1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 140326a6346SHerbert Xu bool "Disable run-time self tests" 14100ca28a5SHerbert Xu default y 1420b767f96SAlexander Shishkin help 143326a6346SHerbert Xu Disable run-time self tests that normally take place at 144326a6346SHerbert Xu algorithm registration. 1450b767f96SAlexander Shishkin 1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1475b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1486569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1495b2706a4SEric Biggers help 1505b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1515b2706a4SEric Biggers including randomized fuzz tests. 1525b2706a4SEric Biggers 1535b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1545b2706a4SEric Biggers longer to run than the normal self tests. 1555b2706a4SEric Biggers 156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 157e590e132SEric Biggers tristate 158584fffc8SSebastian Siewior 159584fffc8SSebastian Siewiorconfig CRYPTO_NULL 160584fffc8SSebastian Siewior tristate "Null algorithms" 161149a3971SHerbert Xu select CRYPTO_NULL2 162584fffc8SSebastian Siewior help 163584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 164584fffc8SSebastian Siewior 165149a3971SHerbert Xuconfig CRYPTO_NULL2 166dd43c4e9SHerbert Xu tristate 167149a3971SHerbert Xu select CRYPTO_ALGAPI2 168b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 169149a3971SHerbert Xu select CRYPTO_HASH2 170149a3971SHerbert Xu 1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1723b4afaf2SKees Cook tristate "Parallel crypto engine" 1733b4afaf2SKees Cook depends on SMP 1745068c7a8SSteffen Klassert select PADATA 1755068c7a8SSteffen Klassert select CRYPTO_MANAGER 1765068c7a8SSteffen Klassert select CRYPTO_AEAD 1775068c7a8SSteffen Klassert help 1785068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1795068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1805068c7a8SSteffen Klassert 181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 182584fffc8SSebastian Siewior tristate "Software async crypto daemon" 183b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184b8a28251SLoc Ho select CRYPTO_HASH 185584fffc8SSebastian Siewior select CRYPTO_MANAGER 186584fffc8SSebastian Siewior help 187584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 188584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 189584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 190584fffc8SSebastian Siewior 191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 192584fffc8SSebastian Siewior tristate "Authenc support" 193584fffc8SSebastian Siewior select CRYPTO_AEAD 194b95bba5dSEric Biggers select CRYPTO_SKCIPHER 195584fffc8SSebastian Siewior select CRYPTO_MANAGER 196584fffc8SSebastian Siewior select CRYPTO_HASH 197e94c6a7aSHerbert Xu select CRYPTO_NULL 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 200584fffc8SSebastian Siewior This is required for IPSec. 201584fffc8SSebastian Siewior 202584fffc8SSebastian Siewiorconfig CRYPTO_TEST 203584fffc8SSebastian Siewior tristate "Testing module" 20400ea27f1SArd Biesheuvel depends on m || EXPERT 205da7f033dSHerbert Xu select CRYPTO_MANAGER 206584fffc8SSebastian Siewior help 207584fffc8SSebastian Siewior Quick & dirty crypto test module. 208584fffc8SSebastian Siewior 209266d0516SHerbert Xuconfig CRYPTO_SIMD 210266d0516SHerbert Xu tristate 211266d0516SHerbert Xu select CRYPTO_CRYPTD 212266d0516SHerbert Xu 213735d37b5SBaolin Wangconfig CRYPTO_ENGINE 214735d37b5SBaolin Wang tristate 215735d37b5SBaolin Wang 2163d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2173d6228a5SVitaly Chikunov 2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2193d6228a5SVitaly Chikunov tristate "RSA algorithm" 2203d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2213d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2223d6228a5SVitaly Chikunov select MPILIB 2233d6228a5SVitaly Chikunov select ASN1 2243d6228a5SVitaly Chikunov help 2253d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_DH 2283d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_KPP 2303d6228a5SVitaly Chikunov select MPILIB 2313d6228a5SVitaly Chikunov help 2323d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2333d6228a5SVitaly Chikunov 2347dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS 2357dce5981SNicolai Stange bool "Support for RFC 7919 FFDHE group parameters" 2367dce5981SNicolai Stange depends on CRYPTO_DH 237*1e207964SNicolai Stange select CRYPTO_RNG_DEFAULT 2387dce5981SNicolai Stange help 2397dce5981SNicolai Stange Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 2407dce5981SNicolai Stange 2414a2289daSVitaly Chikunovconfig CRYPTO_ECC 2424a2289daSVitaly Chikunov tristate 24338aa192aSArnd Bergmann select CRYPTO_RNG_DEFAULT 2444a2289daSVitaly Chikunov 2453d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2463d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2474a2289daSVitaly Chikunov select CRYPTO_ECC 2483d6228a5SVitaly Chikunov select CRYPTO_KPP 2493d6228a5SVitaly Chikunov help 2503d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2513d6228a5SVitaly Chikunov 2524e660291SStefan Bergerconfig CRYPTO_ECDSA 2534e660291SStefan Berger tristate "ECDSA (NIST P192, P256 etc.) algorithm" 2544e660291SStefan Berger select CRYPTO_ECC 2554e660291SStefan Berger select CRYPTO_AKCIPHER 2564e660291SStefan Berger select ASN1 2574e660291SStefan Berger help 2584e660291SStefan Berger Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 2594e660291SStefan Berger is A NIST cryptographic standard algorithm. Only signature verification 2604e660291SStefan Berger is implemented. 2614e660291SStefan Berger 2620d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2630d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2640d7a7864SVitaly Chikunov select CRYPTO_ECC 2650d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2660d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2671036633eSVitaly Chikunov select OID_REGISTRY 2681036633eSVitaly Chikunov select ASN1 2690d7a7864SVitaly Chikunov help 2700d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2710d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2720d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2730d7a7864SVitaly Chikunov is implemented. 2740d7a7864SVitaly Chikunov 275ea7ecb66STianjia Zhangconfig CRYPTO_SM2 276ea7ecb66STianjia Zhang tristate "SM2 algorithm" 27711400469STianjia Zhang select CRYPTO_LIB_SM3 278ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 279ea7ecb66STianjia Zhang select CRYPTO_MANAGER 280ea7ecb66STianjia Zhang select MPILIB 281ea7ecb66STianjia Zhang select ASN1 282ea7ecb66STianjia Zhang help 283ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 284ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 285ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 286ea7ecb66STianjia Zhang 287ea7ecb66STianjia Zhang References: 288ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 289ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 290ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 291ea7ecb66STianjia Zhang 292ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 293ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 294ee772cb6SArd Biesheuvel select CRYPTO_KPP 295ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 296ee772cb6SArd Biesheuvel 297bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 298bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 299bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 300bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 301bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 302bb611bdfSJason A. Donenfeld 303584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 304584fffc8SSebastian Siewior 305584fffc8SSebastian Siewiorconfig CRYPTO_CCM 306584fffc8SSebastian Siewior tristate "CCM support" 307584fffc8SSebastian Siewior select CRYPTO_CTR 308f15f05b0SArd Biesheuvel select CRYPTO_HASH 309584fffc8SSebastian Siewior select CRYPTO_AEAD 310c8a3315aSEric Biggers select CRYPTO_MANAGER 311584fffc8SSebastian Siewior help 312584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 313584fffc8SSebastian Siewior 314584fffc8SSebastian Siewiorconfig CRYPTO_GCM 315584fffc8SSebastian Siewior tristate "GCM/GMAC support" 316584fffc8SSebastian Siewior select CRYPTO_CTR 317584fffc8SSebastian Siewior select CRYPTO_AEAD 3189382d97aSHuang Ying select CRYPTO_GHASH 3199489667dSJussi Kivilinna select CRYPTO_NULL 320c8a3315aSEric Biggers select CRYPTO_MANAGER 321584fffc8SSebastian Siewior help 322584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 323584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 324584fffc8SSebastian Siewior 32571ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 32671ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 32771ebc4d1SMartin Willi select CRYPTO_CHACHA20 32871ebc4d1SMartin Willi select CRYPTO_POLY1305 32971ebc4d1SMartin Willi select CRYPTO_AEAD 330c8a3315aSEric Biggers select CRYPTO_MANAGER 33171ebc4d1SMartin Willi help 33271ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 33371ebc4d1SMartin Willi 33471ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 33571ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 33671ebc4d1SMartin Willi IETF protocols. 33771ebc4d1SMartin Willi 338f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 339f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 340f606a88eSOndrej Mosnacek select CRYPTO_AEAD 341f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 342f606a88eSOndrej Mosnacek help 343f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 344f606a88eSOndrej Mosnacek 345a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 346a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 347a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 348a4397635SArd Biesheuvel default y 349a4397635SArd Biesheuvel 3501d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3511d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3521d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3531d373d4eSOndrej Mosnacek select CRYPTO_AEAD 354de272ca7SEric Biggers select CRYPTO_SIMD 3551d373d4eSOndrej Mosnacek help 3564e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3571d373d4eSOndrej Mosnacek 358584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 359584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 360584fffc8SSebastian Siewior select CRYPTO_AEAD 361b95bba5dSEric Biggers select CRYPTO_SKCIPHER 362856e3f40SHerbert Xu select CRYPTO_NULL 363401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 364c8a3315aSEric Biggers select CRYPTO_MANAGER 365584fffc8SSebastian Siewior help 366584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 367584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 368584fffc8SSebastian Siewior 369a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 370a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 371a10f554fSHerbert Xu select CRYPTO_AEAD 372a10f554fSHerbert Xu select CRYPTO_NULL 373401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 374c8a3315aSEric Biggers select CRYPTO_MANAGER 375a10f554fSHerbert Xu help 376a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 