xref: /linux/crypto/Kconfig (revision 1d373d4e8e15b358f08de52956b32e0e38a11f84)
1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0
21da177e4SLinus Torvalds#
3685784aaSDan Williams# Generic algorithms support
4685784aaSDan Williams#
5685784aaSDan Williamsconfig XOR_BLOCKS
6685784aaSDan Williams	tristate
7685784aaSDan Williams
8685784aaSDan Williams#
99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
109bc89cd8SDan Williams#
119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
129bc89cd8SDan Williams
139bc89cd8SDan Williams#
141da177e4SLinus Torvalds# Cryptographic API Configuration
151da177e4SLinus Torvalds#
162e290f43SJan Engelhardtmenuconfig CRYPTO
17c3715cb9SSebastian Siewior	tristate "Cryptographic API"
181da177e4SLinus Torvalds	help
191da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
201da177e4SLinus Torvalds
21cce9e06dSHerbert Xuif CRYPTO
22cce9e06dSHerbert Xu
23584fffc8SSebastian Siewiorcomment "Crypto core or helper"
24584fffc8SSebastian Siewior
25ccb778e1SNeil Hormanconfig CRYPTO_FIPS
26ccb778e1SNeil Horman	bool "FIPS 200 compliance"
27f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
281f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
29ccb778e1SNeil Horman	help
30ccb778e1SNeil Horman	  This options enables the fips boot option which is
31ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
32ccb778e1SNeil Horman	  certification.  You should say no unless you know what
33e84c5480SChuck Ebbert	  this is.
34ccb778e1SNeil Horman
35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
36cce9e06dSHerbert Xu	tristate
376a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
38cce9e06dSHerbert Xu	help
39cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
40cce9e06dSHerbert Xu
416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
426a0fcbb4SHerbert Xu	tristate
436a0fcbb4SHerbert Xu
441ae97820SHerbert Xuconfig CRYPTO_AEAD
451ae97820SHerbert Xu	tristate
466a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
471ae97820SHerbert Xu	select CRYPTO_ALGAPI
481ae97820SHerbert Xu
496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
506a0fcbb4SHerbert Xu	tristate
516a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
52149a3971SHerbert Xu	select CRYPTO_NULL2
53149a3971SHerbert Xu	select CRYPTO_RNG2
546a0fcbb4SHerbert Xu
555cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
565cde0af2SHerbert Xu	tristate
576a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
585cde0af2SHerbert Xu	select CRYPTO_ALGAPI
596a0fcbb4SHerbert Xu
606a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
616a0fcbb4SHerbert Xu	tristate
626a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
636a0fcbb4SHerbert Xu	select CRYPTO_RNG2
640a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
655cde0af2SHerbert Xu
66055bcee3SHerbert Xuconfig CRYPTO_HASH
67055bcee3SHerbert Xu	tristate
686a0fcbb4SHerbert Xu	select CRYPTO_HASH2
69055bcee3SHerbert Xu	select CRYPTO_ALGAPI
70055bcee3SHerbert Xu
716a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
726a0fcbb4SHerbert Xu	tristate
736a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
746a0fcbb4SHerbert Xu
7517f0f4a4SNeil Hormanconfig CRYPTO_RNG
7617f0f4a4SNeil Horman	tristate
776a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7817f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7917f0f4a4SNeil Horman
806a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
816a0fcbb4SHerbert Xu	tristate
826a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
836a0fcbb4SHerbert Xu
84401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
85401e4238SHerbert Xu	tristate
86401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
87401e4238SHerbert Xu
883c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
893c339ab8STadeusz Struk	tristate
903c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
913c339ab8STadeusz Struk
923c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
933c339ab8STadeusz Struk	tristate
943c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
953c339ab8STadeusz Struk	select CRYPTO_ALGAPI
963c339ab8STadeusz Struk
974e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
984e5f2c40SSalvatore Benedetto	tristate
994e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
1004e5f2c40SSalvatore Benedetto
1014e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1024e5f2c40SSalvatore Benedetto	tristate
1034e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1044e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1054e5f2c40SSalvatore Benedetto
1062ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1072ebda74fSGiovanni Cabiddu	tristate
1082ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1098cd579d2SBart Van Assche	select SGL_ALLOC
1102ebda74fSGiovanni Cabiddu
1112ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1122ebda74fSGiovanni Cabiddu	tristate
1132ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1142ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1152ebda74fSGiovanni Cabiddu
116cfc2bb32STadeusz Strukconfig CRYPTO_RSA
117cfc2bb32STadeusz Struk	tristate "RSA algorithm"
118425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11958446fefSTadeusz Struk	select CRYPTO_MANAGER
120cfc2bb32STadeusz Struk	select MPILIB
121cfc2bb32STadeusz Struk	select ASN1
122cfc2bb32STadeusz Struk	help
123cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
124cfc2bb32STadeusz Struk
125802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
126802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
127802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
128802c7f1cSSalvatore Benedetto	select MPILIB
129802c7f1cSSalvatore Benedetto	help
130802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
131802c7f1cSSalvatore Benedetto
1323c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1333c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
134b5b90077SHauke Mehrtens	select CRYPTO_KPP
1356755fd26STudor-Dan Ambarus	select CRYPTO_RNG_DEFAULT
1363c4b2390SSalvatore Benedetto	help
1373c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
138802c7f1cSSalvatore Benedetto
1392b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1402b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1416a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1422b8c19dbSHerbert Xu	help
1432b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1442b8c19dbSHerbert Xu	  cbc(aes).
1452b8c19dbSHerbert Xu
1466a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1476a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1486a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1496a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1506a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
151946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1524e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1532ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1546a0fcbb4SHerbert Xu
155a38f7907SSteffen Klassertconfig CRYPTO_USER
156a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1575db017aaSHerbert Xu	depends on NET
158a38f7907SSteffen Klassert	select CRYPTO_MANAGER
159a38f7907SSteffen Klassert	help
160d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
161a38f7907SSteffen Klassert	  cbc(aes).
162a38f7907SSteffen Klassert
163326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
164326a6346SHerbert Xu	bool "Disable run-time self tests"
16500ca28a5SHerbert Xu	default y
16600ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1670b767f96SAlexander Shishkin	help
168326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
169326a6346SHerbert Xu	  algorithm registration.
1700b767f96SAlexander Shishkin
171584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
17208c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
173584fffc8SSebastian Siewior	help
174584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
175584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
176584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
177584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
178584fffc8SSebastian Siewior	  an external module that requires these functions.
179584fffc8SSebastian Siewior
180584fffc8SSebastian Siewiorconfig CRYPTO_NULL
181584fffc8SSebastian Siewior	tristate "Null algorithms"
182149a3971SHerbert Xu	select CRYPTO_NULL2
183584fffc8SSebastian Siewior	help
184584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
185584fffc8SSebastian Siewior
186149a3971SHerbert Xuconfig CRYPTO_NULL2
187dd43c4e9SHerbert Xu	tristate
188149a3971SHerbert Xu	select CRYPTO_ALGAPI2
189149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
190149a3971SHerbert Xu	select CRYPTO_HASH2
191149a3971SHerbert Xu
1925068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1933b4afaf2SKees Cook	tristate "Parallel crypto engine"
1943b4afaf2SKees Cook	depends on SMP
1955068c7a8SSteffen Klassert	select PADATA
1965068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1975068c7a8SSteffen Klassert	select CRYPTO_AEAD
1985068c7a8SSteffen Klassert	help
1995068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
2005068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
2015068c7a8SSteffen Klassert
20225c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20325c38d3fSHuang Ying       tristate
20425c38d3fSHuang Ying
205584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
206584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
207584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
208b8a28251SLoc Ho	select CRYPTO_HASH
209584fffc8SSebastian Siewior	select CRYPTO_MANAGER
210254eff77SHuang Ying	select CRYPTO_WORKQUEUE
211584fffc8SSebastian Siewior	help
212584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
213584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
214584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
215584fffc8SSebastian Siewior
2161e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2171e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2181e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2191e65b81aSTim Chen	select CRYPTO_HASH
2201e65b81aSTim Chen	select CRYPTO_MANAGER
2211e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2221e65b81aSTim Chen	help
2231e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2241e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2251e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2261e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2271e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2280e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2291e65b81aSTim Chen
230584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
231584fffc8SSebastian Siewior	tristate "Authenc support"
232584fffc8SSebastian Siewior	select CRYPTO_AEAD
233584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
234584fffc8SSebastian Siewior	select CRYPTO_MANAGER
235584fffc8SSebastian Siewior	select CRYPTO_HASH
236e94c6a7aSHerbert Xu	select CRYPTO_NULL
237584fffc8SSebastian Siewior	help
238584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
239584fffc8SSebastian Siewior	  This is required for IPSec.
