1b2441318SGreg Kroah-Hartman# SPDX-License-Identifier: GPL-2.0 21da177e4SLinus Torvalds# 3685784aaSDan Williams# Generic algorithms support 4685784aaSDan Williams# 5685784aaSDan Williamsconfig XOR_BLOCKS 6685784aaSDan Williams tristate 7685784aaSDan Williams 8685784aaSDan Williams# 99bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support 109bc89cd8SDan Williams# 119bc89cd8SDan Williamssource "crypto/async_tx/Kconfig" 129bc89cd8SDan Williams 139bc89cd8SDan Williams# 141da177e4SLinus Torvalds# Cryptographic API Configuration 151da177e4SLinus Torvalds# 162e290f43SJan Engelhardtmenuconfig CRYPTO 17c3715cb9SSebastian Siewior tristate "Cryptographic API" 181da177e4SLinus Torvalds help 191da177e4SLinus Torvalds This option provides the core Cryptographic API. 201da177e4SLinus Torvalds 21cce9e06dSHerbert Xuif CRYPTO 22cce9e06dSHerbert Xu 23584fffc8SSebastian Siewiorcomment "Crypto core or helper" 24584fffc8SSebastian Siewior 25ccb778e1SNeil Hormanconfig CRYPTO_FIPS 26ccb778e1SNeil Horman bool "FIPS 200 compliance" 27f2c89a10SHerbert Xu depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 281f696097SAlec Ari depends on (MODULE_SIG || !MODULES) 29ccb778e1SNeil Horman help 30d99324c2SGeert Uytterhoeven This option enables the fips boot option which is 31d99324c2SGeert Uytterhoeven required if you want the system to operate in a FIPS 200 32ccb778e1SNeil Horman certification. You should say no unless you know what 33e84c5480SChuck Ebbert this is. 34ccb778e1SNeil Horman 35cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI 36cce9e06dSHerbert Xu tristate 376a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 38cce9e06dSHerbert Xu help 39cce9e06dSHerbert Xu This option provides the API for cryptographic algorithms. 40cce9e06dSHerbert Xu 416a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2 426a0fcbb4SHerbert Xu tristate 436a0fcbb4SHerbert Xu 441ae97820SHerbert Xuconfig CRYPTO_AEAD 451ae97820SHerbert Xu tristate 466a0fcbb4SHerbert Xu select CRYPTO_AEAD2 471ae97820SHerbert Xu select CRYPTO_ALGAPI 481ae97820SHerbert Xu 496a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2 506a0fcbb4SHerbert Xu tristate 516a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 52149a3971SHerbert Xu select CRYPTO_NULL2 53149a3971SHerbert Xu select CRYPTO_RNG2 546a0fcbb4SHerbert Xu 55b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER 565cde0af2SHerbert Xu tristate 57b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 585cde0af2SHerbert Xu select CRYPTO_ALGAPI 596a0fcbb4SHerbert Xu 60b95bba5dSEric Biggersconfig CRYPTO_SKCIPHER2 616a0fcbb4SHerbert Xu tristate 626a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 636a0fcbb4SHerbert Xu select CRYPTO_RNG2 645cde0af2SHerbert Xu 65055bcee3SHerbert Xuconfig CRYPTO_HASH 66055bcee3SHerbert Xu tristate 676a0fcbb4SHerbert Xu select CRYPTO_HASH2 68055bcee3SHerbert Xu select CRYPTO_ALGAPI 69055bcee3SHerbert Xu 706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2 716a0fcbb4SHerbert Xu tristate 726a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 736a0fcbb4SHerbert Xu 7417f0f4a4SNeil Hormanconfig CRYPTO_RNG 7517f0f4a4SNeil Horman tristate 766a0fcbb4SHerbert Xu select CRYPTO_RNG2 7717f0f4a4SNeil Horman select CRYPTO_ALGAPI 7817f0f4a4SNeil Horman 796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2 806a0fcbb4SHerbert Xu tristate 816a0fcbb4SHerbert Xu select CRYPTO_ALGAPI2 826a0fcbb4SHerbert Xu 83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT 84401e4238SHerbert Xu tristate 85401e4238SHerbert Xu select CRYPTO_DRBG_MENU 86401e4238SHerbert Xu 873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2 883c339ab8STadeusz Struk tristate 893c339ab8STadeusz Struk select CRYPTO_ALGAPI2 903c339ab8STadeusz Struk 913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER 923c339ab8STadeusz Struk tristate 933c339ab8STadeusz Struk select CRYPTO_AKCIPHER2 943c339ab8STadeusz Struk select CRYPTO_ALGAPI 953c339ab8STadeusz Struk 964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2 974e5f2c40SSalvatore Benedetto tristate 984e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI2 994e5f2c40SSalvatore Benedetto 1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP 1014e5f2c40SSalvatore Benedetto tristate 1024e5f2c40SSalvatore Benedetto select CRYPTO_ALGAPI 1034e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1044e5f2c40SSalvatore Benedetto 1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2 1062ebda74fSGiovanni Cabiddu tristate 1072ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI2 1088cd579d2SBart Van Assche select SGL_ALLOC 1092ebda74fSGiovanni Cabiddu 1102ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP 1112ebda74fSGiovanni Cabiddu tristate 1122ebda74fSGiovanni Cabiddu select CRYPTO_ALGAPI 1132ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1142ebda74fSGiovanni Cabiddu 1152b8c19dbSHerbert Xuconfig CRYPTO_MANAGER 1162b8c19dbSHerbert Xu tristate "Cryptographic algorithm manager" 1176a0fcbb4SHerbert Xu select CRYPTO_MANAGER2 1182b8c19dbSHerbert Xu help 1192b8c19dbSHerbert Xu Create default cryptographic template instantiations such as 1202b8c19dbSHerbert Xu cbc(aes). 