377a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 378a10f554fSHerbert Xu algorithm for CBC. 379a10f554fSHerbert Xu 380584fffc8SSebastian Siewiorcomment "Block modes" 381584fffc8SSebastian Siewior 382584fffc8SSebastian Siewiorconfig CRYPTO_CBC 383584fffc8SSebastian Siewior tristate "CBC support" 384b95bba5dSEric Biggers select CRYPTO_SKCIPHER 385584fffc8SSebastian Siewior select CRYPTO_MANAGER 386584fffc8SSebastian Siewior help 387584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 388584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 389584fffc8SSebastian Siewior 390a7d85e06SJames Bottomleyconfig CRYPTO_CFB 391a7d85e06SJames Bottomley tristate "CFB support" 392b95bba5dSEric Biggers select CRYPTO_SKCIPHER 393a7d85e06SJames Bottomley select CRYPTO_MANAGER 394a7d85e06SJames Bottomley help 395a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 396a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 397a7d85e06SJames Bottomley 398584fffc8SSebastian Siewiorconfig CRYPTO_CTR 399584fffc8SSebastian Siewior tristate "CTR support" 400b95bba5dSEric Biggers select CRYPTO_SKCIPHER 401584fffc8SSebastian Siewior select CRYPTO_MANAGER 402584fffc8SSebastian Siewior help 403584fffc8SSebastian Siewior CTR: Counter mode 404584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 405584fffc8SSebastian Siewior 406584fffc8SSebastian Siewiorconfig CRYPTO_CTS 407584fffc8SSebastian Siewior tristate "CTS support" 408b95bba5dSEric Biggers select CRYPTO_SKCIPHER 409c8a3315aSEric Biggers select CRYPTO_MANAGER 410584fffc8SSebastian Siewior help 411584fffc8SSebastian Siewior CTS: Cipher Text Stealing 412584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 413ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 414ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 415ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 416584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 417584fffc8SSebastian Siewior for AES encryption. 418584fffc8SSebastian Siewior 419ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 420ecd6d5c9SGilad Ben-Yossef 421584fffc8SSebastian Siewiorconfig CRYPTO_ECB 422584fffc8SSebastian Siewior tristate "ECB support" 423b95bba5dSEric Biggers select CRYPTO_SKCIPHER 424584fffc8SSebastian Siewior select CRYPTO_MANAGER 425584fffc8SSebastian Siewior help 426584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 427584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 428584fffc8SSebastian Siewior the input block by block. 429584fffc8SSebastian Siewior 430584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4312470a2b2SJussi Kivilinna tristate "LRW support" 432b95bba5dSEric Biggers select CRYPTO_SKCIPHER 433584fffc8SSebastian Siewior select CRYPTO_MANAGER 434584fffc8SSebastian Siewior select CRYPTO_GF128MUL 435f60bbbbeSHerbert Xu select CRYPTO_ECB 436584fffc8SSebastian Siewior help 437584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 438584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 439584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 440584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 441584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 442584fffc8SSebastian Siewior 443e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 444e497c518SGilad Ben-Yossef tristate "OFB support" 445b95bba5dSEric Biggers select CRYPTO_SKCIPHER 446e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 447e497c518SGilad Ben-Yossef help 448e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 449e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 450e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 451e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 452e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 453e497c518SGilad Ben-Yossef normally even when applied before encryption. 454e497c518SGilad Ben-Yossef 455584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 456584fffc8SSebastian Siewior tristate "PCBC support" 457b95bba5dSEric Biggers select CRYPTO_SKCIPHER 458584fffc8SSebastian Siewior select CRYPTO_MANAGER 459584fffc8SSebastian Siewior help 460584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 461584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 462584fffc8SSebastian Siewior 463584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4645bcf8e6dSJussi Kivilinna tristate "XTS support" 465b95bba5dSEric Biggers select CRYPTO_SKCIPHER 466584fffc8SSebastian Siewior select CRYPTO_MANAGER 46712cb3a1cSMilan Broz select CRYPTO_ECB 468584fffc8SSebastian Siewior help 469584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 470584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 471584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 472584fffc8SSebastian Siewior 4731c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4741c49678eSStephan Mueller tristate "Key wrapping support" 475b95bba5dSEric Biggers select CRYPTO_SKCIPHER 476c8a3315aSEric Biggers select CRYPTO_MANAGER 4771c49678eSStephan Mueller help 4781c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4791c49678eSStephan Mueller padding. 4801c49678eSStephan Mueller 48126609a21SEric Biggersconfig CRYPTO_NHPOLY1305 48226609a21SEric Biggers tristate 48326609a21SEric Biggers select CRYPTO_HASH 48448ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 48526609a21SEric Biggers 486012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 487012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 488012c8238SEric Biggers depends on X86 && 64BIT 489012c8238SEric Biggers select CRYPTO_NHPOLY1305 490012c8238SEric Biggers help 491012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 492012c8238SEric Biggers Adiantum encryption mode. 493012c8238SEric Biggers 4940f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 4950f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 4960f961f9fSEric Biggers depends on X86 && 64BIT 4970f961f9fSEric Biggers select CRYPTO_NHPOLY1305 4980f961f9fSEric Biggers help 4990f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5000f961f9fSEric Biggers Adiantum encryption mode. 5010f961f9fSEric Biggers 502059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 503059c2a4dSEric Biggers tristate "Adiantum support" 504059c2a4dSEric Biggers select CRYPTO_CHACHA20 50548ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 506059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 507c8a3315aSEric Biggers select CRYPTO_MANAGER 508059c2a4dSEric Biggers help 509059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 510059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 511059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 512059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 513059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 514059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 515059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 516059c2a4dSEric Biggers AES-XTS. 517059c2a4dSEric Biggers 518059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 519059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 520059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 521059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 522059c2a4dSEric Biggers security than XTS, subject to the security bound. 523059c2a4dSEric Biggers 524059c2a4dSEric Biggers If unsure, say N. 525059c2a4dSEric Biggers 526be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 527be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 528be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 529be1eb7f7SArd Biesheuvel help 530be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 531be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 532be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 533be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 534be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 535be1eb7f7SArd Biesheuvel encryption. 536be1eb7f7SArd Biesheuvel 537be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 538ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 539be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 540be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 541ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 542be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 543be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 544be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 545be1eb7f7SArd Biesheuvel 546be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 547be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 548be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 549be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 550be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 551be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 552be1eb7f7SArd Biesheuvel block encryption) 553be1eb7f7SArd Biesheuvel 554584fffc8SSebastian Siewiorcomment "Hash modes" 555584fffc8SSebastian Siewior 55693b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 55793b5e86aSJussi Kivilinna tristate "CMAC support" 55893b5e86aSJussi Kivilinna select CRYPTO_HASH 55993b5e86aSJussi Kivilinna select CRYPTO_MANAGER 56093b5e86aSJussi Kivilinna help 56193b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 56293b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 56393b5e86aSJussi Kivilinna 56493b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 56593b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 56693b5e86aSJussi Kivilinna 5671da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5688425165dSHerbert Xu tristate "HMAC support" 5690796ae06SHerbert Xu select CRYPTO_HASH 57043518407SHerbert Xu select CRYPTO_MANAGER 5711da177e4SLinus Torvalds help 5721da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5731da177e4SLinus Torvalds This is required for IPSec. 5741da177e4SLinus Torvalds 575333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 576333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 577333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 578333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 579333b0d7eSKazunori MIYAZAWA help 580333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 5819332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 582333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 583333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 584333b0d7eSKazunori MIYAZAWA 585f1939f7cSShane Wangconfig CRYPTO_VMAC 586f1939f7cSShane Wang tristate "VMAC support" 587f1939f7cSShane Wang select CRYPTO_HASH 588f1939f7cSShane Wang select CRYPTO_MANAGER 589f1939f7cSShane Wang help 590f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 591f1939f7cSShane Wang very high speed on 64-bit architectures. 