240584fffc8SSebastian Siewior
241584fffc8SSebastian Siewiorconfig CRYPTO_TEST
242584fffc8SSebastian Siewior	tristate "Testing module"
243584fffc8SSebastian Siewior	depends on m
244da7f033dSHerbert Xu	select CRYPTO_MANAGER
245584fffc8SSebastian Siewior	help
246584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
247584fffc8SSebastian Siewior
248266d0516SHerbert Xuconfig CRYPTO_SIMD
249266d0516SHerbert Xu	tristate
250266d0516SHerbert Xu	select CRYPTO_CRYPTD
251266d0516SHerbert Xu
252596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
253596d8750SJussi Kivilinna	tristate
254596d8750SJussi Kivilinna	depends on X86
255065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
256596d8750SJussi Kivilinna
257735d37b5SBaolin Wangconfig CRYPTO_ENGINE
258735d37b5SBaolin Wang	tristate
259735d37b5SBaolin Wang
260584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
261584fffc8SSebastian Siewior
262584fffc8SSebastian Siewiorconfig CRYPTO_CCM
263584fffc8SSebastian Siewior	tristate "CCM support"
264584fffc8SSebastian Siewior	select CRYPTO_CTR
265f15f05b0SArd Biesheuvel	select CRYPTO_HASH
266584fffc8SSebastian Siewior	select CRYPTO_AEAD
267584fffc8SSebastian Siewior	help
268584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
269584fffc8SSebastian Siewior
270584fffc8SSebastian Siewiorconfig CRYPTO_GCM
271584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
272584fffc8SSebastian Siewior	select CRYPTO_CTR
273584fffc8SSebastian Siewior	select CRYPTO_AEAD
2749382d97aSHuang Ying	select CRYPTO_GHASH
2759489667dSJussi Kivilinna	select CRYPTO_NULL
276584fffc8SSebastian Siewior	help
277584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
278584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
279584fffc8SSebastian Siewior
28071ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28171ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28271ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28371ebc4d1SMartin Willi	select CRYPTO_POLY1305
28471ebc4d1SMartin Willi	select CRYPTO_AEAD
28571ebc4d1SMartin Willi	help
28671ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28771ebc4d1SMartin Willi
28871ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
28971ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29071ebc4d1SMartin Willi	  IETF protocols.
29171ebc4d1SMartin Willi
292f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128
293f606a88eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm"
294f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
295f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
296f606a88eSOndrej Mosnacek	help
297f606a88eSOndrej Mosnacek	 Support for the AEGIS-128 dedicated AEAD algorithm.
298f606a88eSOndrej Mosnacek
299f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128L
300f606a88eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm"
301f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
302f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
303f606a88eSOndrej Mosnacek	help
304f606a88eSOndrej Mosnacek	 Support for the AEGIS-128L dedicated AEAD algorithm.
305f606a88eSOndrej Mosnacek
306f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS256
307f606a88eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm"
308f606a88eSOndrej Mosnacek	select CRYPTO_AEAD
309f606a88eSOndrej Mosnacek	select CRYPTO_AES  # for AES S-box tables
310f606a88eSOndrej Mosnacek	help
311f606a88eSOndrej Mosnacek	 Support for the AEGIS-256 dedicated AEAD algorithm.
312f606a88eSOndrej Mosnacek
313*1d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2
314*1d373d4eSOndrej Mosnacek	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
315*1d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
316*1d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
317*1d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
318*1d373d4eSOndrej Mosnacek	help
319*1d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
320*1d373d4eSOndrej Mosnacek
321*1d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128L_AESNI_SSE2
322*1d373d4eSOndrej Mosnacek	tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
323*1d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
324*1d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
325*1d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
326*1d373d4eSOndrej Mosnacek	help
327*1d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
328*1d373d4eSOndrej Mosnacek
329*1d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS256_AESNI_SSE2
330*1d373d4eSOndrej Mosnacek	tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
331*1d373d4eSOndrej Mosnacek	depends on X86 && 64BIT
332*1d373d4eSOndrej Mosnacek	select CRYPTO_AEAD
333*1d373d4eSOndrej Mosnacek	select CRYPTO_CRYPTD
334*1d373d4eSOndrej Mosnacek	help
335*1d373d4eSOndrej Mosnacek	 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
336*1d373d4eSOndrej Mosnacek
337584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
338584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
339584fffc8SSebastian Siewior	select CRYPTO_AEAD
340584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
341856e3f40SHerbert Xu	select CRYPTO_NULL
342401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
343584fffc8SSebastian Siewior	help
344584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
345584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
346584fffc8SSebastian Siewior
347a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
348a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
349a10f554fSHerbert Xu	select CRYPTO_AEAD
350a10f554fSHerbert Xu	select CRYPTO_NULL
351401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3523491244cSHerbert Xu	default m
353a10f554fSHerbert Xu	help
354a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
355a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
356a10f554fSHerbert Xu	  algorithm for CBC.
357a10f554fSHerbert Xu
358584fffc8SSebastian Siewiorcomment "Block modes"
359584fffc8SSebastian Siewior
360584fffc8SSebastian Siewiorconfig CRYPTO_CBC
361584fffc8SSebastian Siewior	tristate "CBC support"
362584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
363584fffc8SSebastian Siewior	select CRYPTO_MANAGER
364584fffc8SSebastian Siewior	help
365584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
366584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
367584fffc8SSebastian Siewior
368a7d85e06SJames Bottomleyconfig CRYPTO_CFB
369a7d85e06SJames Bottomley	tristate "CFB support"
370a7d85e06SJames Bottomley	select CRYPTO_BLKCIPHER
371a7d85e06SJames Bottomley	select CRYPTO_MANAGER
372a7d85e06SJames Bottomley	help
373a7d85e06SJames Bottomley	  CFB: Cipher FeedBack mode
374a7d85e06SJames Bottomley	  This block cipher algorithm is required for TPM2 Cryptography.
375a7d85e06SJames Bottomley
376584fffc8SSebastian Siewiorconfig CRYPTO_CTR
377584fffc8SSebastian Siewior	tristate "CTR support"
378584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
379584fffc8SSebastian Siewior	select CRYPTO_SEQIV
380584fffc8SSebastian Siewior	select CRYPTO_MANAGER
381584fffc8SSebastian Siewior	help
382584fffc8SSebastian Siewior	  CTR: Counter mode
383584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
384584fffc8SSebastian Siewior
385584fffc8SSebastian Siewiorconfig CRYPTO_CTS
386584fffc8SSebastian Siewior	tristate "CTS support"
387584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
388584fffc8SSebastian Siewior	help
389584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
390584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
391584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
392584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
393584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
394584fffc8SSebastian Siewior	  for AES encryption.
395584fffc8SSebastian Siewior
396584fffc8SSebastian Siewiorconfig CRYPTO_ECB
397584fffc8SSebastian Siewior	tristate "ECB support"
398584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
399584fffc8SSebastian Siewior	select CRYPTO_MANAGER
400584fffc8SSebastian Siewior	help
401584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
402584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
403584fffc8SSebastian Siewior	  the input block by block.