1212b8c19dbSHerbert Xu 1226a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2 1236a0fcbb4SHerbert Xu def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 1246a0fcbb4SHerbert Xu select CRYPTO_AEAD2 1256a0fcbb4SHerbert Xu select CRYPTO_HASH2 126b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 127946cc463STadeusz Struk select CRYPTO_AKCIPHER2 1284e5f2c40SSalvatore Benedetto select CRYPTO_KPP2 1292ebda74fSGiovanni Cabiddu select CRYPTO_ACOMP2 1306a0fcbb4SHerbert Xu 131a38f7907SSteffen Klassertconfig CRYPTO_USER 132a38f7907SSteffen Klassert tristate "Userspace cryptographic algorithm configuration" 1335db017aaSHerbert Xu depends on NET 134a38f7907SSteffen Klassert select CRYPTO_MANAGER 135a38f7907SSteffen Klassert help 136d19978f5SValdis.Kletnieks@vt.edu Userspace configuration for cryptographic instantiations such as 137a38f7907SSteffen Klassert cbc(aes). 138a38f7907SSteffen Klassert 139326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS 140326a6346SHerbert Xu bool "Disable run-time self tests" 14100ca28a5SHerbert Xu default y 1420b767f96SAlexander Shishkin help 143326a6346SHerbert Xu Disable run-time self tests that normally take place at 144326a6346SHerbert Xu algorithm registration. 1450b767f96SAlexander Shishkin 1465b2706a4SEric Biggersconfig CRYPTO_MANAGER_EXTRA_TESTS 1475b2706a4SEric Biggers bool "Enable extra run-time crypto self tests" 1486569e309SJason A. Donenfeld depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 1495b2706a4SEric Biggers help 1505b2706a4SEric Biggers Enable extra run-time self tests of registered crypto algorithms, 1515b2706a4SEric Biggers including randomized fuzz tests. 1525b2706a4SEric Biggers 1535b2706a4SEric Biggers This is intended for developer use only, as these tests take much 1545b2706a4SEric Biggers longer to run than the normal self tests. 1555b2706a4SEric Biggers 156584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL 157e590e132SEric Biggers tristate 158584fffc8SSebastian Siewior 159584fffc8SSebastian Siewiorconfig CRYPTO_NULL 160584fffc8SSebastian Siewior tristate "Null algorithms" 161149a3971SHerbert Xu select CRYPTO_NULL2 162584fffc8SSebastian Siewior help 163584fffc8SSebastian Siewior These are 'Null' algorithms, used by IPsec, which do nothing. 164584fffc8SSebastian Siewior 165149a3971SHerbert Xuconfig CRYPTO_NULL2 166dd43c4e9SHerbert Xu tristate 167149a3971SHerbert Xu select CRYPTO_ALGAPI2 168b95bba5dSEric Biggers select CRYPTO_SKCIPHER2 169149a3971SHerbert Xu select CRYPTO_HASH2 170149a3971SHerbert Xu 1715068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT 1723b4afaf2SKees Cook tristate "Parallel crypto engine" 1733b4afaf2SKees Cook depends on SMP 1745068c7a8SSteffen Klassert select PADATA 1755068c7a8SSteffen Klassert select CRYPTO_MANAGER 1765068c7a8SSteffen Klassert select CRYPTO_AEAD 1775068c7a8SSteffen Klassert help 1785068c7a8SSteffen Klassert This converts an arbitrary crypto algorithm into a parallel 1795068c7a8SSteffen Klassert algorithm that executes in kernel threads. 1805068c7a8SSteffen Klassert 181584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD 182584fffc8SSebastian Siewior tristate "Software async crypto daemon" 183b95bba5dSEric Biggers select CRYPTO_SKCIPHER 184b8a28251SLoc Ho select CRYPTO_HASH 185584fffc8SSebastian Siewior select CRYPTO_MANAGER 186584fffc8SSebastian Siewior help 187584fffc8SSebastian Siewior This is a generic software asynchronous crypto daemon that 188584fffc8SSebastian Siewior converts an arbitrary synchronous software crypto algorithm 189584fffc8SSebastian Siewior into an asynchronous algorithm that executes in a kernel thread. 190584fffc8SSebastian Siewior 191584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC 192584fffc8SSebastian Siewior tristate "Authenc support" 193584fffc8SSebastian Siewior select CRYPTO_AEAD 194b95bba5dSEric Biggers select CRYPTO_SKCIPHER 195584fffc8SSebastian Siewior select CRYPTO_MANAGER 196584fffc8SSebastian Siewior select CRYPTO_HASH 197e94c6a7aSHerbert Xu select CRYPTO_NULL 198584fffc8SSebastian Siewior help 199584fffc8SSebastian Siewior Authenc: Combined mode wrapper for IPsec. 200584fffc8SSebastian Siewior This is required for IPSec. 201584fffc8SSebastian Siewior 202584fffc8SSebastian Siewiorconfig CRYPTO_TEST 203584fffc8SSebastian Siewior tristate "Testing module" 20400ea27f1SArd Biesheuvel depends on m || EXPERT 205da7f033dSHerbert Xu select CRYPTO_MANAGER 206584fffc8SSebastian Siewior help 207584fffc8SSebastian Siewior Quick & dirty crypto test module. 