592f1939f7cSShane Wang 593f1939f7cSShane Wang See also: 5949332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 595f1939f7cSShane Wang 596584fffc8SSebastian Siewiorcomment "Digest" 597584fffc8SSebastian Siewior 598584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 599584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6005773a3e6SHerbert Xu select CRYPTO_HASH 6016a0962b2SDarrick J. Wong select CRC32 6021da177e4SLinus Torvalds help 603584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 604584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 60569c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6061da177e4SLinus Torvalds 6078cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6088cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6098cb51ba8SAustin Zhang depends on X86 6108cb51ba8SAustin Zhang select CRYPTO_HASH 6118cb51ba8SAustin Zhang help 6128cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6138cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6148cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6158cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6168cb51ba8SAustin Zhang gain performance compared with software implementation. 6178cb51ba8SAustin Zhang Module will be crc32c-intel. 6188cb51ba8SAustin Zhang 6197cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6206dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 621c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6226dd7a82cSAnton Blanchard select CRYPTO_HASH 6236dd7a82cSAnton Blanchard select CRC32 6246dd7a82cSAnton Blanchard help 6256dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6266dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6276dd7a82cSAnton Blanchard and newer processors for improved performance. 6286dd7a82cSAnton Blanchard 6296dd7a82cSAnton Blanchard 630442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 631442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 632442a7c40SDavid S. Miller depends on SPARC64 633442a7c40SDavid S. Miller select CRYPTO_HASH 634442a7c40SDavid S. Miller select CRC32 635442a7c40SDavid S. Miller help 636442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 637442a7c40SDavid S. Miller when available. 638442a7c40SDavid S. Miller 63978c37d19SAlexander Boykoconfig CRYPTO_CRC32 64078c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 64178c37d19SAlexander Boyko select CRYPTO_HASH 64278c37d19SAlexander Boyko select CRC32 64378c37d19SAlexander Boyko help 64478c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 64578c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 64678c37d19SAlexander Boyko 64778c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 64878c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 64978c37d19SAlexander Boyko depends on X86 65078c37d19SAlexander Boyko select CRYPTO_HASH 65178c37d19SAlexander Boyko select CRC32 65278c37d19SAlexander Boyko help 65378c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 65478c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 65578c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 656af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 65778c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 65878c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 65978c37d19SAlexander Boyko 6604a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6614a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6624a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6634a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6644a5dc51eSMarcin Nowakowski help 6654a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6664a5dc51eSMarcin Nowakowski instructions, when available. 6674a5dc51eSMarcin Nowakowski 6684a5dc51eSMarcin Nowakowski 66967882e76SNikolay Borisovconfig CRYPTO_XXHASH 67067882e76SNikolay Borisov tristate "xxHash hash algorithm" 67167882e76SNikolay Borisov select CRYPTO_HASH 67267882e76SNikolay Borisov select XXHASH 67367882e76SNikolay Borisov help 67467882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 67567882e76SNikolay Borisov speeds close to RAM limits. 67667882e76SNikolay Borisov 67791d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 67891d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 67991d68933SDavid Sterba select CRYPTO_HASH 68091d68933SDavid Sterba help 68191d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 68291d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 68391d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 68491d68933SDavid Sterba 68591d68933SDavid Sterba This module provides the following algorithms: 68691d68933SDavid Sterba 68791d68933SDavid Sterba - blake2b-160 68891d68933SDavid Sterba - blake2b-256 68991d68933SDavid Sterba - blake2b-384 69091d68933SDavid Sterba - blake2b-512 69191d68933SDavid Sterba 69291d68933SDavid Sterba See https://blake2.net for further information. 69391d68933SDavid Sterba 6947f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 6957f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 6967f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 6977f9b0880SArd Biesheuvel select CRYPTO_HASH 6987f9b0880SArd Biesheuvel help 6997f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 7007f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 7017f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 7027f9b0880SArd Biesheuvel 7037f9b0880SArd Biesheuvel This module provides the following algorithms: 7047f9b0880SArd Biesheuvel 7057f9b0880SArd Biesheuvel - blake2s-128 7067f9b0880SArd Biesheuvel - blake2s-160 7077f9b0880SArd Biesheuvel - blake2s-224 7087f9b0880SArd Biesheuvel - blake2s-256 7097f9b0880SArd Biesheuvel 7107f9b0880SArd Biesheuvel See https://blake2.net for further information. 7117f9b0880SArd Biesheuvel 712ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 713ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 714ed0356edSJason A. Donenfeld depends on X86 && 64BIT 715ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 716ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 717ed0356edSJason A. Donenfeld 71868411521SHerbert Xuconfig CRYPTO_CRCT10DIF 71968411521SHerbert Xu tristate "CRCT10DIF algorithm" 72068411521SHerbert Xu select CRYPTO_HASH 72168411521SHerbert Xu help 72268411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 72368411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 72468411521SHerbert Xu transforms to be used if they are available. 72568411521SHerbert Xu 72668411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 72768411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 72868411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 72968411521SHerbert Xu select CRYPTO_HASH 73068411521SHerbert Xu help 73168411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 73268411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 73368411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 734af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 73568411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 73668411521SHerbert Xu 737b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 738b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 739b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 740b01df1c1SDaniel Axtens select CRYPTO_HASH 741b01df1c1SDaniel Axtens help 742b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 743b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 744b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 745b01df1c1SDaniel Axtens 746146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 747146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 748146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 749146c8688SDaniel Axtens help 750146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 751146c8688SDaniel Axtens POWER8 vpmsum instructions. 752146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 753146c8688SDaniel Axtens 7542cdc6899SHuang Yingconfig CRYPTO_GHASH 7558dfa20fcSEric Biggers tristate "GHASH hash function" 7562cdc6899SHuang Ying select CRYPTO_GF128MUL 757578c60fbSArnd Bergmann select CRYPTO_HASH 7582cdc6899SHuang Ying help 7598dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7608dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7612cdc6899SHuang Ying 762f979e014SMartin Williconfig CRYPTO_POLY1305 763f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 764578c60fbSArnd Bergmann select CRYPTO_HASH 76548ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 766f979e014SMartin Willi help 767f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 768f979e014SMartin Willi 769f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 770f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 771f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 772f979e014SMartin Willi 773c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 774b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 775c70f4abeSMartin Willi depends on X86 && 64BIT 7761b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 777f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 778c70f4abeSMartin Willi help 779c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 780c70f4abeSMartin Willi 781c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 782c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 783c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 784c70f4abeSMartin Willi instructions. 785c70f4abeSMartin Willi 786a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 787a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 7886c810cf2SMaciej W. Rozycki depends on MIPS 789a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 790a11d055eSArd Biesheuvel 7911da177e4SLinus Torvaldsconfig CRYPTO_MD4 7921da177e4SLinus Torvalds tristate "MD4 digest algorithm" 793808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 7941da177e4SLinus Torvalds help 7951da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 7961da177e4SLinus Torvalds 7971da177e4SLinus Torvaldsconfig CRYPTO_MD5 7981da177e4SLinus Torvalds tristate "MD5 digest algorithm" 79914b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 8001da177e4SLinus Torvalds help 8011da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 8021da177e4SLinus Torvalds 803d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 804d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 805d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 806d69e75deSAaro Koskinen select CRYPTO_MD5 807d69e75deSAaro Koskinen select CRYPTO_HASH 808d69e75deSAaro Koskinen help 809d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 810d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 811d69e75deSAaro Koskinen 812e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 813e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 814e8e59953SMarkus Stockhausen depends on PPC 815e8e59953SMarkus Stockhausen select CRYPTO_HASH 816e8e59953SMarkus Stockhausen help 817e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 818e8e59953SMarkus Stockhausen in PPC assembler. 819e8e59953SMarkus Stockhausen 820fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 821fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 822fa4dfedcSDavid S. Miller depends on SPARC64 823fa4dfedcSDavid S. Miller select CRYPTO_MD5 824fa4dfedcSDavid S. Miller select CRYPTO_HASH 825fa4dfedcSDavid S. Miller help 826fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 827fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 828fa4dfedcSDavid S. Miller 829584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 830584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 83119e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 832584fffc8SSebastian Siewior help 833584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 834584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 835584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 836584fffc8SSebastian Siewior of the algorithm. 