404584fffc8SSebastian Siewior
405584fffc8SSebastian Siewiorconfig CRYPTO_LRW
4062470a2b2SJussi Kivilinna	tristate "LRW support"
407584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
408584fffc8SSebastian Siewior	select CRYPTO_MANAGER
409584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
410584fffc8SSebastian Siewior	help
411584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
412584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
413584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
414584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
415584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
416584fffc8SSebastian Siewior
417584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
418584fffc8SSebastian Siewior	tristate "PCBC support"
419584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
420584fffc8SSebastian Siewior	select CRYPTO_MANAGER
421584fffc8SSebastian Siewior	help
422584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
423584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
424584fffc8SSebastian Siewior
425584fffc8SSebastian Siewiorconfig CRYPTO_XTS
4265bcf8e6dSJussi Kivilinna	tristate "XTS support"
427584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
428584fffc8SSebastian Siewior	select CRYPTO_MANAGER
42912cb3a1cSMilan Broz	select CRYPTO_ECB
430584fffc8SSebastian Siewior	help
431584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
432584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
433584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
434584fffc8SSebastian Siewior
4351c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
4361c49678eSStephan Mueller	tristate "Key wrapping support"
4371c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
4381c49678eSStephan Mueller	help
4391c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
4401c49678eSStephan Mueller	  padding.
4411c49678eSStephan Mueller
442584fffc8SSebastian Siewiorcomment "Hash modes"
443584fffc8SSebastian Siewior
44493b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
44593b5e86aSJussi Kivilinna	tristate "CMAC support"
44693b5e86aSJussi Kivilinna	select CRYPTO_HASH
44793b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
44893b5e86aSJussi Kivilinna	help
44993b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
45093b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
45193b5e86aSJussi Kivilinna
45293b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
45393b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
45493b5e86aSJussi Kivilinna
4551da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4568425165dSHerbert Xu	tristate "HMAC support"
4570796ae06SHerbert Xu	select CRYPTO_HASH
45843518407SHerbert Xu	select CRYPTO_MANAGER
4591da177e4SLinus Torvalds	help
4601da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4611da177e4SLinus Torvalds	  This is required for IPSec.
4621da177e4SLinus Torvalds
463333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
464333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
465333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
466333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
467333b0d7eSKazunori MIYAZAWA	help
468333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
469333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
470333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
471333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
472333b0d7eSKazunori MIYAZAWA
473f1939f7cSShane Wangconfig CRYPTO_VMAC
474f1939f7cSShane Wang	tristate "VMAC support"
475f1939f7cSShane Wang	select CRYPTO_HASH
476f1939f7cSShane Wang	select CRYPTO_MANAGER
477f1939f7cSShane Wang	help
478f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
479f1939f7cSShane Wang	  very high speed on 64-bit architectures.
480f1939f7cSShane Wang
481f1939f7cSShane Wang	  See also:
482f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
483f1939f7cSShane Wang
484584fffc8SSebastian Siewiorcomment "Digest"
485584fffc8SSebastian Siewior
486584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
487584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
4885773a3e6SHerbert Xu	select CRYPTO_HASH
4896a0962b2SDarrick J. Wong	select CRC32
4901da177e4SLinus Torvalds	help
491584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
492584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
49369c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
4941da177e4SLinus Torvalds
4958cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
4968cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
4978cb51ba8SAustin Zhang	depends on X86
4988cb51ba8SAustin Zhang	select CRYPTO_HASH
4998cb51ba8SAustin Zhang	help
5008cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
5018cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
5028cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
5038cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
5048cb51ba8SAustin Zhang	  gain performance compared with software implementation.
5058cb51ba8SAustin Zhang	  Module will be crc32c-intel.
5068cb51ba8SAustin Zhang
5077cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
5086dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
509c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
5106dd7a82cSAnton Blanchard	select CRYPTO_HASH
5116dd7a82cSAnton Blanchard	select CRC32
5126dd7a82cSAnton Blanchard	help
5136dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
5146dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
5156dd7a82cSAnton Blanchard	  and newer processors for improved performance.
5166dd7a82cSAnton Blanchard
5176dd7a82cSAnton Blanchard
518442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
519442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
520442a7c40SDavid S. Miller	depends on SPARC64
521442a7c40SDavid S. Miller	select CRYPTO_HASH
522442a7c40SDavid S. Miller	select CRC32
523442a7c40SDavid S. Miller	help
524442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
525442a7c40SDavid S. Miller	  when available.
526442a7c40SDavid S. Miller
52778c37d19SAlexander Boykoconfig CRYPTO_CRC32
52878c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
52978c37d19SAlexander Boyko	select CRYPTO_HASH
53078c37d19SAlexander Boyko	select CRC32
53178c37d19SAlexander Boyko	help
53278c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
53378c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
53478c37d19SAlexander Boyko
53578c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
53678c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
53778c37d19SAlexander Boyko	depends on X86
53878c37d19SAlexander Boyko	select CRYPTO_HASH
53978c37d19SAlexander Boyko	select CRC32
54078c37d19SAlexander Boyko	help
54178c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
54278c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
54378c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
54478c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
54578c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
54678c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
54778c37d19SAlexander Boyko
5484a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS
5494a5dc51eSMarcin Nowakowski	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
5504a5dc51eSMarcin Nowakowski	depends on MIPS_CRC_SUPPORT
5514a5dc51eSMarcin Nowakowski	select CRYPTO_HASH
5524a5dc51eSMarcin Nowakowski	help
5534a5dc51eSMarcin Nowakowski	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
5544a5dc51eSMarcin Nowakowski	  instructions, when available.
5554a5dc51eSMarcin Nowakowski
5564a5dc51eSMarcin Nowakowski
55768411521SHerbert Xuconfig CRYPTO_CRCT10DIF
55868411521SHerbert Xu	tristate "CRCT10DIF algorithm"
55968411521SHerbert Xu	select CRYPTO_HASH
56068411521SHerbert Xu	help
56168411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
56268411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
56368411521SHerbert Xu	  transforms to be used if they are available.
56468411521SHerbert Xu
56568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
56668411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
56768411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
56868411521SHerbert Xu	select CRYPTO_HASH
56968411521SHerbert Xu	help
57068411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
57168411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
57268411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
57368411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
57468411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
57568411521SHerbert Xu
576b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM
577b01df1c1SDaniel Axtens	tristate "CRC32T10DIF powerpc64 hardware acceleration"
578b01df1c1SDaniel Axtens	depends on PPC64 && ALTIVEC && CRC_T10DIF
579b01df1c1SDaniel Axtens	select CRYPTO_HASH
580b01df1c1SDaniel Axtens	help
581b01df1c1SDaniel Axtens	  CRC10T10DIF algorithm implemented using vector polynomial
582b01df1c1SDaniel Axtens	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
583b01df1c1SDaniel Axtens	  POWER8 and newer processors for improved performance.
584b01df1c1SDaniel Axtens
585146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER
586146c8688SDaniel Axtens	tristate "Powerpc64 vpmsum hardware acceleration tester"
587146c8688SDaniel Axtens	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
588146c8688SDaniel Axtens	help
589146c8688SDaniel Axtens	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
590146c8688SDaniel Axtens	  POWER8 vpmsum instructions.
591146c8688SDaniel Axtens	  Unless you are testing these algorithms, you don't need this.
592146c8688SDaniel Axtens
5932cdc6899SHuang Yingconfig CRYPTO_GHASH
5942cdc6899SHuang Ying	tristate "GHASH digest algorithm"
5952cdc6899SHuang Ying	select CRYPTO_GF128MUL
596578c60fbSArnd Bergmann	select CRYPTO_HASH
5972cdc6899SHuang Ying	help
5982cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
5992cdc6899SHuang Ying
600f979e014SMartin Williconfig CRYPTO_POLY1305
601f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
602578c60fbSArnd Bergmann	select CRYPTO_HASH
603f979e014SMartin Willi	help
604f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
605f979e014SMartin Willi
606f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
607f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
608f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
609f979e014SMartin Willi
610c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
611b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
612c70f4abeSMartin Willi	depends on X86 && 64BIT
613c70f4abeSMartin Willi	select CRYPTO_POLY1305
614c70f4abeSMartin Willi	help
615c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
616c70f4abeSMartin Willi
617c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
618c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
619c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
620c70f4abeSMartin Willi	  instructions.