208584fffc8SSebastian Siewior 209266d0516SHerbert Xuconfig CRYPTO_SIMD 210266d0516SHerbert Xu tristate 211266d0516SHerbert Xu select CRYPTO_CRYPTD 212266d0516SHerbert Xu 213735d37b5SBaolin Wangconfig CRYPTO_ENGINE 214735d37b5SBaolin Wang tristate 215735d37b5SBaolin Wang 2163d6228a5SVitaly Chikunovcomment "Public-key cryptography" 2173d6228a5SVitaly Chikunov 2183d6228a5SVitaly Chikunovconfig CRYPTO_RSA 2193d6228a5SVitaly Chikunov tristate "RSA algorithm" 2203d6228a5SVitaly Chikunov select CRYPTO_AKCIPHER 2213d6228a5SVitaly Chikunov select CRYPTO_MANAGER 2223d6228a5SVitaly Chikunov select MPILIB 2233d6228a5SVitaly Chikunov select ASN1 2243d6228a5SVitaly Chikunov help 2253d6228a5SVitaly Chikunov Generic implementation of the RSA public key algorithm. 2263d6228a5SVitaly Chikunov 2273d6228a5SVitaly Chikunovconfig CRYPTO_DH 2283d6228a5SVitaly Chikunov tristate "Diffie-Hellman algorithm" 2293d6228a5SVitaly Chikunov select CRYPTO_KPP 2303d6228a5SVitaly Chikunov select MPILIB 2313d6228a5SVitaly Chikunov help 2323d6228a5SVitaly Chikunov Generic implementation of the Diffie-Hellman algorithm. 2333d6228a5SVitaly Chikunov 2347dce5981SNicolai Stangeconfig CRYPTO_DH_RFC7919_GROUPS 2357dce5981SNicolai Stange bool "Support for RFC 7919 FFDHE group parameters" 2367dce5981SNicolai Stange depends on CRYPTO_DH 2371e207964SNicolai Stange select CRYPTO_RNG_DEFAULT 2387dce5981SNicolai Stange help 2397dce5981SNicolai Stange Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 2407dce5981SNicolai Stange 2414a2289daSVitaly Chikunovconfig CRYPTO_ECC 2424a2289daSVitaly Chikunov tristate 24338aa192aSArnd Bergmann select CRYPTO_RNG_DEFAULT 2444a2289daSVitaly Chikunov 2453d6228a5SVitaly Chikunovconfig CRYPTO_ECDH 2463d6228a5SVitaly Chikunov tristate "ECDH algorithm" 2474a2289daSVitaly Chikunov select CRYPTO_ECC 2483d6228a5SVitaly Chikunov select CRYPTO_KPP 2493d6228a5SVitaly Chikunov help 2503d6228a5SVitaly Chikunov Generic implementation of the ECDH algorithm 2513d6228a5SVitaly Chikunov 2524e660291SStefan Bergerconfig CRYPTO_ECDSA 2534e660291SStefan Berger tristate "ECDSA (NIST P192, P256 etc.) algorithm" 2544e660291SStefan Berger select CRYPTO_ECC 2554e660291SStefan Berger select CRYPTO_AKCIPHER 2564e660291SStefan Berger select ASN1 2574e660291SStefan Berger help 2584e660291SStefan Berger Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 2594e660291SStefan Berger is A NIST cryptographic standard algorithm. Only signature verification 2604e660291SStefan Berger is implemented. 2614e660291SStefan Berger 2620d7a7864SVitaly Chikunovconfig CRYPTO_ECRDSA 2630d7a7864SVitaly Chikunov tristate "EC-RDSA (GOST 34.10) algorithm" 2640d7a7864SVitaly Chikunov select CRYPTO_ECC 2650d7a7864SVitaly Chikunov select CRYPTO_AKCIPHER 2660d7a7864SVitaly Chikunov select CRYPTO_STREEBOG 2671036633eSVitaly Chikunov select OID_REGISTRY 2681036633eSVitaly Chikunov select ASN1 2690d7a7864SVitaly Chikunov help 2700d7a7864SVitaly Chikunov Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 2710d7a7864SVitaly Chikunov RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 2720d7a7864SVitaly Chikunov standard algorithms (called GOST algorithms). Only signature verification 2730d7a7864SVitaly Chikunov is implemented. 2740d7a7864SVitaly Chikunov 275ea7ecb66STianjia Zhangconfig CRYPTO_SM2 276ea7ecb66STianjia Zhang tristate "SM2 algorithm" 277d2825fa9SJason A. Donenfeld select CRYPTO_SM3 278ea7ecb66STianjia Zhang select CRYPTO_AKCIPHER 279ea7ecb66STianjia Zhang select CRYPTO_MANAGER 280ea7ecb66STianjia Zhang select MPILIB 281ea7ecb66STianjia Zhang select ASN1 282ea7ecb66STianjia Zhang help 283ea7ecb66STianjia Zhang Generic implementation of the SM2 public key algorithm. It was 284ea7ecb66STianjia Zhang published by State Encryption Management Bureau, China. 285ea7ecb66STianjia Zhang as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 286ea7ecb66STianjia Zhang 287ea7ecb66STianjia Zhang References: 288ea7ecb66STianjia Zhang https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 289ea7ecb66STianjia Zhang http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 290ea7ecb66STianjia Zhang http://www.gmbz.org.cn/main/bzlb.html 291ea7ecb66STianjia Zhang 292ee772cb6SArd Biesheuvelconfig CRYPTO_CURVE25519 293ee772cb6SArd Biesheuvel tristate "Curve25519 algorithm" 294ee772cb6SArd Biesheuvel select CRYPTO_KPP 295ee772cb6SArd Biesheuvel select CRYPTO_LIB_CURVE25519_GENERIC 296ee772cb6SArd Biesheuvel 297bb611bdfSJason A. Donenfeldconfig CRYPTO_CURVE25519_X86 298bb611bdfSJason A. Donenfeld tristate "x86_64 accelerated Curve25519 scalar multiplication library" 299bb611bdfSJason A. Donenfeld depends on X86 && 64BIT 300bb611bdfSJason A. Donenfeld select CRYPTO_LIB_CURVE25519_GENERIC 301bb611bdfSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_CURVE25519 302bb611bdfSJason A. Donenfeld 303584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data" 304584fffc8SSebastian Siewior 305584fffc8SSebastian Siewiorconfig CRYPTO_CCM 306584fffc8SSebastian Siewior tristate "CCM support" 307584fffc8SSebastian Siewior select CRYPTO_CTR 308f15f05b0SArd Biesheuvel select CRYPTO_HASH 309584fffc8SSebastian Siewior select CRYPTO_AEAD 310c8a3315aSEric Biggers select CRYPTO_MANAGER 311584fffc8SSebastian Siewior help 312584fffc8SSebastian Siewior Support for Counter with CBC MAC. Required for IPsec. 