837584fffc8SSebastian Siewior 83882798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 83982798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 840e5835fbaSHerbert Xu select CRYPTO_HASH 84182798f90SAdrian-Ken Rueegsegger help 84282798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 84382798f90SAdrian-Ken Rueegsegger 84482798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 84582798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 846b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 847b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 84882798f90SAdrian-Ken Rueegsegger 849b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 850b6d44341SAdrian Bunk against RIPEMD-160. 851534fe2c1SAdrian-Ken Rueegsegger 852534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8539332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 854534fe2c1SAdrian-Ken Rueegsegger 8551da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8561da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 85754ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8581da177e4SLinus Torvalds help 8591da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8601da177e4SLinus Torvalds 86166be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 862e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 86366be8951SMathias Krause depends on X86 && 64BIT 86466be8951SMathias Krause select CRYPTO_SHA1 86566be8951SMathias Krause select CRYPTO_HASH 86666be8951SMathias Krause help 86766be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 86866be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 869e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 870e38b6b7fStim when available. 87166be8951SMathias Krause 8728275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 873e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8748275d1aaSTim Chen depends on X86 && 64BIT 8758275d1aaSTim Chen select CRYPTO_SHA256 8768275d1aaSTim Chen select CRYPTO_HASH 8778275d1aaSTim Chen help 8788275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8798275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8808275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 881e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 882e38b6b7fStim Instructions) when available. 8838275d1aaSTim Chen 88487de4579STim Chenconfig CRYPTO_SHA512_SSSE3 88587de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 88687de4579STim Chen depends on X86 && 64BIT 88787de4579STim Chen select CRYPTO_SHA512 88887de4579STim Chen select CRYPTO_HASH 88987de4579STim Chen help 89087de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 89187de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 89287de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 89387de4579STim Chen version 2 (AVX2) instructions, when available. 89487de4579STim Chen 895efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 896efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 897efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 898efdb6f6eSAaro Koskinen select CRYPTO_SHA1 899efdb6f6eSAaro Koskinen select CRYPTO_HASH 900efdb6f6eSAaro Koskinen help 901efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 902efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 903efdb6f6eSAaro Koskinen 9044ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9054ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9064ff28d4cSDavid S. Miller depends on SPARC64 9074ff28d4cSDavid S. Miller select CRYPTO_SHA1 9084ff28d4cSDavid S. Miller select CRYPTO_HASH 9094ff28d4cSDavid S. Miller help 9104ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9114ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9124ff28d4cSDavid S. Miller 913323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 914323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 915323a6bf1SMichael Ellerman depends on PPC 916323a6bf1SMichael Ellerman help 917323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 918323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 919323a6bf1SMichael Ellerman 920d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 921d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 922d9850fc5SMarkus Stockhausen depends on PPC && SPE 923d9850fc5SMarkus Stockhausen help 924d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 925d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 926d9850fc5SMarkus Stockhausen 9271da177e4SLinus Torvaldsconfig CRYPTO_SHA256 928cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 92950e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 93008c327f6SHans de Goede select CRYPTO_LIB_SHA256 9311da177e4SLinus Torvalds help 9321da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9331da177e4SLinus Torvalds 9341da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9351da177e4SLinus Torvalds security against collision attacks. 9361da177e4SLinus Torvalds 937cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 938cd12fb90SJonathan Lynch of security against collision attacks. 939cd12fb90SJonathan Lynch 9402ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9412ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9422ecc1e95SMarkus Stockhausen depends on PPC && SPE 9432ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9442ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9452ecc1e95SMarkus Stockhausen help 9462ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9472ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9482ecc1e95SMarkus Stockhausen 949efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 950efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 951efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 952efdb6f6eSAaro Koskinen select CRYPTO_SHA256 953efdb6f6eSAaro Koskinen select CRYPTO_HASH 954efdb6f6eSAaro Koskinen help 955efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 956efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 957efdb6f6eSAaro Koskinen 95886c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 95986c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 96086c93b24SDavid S. Miller depends on SPARC64 96186c93b24SDavid S. Miller select CRYPTO_SHA256 96286c93b24SDavid S. Miller select CRYPTO_HASH 96386c93b24SDavid S. Miller help 96486c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 96586c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 96686c93b24SDavid S. Miller 9671da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9681da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 969bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9701da177e4SLinus Torvalds help 9711da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9721da177e4SLinus Torvalds 9731da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9741da177e4SLinus Torvalds security against collision attacks. 9751da177e4SLinus Torvalds 9761da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9771da177e4SLinus Torvalds of security against collision attacks. 9781da177e4SLinus Torvalds 979efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 980efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 981efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 982efdb6f6eSAaro Koskinen select CRYPTO_SHA512 983efdb6f6eSAaro Koskinen select CRYPTO_HASH 984efdb6f6eSAaro Koskinen help 985efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 986efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 987efdb6f6eSAaro Koskinen 988775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 989775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 990775e0c69SDavid S. Miller depends on SPARC64 991775e0c69SDavid S. Miller select CRYPTO_SHA512 992775e0c69SDavid S. Miller select CRYPTO_HASH 993775e0c69SDavid S. Miller help 994775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 995775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 996775e0c69SDavid S. Miller 99753964b9eSJeff Garzikconfig CRYPTO_SHA3 99853964b9eSJeff Garzik tristate "SHA3 digest algorithm" 99953964b9eSJeff Garzik select CRYPTO_HASH 100053964b9eSJeff Garzik help 100153964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 100253964b9eSJeff Garzik cryptographic sponge function family called Keccak. 100353964b9eSJeff Garzik 100453964b9eSJeff Garzik References: 100553964b9eSJeff Garzik http://keccak.noekeon.org/ 100653964b9eSJeff Garzik 10074f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 10084f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10094f0fc160SGilad Ben-Yossef select CRYPTO_HASH 1010b4784a45STianjia Zhang select CRYPTO_LIB_SM3 10114f0fc160SGilad Ben-Yossef help 10124f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10134f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10144f0fc160SGilad Ben-Yossef 10154f0fc160SGilad Ben-Yossef References: 10164f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10174f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10184f0fc160SGilad Ben-Yossef 1019930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64 1020930ab34dSTianjia Zhang tristate "SM3 digest algorithm (x86_64/AVX)" 1021930ab34dSTianjia Zhang depends on X86 && 64BIT 1022930ab34dSTianjia Zhang select CRYPTO_HASH 1023930ab34dSTianjia Zhang select CRYPTO_LIB_SM3 1024930ab34dSTianjia Zhang help 1025930ab34dSTianjia Zhang SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1026930ab34dSTianjia Zhang It is part of the Chinese Commercial Cryptography suite. This is 1027930ab34dSTianjia Zhang SM3 optimized implementation using Advanced Vector Extensions (AVX) 1028930ab34dSTianjia Zhang when available. 1029930ab34dSTianjia Zhang 1030930ab34dSTianjia Zhang If unsure, say N. 1031930ab34dSTianjia Zhang 1032fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1033fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1034fe18957eSVitaly Chikunov select CRYPTO_HASH 1035fe18957eSVitaly Chikunov help 1036fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1037fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1038fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1039fe18957eSVitaly Chikunov 1040fe18957eSVitaly Chikunov References: 1041fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1042fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1043fe18957eSVitaly Chikunov 1044584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1045584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10464946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10471da177e4SLinus Torvalds help 1048584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10491da177e4SLinus Torvalds 1050584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1051584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10521da177e4SLinus Torvalds 10531da177e4SLinus Torvalds See also: 10546d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10551da177e4SLinus Torvalds 10560e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10578dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10588af00860SRichard Weinberger depends on X86 && 64BIT 10590e1227d3SHuang Ying select CRYPTO_CRYPTD 10600e1227d3SHuang Ying help 10618dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10628dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10630e1227d3SHuang Ying 1064584fffc8SSebastian Siewiorcomment "Ciphers" 10651da177e4SLinus Torvalds 10661da177e4SLinus Torvaldsconfig CRYPTO_AES 10671da177e4SLinus Torvalds tristate "AES cipher algorithms" 1068cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10695bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10701da177e4SLinus Torvalds help 10711da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10721da177e4SLinus Torvalds algorithm. 