFLATE
17611da177e4SLinus Torvalds	select ZLIB_DEFLATE
17621da177e4SLinus Torvalds	help
17631da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17641da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17651da177e4SLinus Torvalds
17661da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17671da177e4SLinus Torvalds
17680b77abb3SZoltan Sogorconfig CRYPTO_LZO
17690b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17700b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1771ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17720b77abb3SZoltan Sogor	select LZO_COMPRESS
17730b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17740b77abb3SZoltan Sogor	help
17750b77abb3SZoltan Sogor	  This is the LZO algorithm.
17760b77abb3SZoltan Sogor
177735a1fc18SSeth Jenningsconfig CRYPTO_842
177835a1fc18SSeth Jennings	tristate "842 compression algorithm"
17792062c5b6SDan Streetman	select CRYPTO_ALGAPI
17806a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17812062c5b6SDan Streetman	select 842_COMPRESS
17822062c5b6SDan Streetman	select 842_DECOMPRESS
178335a1fc18SSeth Jennings	help
178435a1fc18SSeth Jennings	  This is the 842 algorithm.
178535a1fc18SSeth Jennings
17860ea8530dSChanho Minconfig CRYPTO_LZ4
17870ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17880ea8530dSChanho Min	select CRYPTO_ALGAPI
17898cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17900ea8530dSChanho Min	select LZ4_COMPRESS
17910ea8530dSChanho Min	select LZ4_DECOMPRESS
17920ea8530dSChanho Min	help
17930ea8530dSChanho Min	  This is the LZ4 algorithm.
17940ea8530dSChanho Min
17950ea8530dSChanho Minconfig CRYPTO_LZ4HC
17960ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17970ea8530dSChanho Min	select CRYPTO_ALGAPI
179891d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17990ea8530dSChanho Min	select LZ4HC_COMPRESS
18000ea8530dSChanho Min	select LZ4_DECOMPRESS
18010ea8530dSChanho Min	help
18020ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
18030ea8530dSChanho Min
1804d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1805d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1806d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1807d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1808d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1809d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1810d28fc3dbSNick Terrell	help
1811d28fc3dbSNick Terrell	  This is the zstd algorithm.
1812d28fc3dbSNick Terrell
181317f0f4a4SNeil Hormancomment "Random Number Generation"
181417f0f4a4SNeil Horman
181517f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
181617f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
181717f0f4a4SNeil Horman	select CRYPTO_AES
181817f0f4a4SNeil Horman	select CRYPTO_RNG
181917f0f4a4SNeil Horman	help
182017f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
182117f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
18227dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
18237dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
182417f0f4a4SNeil Horman
1825f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1826419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1827419090c6SStephan Mueller	help
1828419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1829419090c6SStephan Mueller	  more of the DRBG types must be selected.
1830419090c6SStephan Mueller
1831f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1832419090c6SStephan Mueller
1833419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1834401e4238SHerbert Xu	bool
1835419090c6SStephan Mueller	default y
1836419090c6SStephan Mueller	select CRYPTO_HMAC
18375261cdf4SStephan Mueller	select CRYPTO_SHA512
1838419090c6SStephan Mueller
1839419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1840419090c6SStephan Mueller	bool "Enable Hash DRBG"
1841826775bbSHerbert Xu	select CRYPTO_SHA256
1842419090c6SStephan Mueller	help
1843419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1844419090c6SStephan Mueller
1845419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1846419090c6SStephan Mueller	bool "Enable CTR DRBG"
1847419090c6SStephan Mueller	select CRYPTO_AES
1848d6fc1a45SCorentin Labbe	select CRYPTO_CTR
1849419090c6SStephan Mueller	help
1850419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1851419090c6SStephan Mueller
1852f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1853f2c89a10SHerbert Xu	tristate
1854401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1855f2c89a10SHerbert Xu	select CRYPTO_RNG
1856bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1857f2c89a10SHerbert Xu
1858f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1859419090c6SStephan Mueller
1860bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1861bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18622f313e02SArnd Bergmann	select CRYPTO_RNG
1863bb5530e4SStephan Mueller	help
1864bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1865bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1866bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1867bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1868bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1869bb5530e4SStephan Mueller
1870026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR
1871026a733eSStephan Müller	tristate
1872a88592ccSHerbert Xu	select CRYPTO_HMAC
1873304b4aceSStephan Müller	select CRYPTO_SHA256
1874026a733eSStephan Müller
187503c8efc1SHerbert Xuconfig CRYPTO_USER_API
187603c8efc1SHerbert Xu	tristate
187703c8efc1SHerbert Xu
1878fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1879fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18807451708fSHerbert Xu	depends on NET
1881fe869cdbSHerbert Xu	select CRYPTO_HASH
1882fe869cdbSHerbert Xu	select CRYPTO_USER_API
1883fe869cdbSHerbert Xu	help
1884fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1885fe869cdbSHerbert Xu	  algorithms.