313584fffc8SSebastian Siewior 314584fffc8SSebastian Siewiorconfig CRYPTO_GCM 315584fffc8SSebastian Siewior tristate "GCM/GMAC support" 316584fffc8SSebastian Siewior select CRYPTO_CTR 317584fffc8SSebastian Siewior select CRYPTO_AEAD 3189382d97aSHuang Ying select CRYPTO_GHASH 3199489667dSJussi Kivilinna select CRYPTO_NULL 320c8a3315aSEric Biggers select CRYPTO_MANAGER 321584fffc8SSebastian Siewior help 322584fffc8SSebastian Siewior Support for Galois/Counter Mode (GCM) and Galois Message 323584fffc8SSebastian Siewior Authentication Code (GMAC). Required for IPSec. 324584fffc8SSebastian Siewior 32571ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305 32671ebc4d1SMartin Willi tristate "ChaCha20-Poly1305 AEAD support" 32771ebc4d1SMartin Willi select CRYPTO_CHACHA20 32871ebc4d1SMartin Willi select CRYPTO_POLY1305 32971ebc4d1SMartin Willi select CRYPTO_AEAD 330c8a3315aSEric Biggers select CRYPTO_MANAGER 33171ebc4d1SMartin Willi help 33271ebc4d1SMartin Willi ChaCha20-Poly1305 AEAD support, RFC7539. 33371ebc4d1SMartin Willi 33471ebc4d1SMartin Willi Support for the AEAD wrapper using the ChaCha20 stream cipher combined 33571ebc4d1SMartin Willi with the Poly1305 authenticator. It is defined in RFC7539 for use in 33671ebc4d1SMartin Willi IETF protocols. 33771ebc4d1SMartin Willi 338f606a88eSOndrej Mosnacekconfig CRYPTO_AEGIS128 339f606a88eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm" 340f606a88eSOndrej Mosnacek select CRYPTO_AEAD 341f606a88eSOndrej Mosnacek select CRYPTO_AES # for AES S-box tables 342f606a88eSOndrej Mosnacek help 343f606a88eSOndrej Mosnacek Support for the AEGIS-128 dedicated AEAD algorithm. 344f606a88eSOndrej Mosnacek 345a4397635SArd Biesheuvelconfig CRYPTO_AEGIS128_SIMD 346a4397635SArd Biesheuvel bool "Support SIMD acceleration for AEGIS-128" 347a4397635SArd Biesheuvel depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 348a4397635SArd Biesheuvel default y 349a4397635SArd Biesheuvel 3501d373d4eSOndrej Mosnacekconfig CRYPTO_AEGIS128_AESNI_SSE2 3511d373d4eSOndrej Mosnacek tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 3521d373d4eSOndrej Mosnacek depends on X86 && 64BIT 3531d373d4eSOndrej Mosnacek select CRYPTO_AEAD 354de272ca7SEric Biggers select CRYPTO_SIMD 3551d373d4eSOndrej Mosnacek help 3564e5180ebSOndrej Mosnacek AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 3571d373d4eSOndrej Mosnacek 358584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV 359584fffc8SSebastian Siewior tristate "Sequence Number IV Generator" 360584fffc8SSebastian Siewior select CRYPTO_AEAD 361b95bba5dSEric Biggers select CRYPTO_SKCIPHER 362856e3f40SHerbert Xu select CRYPTO_NULL 363401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 364c8a3315aSEric Biggers select CRYPTO_MANAGER 365584fffc8SSebastian Siewior help 366584fffc8SSebastian Siewior This IV generator generates an IV based on a sequence number by 367584fffc8SSebastian Siewior xoring it with a salt. This algorithm is mainly useful for CTR 368584fffc8SSebastian Siewior 369a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV 370a10f554fSHerbert Xu tristate "Encrypted Chain IV Generator" 371a10f554fSHerbert Xu select CRYPTO_AEAD 372a10f554fSHerbert Xu select CRYPTO_NULL 373401e4238SHerbert Xu select CRYPTO_RNG_DEFAULT 374c8a3315aSEric Biggers select CRYPTO_MANAGER 375a10f554fSHerbert Xu help 376a10f554fSHerbert Xu This IV generator generates an IV based on the encryption of 377a10f554fSHerbert Xu a sequence number xored with a salt. This is the default 378a10f554fSHerbert Xu algorithm for CBC. 379a10f554fSHerbert Xu 380584fffc8SSebastian Siewiorcomment "Block modes" 381584fffc8SSebastian Siewior 382584fffc8SSebastian Siewiorconfig CRYPTO_CBC 383584fffc8SSebastian Siewior tristate "CBC support" 384b95bba5dSEric Biggers select CRYPTO_SKCIPHER 385584fffc8SSebastian Siewior select CRYPTO_MANAGER 386584fffc8SSebastian Siewior help 387584fffc8SSebastian Siewior CBC: Cipher Block Chaining mode 388584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 389584fffc8SSebastian Siewior 390a7d85e06SJames Bottomleyconfig CRYPTO_CFB 391a7d85e06SJames Bottomley tristate "CFB support" 392b95bba5dSEric Biggers select CRYPTO_SKCIPHER 393a7d85e06SJames Bottomley select CRYPTO_MANAGER 394a7d85e06SJames Bottomley help 395a7d85e06SJames Bottomley CFB: Cipher FeedBack mode 396a7d85e06SJames Bottomley This block cipher algorithm is required for TPM2 Cryptography. 