10731da177e4SLinus Torvalds 10741da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10751da177e4SLinus Torvalds both hardware and software across a wide range of computing 10761da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10771da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10781da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10791da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10801da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10811da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10821da177e4SLinus Torvalds 10831da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 10841da177e4SLinus Torvalds 10851da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 10861da177e4SLinus Torvalds 1087b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1088b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1089b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1090e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1091b5e0b032SArd Biesheuvel help 1092b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1093b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1094b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1095b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1096b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1097b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1098b5e0b032SArd Biesheuvel 1099b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1100b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1101b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1102b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11030a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11040a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1105b5e0b032SArd Biesheuvel 110654b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 110754b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11088af00860SRichard Weinberger depends on X86 110985671860SHerbert Xu select CRYPTO_AEAD 11102c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 111154b6a1bdSHuang Ying select CRYPTO_ALGAPI 1112b95bba5dSEric Biggers select CRYPTO_SKCIPHER 111385671860SHerbert Xu select CRYPTO_SIMD 111454b6a1bdSHuang Ying help 111554b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 111654b6a1bdSHuang Ying 111754b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 111854b6a1bdSHuang Ying algorithm. 111954b6a1bdSHuang Ying 112054b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 112154b6a1bdSHuang Ying both hardware and software across a wide range of computing 112254b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 112354b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 112454b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 112554b6a1bdSHuang Ying suited for restricted-space environments, in which it also 112654b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 112754b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 112854b6a1bdSHuang Ying 112954b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 113054b6a1bdSHuang Ying 113154b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 113254b6a1bdSHuang Ying 11330d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11340d258efbSMathias Krause for some popular block cipher mode is supported too, including 1135944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11360d258efbSMathias Krause acceleration for CTR. 11372cf4ac8bSHuang Ying 11389bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11399bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11409bf4852dSDavid S. Miller depends on SPARC64 1141b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11429bf4852dSDavid S. Miller help 11439bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11449bf4852dSDavid S. Miller 11459bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11469bf4852dSDavid S. Miller algorithm. 11479bf4852dSDavid S. Miller 11489bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11499bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11509bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11519bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11529bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11539bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11549bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11559bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11569bf4852dSDavid S. Miller 11579bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11589bf4852dSDavid S. Miller 11599bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11609bf4852dSDavid S. Miller 11619bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11629bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11639bf4852dSDavid S. Miller ECB and CBC. 11649bf4852dSDavid S. Miller 1165504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1166504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1167504c6143SMarkus Stockhausen depends on PPC && SPE 1168b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1169504c6143SMarkus Stockhausen help 1170504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1171504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1172504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1173504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1174504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1175504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1176504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1177504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1178504c6143SMarkus Stockhausen 11791da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11801da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 11811674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1182cce9e06dSHerbert Xu select CRYPTO_ALGAPI 11831da177e4SLinus Torvalds help 11841da177e4SLinus Torvalds Anubis cipher algorithm. 11851da177e4SLinus Torvalds 11861da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 11871da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 11881da177e4SLinus Torvalds in the NESSIE competition. 11891da177e4SLinus Torvalds 11901da177e4SLinus Torvalds See also: 11916d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 11926d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 11931da177e4SLinus Torvalds 1194584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1195584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 11969ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1197b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1198dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1199e2ee95b8SHye-Shik Chang help 1200584fffc8SSebastian Siewior ARC4 cipher algorithm. 1201e2ee95b8SHye-Shik Chang 1202584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1203584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1204584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1205584fffc8SSebastian Siewior weakness of the algorithm. 1206584fffc8SSebastian Siewior 1207584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1208584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1209584fffc8SSebastian Siewior select CRYPTO_ALGAPI 121052ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1211584fffc8SSebastian Siewior help 1212584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1213584fffc8SSebastian Siewior 1214584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1215584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1216584fffc8SSebastian Siewior designed for use on "large microprocessors". 1217e2ee95b8SHye-Shik Chang 1218e2ee95b8SHye-Shik Chang See also: 12199332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1220584fffc8SSebastian Siewior 122152ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 122252ba867cSJussi Kivilinna tristate 122352ba867cSJussi Kivilinna help 122452ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 122552ba867cSJussi Kivilinna generic c and the assembler implementations. 122652ba867cSJussi Kivilinna 122752ba867cSJussi Kivilinna See also: 12289332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 122952ba867cSJussi Kivilinna 123064b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 123164b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1232f21a7c19SAl Viro depends on X86 && 64BIT 1233b95bba5dSEric Biggers select CRYPTO_SKCIPHER 123464b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1235c0a64926SArd Biesheuvel imply CRYPTO_CTR 123664b94ceaSJussi Kivilinna help 123764b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 123864b94ceaSJussi Kivilinna 123964b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 124064b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 124164b94ceaSJussi Kivilinna designed for use on "large microprocessors". 124264b94ceaSJussi Kivilinna 124364b94ceaSJussi Kivilinna See also: 12449332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 124564b94ceaSJussi Kivilinna 1246584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1247584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1248584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1249584fffc8SSebastian Siewior help 1250584fffc8SSebastian Siewior Camellia cipher algorithms module. 