1886fe869cdbSHerbert Xu
18878ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18888ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18897451708fSHerbert Xu	depends on NET
1890b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
18918ff59090SHerbert Xu	select CRYPTO_USER_API
18928ff59090SHerbert Xu	help
18938ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18948ff59090SHerbert Xu	  key cipher algorithms.
18958ff59090SHerbert Xu
18962f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18972f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18982f375538SStephan Mueller	depends on NET
18992f375538SStephan Mueller	select CRYPTO_RNG
19002f375538SStephan Mueller	select CRYPTO_USER_API
19012f375538SStephan Mueller	help
19022f375538SStephan Mueller	  This option enables the user-spaces interface for random
19032f375538SStephan Mueller	  number generator algorithms.
19042f375538SStephan Mueller
190577ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP
190677ebdabeSElena Petrova	bool "Enable CAVP testing of DRBG"
190777ebdabeSElena Petrova	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
190877ebdabeSElena Petrova	help
190977ebdabeSElena Petrova	  This option enables extra API for CAVP testing via the user-space
191077ebdabeSElena Petrova	  interface: resetting of DRBG entropy, and providing Additional Data.
191177ebdabeSElena Petrova	  This should only be enabled for CAVP testing. You should say
191277ebdabeSElena Petrova	  no unless you know what this is.
191377ebdabeSElena Petrova
1914b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1915b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1916b64a2d95SHerbert Xu	depends on NET
1917b64a2d95SHerbert Xu	select CRYPTO_AEAD
1918b95bba5dSEric Biggers	select CRYPTO_SKCIPHER
191972548b09SStephan Mueller	select CRYPTO_NULL
1920b64a2d95SHerbert Xu	select CRYPTO_USER_API
1921b64a2d95SHerbert Xu	help
1922b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1923b64a2d95SHerbert Xu	  cipher algorithms.
1924b64a2d95SHerbert Xu
19259ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE
19269ace6771SArd Biesheuvel	bool "Enable obsolete cryptographic algorithms for userspace"
19279ace6771SArd Biesheuvel	depends on CRYPTO_USER_API
19289ace6771SArd Biesheuvel	default y
19299ace6771SArd Biesheuvel	help
19309ace6771SArd Biesheuvel	  Allow obsolete cryptographic algorithms to be selected that have
19319ace6771SArd Biesheuvel	  already been phased out from internal use by the kernel, and are
19329ace6771SArd Biesheuvel	  only useful for userspace clients that still rely on them.
19339ace6771SArd Biesheuvel
1934cac5818cSCorentin Labbeconfig CRYPTO_STATS
1935cac5818cSCorentin Labbe	bool "Crypto usage statistics for User-space"
1936a6a31385SCorentin Labbe	depends on CRYPTO_USER
1937cac5818cSCorentin Labbe	help
1938cac5818cSCorentin Labbe	  This option enables the gathering of crypto stats.
1939cac5818cSCorentin Labbe	  This will collect:
1940cac5818cSCorentin Labbe	  - encrypt/decrypt size and numbers of symmeric operations
1941cac5818cSCorentin Labbe	  - compress/decompress size and numbers of compress operations
1942cac5818cSCorentin Labbe	  - size and numbers of hash operations
1943cac5818cSCorentin Labbe	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1944cac5818cSCorentin Labbe	  - generate/seed numbers for rng operations
1945cac5818cSCorentin Labbe
1946ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1947ee08997fSDmitry Kasatkin	bool
1948ee08997fSDmitry Kasatkin
19491da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
19508636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig"
19518636a1f9SMasahiro Yamadasource "certs/Kconfig"
19521da177e4SLinus Torvalds
1953cce9e06dSHerbert Xuendif	# if CRYPTO
1954