397a7d85e06SJames Bottomley 398584fffc8SSebastian Siewiorconfig CRYPTO_CTR 399584fffc8SSebastian Siewior tristate "CTR support" 400b95bba5dSEric Biggers select CRYPTO_SKCIPHER 401584fffc8SSebastian Siewior select CRYPTO_MANAGER 402584fffc8SSebastian Siewior help 403584fffc8SSebastian Siewior CTR: Counter mode 404584fffc8SSebastian Siewior This block cipher algorithm is required for IPSec. 405584fffc8SSebastian Siewior 406584fffc8SSebastian Siewiorconfig CRYPTO_CTS 407584fffc8SSebastian Siewior tristate "CTS support" 408b95bba5dSEric Biggers select CRYPTO_SKCIPHER 409c8a3315aSEric Biggers select CRYPTO_MANAGER 410584fffc8SSebastian Siewior help 411584fffc8SSebastian Siewior CTS: Cipher Text Stealing 412584fffc8SSebastian Siewior This is the Cipher Text Stealing mode as described by 413ecd6d5c9SGilad Ben-Yossef Section 8 of rfc2040 and referenced by rfc3962 414ecd6d5c9SGilad Ben-Yossef (rfc3962 includes errata information in its Appendix A) or 415ecd6d5c9SGilad Ben-Yossef CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 416584fffc8SSebastian Siewior This mode is required for Kerberos gss mechanism support 417584fffc8SSebastian Siewior for AES encryption. 418584fffc8SSebastian Siewior 419ecd6d5c9SGilad Ben-Yossef See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 420ecd6d5c9SGilad Ben-Yossef 421584fffc8SSebastian Siewiorconfig CRYPTO_ECB 422584fffc8SSebastian Siewior tristate "ECB support" 423b95bba5dSEric Biggers select CRYPTO_SKCIPHER 424584fffc8SSebastian Siewior select CRYPTO_MANAGER 425584fffc8SSebastian Siewior help 426584fffc8SSebastian Siewior ECB: Electronic CodeBook mode 427584fffc8SSebastian Siewior This is the simplest block cipher algorithm. It simply encrypts 428584fffc8SSebastian Siewior the input block by block. 429584fffc8SSebastian Siewior 430584fffc8SSebastian Siewiorconfig CRYPTO_LRW 4312470a2b2SJussi Kivilinna tristate "LRW support" 432b95bba5dSEric Biggers select CRYPTO_SKCIPHER 433584fffc8SSebastian Siewior select CRYPTO_MANAGER 434584fffc8SSebastian Siewior select CRYPTO_GF128MUL 435f60bbbbeSHerbert Xu select CRYPTO_ECB 436584fffc8SSebastian Siewior help 437584fffc8SSebastian Siewior LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 438584fffc8SSebastian Siewior narrow block cipher mode for dm-crypt. Use it with cipher 439584fffc8SSebastian Siewior specification string aes-lrw-benbi, the key must be 256, 320 or 384. 440584fffc8SSebastian Siewior The first 128, 192 or 256 bits in the key are used for AES and the 441584fffc8SSebastian Siewior rest is used to tie each cipher block to its logical position. 442584fffc8SSebastian Siewior 443e497c518SGilad Ben-Yossefconfig CRYPTO_OFB 444e497c518SGilad Ben-Yossef tristate "OFB support" 445b95bba5dSEric Biggers select CRYPTO_SKCIPHER 446e497c518SGilad Ben-Yossef select CRYPTO_MANAGER 447e497c518SGilad Ben-Yossef help 448e497c518SGilad Ben-Yossef OFB: the Output Feedback mode makes a block cipher into a synchronous 449e497c518SGilad Ben-Yossef stream cipher. It generates keystream blocks, which are then XORed 450e497c518SGilad Ben-Yossef with the plaintext blocks to get the ciphertext. Flipping a bit in the 451e497c518SGilad Ben-Yossef ciphertext produces a flipped bit in the plaintext at the same 452e497c518SGilad Ben-Yossef location. This property allows many error correcting codes to function 453e497c518SGilad Ben-Yossef normally even when applied before encryption. 454e497c518SGilad Ben-Yossef 455584fffc8SSebastian Siewiorconfig CRYPTO_PCBC 456584fffc8SSebastian Siewior tristate "PCBC support" 457b95bba5dSEric Biggers select CRYPTO_SKCIPHER 458584fffc8SSebastian Siewior select CRYPTO_MANAGER 459584fffc8SSebastian Siewior help 460584fffc8SSebastian Siewior PCBC: Propagating Cipher Block Chaining mode 461584fffc8SSebastian Siewior This block cipher algorithm is required for RxRPC. 462584fffc8SSebastian Siewior 463*17fee07aSNathan Huckleberryconfig CRYPTO_XCTR 464*17fee07aSNathan Huckleberry tristate 465*17fee07aSNathan Huckleberry select CRYPTO_SKCIPHER 466*17fee07aSNathan Huckleberry select CRYPTO_MANAGER 467*17fee07aSNathan Huckleberry help 468*17fee07aSNathan Huckleberry XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode 469*17fee07aSNathan Huckleberry using XORs and little-endian addition rather than big-endian arithmetic. 470*17fee07aSNathan Huckleberry XCTR mode is used to implement HCTR2. 