1251584fffc8SSebastian Siewior 1252584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1253584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1254584fffc8SSebastian Siewior 1255584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1256584fffc8SSebastian Siewior 1257584fffc8SSebastian Siewior See also: 1258584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1259584fffc8SSebastian Siewior 12600b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12610b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1262f21a7c19SAl Viro depends on X86 && 64BIT 1263b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1264a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 12650b95ec56SJussi Kivilinna help 12660b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12670b95ec56SJussi Kivilinna 12680b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12690b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12700b95ec56SJussi Kivilinna 12710b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12720b95ec56SJussi Kivilinna 12730b95ec56SJussi Kivilinna See also: 12740b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12750b95ec56SJussi Kivilinna 1276d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1277d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1278d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1279b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1280d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 128144893bc2SEric Biggers select CRYPTO_SIMD 128255a7e88fSArd Biesheuvel imply CRYPTO_XTS 1283d9b1d2e7SJussi Kivilinna help 1284d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1285d9b1d2e7SJussi Kivilinna 1286d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1287d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1288d9b1d2e7SJussi Kivilinna 1289d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1290d9b1d2e7SJussi Kivilinna 1291d9b1d2e7SJussi Kivilinna See also: 1292d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1293d9b1d2e7SJussi Kivilinna 1294f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1295f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1296f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1297f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1298f3f935a7SJussi Kivilinna help 1299f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1300f3f935a7SJussi Kivilinna 1301f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1302f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1303f3f935a7SJussi Kivilinna 1304f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1305f3f935a7SJussi Kivilinna 1306f3f935a7SJussi Kivilinna See also: 1307f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1308f3f935a7SJussi Kivilinna 130981658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 131081658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 131181658ad0SDavid S. Miller depends on SPARC64 131281658ad0SDavid S. Miller select CRYPTO_ALGAPI 1313b95bba5dSEric Biggers select CRYPTO_SKCIPHER 131481658ad0SDavid S. Miller help 131581658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 131681658ad0SDavid S. Miller 131781658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 131881658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 131981658ad0SDavid S. Miller 132081658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 132181658ad0SDavid S. Miller 132281658ad0SDavid S. Miller See also: 132381658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 132481658ad0SDavid S. Miller 1325044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1326044ab525SJussi Kivilinna tristate 1327044ab525SJussi Kivilinna help 1328044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1329044ab525SJussi Kivilinna generic c and the assembler implementations. 1330044ab525SJussi Kivilinna 1331584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1332584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1333584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1334044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1335584fffc8SSebastian Siewior help 1336584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1337584fffc8SSebastian Siewior described in RFC2144. 1338584fffc8SSebastian Siewior 13394d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13404d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13414d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1342b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13434d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13441e63183aSEric Biggers select CRYPTO_CAST_COMMON 13451e63183aSEric Biggers select CRYPTO_SIMD 1346e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 13474d6d6a2cSJohannes Goetzfried help 13484d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13494d6d6a2cSJohannes Goetzfried described in RFC2144. 13504d6d6a2cSJohannes Goetzfried 13514d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13524d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13534d6d6a2cSJohannes Goetzfried 1354584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1355584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1356584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1357044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1358584fffc8SSebastian Siewior help 1359584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1360584fffc8SSebastian Siewior described in RFC2612. 1361584fffc8SSebastian Siewior 13624ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13634ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13644ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1365b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13664ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13674bd96924SEric Biggers select CRYPTO_CAST_COMMON 13684bd96924SEric Biggers select CRYPTO_SIMD 13692cc0fedbSArd Biesheuvel imply CRYPTO_XTS 13707a6623ccSArd Biesheuvel imply CRYPTO_CTR 13714ea1277dSJohannes Goetzfried help 13724ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13734ea1277dSJohannes Goetzfried described in RFC2612. 13744ea1277dSJohannes Goetzfried 13754ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13764ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13774ea1277dSJohannes Goetzfried 1378584fffc8SSebastian Siewiorconfig CRYPTO_DES 1379584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1380584fffc8SSebastian Siewior select CRYPTO_ALGAPI 138104007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1382584fffc8SSebastian Siewior help 1383584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1384584fffc8SSebastian Siewior 1385c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1386c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 138797da37b3SDave Jones depends on SPARC64 1388c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 138904007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1390b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1391c5aac2dfSDavid S. Miller help 1392c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1393c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1394c5aac2dfSDavid S. Miller 13956574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 13966574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 13976574e6c6SJussi Kivilinna depends on X86 && 64BIT 1398b95bba5dSEric Biggers select CRYPTO_SKCIPHER 139904007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1400768db5feSArd Biesheuvel imply CRYPTO_CTR 14016574e6c6SJussi Kivilinna help 14026574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14036574e6c6SJussi Kivilinna 14046574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14056574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14066574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14076574e6c6SJussi Kivilinna one that processes three blocks parallel. 14086574e6c6SJussi Kivilinna 1409584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1410584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1411584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1412b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1413584fffc8SSebastian Siewior help 1414584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1415584fffc8SSebastian Siewior 1416584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1417584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 14181674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1419584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1420584fffc8SSebastian Siewior help 1421584fffc8SSebastian Siewior Khazad cipher algorithm. 1422584fffc8SSebastian Siewior 1423584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1424584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1425584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1426584fffc8SSebastian Siewior 1427584fffc8SSebastian Siewior See also: 14286d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1429e2ee95b8SHye-Shik Chang 1430c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1431aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14325fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1433b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1434c08d0e64SMartin Willi help 1435aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1436c08d0e64SMartin Willi 1437c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1438c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1439de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 14409332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1441c08d0e64SMartin Willi 1442de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1443de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1444de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1445de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1446de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1447de61d7aeSEric Biggers 1448aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1449aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1450aa762409SEric Biggers in some performance-sensitive scenarios. 1451aa762409SEric Biggers 1452c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14534af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1454c9320b6dSMartin Willi depends on X86 && 64BIT 1455b95bba5dSEric Biggers select CRYPTO_SKCIPHER 145628e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 145784e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1458c9320b6dSMartin Willi help 14597a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14607a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1461c9320b6dSMartin Willi 14623a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14633a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14643a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1465660eda8dSEric Biggers select CRYPTO_SKCIPHER 14663a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14673a2f58f3SArd Biesheuvel 1468584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1469584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 14701674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1471584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1472584fffc8SSebastian Siewior help 1473584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1474584fffc8SSebastian Siewior 1475584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1476584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1477584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1478584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1479584fffc8SSebastian Siewior 1480584fffc8SSebastian Siewior See also: 1481584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1482584fffc8SSebastian Siewior 1483584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1484584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1485584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1486584fffc8SSebastian Siewior help 1487584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1488584fffc8SSebastian Siewior 1489584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1490784506a1SArd Biesheuvel of 8 bits. 1491584fffc8SSebastian Siewior 1492584fffc8SSebastian Siewior See also: 14939332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1494584fffc8SSebastian Siewior 1495937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1496937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1497937c30d7SJussi Kivilinna depends on X86 && 64BIT 1498b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1499937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1500e0f409dcSEric