621c70f4abeSMartin Willi
6221da177e4SLinus Torvaldsconfig CRYPTO_MD4
6231da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
624808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6251da177e4SLinus Torvalds	help
6261da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
6271da177e4SLinus Torvalds
6281da177e4SLinus Torvaldsconfig CRYPTO_MD5
6291da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
63014b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6311da177e4SLinus Torvalds	help
6321da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
6331da177e4SLinus Torvalds
634d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
635d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
636d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
637d69e75deSAaro Koskinen	select CRYPTO_MD5
638d69e75deSAaro Koskinen	select CRYPTO_HASH
639d69e75deSAaro Koskinen	help
640d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
641d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
642d69e75deSAaro Koskinen
643e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
644e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
645e8e59953SMarkus Stockhausen	depends on PPC
646e8e59953SMarkus Stockhausen	select CRYPTO_HASH
647e8e59953SMarkus Stockhausen	help
648e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
649e8e59953SMarkus Stockhausen	  in PPC assembler.
650e8e59953SMarkus Stockhausen
651fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
652fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
653fa4dfedcSDavid S. Miller	depends on SPARC64
654fa4dfedcSDavid S. Miller	select CRYPTO_MD5
655fa4dfedcSDavid S. Miller	select CRYPTO_HASH
656fa4dfedcSDavid S. Miller	help
657fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
658fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
659fa4dfedcSDavid S. Miller
660584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
661584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
66219e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
663584fffc8SSebastian Siewior	help
664584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
665584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
666584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
667584fffc8SSebastian Siewior	  of the algorithm.
668584fffc8SSebastian Siewior
66982798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
67082798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
6717c4468bcSHerbert Xu	select CRYPTO_HASH
67282798f90SAdrian-Ken Rueegsegger	help
67382798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
67482798f90SAdrian-Ken Rueegsegger
67582798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
67635ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
67782798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
67882798f90SAdrian-Ken Rueegsegger
67982798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6806d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
68182798f90SAdrian-Ken Rueegsegger
68282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
68382798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
684e5835fbaSHerbert Xu	select CRYPTO_HASH
68582798f90SAdrian-Ken Rueegsegger	help
68682798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
68782798f90SAdrian-Ken Rueegsegger
68882798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
68982798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
690b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
691b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
69282798f90SAdrian-Ken Rueegsegger
693b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
694b6d44341SAdrian Bunk	  against RIPEMD-160.
695534fe2c1SAdrian-Ken Rueegsegger
696534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6976d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
698534fe2c1SAdrian-Ken Rueegsegger
699534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
700534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
701d8a5e2e9SHerbert Xu	select CRYPTO_HASH
702534fe2c1SAdrian-Ken Rueegsegger	help
703b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
704b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
705b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
706b6d44341SAdrian Bunk	  (than RIPEMD-128).
707534fe2c1SAdrian-Ken Rueegsegger
708534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7096d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
710534fe2c1SAdrian-Ken Rueegsegger
711534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
712534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
7133b8efb4cSHerbert Xu	select CRYPTO_HASH
714534fe2c1SAdrian-Ken Rueegsegger	help
715b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
716b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
717b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
718b6d44341SAdrian Bunk	  (than RIPEMD-160).
719534fe2c1SAdrian-Ken Rueegsegger
72082798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
7216d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
72282798f90SAdrian-Ken Rueegsegger
7231da177e4SLinus Torvaldsconfig CRYPTO_SHA1
7241da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
72554ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7261da177e4SLinus Torvalds	help
7271da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
7281da177e4SLinus Torvalds
72966be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
730e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
73166be8951SMathias Krause	depends on X86 && 64BIT
73266be8951SMathias Krause	select CRYPTO_SHA1
73366be8951SMathias Krause	select CRYPTO_HASH
73466be8951SMathias Krause	help
73566be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
73666be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
737e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
738e38b6b7fStim	  when available.
73966be8951SMathias Krause
7408275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
741e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
7428275d1aaSTim Chen	depends on X86 && 64BIT
7438275d1aaSTim Chen	select CRYPTO_SHA256
7448275d1aaSTim Chen	select CRYPTO_HASH
7458275d1aaSTim Chen	help
7468275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
7478275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
7488275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
749e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
750e38b6b7fStim	  Instructions) when available.
7518275d1aaSTim Chen
75287de4579STim Chenconfig CRYPTO_SHA512_SSSE3
75387de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
75487de4579STim Chen	depends on X86 && 64BIT
75587de4579STim Chen	select CRYPTO_SHA512
75687de4579STim Chen	select CRYPTO_HASH
75787de4579STim Chen	help
75887de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
75987de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
76087de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
76187de4579STim Chen	  version 2 (AVX2) instructions, when available.
76287de4579STim Chen
763efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
764efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
765efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
766efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
767efdb6f6eSAaro Koskinen	select CRYPTO_HASH
768efdb6f6eSAaro Koskinen	help
769efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
770efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
771efdb6f6eSAaro Koskinen
7724ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
7734ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
7744ff28d4cSDavid S. Miller	depends on SPARC64
7754ff28d4cSDavid S. Miller	select CRYPTO_SHA1
7764ff28d4cSDavid S. Miller	select CRYPTO_HASH
7774ff28d4cSDavid S. Miller	help
7784ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7794ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7804ff28d4cSDavid S. Miller
781323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
782323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
783323a6bf1SMichael Ellerman	depends on PPC
784323a6bf1SMichael Ellerman	help
785323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
786323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
787323a6bf1SMichael Ellerman
788d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
789d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
790d9850fc5SMarkus Stockhausen	depends on PPC && SPE
791d9850fc5SMarkus Stockhausen	help
792d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
793d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
794d9850fc5SMarkus Stockhausen
7951e65b81aSTim Chenconfig CRYPTO_SHA1_MB
7961e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7971e65b81aSTim Chen	depends on X86 && 64BIT
7981e65b81aSTim Chen	select CRYPTO_SHA1
7991e65b81aSTim Chen	select CRYPTO_HASH
8001e65b81aSTim Chen	select CRYPTO_MCRYPTD
8011e65b81aSTim Chen	help
8021e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8031e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
8041e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
8051e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
8061e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
8071e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
8081e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
8091e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
8101e65b81aSTim Chen
8119be7e244SMegha Deyconfig CRYPTO_SHA256_MB
8129be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
8139be7e244SMegha Dey	depends on X86 && 64BIT
8149be7e244SMegha Dey	select CRYPTO_SHA256
8159be7e244SMegha Dey	select CRYPTO_HASH
8169be7e244SMegha Dey	select CRYPTO_MCRYPTD
8179be7e244SMegha Dey	help
8189be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
8199be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
8209be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
8219be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
8229be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
8239be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
8249be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
8259be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
8269be7e244SMegha Dey
827026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
828026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
829026bb8aaSMegha Dey        depends on X86 && 64BIT
830026bb8aaSMegha Dey        select CRYPTO_SHA512
831026bb8aaSMegha Dey        select CRYPTO_HASH
832026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
833026bb8aaSMegha Dey        help
834026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
835026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
836026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
837026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
838026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
839026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
840026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
841026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
842026bb8aaSMegha Dey
8431da177e4SLinus Torvaldsconfig CRYPTO_SHA256
844cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
84550e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
8461da177e4SLinus Torvalds	help
8471da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
8481da177e4SLinus Torvalds
8491da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
8501da177e4SLinus Torvalds	  security against collision attacks.
8511da177e4SLinus Torvalds
852cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
853cd12fb90SJonathan Lynch	  of security against collision attacks.
854cd12fb90SJonathan Lynch
8552ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
8562ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
8572ecc1e95SMarkus Stockhausen	depends on PPC && SPE
8582ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
8592ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
8602ecc1e95SMarkus Stockhausen	help
8612ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
8622ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
8632ecc1e95SMarkus Stockhausen
864efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
865efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
866efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
867efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
868efdb6f6eSAaro Koskinen	select CRYPTO_HASH
869efdb6f6eSAaro Koskinen	help
870efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
871efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
872efdb6f6eSAaro Koskinen
87386c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
87486c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
87586c93b24SDavid S. Miller	depends on SPARC64
87686c93b24SDavid S. Miller	select CRYPTO_SHA256
87786c93b24SDavid S. Miller	select CRYPTO_HASH
87886c93b24SDavid S. Miller	help
87986c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
88086c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
88186c93b24SDavid S. Miller
8821da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8831da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
884bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8851da177e4SLinus Torvalds	help
8861da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8871da177e4SLinus Torvalds
8881da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8891da177e4SLinus Torvalds	  security against collision attacks.