471*17fee07aSNathan Huckleberry 472584fffc8SSebastian Siewiorconfig CRYPTO_XTS 4735bcf8e6dSJussi Kivilinna tristate "XTS support" 474b95bba5dSEric Biggers select CRYPTO_SKCIPHER 475584fffc8SSebastian Siewior select CRYPTO_MANAGER 47612cb3a1cSMilan Broz select CRYPTO_ECB 477584fffc8SSebastian Siewior help 478584fffc8SSebastian Siewior XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 479584fffc8SSebastian Siewior key size 256, 384 or 512 bits. This implementation currently 480584fffc8SSebastian Siewior can't handle a sectorsize which is not a multiple of 16 bytes. 481584fffc8SSebastian Siewior 4821c49678eSStephan Muellerconfig CRYPTO_KEYWRAP 4831c49678eSStephan Mueller tristate "Key wrapping support" 484b95bba5dSEric Biggers select CRYPTO_SKCIPHER 485c8a3315aSEric Biggers select CRYPTO_MANAGER 4861c49678eSStephan Mueller help 4871c49678eSStephan Mueller Support for key wrapping (NIST SP800-38F / RFC3394) without 4881c49678eSStephan Mueller padding. 4891c49678eSStephan Mueller 49026609a21SEric Biggersconfig CRYPTO_NHPOLY1305 49126609a21SEric Biggers tristate 49226609a21SEric Biggers select CRYPTO_HASH 49348ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 49426609a21SEric Biggers 495012c8238SEric Biggersconfig CRYPTO_NHPOLY1305_SSE2 496012c8238SEric Biggers tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 497012c8238SEric Biggers depends on X86 && 64BIT 498012c8238SEric Biggers select CRYPTO_NHPOLY1305 499012c8238SEric Biggers help 500012c8238SEric Biggers SSE2 optimized implementation of the hash function used by the 501012c8238SEric Biggers Adiantum encryption mode. 502012c8238SEric Biggers 5030f961f9fSEric Biggersconfig CRYPTO_NHPOLY1305_AVX2 5040f961f9fSEric Biggers tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 5050f961f9fSEric Biggers depends on X86 && 64BIT 5060f961f9fSEric Biggers select CRYPTO_NHPOLY1305 5070f961f9fSEric Biggers help 5080f961f9fSEric Biggers AVX2 optimized implementation of the hash function used by the 5090f961f9fSEric Biggers Adiantum encryption mode. 5100f961f9fSEric Biggers 511059c2a4dSEric Biggersconfig CRYPTO_ADIANTUM 512059c2a4dSEric Biggers tristate "Adiantum support" 513059c2a4dSEric Biggers select CRYPTO_CHACHA20 51448ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 515059c2a4dSEric Biggers select CRYPTO_NHPOLY1305 516c8a3315aSEric Biggers select CRYPTO_MANAGER 517059c2a4dSEric Biggers help 518059c2a4dSEric Biggers Adiantum is a tweakable, length-preserving encryption mode 519059c2a4dSEric Biggers designed for fast and secure disk encryption, especially on 520059c2a4dSEric Biggers CPUs without dedicated crypto instructions. It encrypts 521059c2a4dSEric Biggers each sector using the XChaCha12 stream cipher, two passes of 522059c2a4dSEric Biggers an ε-almost-∆-universal hash function, and an invocation of 523059c2a4dSEric Biggers the AES-256 block cipher on a single 16-byte block. On CPUs 524059c2a4dSEric Biggers without AES instructions, Adiantum is much faster than 525059c2a4dSEric Biggers AES-XTS. 526059c2a4dSEric Biggers 527059c2a4dSEric Biggers Adiantum's security is provably reducible to that of its 528059c2a4dSEric Biggers underlying stream and block ciphers, subject to a security 529059c2a4dSEric Biggers bound. Unlike XTS, Adiantum is a true wide-block encryption 530059c2a4dSEric Biggers mode, so it actually provides an even stronger notion of 531059c2a4dSEric Biggers security than XTS, subject to the security bound. 532059c2a4dSEric Biggers 533059c2a4dSEric Biggers If unsure, say N. 534059c2a4dSEric Biggers 535be1eb7f7SArd Biesheuvelconfig CRYPTO_ESSIV 536be1eb7f7SArd Biesheuvel tristate "ESSIV support for block encryption" 537be1eb7f7SArd Biesheuvel select CRYPTO_AUTHENC 538be1eb7f7SArd Biesheuvel help 539be1eb7f7SArd Biesheuvel Encrypted salt-sector initialization vector (ESSIV) is an IV 540be1eb7f7SArd Biesheuvel generation method that is used in some cases by fscrypt and/or 541be1eb7f7SArd Biesheuvel dm-crypt. It uses the hash of the block encryption key as the 542be1eb7f7SArd Biesheuvel symmetric key for a block encryption pass applied to the input 543be1eb7f7SArd Biesheuvel IV, making low entropy IV sources more suitable for block 544be1eb7f7SArd Biesheuvel encryption. 