Biggers select CRYPTO_SIMD 15012e9440aeSArd Biesheuvel imply CRYPTO_CTR 1502937c30d7SJussi Kivilinna help 1503937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1504937c30d7SJussi Kivilinna 1505937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1506937c30d7SJussi Kivilinna of 8 bits. 1507937c30d7SJussi Kivilinna 15081e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1509937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1510937c30d7SJussi Kivilinna 1511937c30d7SJussi Kivilinna See also: 15129332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1513937c30d7SJussi Kivilinna 1514251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1515251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1516251496dbSJussi Kivilinna depends on X86 && !64BIT 1517b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1518251496dbSJussi Kivilinna select CRYPTO_SERPENT 1519e0f409dcSEric Biggers select CRYPTO_SIMD 15202e9440aeSArd Biesheuvel imply CRYPTO_CTR 1521251496dbSJussi Kivilinna help 1522251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1523251496dbSJussi Kivilinna 1524251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1525251496dbSJussi Kivilinna of 8 bits. 1526251496dbSJussi Kivilinna 1527251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1528251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1529251496dbSJussi Kivilinna 1530251496dbSJussi Kivilinna See also: 15319332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1532251496dbSJussi Kivilinna 15337efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15347efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15357efe4076SJohannes Goetzfried depends on X86 && 64BIT 1536b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15377efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1538e16bf974SEric Biggers select CRYPTO_SIMD 15399ec0af8aSArd Biesheuvel imply CRYPTO_XTS 15402e9440aeSArd Biesheuvel imply CRYPTO_CTR 15417efe4076SJohannes Goetzfried help 15427efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15437efe4076SJohannes Goetzfried 15447efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15457efe4076SJohannes Goetzfried of 8 bits. 15467efe4076SJohannes Goetzfried 15477efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15487efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15497efe4076SJohannes Goetzfried 15507efe4076SJohannes Goetzfried See also: 15519332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 15527efe4076SJohannes Goetzfried 155356d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 155456d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 155556d76c96SJussi Kivilinna depends on X86 && 64BIT 155656d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 155756d76c96SJussi Kivilinna help 155856d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 155956d76c96SJussi Kivilinna 156056d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 156156d76c96SJussi Kivilinna of 8 bits. 156256d76c96SJussi Kivilinna 156356d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 156456d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 156556d76c96SJussi Kivilinna 156656d76c96SJussi Kivilinna See also: 15679332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 156856d76c96SJussi Kivilinna 1569747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1570747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1571747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 15722b31277aSTianjia Zhang select CRYPTO_LIB_SM4 1573747c8ce4SGilad Ben-Yossef help 1574747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1575747c8ce4SGilad Ben-Yossef 1576747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1577747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1578747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1579747c8ce4SGilad Ben-Yossef 1580747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1581747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1582747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1583747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1584747c8ce4SGilad Ben-Yossef 1585747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1586747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1587747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1588747c8ce4SGilad Ben-Yossef 1589747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1590747c8ce4SGilad Ben-Yossef 1591747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1592747c8ce4SGilad Ben-Yossef 1593747c8ce4SGilad Ben-Yossef If unsure, say N. 1594747c8ce4SGilad Ben-Yossef 1595a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64 1596a7ee22eeSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1597a7ee22eeSTianjia Zhang depends on X86 && 64BIT 1598a7ee22eeSTianjia Zhang select CRYPTO_SKCIPHER 1599a7ee22eeSTianjia Zhang select CRYPTO_SIMD 1600a7ee22eeSTianjia Zhang select CRYPTO_ALGAPI 1601a7ee22eeSTianjia Zhang select CRYPTO_LIB_SM4 1602a7ee22eeSTianjia Zhang help 1603a7ee22eeSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1604a7ee22eeSTianjia Zhang 1605a7ee22eeSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1606a7ee22eeSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 1607a7ee22eeSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 1608a7ee22eeSTianjia Zhang 1609a7ee22eeSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX/x86_64 1610a7ee22eeSTianjia Zhang instruction set for block cipher. Through two affine transforms, 1611a7ee22eeSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1612a7ee22eeSTianjia Zhang effect of instruction acceleration. 1613a7ee22eeSTianjia Zhang 1614a7ee22eeSTianjia Zhang If unsure, say N. 1615a7ee22eeSTianjia Zhang 16165b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64 16175b2efa2bSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 16185b2efa2bSTianjia Zhang depends on X86 && 64BIT 16195b2efa2bSTianjia Zhang select CRYPTO_SKCIPHER 16205b2efa2bSTianjia Zhang select CRYPTO_SIMD 16215b2efa2bSTianjia Zhang select CRYPTO_ALGAPI 16225b2efa2bSTianjia Zhang select CRYPTO_LIB_SM4 16235b2efa2bSTianjia Zhang select CRYPTO_SM4_AESNI_AVX_X86_64 16245b2efa2bSTianjia Zhang help 16255b2efa2bSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 16265b2efa2bSTianjia Zhang 16275b2efa2bSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 16285b2efa2bSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 16295b2efa2bSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 16305b2efa2bSTianjia Zhang 16315b2efa2bSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX2/x86_64 16325b2efa2bSTianjia Zhang instruction set for block cipher. Through two affine transforms, 16335b2efa2bSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 16345b2efa2bSTianjia Zhang effect of instruction acceleration. 16355b2efa2bSTianjia Zhang 16365b2efa2bSTianjia Zhang If unsure, say N. 16375b2efa2bSTianjia Zhang 1638584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1639584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 16401674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1641584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1642584fffc8SSebastian Siewior help 1643584fffc8SSebastian Siewior TEA cipher algorithm. 1644584fffc8SSebastian Siewior 1645584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1646584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1647584fffc8SSebastian Siewior little memory. 1648584fffc8SSebastian Siewior 1649584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1650584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1651584fffc8SSebastian Siewior in the TEA algorithm. 1652584fffc8SSebastian Siewior 1653584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1654584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1655584fffc8SSebastian Siewior 1656584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1657584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1658584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1659584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1660584fffc8SSebastian Siewior help 1661584fffc8SSebastian Siewior Twofish cipher algorithm. 1662584fffc8SSebastian Siewior 1663584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1664584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1665584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1666584fffc8SSebastian Siewior bits. 1667584fffc8SSebastian Siewior 1668584fffc8SSebastian Siewior See also: 16699332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1670584fffc8SSebastian Siewior 1671584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1672584fffc8SSebastian Siewior tristate 1673584fffc8SSebastian Siewior help 1674584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1675584fffc8SSebastian Siewior generic c and the assembler implementations. 1676584fffc8SSebastian Siewior 1677584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1678584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1679584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1680584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1681584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1682f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1683584fffc8SSebastian Siewior help 1684584fffc8SSebastian Siewior Twofish cipher algorithm. 1685584fffc8SSebastian Siewior 1686584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1687584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1688584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1689584fffc8SSebastian Siewior bits. 1690584fffc8SSebastian Siewior 1691584fffc8SSebastian Siewior See also: 16929332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1693584fffc8SSebastian Siewior 1694584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1695584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1696584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1697584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1698584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1699f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1700584fffc8SSebastian Siewior help 1701584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1702584fffc8SSebastian Siewior 1703584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1704584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1705584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1706584fffc8SSebastian Siewior bits. 1707584fffc8SSebastian Siewior 1708584fffc8SSebastian Siewior See also: 17099332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1710584fffc8SSebastian Siewior 17118280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17128280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1713f21a7c19SAl Viro depends on X86 && 64BIT 1714b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17158280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17168280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 17178280daadSJussi Kivilinna help 17188280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17198280daadSJussi Kivilinna 