8901da177e4SLinus Torvalds
8911da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
8921da177e4SLinus Torvalds	  of security against collision attacks.
8931da177e4SLinus Torvalds
894efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
895efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
896efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
897efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
898efdb6f6eSAaro Koskinen	select CRYPTO_HASH
899efdb6f6eSAaro Koskinen	help
900efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
901efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
902efdb6f6eSAaro Koskinen
903775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
904775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
905775e0c69SDavid S. Miller	depends on SPARC64
906775e0c69SDavid S. Miller	select CRYPTO_SHA512
907775e0c69SDavid S. Miller	select CRYPTO_HASH
908775e0c69SDavid S. Miller	help
909775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
910775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
911775e0c69SDavid S. Miller
91253964b9eSJeff Garzikconfig CRYPTO_SHA3
91353964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
91453964b9eSJeff Garzik	select CRYPTO_HASH
91553964b9eSJeff Garzik	help
91653964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
91753964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
91853964b9eSJeff Garzik
91953964b9eSJeff Garzik	  References:
92053964b9eSJeff Garzik	  http://keccak.noekeon.org/
92153964b9eSJeff Garzik
9224f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3
9234f0fc160SGilad Ben-Yossef	tristate "SM3 digest algorithm"
9244f0fc160SGilad Ben-Yossef	select CRYPTO_HASH
9254f0fc160SGilad Ben-Yossef	help
9264f0fc160SGilad Ben-Yossef	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
9274f0fc160SGilad Ben-Yossef	  It is part of the Chinese Commercial Cryptography suite.
9284f0fc160SGilad Ben-Yossef
9294f0fc160SGilad Ben-Yossef	  References:
9304f0fc160SGilad Ben-Yossef	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
9314f0fc160SGilad Ben-Yossef	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
9324f0fc160SGilad Ben-Yossef
9331da177e4SLinus Torvaldsconfig CRYPTO_TGR192
9341da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
935f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9361da177e4SLinus Torvalds	help
9371da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
9381da177e4SLinus Torvalds
9391da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
9401da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
9411da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
9421da177e4SLinus Torvalds
9431da177e4SLinus Torvalds	  See also:
9441da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
9451da177e4SLinus Torvalds
946584fffc8SSebastian Siewiorconfig CRYPTO_WP512
947584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
9484946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
9491da177e4SLinus Torvalds	help
950584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
9511da177e4SLinus Torvalds
952584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
953584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
9541da177e4SLinus Torvalds
9551da177e4SLinus Torvalds	  See also:
9566d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
9571da177e4SLinus Torvalds
9580e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
9590e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
9608af00860SRichard Weinberger	depends on X86 && 64BIT
9610e1227d3SHuang Ying	select CRYPTO_CRYPTD
9620e1227d3SHuang Ying	help
9630e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
9640e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
9650e1227d3SHuang Ying
966584fffc8SSebastian Siewiorcomment "Ciphers"
9671da177e4SLinus Torvalds
9681da177e4SLinus Torvaldsconfig CRYPTO_AES
9691da177e4SLinus Torvalds	tristate "AES cipher algorithms"
970cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9711da177e4SLinus Torvalds	help
9721da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9731da177e4SLinus Torvalds	  algorithm.
9741da177e4SLinus Torvalds
9751da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9761da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9771da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9781da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9791da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9801da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9811da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9821da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9831da177e4SLinus Torvalds
9841da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9851da177e4SLinus Torvalds
9861da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
9871da177e4SLinus Torvalds
988b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
989b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
990b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
991b5e0b032SArd Biesheuvel	help
992b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
993b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
994b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
995b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
996b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
997b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
998b5e0b032SArd Biesheuvel
999b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1000b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
1001b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
1002b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
1003b5e0b032SArd Biesheuvel	  block.
1004b5e0b032SArd Biesheuvel
10051da177e4SLinus Torvaldsconfig CRYPTO_AES_586
10061da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
1007cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
1008cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10095157dea8SSebastian Siewior	select CRYPTO_AES
10101da177e4SLinus Torvalds	help
10111da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10121da177e4SLinus Torvalds	  algorithm.
10131da177e4SLinus Torvalds
10141da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
10151da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
10161da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
10171da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
10181da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
10191da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
10201da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
10211da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
10221da177e4SLinus Torvalds
10231da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
10241da177e4SLinus Torvalds
10251da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10261da177e4SLinus Torvalds
1027a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
1028a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
1029cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
1030cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
103181190b32SSebastian Siewior	select CRYPTO_AES
1032a2a892a2SAndreas Steinmetz	help
1033a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1034a2a892a2SAndreas Steinmetz	  algorithm.
1035a2a892a2SAndreas Steinmetz
1036a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
1037a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
1038a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
1039a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
1040a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
1041a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
1042a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
1043a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
1044a2a892a2SAndreas Steinmetz
1045a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
1046a2a892a2SAndreas Steinmetz
1047a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1048a2a892a2SAndreas Steinmetz
104954b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
105054b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
10518af00860SRichard Weinberger	depends on X86
105285671860SHerbert Xu	select CRYPTO_AEAD
10530d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
10540d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
105554b6a1bdSHuang Ying	select CRYPTO_ALGAPI
105685671860SHerbert Xu	select CRYPTO_BLKCIPHER
10577643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
105885671860SHerbert Xu	select CRYPTO_SIMD
105954b6a1bdSHuang Ying	help
106054b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
106154b6a1bdSHuang Ying
106254b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
106354b6a1bdSHuang Ying	  algorithm.
106454b6a1bdSHuang Ying
106554b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
106654b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
106754b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
106854b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
106954b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
107054b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
107154b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
107254b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
107354b6a1bdSHuang Ying
107454b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
107554b6a1bdSHuang Ying
107654b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
107754b6a1bdSHuang Ying
10780d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
10790d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
10800d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
10810d258efbSMathias Krause	  acceleration for CTR.
10822cf4ac8bSHuang Ying
10839bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
10849bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
10859bf4852dSDavid S. Miller	depends on SPARC64
10869bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
10879bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
10889bf4852dSDavid S. Miller	help
10899bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
10909bf4852dSDavid S. Miller
10919bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10929bf4852dSDavid S. Miller	  algorithm.
10939bf4852dSDavid S. Miller
10949bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
10959bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
10969bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
10979bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
10989bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
10999bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
11009bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
11019bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
11029bf4852dSDavid S. Miller
11039bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
11049bf4852dSDavid S. Miller
11059bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
11069bf4852dSDavid S. Miller
11079bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
11089bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
11099bf4852dSDavid S. Miller	  ECB and CBC.
11109bf4852dSDavid S. Miller
1111504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1112504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1113504c6143SMarkus Stockhausen	depends on PPC && SPE
1114504c6143SMarkus Stockhausen	help
1115504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1116504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1117504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1118504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1119504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1120504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1121504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1122504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1123504c6143SMarkus Stockhausen
11241da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
11251da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1126cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
11271da177e4SLinus Torvalds	help
11281da177e4SLinus Torvalds	  Anubis cipher algorithm.
11291da177e4SLinus Torvalds
11301da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
11311da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
11321da177e4SLinus Torvalds	  in the NESSIE competition.
11331da177e4SLinus Torvalds
11341da177e4SLinus Torvalds	  See also:
11356d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
11366d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
11371da177e4SLinus Torvalds
1138584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1139584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1140b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1141e2ee95b8SHye-Shik Chang	help
1142584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1143e2ee95b8SHye-Shik Chang
1144584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1145584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1146584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1147584fffc8SSebastian Siewior	  weakness of the algorithm.
1148584fffc8SSebastian Siewior
1149584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1150584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1151584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
115252ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1153584fffc8SSebastian Siewior	help
1154584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1155584fffc8SSebastian Siewior
1156584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1157584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1158584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1159e2ee95b8SHye-Shik Chang
1160e2ee95b8SHye-Shik Chang	  See also:
1161584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1162584fffc8SSebastian Siewior
116352ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
116452ba867cSJussi Kivilinna	tristate
116552ba867cSJussi Kivilinna	help
116652ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
116752ba867cSJussi Kivilinna	  generic c and the assembler implementations.