545be1eb7f7SArd Biesheuvel 546be1eb7f7SArd Biesheuvel This driver implements a crypto API template that can be 547ab3d436bSGeert Uytterhoeven instantiated either as an skcipher or as an AEAD (depending on the 548be1eb7f7SArd Biesheuvel type of the first template argument), and which defers encryption 549be1eb7f7SArd Biesheuvel and decryption requests to the encapsulated cipher after applying 550ab3d436bSGeert Uytterhoeven ESSIV to the input IV. Note that in the AEAD case, it is assumed 551be1eb7f7SArd Biesheuvel that the keys are presented in the same format used by the authenc 552be1eb7f7SArd Biesheuvel template, and that the IV appears at the end of the authenticated 553be1eb7f7SArd Biesheuvel associated data (AAD) region (which is how dm-crypt uses it.) 554be1eb7f7SArd Biesheuvel 555be1eb7f7SArd Biesheuvel Note that the use of ESSIV is not recommended for new deployments, 556be1eb7f7SArd Biesheuvel and so this only needs to be enabled when interoperability with 557be1eb7f7SArd Biesheuvel existing encrypted volumes of filesystems is required, or when 558be1eb7f7SArd Biesheuvel building for a particular system that requires it (e.g., when 559be1eb7f7SArd Biesheuvel the SoC in question has accelerated CBC but not XTS, making CBC 560be1eb7f7SArd Biesheuvel combined with ESSIV the only feasible mode for h/w accelerated 561be1eb7f7SArd Biesheuvel block encryption) 562be1eb7f7SArd Biesheuvel 563584fffc8SSebastian Siewiorcomment "Hash modes" 564584fffc8SSebastian Siewior 56593b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC 56693b5e86aSJussi Kivilinna tristate "CMAC support" 56793b5e86aSJussi Kivilinna select CRYPTO_HASH 56893b5e86aSJussi Kivilinna select CRYPTO_MANAGER 56993b5e86aSJussi Kivilinna help 57093b5e86aSJussi Kivilinna Cipher-based Message Authentication Code (CMAC) specified by 57193b5e86aSJussi Kivilinna The National Institute of Standards and Technology (NIST). 57293b5e86aSJussi Kivilinna 57393b5e86aSJussi Kivilinna https://tools.ietf.org/html/rfc4493 57493b5e86aSJussi Kivilinna http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 57593b5e86aSJussi Kivilinna 5761da177e4SLinus Torvaldsconfig CRYPTO_HMAC 5778425165dSHerbert Xu tristate "HMAC support" 5780796ae06SHerbert Xu select CRYPTO_HASH 57943518407SHerbert Xu select CRYPTO_MANAGER 5801da177e4SLinus Torvalds help 5811da177e4SLinus Torvalds HMAC: Keyed-Hashing for Message Authentication (RFC2104). 5821da177e4SLinus Torvalds This is required for IPSec. 5831da177e4SLinus Torvalds 584333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC 585333b0d7eSKazunori MIYAZAWA tristate "XCBC support" 586333b0d7eSKazunori MIYAZAWA select CRYPTO_HASH 587333b0d7eSKazunori MIYAZAWA select CRYPTO_MANAGER 588333b0d7eSKazunori MIYAZAWA help 589333b0d7eSKazunori MIYAZAWA XCBC: Keyed-Hashing with encryption algorithm 5909332a9e7SAlexander A. Klimov https://www.ietf.org/rfc/rfc3566.txt 591333b0d7eSKazunori MIYAZAWA http://csrc.nist.gov/encryption/modes/proposedmodes/ 592333b0d7eSKazunori MIYAZAWA xcbc-mac/xcbc-mac-spec.pdf 593333b0d7eSKazunori MIYAZAWA 594f1939f7cSShane Wangconfig CRYPTO_VMAC 595f1939f7cSShane Wang tristate "VMAC support" 596f1939f7cSShane Wang select CRYPTO_HASH 597f1939f7cSShane Wang select CRYPTO_MANAGER 598f1939f7cSShane Wang help 599f1939f7cSShane Wang VMAC is a message authentication algorithm designed for 600f1939f7cSShane Wang very high speed on 64-bit architectures. 601f1939f7cSShane Wang 602f1939f7cSShane Wang See also: 6039332a9e7SAlexander A. Klimov <https://fastcrypto.org/vmac> 604f1939f7cSShane Wang 605584fffc8SSebastian Siewiorcomment "Digest" 606584fffc8SSebastian Siewior 607584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C 608584fffc8SSebastian Siewior tristate "CRC32c CRC algorithm" 6095773a3e6SHerbert Xu select CRYPTO_HASH 6106a0962b2SDarrick J. Wong select CRC32 6111da177e4SLinus Torvalds help 612584fffc8SSebastian Siewior Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 613584fffc8SSebastian Siewior by iSCSI for header and data digests and by others. 61469c35efcSHerbert Xu See Castagnoli93. Module will be crc32c. 6151da177e4SLinus Torvalds 6168cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL 6178cb51ba8SAustin Zhang tristate "CRC32c INTEL hardware acceleration" 6188cb51ba8SAustin Zhang depends on X86 6198cb51ba8SAustin Zhang select CRYPTO_HASH 6208cb51ba8SAustin Zhang help 6218cb51ba8SAustin Zhang In Intel processor with SSE4.2 supported, the processor will 6228cb51ba8SAustin Zhang support CRC32C implementation using hardware accelerated CRC32 6238cb51ba8SAustin Zhang instruction. This option will create 'crc32c-intel' module, 6248cb51ba8SAustin Zhang which will enable any routine to use the CRC32 instruction to 6258cb51ba8SAustin Zhang gain performance compared with software implementation. 6268cb51ba8SAustin Zhang Module will be crc32c-intel. 6278cb51ba8SAustin Zhang 6287cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM 6296dd7a82cSAnton Blanchard tristate "CRC32c CRC algorithm (powerpc64)" 630c12abf34SMichael Ellerman depends on PPC64 && ALTIVEC 6316dd7a82cSAnton Blanchard select CRYPTO_HASH 6326dd7a82cSAnton Blanchard select CRC32 6336dd7a82cSAnton Blanchard help 6346dd7a82cSAnton Blanchard CRC32c algorithm implemented using vector polynomial multiply-sum 6356dd7a82cSAnton Blanchard (vpmsum) instructions, introduced in POWER8. Enable on POWER8 6366dd7a82cSAnton Blanchard and newer processors for improved performance. 