17208280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17218280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17228280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17238280daadSJussi Kivilinna bits. 17248280daadSJussi Kivilinna 17258280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17268280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17278280daadSJussi Kivilinna 17288280daadSJussi Kivilinna See also: 17299332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 17308280daadSJussi Kivilinna 1731107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1732107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1733107778b5SJohannes Goetzfried depends on X86 && 64BIT 1734b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17350e6ab46dSEric Biggers select CRYPTO_SIMD 1736107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1737107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1738107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1739da4df93aSArd Biesheuvel imply CRYPTO_XTS 1740107778b5SJohannes Goetzfried help 1741107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1742107778b5SJohannes Goetzfried 1743107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1744107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1745107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1746107778b5SJohannes Goetzfried bits. 1747107778b5SJohannes Goetzfried 1748107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1749107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1750107778b5SJohannes Goetzfried 1751107778b5SJohannes Goetzfried See also: 17529332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1753107778b5SJohannes Goetzfried 1754584fffc8SSebastian Siewiorcomment "Compression" 1755584fffc8SSebastian Siewior 17561da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17571da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1758cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1759f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17601da177e4SLinus Torvalds select ZLIB_INFLATE 17611da177e4SLinus Torvalds select ZLIB_DEFLATE 17621da177e4SLinus Torvalds help 17631da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17641da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17651da177e4SLinus Torvalds 17661da177e4SLinus Torvalds You will most probably want this if using IPSec. 17671da177e4SLinus Torvalds 17680b77abb3SZoltan Sogorconfig CRYPTO_LZO 17690b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17700b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1771ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17720b77abb3SZoltan Sogor select LZO_COMPRESS 17730b77abb3SZoltan Sogor select LZO_DECOMPRESS 17740b77abb3SZoltan Sogor help 17750b77abb3SZoltan Sogor This is the LZO algorithm. 17760b77abb3SZoltan Sogor 177735a1fc18SSeth Jenningsconfig CRYPTO_842 177835a1fc18SSeth Jennings tristate "842 compression algorithm" 17792062c5b6SDan Streetman select CRYPTO_ALGAPI 17806a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 17812062c5b6SDan Streetman select 842_COMPRESS 17822062c5b6SDan Streetman select 842_DECOMPRESS 178335a1fc18SSeth Jennings help 178435a1fc18SSeth Jennings This is the 842 algorithm. 178535a1fc18SSeth Jennings 17860ea8530dSChanho Minconfig CRYPTO_LZ4 17870ea8530dSChanho Min tristate "LZ4 compression algorithm" 17880ea8530dSChanho Min select CRYPTO_ALGAPI 17898cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 17900ea8530dSChanho Min select LZ4_COMPRESS 17910ea8530dSChanho Min select LZ4_DECOMPRESS 17920ea8530dSChanho Min help 17930ea8530dSChanho Min This is the LZ4 algorithm. 17940ea8530dSChanho Min 17950ea8530dSChanho Minconfig CRYPTO_LZ4HC 17960ea8530dSChanho Min tristate "LZ4HC compression algorithm" 17970ea8530dSChanho Min select CRYPTO_ALGAPI 179891d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 17990ea8530dSChanho Min select LZ4HC_COMPRESS 18000ea8530dSChanho Min select LZ4_DECOMPRESS 18010ea8530dSChanho Min help 18020ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 18030ea8530dSChanho Min 1804d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1805d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1806d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1807d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1808d28fc3dbSNick Terrell select ZSTD_COMPRESS 1809d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1810d28fc3dbSNick Terrell help 1811d28fc3dbSNick Terrell This is the zstd algorithm. 1812d28fc3dbSNick Terrell 181317f0f4a4SNeil Hormancomment "Random Number Generation" 181417f0f4a4SNeil Horman 181517f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 181617f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 181717f0f4a4SNeil Horman select CRYPTO_AES 181817f0f4a4SNeil Horman select CRYPTO_RNG 181917f0f4a4SNeil Horman help 182017f0f4a4SNeil Horman This option enables the generic pseudo random number generator 182117f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18227dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18237dd607e8SJiri Kosina CRYPTO_FIPS is selected 182417f0f4a4SNeil Horman 1825f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1826419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1827419090c6SStephan Mueller help 1828419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1829419090c6SStephan Mueller more of the DRBG types must be selected. 1830419090c6SStephan Mueller 1831f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1832419090c6SStephan Mueller 1833419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1834401e4238SHerbert Xu bool 1835419090c6SStephan Mueller default y 1836419090c6SStephan Mueller select CRYPTO_HMAC 18375261cdf4SStephan Mueller select CRYPTO_SHA512 1838419090c6SStephan Mueller 1839419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1840419090c6SStephan Mueller bool "Enable Hash DRBG" 1841826775bbSHerbert Xu select CRYPTO_SHA256 1842419090c6SStephan Mueller help 1843419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1844419090c6SStephan Mueller 1845419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1846419090c6SStephan Mueller bool "Enable CTR DRBG" 1847419090c6SStephan Mueller select CRYPTO_AES 1848d6fc1a45SCorentin Labbe select CRYPTO_CTR 1849419090c6SStephan Mueller help 1850419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1851419090c6SStephan Mueller 1852f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1853f2c89a10SHerbert Xu tristate 1854401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1855f2c89a10SHerbert Xu select CRYPTO_RNG 1856bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1857f2c89a10SHerbert Xu 1858f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1859419090c6SStephan Mueller 1860bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1861bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18622f313e02SArnd Bergmann select CRYPTO_RNG 1863bb5530e4SStephan Mueller help 1864bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1865bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1866bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1867bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1868bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1869bb5530e4SStephan Mueller 1870026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR 1871026a733eSStephan Müller tristate 1872a88592ccSHerbert Xu select CRYPTO_HMAC 1873304b4aceSStephan Müller select CRYPTO_SHA256 1874026a733eSStephan Müller 187503c8efc1SHerbert Xuconfig CRYPTO_USER_API 187603c8efc1SHerbert Xu tristate 187703c8efc1SHerbert Xu 1878fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1879fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 18807451708fSHerbert Xu depends on NET 1881fe869cdbSHerbert Xu select CRYPTO_HASH 1882fe869cdbSHerbert Xu select CRYPTO_USER_API 1883fe869cdbSHerbert Xu help 1884fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1885fe869cdbSHerbert Xu algorithms. 1886fe869cdbSHerbert Xu 18878ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 18888ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 18897451708fSHerbert Xu depends on NET 1890b95bba5dSEric Biggers select CRYPTO_SKCIPHER 18918ff59090SHerbert Xu select CRYPTO_USER_API 18928ff59090SHerbert Xu help 18938ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 18948ff59090SHerbert Xu key cipher algorithms. 18958ff59090SHerbert Xu 18962f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 18972f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 18982f375538SStephan Mueller depends on NET 18992f375538SStephan Mueller select CRYPTO_RNG 19002f375538SStephan Mueller select CRYPTO_USER_API 19012f375538SStephan Mueller help 19022f375538SStephan Mueller This option enables the user-spaces interface for random 19032f375538SStephan Mueller number generator algorithms. 19042f375538SStephan Mueller 190577ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 190677ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 190777ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 190877ebdabeSElena Petrova help 190977ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 191077ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 191177ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 191277ebdabeSElena Petrova no unless you know what this is. 191377ebdabeSElena Petrova 1914b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1915b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1916b64a2d95SHerbert Xu depends on NET 1917b64a2d95SHerbert Xu select CRYPTO_AEAD 1918b95bba5dSEric Biggers select CRYPTO_SKCIPHER 191972548b09SStephan Mueller select CRYPTO_NULL 1920b64a2d95SHerbert Xu select CRYPTO_USER_API 1921b64a2d95SHerbert Xu help 1922b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1923b64a2d95SHerbert Xu cipher algorithms. 1924b64a2d95SHerbert Xu 19259ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 19269ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 19279ace6771SArd Biesheuvel depends on CRYPTO_USER_API 19289ace6771SArd Biesheuvel default y 19299ace6771SArd Biesheuvel help 19309ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 19319ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 19329ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 19339ace6771SArd Biesheuvel 1934cac5818cSCorentin Labbeconfig CRYPTO_STATS 1935cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1936a6a31385SCorentin Labbe depends on CRYPTO_USER 1937cac5818cSCorentin Labbe help 1938cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1939cac5818cSCorentin Labbe This will collect: 1940cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1941cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1942cac5818cSCorentin Labbe - size and numbers of hash operations 1943cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1944cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1945cac5818cSCorentin Labbe 1946ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1947ee08997fSDmitry Kasatkin bool 1948ee08997fSDmitry Kasatkin 19491da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19508636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19518636a1f9SMasahiro Yamadasource "certs/Kconfig" 19521da177e4SLinus Torvalds 1953cce9e06dSHerbert Xuendif # if CRYPTO 1954