116852ba867cSJussi Kivilinna
116952ba867cSJussi Kivilinna	  See also:
117052ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
117152ba867cSJussi Kivilinna
117264b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
117364b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1174f21a7c19SAl Viro	depends on X86 && 64BIT
1175c1679171SEric Biggers	select CRYPTO_BLKCIPHER
117664b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
117764b94ceaSJussi Kivilinna	help
117864b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
117964b94ceaSJussi Kivilinna
118064b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
118164b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
118264b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
118364b94ceaSJussi Kivilinna
118464b94ceaSJussi Kivilinna	  See also:
118564b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
118664b94ceaSJussi Kivilinna
1187584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1188584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1189584fffc8SSebastian Siewior	depends on CRYPTO
1190584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1191584fffc8SSebastian Siewior	help
1192584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1193584fffc8SSebastian Siewior
1194584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1195584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1196584fffc8SSebastian Siewior
1197584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1198584fffc8SSebastian Siewior
1199584fffc8SSebastian Siewior	  See also:
1200584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1201584fffc8SSebastian Siewior
12020b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
12030b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1204f21a7c19SAl Viro	depends on X86 && 64BIT
12050b95ec56SJussi Kivilinna	depends on CRYPTO
12061af6d037SEric Biggers	select CRYPTO_BLKCIPHER
1207964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
12080b95ec56SJussi Kivilinna	help
12090b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
12100b95ec56SJussi Kivilinna
12110b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
12120b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
12130b95ec56SJussi Kivilinna
12140b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
12150b95ec56SJussi Kivilinna
12160b95ec56SJussi Kivilinna	  See also:
12170b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
12180b95ec56SJussi Kivilinna
1219d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1220d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1221d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1222d9b1d2e7SJussi Kivilinna	depends on CRYPTO
122344893bc2SEric Biggers	select CRYPTO_BLKCIPHER
1224d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
122544893bc2SEric Biggers	select CRYPTO_GLUE_HELPER_X86
122644893bc2SEric Biggers	select CRYPTO_SIMD
1227d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1228d9b1d2e7SJussi Kivilinna	help
1229d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1230d9b1d2e7SJussi Kivilinna
1231d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1232d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1233d9b1d2e7SJussi Kivilinna
1234d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1235d9b1d2e7SJussi Kivilinna
1236d9b1d2e7SJussi Kivilinna	  See also:
1237d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1238d9b1d2e7SJussi Kivilinna
1239f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1240f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1241f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1242f3f935a7SJussi Kivilinna	depends on CRYPTO
1243f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1244f3f935a7SJussi Kivilinna	help
1245f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1246f3f935a7SJussi Kivilinna
1247f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1248f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1249f3f935a7SJussi Kivilinna
1250f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1251f3f935a7SJussi Kivilinna
1252f3f935a7SJussi Kivilinna	  See also:
1253f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1254f3f935a7SJussi Kivilinna
125581658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
125681658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
125781658ad0SDavid S. Miller	depends on SPARC64
125881658ad0SDavid S. Miller	depends on CRYPTO
125981658ad0SDavid S. Miller	select CRYPTO_ALGAPI
126081658ad0SDavid S. Miller	help
126181658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
126281658ad0SDavid S. Miller
126381658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
126481658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
126581658ad0SDavid S. Miller
126681658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
126781658ad0SDavid S. Miller
126881658ad0SDavid S. Miller	  See also:
126981658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
127081658ad0SDavid S. Miller
1271044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1272044ab525SJussi Kivilinna	tristate
1273044ab525SJussi Kivilinna	help
1274044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1275044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1276044ab525SJussi Kivilinna
1277584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1278584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1279584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1280044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1281584fffc8SSebastian Siewior	help
1282584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1283584fffc8SSebastian Siewior	  described in RFC2144.
1284584fffc8SSebastian Siewior
12854d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12864d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12874d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12881e63183aSEric Biggers	select CRYPTO_BLKCIPHER
12894d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
12901e63183aSEric Biggers	select CRYPTO_CAST_COMMON
12911e63183aSEric Biggers	select CRYPTO_SIMD
12924d6d6a2cSJohannes Goetzfried	help
12934d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
12944d6d6a2cSJohannes Goetzfried	  described in RFC2144.
12954d6d6a2cSJohannes Goetzfried
12964d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
12974d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
12984d6d6a2cSJohannes Goetzfried
1299584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1300584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1301584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1302044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1303584fffc8SSebastian Siewior	help
1304584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1305584fffc8SSebastian Siewior	  described in RFC2612.
1306584fffc8SSebastian Siewior
13074ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
13084ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
13094ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
13104bd96924SEric Biggers	select CRYPTO_BLKCIPHER
13114ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
13124bd96924SEric Biggers	select CRYPTO_CAST_COMMON
13134bd96924SEric Biggers	select CRYPTO_GLUE_HELPER_X86
13144bd96924SEric Biggers	select CRYPTO_SIMD
13154ea1277dSJohannes Goetzfried	select CRYPTO_XTS
13164ea1277dSJohannes Goetzfried	help
13174ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
13184ea1277dSJohannes Goetzfried	  described in RFC2612.
13194ea1277dSJohannes Goetzfried
13204ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
13214ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
13224ea1277dSJohannes Goetzfried
1323584fffc8SSebastian Siewiorconfig CRYPTO_DES
1324584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1325584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1326584fffc8SSebastian Siewior	help
1327584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1328584fffc8SSebastian Siewior
1329c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1330c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
133197da37b3SDave Jones	depends on SPARC64
1332c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1333c5aac2dfSDavid S. Miller	select CRYPTO_DES
1334c5aac2dfSDavid S. Miller	help
1335c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1336c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1337c5aac2dfSDavid S. Miller
13386574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
13396574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
13406574e6c6SJussi Kivilinna	depends on X86 && 64BIT
134109c0f03bSEric Biggers	select CRYPTO_BLKCIPHER
13426574e6c6SJussi Kivilinna	select CRYPTO_DES
13436574e6c6SJussi Kivilinna	help
13446574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
13456574e6c6SJussi Kivilinna
13466574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
13476574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
13486574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
13496574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
13506574e6c6SJussi Kivilinna
1351584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1352584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1353584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1354584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1355584fffc8SSebastian Siewior	help
1356584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1357584fffc8SSebastian Siewior
1358584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1359584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1360584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1361584fffc8SSebastian Siewior	help
1362584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1363584fffc8SSebastian Siewior
1364584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1365584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1366584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1367584fffc8SSebastian Siewior
1368584fffc8SSebastian Siewior	  See also:
13696d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1370e2ee95b8SHye-Shik Chang
13712407d608STan Swee Hengconfig CRYPTO_SALSA20
13723b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
13732407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13742407d608STan Swee Heng	help
13752407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13762407d608STan Swee Heng
13772407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13782407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13792407d608STan Swee Heng
13802407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13812407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13821da177e4SLinus Torvalds
1383974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13843b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1385974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1386974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1387c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
1388974e4b75STan Swee Heng	help
1389974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1390974e4b75STan Swee Heng
1391974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1392974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1393974e4b75STan Swee Heng
1394974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1395974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1396974e4b75STan Swee Heng
13979a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
13983b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
13999a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
14009a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
1401c9a3ff8fSEric Biggers	select CRYPTO_SALSA20
14029a7dafbbSTan Swee Heng	help
14039a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
14049a7dafbbSTan Swee Heng
14059a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
14069a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
14079a7dafbbSTan Swee Heng
14089a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
14099a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
14109a7dafbbSTan Swee Heng
1411c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1412c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1413c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1414c08d0e64SMartin Willi	help
1415c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1416c08d0e64SMartin Willi
1417c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1418c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1419c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1420c08d0e64SMartin Willi
1421c08d0e64SMartin Willi	  See also:
1422c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1423c08d0e64SMartin Willi
1424c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
14253d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1426c9320b6dSMartin Willi	depends on X86 && 64BIT
1427c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1428c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1429c9320b6dSMartin Willi	help
1430c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1431c9320b6dSMartin Willi
1432c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1433c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1434c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1435c9320b6dSMartin Willi
1436c9320b6dSMartin Willi	  See also:
1437c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1438c9320b6dSMartin Willi
1439584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1440584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1441584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1442584fffc8SSebastian Siewior	help
1443584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1444584fffc8SSebastian Siewior
1445584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1446584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1447584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1448584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1449584fffc8SSebastian Siewior
1450584fffc8SSebastian Siewior	  See also:
1451584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1452584fffc8SSebastian Siewior
1453584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1454584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1455584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1456584fffc8SSebastian Siewior	help
1457584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1458584fffc8SSebastian Siewior
1459584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1460584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1461584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1462584fffc8SSebastian Siewior
1463584fffc8SSebastian Siewior	  See also:
1464584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1465584fffc8SSebastian Siewior
1466937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1467937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1468937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1469e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1470596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1471937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1472e0f409dcSEric Biggers	select CRYPTO_SIMD
1473937c30d7SJussi Kivilinna	help
1474937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1475937c30d7SJussi Kivilinna
1476937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1477937c30d7SJussi Kivilinna	  of 8 bits.
1478937c30d7SJussi Kivilinna
14791e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1480937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1481937c30d7SJussi Kivilinna
1482937c30d7SJussi Kivilinna	  See also:
1483937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1484937c30d7SJussi Kivilinna
1485251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1486251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1487251496dbSJussi Kivilinna	depends on X86 && !64BIT
1488e0f409dcSEric Biggers	select CRYPTO_BLKCIPHER
1489596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1490251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1491e0f409dcSEric Biggers	select CRYPTO_SIMD
1492251496dbSJussi Kivilinna	help
1493251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1494251496dbSJussi Kivilinna
1495251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1496251496dbSJussi Kivilinna	  of 8 bits.
1497251496dbSJussi Kivilinna
1498251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1499251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1500251496dbSJussi Kivilinna
1501251496dbSJussi Kivilinna	  See also:
1502251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1503251496dbSJussi Kivilinna
15047efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
15057efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
15067efe4076SJohannes Goetzfried	depends on X86 && 64BIT
1507e16bf974SEric Biggers	select CRYPTO_BLKCIPHER
15081d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
15097efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
1510e16bf974SEric Biggers	select CRYPTO_SIMD
15117efe4076SJohannes Goetzfried	select CRYPTO_XTS
15127efe4076SJohannes Goetzfried	help
15137efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
15147efe4076SJohannes Goetzfried
15157efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
15167efe4076SJohannes Goetzfried	  of 8 bits.
15177efe4076SJohannes Goetzfried
15187efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
15197efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
15207efe4076SJohannes Goetzfried
15217efe4076SJohannes Goetzfried	  See also:
15227efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
15237efe4076SJohannes Goetzfried
152456d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
152556d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
152656d76c96SJussi Kivilinna	depends on X86 && 64BIT
152756d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
152856d76c96SJussi Kivilinna	help
152956d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
153056d76c96SJussi Kivilinna
153156d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
153256d76c96SJussi Kivilinna	  of 8 bits.
153356d76c96SJussi Kivilinna
153456d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
153556d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
153656d76c96SJussi Kivilinna
153756d76c96SJussi Kivilinna	  See also:
153856d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
153956d76c96SJussi Kivilinna
1540747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4
1541747c8ce4SGilad Ben-Yossef	tristate "SM4 cipher algorithm"
1542747c8ce4SGilad Ben-Yossef	select CRYPTO_ALGAPI
1543747c8ce4SGilad Ben-Yossef	help
1544747c8ce4SGilad Ben-Yossef	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1545747c8ce4SGilad Ben-Yossef
1546747c8ce4SGilad Ben-Yossef	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1547747c8ce4SGilad Ben-Yossef	  Organization of State Commercial Administration of China (OSCCA)
1548747c8ce4SGilad Ben-Yossef	  as an authorized cryptographic algorithms for the use within China.
1549747c8ce4SGilad Ben-Yossef
1550747c8ce4SGilad Ben-Yossef	  SMS4 was originally created for use in protecting wireless
1551747c8ce4SGilad Ben-Yossef	  networks, and is mandated in the Chinese National Standard for
1552747c8ce4SGilad Ben-Yossef	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1553747c8ce4SGilad Ben-Yossef	  (GB.15629.11-2003).
1554747c8ce4SGilad Ben-Yossef
1555747c8ce4SGilad Ben-Yossef	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1556747c8ce4SGilad Ben-Yossef	  standardized through TC 260 of the Standardization Administration
1557747c8ce4SGilad Ben-Yossef	  of the People's Republic of China (SAC).
1558747c8ce4SGilad Ben-Yossef
1559747c8ce4SGilad Ben-Yossef	  The input, output, and key of SMS4 are each 128 bits.
1560747c8ce4SGilad Ben-Yossef
1561747c8ce4SGilad Ben-Yossef	  See also: <https://eprint.iacr.org/2008/329.pdf>
1562747c8ce4SGilad Ben-Yossef
1563747c8ce4SGilad Ben-Yossef	  If unsure, say N.
1564747c8ce4SGilad Ben-Yossef
1565da7a0ab5SEric Biggersconfig CRYPTO_SPECK
1566da7a0ab5SEric Biggers	tristate "Speck cipher algorithm"
1567da7a0ab5SEric Biggers	select CRYPTO_ALGAPI
1568da7a0ab5SEric Biggers	help
1569da7a0ab5SEric Biggers	  Speck is a lightweight block cipher that is tuned for optimal
1570da7a0ab5SEric Biggers	  performance in software (rather than hardware).
1571da7a0ab5SEric Biggers
1572da7a0ab5SEric Biggers	  Speck may not be as secure as AES, and should only be used on systems
1573da7a0ab5SEric Biggers	  where AES is not fast enough.
1574da7a0ab5SEric Biggers
1575da7a0ab5SEric Biggers	  See also: <https://eprint.iacr.org/2013/404.pdf>
1576da7a0ab5SEric Biggers
1577da7a0ab5SEric Biggers	  If unsure, say N.
1578da7a0ab5SEric Biggers
1579584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1580584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1581584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1582584fffc8SSebastian Siewior	help
1583584fffc8SSebastian Siewior	  TEA cipher algorithm.
1584584fffc8SSebastian Siewior
1585584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1586584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1587584fffc8SSebastian Siewior	  little memory.
1588584fffc8SSebastian Siewior
1589584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1590584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1591584fffc8SSebastian Siewior	  in the TEA algorithm.
1592584fffc8SSebastian Siewior
1593584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1594584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1595584fffc8SSebastian Siewior
1596584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1597584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1598584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1599584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1600584fffc8SSebastian Siewior	help
1601584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1602584fffc8SSebastian Siewior
1603584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1604584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1605584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1606584fffc8SSebastian Siewior	  bits.
1607584fffc8SSebastian Siewior
1608584fffc8SSebastian Siewior	  See also:
1609584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1610584fffc8SSebastian Siewior
1611584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1612584fffc8SSebastian Siewior	tristate
1613584fffc8SSebastian Siewior	help
1614584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1615584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1616584fffc8SSebastian Siewior
1617584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1618584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1619584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1620584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1621584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1622584fffc8SSebastian Siewior	help
1623584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1624584fffc8SSebastian Siewior
1625584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1626584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1627584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1628584fffc8SSebastian Siewior	  bits.
1629584fffc8SSebastian Siewior
1630584fffc8SSebastian Siewior	  See also:
1631584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1632584fffc8SSebastian Siewior
1633584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1634584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1635584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1636584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1637584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1638584fffc8SSebastian Siewior	help
1639584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1640584fffc8SSebastian Siewior
1641584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1642584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1643584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1644584fffc8SSebastian Siewior	  bits.
1645584fffc8SSebastian Siewior
1646584fffc8SSebastian Siewior	  See also:
1647584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1648584fffc8SSebastian Siewior
16498280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
16508280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1651f21a7c19SAl Viro	depends on X86 && 64BIT
165237992fa4SEric Biggers	select CRYPTO_BLKCIPHER
16538280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
16548280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1655414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16568280daadSJussi Kivilinna	help
16578280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
16588280daadSJussi Kivilinna
16598280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
16608280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
16618280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
16628280daadSJussi Kivilinna	  bits.
16638280daadSJussi Kivilinna
16648280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
16658280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
16668280daadSJussi Kivilinna
16678280daadSJussi Kivilinna	  See also:
16688280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
16698280daadSJussi Kivilinna
1670107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1671107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1672107778b5SJohannes Goetzfried	depends on X86 && 64BIT
16730e6ab46dSEric Biggers	select CRYPTO_BLKCIPHER
1674a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
16750e6ab46dSEric Biggers	select CRYPTO_SIMD
1676107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1677107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1678107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1679107778b5SJohannes Goetzfried	help
1680107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1681107778b5SJohannes Goetzfried
1682107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1683107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1684107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1685107778b5SJohannes Goetzfried	  bits.
1686107778b5SJohannes Goetzfried
1687107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1688107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1689107778b5SJohannes Goetzfried
1690107778b5SJohannes Goetzfried	  See also:
1691107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1692107778b5SJohannes Goetzfried
1693584fffc8SSebastian Siewiorcomment "Compression"
1694584fffc8SSebastian Siewior
16951da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16961da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1697cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1698f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16991da177e4SLinus Torvalds	select ZLIB_INFLATE
17001da177e4SLinus Torvalds	select ZLIB_DEFLATE
17011da177e4SLinus Torvalds	help
17021da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
17031da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
17041da177e4SLinus Torvalds
17051da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
17061da177e4SLinus Torvalds
17070b77abb3SZoltan Sogorconfig CRYPTO_LZO
17080b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
17090b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1710ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
17110b77abb3SZoltan Sogor	select LZO_COMPRESS
17120b77abb3SZoltan Sogor	select LZO_DECOMPRESS
17130b77abb3SZoltan Sogor	help
17140b77abb3SZoltan Sogor	  This is the LZO algorithm.
17150b77abb3SZoltan Sogor
171635a1fc18SSeth Jenningsconfig CRYPTO_842
171735a1fc18SSeth Jennings	tristate "842 compression algorithm"
17182062c5b6SDan Streetman	select CRYPTO_ALGAPI
17196a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
17202062c5b6SDan Streetman	select 842_COMPRESS
17212062c5b6SDan Streetman	select 842_DECOMPRESS
172235a1fc18SSeth Jennings	help
172335a1fc18SSeth Jennings	  This is the 842 algorithm.
172435a1fc18SSeth Jennings
17250ea8530dSChanho Minconfig CRYPTO_LZ4
17260ea8530dSChanho Min	tristate "LZ4 compression algorithm"
17270ea8530dSChanho Min	select CRYPTO_ALGAPI
17288cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
17290ea8530dSChanho Min	select LZ4_COMPRESS
17300ea8530dSChanho Min	select LZ4_DECOMPRESS
17310ea8530dSChanho Min	help
17320ea8530dSChanho Min	  This is the LZ4 algorithm.
17330ea8530dSChanho Min
17340ea8530dSChanho Minconfig CRYPTO_LZ4HC
17350ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
17360ea8530dSChanho Min	select CRYPTO_ALGAPI
173791d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
17380ea8530dSChanho Min	select LZ4HC_COMPRESS
17390ea8530dSChanho Min	select LZ4_DECOMPRESS
17400ea8530dSChanho Min	help
17410ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
17420ea8530dSChanho Min
1743d28fc3dbSNick Terrellconfig CRYPTO_ZSTD
1744d28fc3dbSNick Terrell	tristate "Zstd compression algorithm"
1745d28fc3dbSNick Terrell	select CRYPTO_ALGAPI
1746d28fc3dbSNick Terrell	select CRYPTO_ACOMP2
1747d28fc3dbSNick Terrell	select ZSTD_COMPRESS
1748d28fc3dbSNick Terrell	select ZSTD_DECOMPRESS
1749d28fc3dbSNick Terrell	help
1750d28fc3dbSNick Terrell	  This is the zstd algorithm.
1751d28fc3dbSNick Terrell
175217f0f4a4SNeil Hormancomment "Random Number Generation"
175317f0f4a4SNeil Horman
175417f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
175517f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
175617f0f4a4SNeil Horman	select CRYPTO_AES
175717f0f4a4SNeil Horman	select CRYPTO_RNG
175817f0f4a4SNeil Horman	help
175917f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
176017f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
17617dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
17627dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
176317f0f4a4SNeil Horman
1764f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1765419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1766419090c6SStephan Mueller	help
1767419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1768419090c6SStephan Mueller	  more of the DRBG types must be selected.
1769419090c6SStephan Mueller
1770f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1771419090c6SStephan Mueller
1772419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1773401e4238SHerbert Xu	bool
1774419090c6SStephan Mueller	default y
1775419090c6SStephan Mueller	select CRYPTO_HMAC
1776826775bbSHerbert Xu	select CRYPTO_SHA256
1777419090c6SStephan Mueller
1778419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1779419090c6SStephan Mueller	bool "Enable Hash DRBG"
1780826775bbSHerbert Xu	select CRYPTO_SHA256
1781419090c6SStephan Mueller	help
1782419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1783419090c6SStephan Mueller
1784419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1785419090c6SStephan Mueller	bool "Enable CTR DRBG"
1786419090c6SStephan Mueller	select CRYPTO_AES
178735591285SStephan Mueller	depends on CRYPTO_CTR
1788419090c6SStephan Mueller	help
1789419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1790419090c6SStephan Mueller
1791f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1792f2c89a10SHerbert Xu	tristate
1793401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1794f2c89a10SHerbert Xu	select CRYPTO_RNG
1795bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1796f2c89a10SHerbert Xu
1797f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1798419090c6SStephan Mueller
1799bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1800bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
18012f313e02SArnd Bergmann	select CRYPTO_RNG
1802bb5530e4SStephan Mueller	help
1803bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1804bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1805bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1806bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1807bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1808bb5530e4SStephan Mueller
180903c8efc1SHerbert Xuconfig CRYPTO_USER_API
181003c8efc1SHerbert Xu	tristate
181103c8efc1SHerbert Xu
1812fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1813fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
18147451708fSHerbert Xu	depends on NET
1815fe869cdbSHerbert Xu	select CRYPTO_HASH
1816fe869cdbSHerbert Xu	select CRYPTO_USER_API
1817fe869cdbSHerbert Xu	help
1818fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1819fe869cdbSHerbert Xu	  algorithms.
1820fe869cdbSHerbert Xu
18218ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
18228ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
18237451708fSHerbert Xu	depends on NET
18248ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
18258ff59090SHerbert Xu	select CRYPTO_USER_API
18268ff59090SHerbert Xu	help
18278ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
18288ff59090SHerbert Xu	  key cipher algorithms.
18298ff59090SHerbert Xu
18302f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
18312f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
18322f375538SStephan Mueller	depends on NET
18332f375538SStephan Mueller	select CRYPTO_RNG
18342f375538SStephan Mueller	select CRYPTO_USER_API
18352f375538SStephan Mueller	help
18362f375538SStephan Mueller	  This option enables the user-spaces interface for random
18372f375538SStephan Mueller	  number generator algorithms.
18382f375538SStephan Mueller
1839b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1840b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1841b64a2d95SHerbert Xu	depends on NET
1842b64a2d95SHerbert Xu	select CRYPTO_AEAD
184372548b09SStephan Mueller	select CRYPTO_BLKCIPHER
184472548b09SStephan Mueller	select CRYPTO_NULL
1845b64a2d95SHerbert Xu	select CRYPTO_USER_API
1846b64a2d95SHerbert Xu	help
1847b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1848b64a2d95SHerbert Xu	  cipher algorithms.
1849b64a2d95SHerbert Xu
1850ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1851ee08997fSDmitry Kasatkin	bool
1852ee08997fSDmitry Kasatkin
18531da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1854964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1855cfc411e7SDavid Howellssource certs/Kconfig
18561da177e4SLinus Torvalds
1857cce9e06dSHerbert Xuendif	# if CRYPTO
1858