6376dd7a82cSAnton Blanchard 6386dd7a82cSAnton Blanchard 639442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64 640442a7c40SDavid S. Miller tristate "CRC32c CRC algorithm (SPARC64)" 641442a7c40SDavid S. Miller depends on SPARC64 642442a7c40SDavid S. Miller select CRYPTO_HASH 643442a7c40SDavid S. Miller select CRC32 644442a7c40SDavid S. Miller help 645442a7c40SDavid S. Miller CRC32c CRC algorithm implemented using sparc64 crypto instructions, 646442a7c40SDavid S. Miller when available. 647442a7c40SDavid S. Miller 64878c37d19SAlexander Boykoconfig CRYPTO_CRC32 64978c37d19SAlexander Boyko tristate "CRC32 CRC algorithm" 65078c37d19SAlexander Boyko select CRYPTO_HASH 65178c37d19SAlexander Boyko select CRC32 65278c37d19SAlexander Boyko help 65378c37d19SAlexander Boyko CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 65478c37d19SAlexander Boyko Shash crypto api wrappers to crc32_le function. 65578c37d19SAlexander Boyko 65678c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL 65778c37d19SAlexander Boyko tristate "CRC32 PCLMULQDQ hardware acceleration" 65878c37d19SAlexander Boyko depends on X86 65978c37d19SAlexander Boyko select CRYPTO_HASH 66078c37d19SAlexander Boyko select CRC32 66178c37d19SAlexander Boyko help 66278c37d19SAlexander Boyko From Intel Westmere and AMD Bulldozer processor with SSE4.2 66378c37d19SAlexander Boyko and PCLMULQDQ supported, the processor will support 66478c37d19SAlexander Boyko CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 665af8cb01fShaco instruction. This option will create 'crc32-pclmul' module, 66678c37d19SAlexander Boyko which will enable any routine to use the CRC-32-IEEE 802.3 checksum 66778c37d19SAlexander Boyko and gain better performance as compared with the table implementation. 66878c37d19SAlexander Boyko 6694a5dc51eSMarcin Nowakowskiconfig CRYPTO_CRC32_MIPS 6704a5dc51eSMarcin Nowakowski tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 6714a5dc51eSMarcin Nowakowski depends on MIPS_CRC_SUPPORT 6724a5dc51eSMarcin Nowakowski select CRYPTO_HASH 6734a5dc51eSMarcin Nowakowski help 6744a5dc51eSMarcin Nowakowski CRC32c and CRC32 CRC algorithms implemented using mips crypto 6754a5dc51eSMarcin Nowakowski instructions, when available. 6764a5dc51eSMarcin Nowakowski 6774a5dc51eSMarcin Nowakowski 67867882e76SNikolay Borisovconfig CRYPTO_XXHASH 67967882e76SNikolay Borisov tristate "xxHash hash algorithm" 68067882e76SNikolay Borisov select CRYPTO_HASH 68167882e76SNikolay Borisov select XXHASH 68267882e76SNikolay Borisov help 68367882e76SNikolay Borisov xxHash non-cryptographic hash algorithm. Extremely fast, working at 68467882e76SNikolay Borisov speeds close to RAM limits. 68567882e76SNikolay Borisov 68691d68933SDavid Sterbaconfig CRYPTO_BLAKE2B 68791d68933SDavid Sterba tristate "BLAKE2b digest algorithm" 68891d68933SDavid Sterba select CRYPTO_HASH 68991d68933SDavid Sterba help 69091d68933SDavid Sterba Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 69191d68933SDavid Sterba optimized for 64bit platforms and can produce digests of any size 69291d68933SDavid Sterba between 1 to 64. The keyed hash is also implemented. 69391d68933SDavid Sterba 69491d68933SDavid Sterba This module provides the following algorithms: 69591d68933SDavid Sterba 69691d68933SDavid Sterba - blake2b-160 69791d68933SDavid Sterba - blake2b-256 69891d68933SDavid Sterba - blake2b-384 69991d68933SDavid Sterba - blake2b-512 70091d68933SDavid Sterba 70191d68933SDavid Sterba See https://blake2.net for further information. 70291d68933SDavid Sterba 7037f9b0880SArd Biesheuvelconfig CRYPTO_BLAKE2S 7047f9b0880SArd Biesheuvel tristate "BLAKE2s digest algorithm" 7057f9b0880SArd Biesheuvel select CRYPTO_LIB_BLAKE2S_GENERIC 7067f9b0880SArd Biesheuvel select CRYPTO_HASH 7077f9b0880SArd Biesheuvel help 7087f9b0880SArd Biesheuvel Implementation of cryptographic hash function BLAKE2s 7097f9b0880SArd Biesheuvel optimized for 8-32bit platforms and can produce digests of any size 7107f9b0880SArd Biesheuvel between 1 to 32. The keyed hash is also implemented. 7117f9b0880SArd Biesheuvel 7127f9b0880SArd Biesheuvel This module provides the following algorithms: 7137f9b0880SArd Biesheuvel 7147f9b0880SArd Biesheuvel - blake2s-128 7157f9b0880SArd Biesheuvel - blake2s-160 7167f9b0880SArd Biesheuvel - blake2s-224 7177f9b0880SArd Biesheuvel - blake2s-256 7187f9b0880SArd Biesheuvel 7197f9b0880SArd Biesheuvel See https://blake2.net for further information. 7207f9b0880SArd Biesheuvel 721ed0356edSJason A. Donenfeldconfig CRYPTO_BLAKE2S_X86 722ed0356edSJason A. Donenfeld tristate "BLAKE2s digest algorithm (x86 accelerated version)" 723ed0356edSJason A. Donenfeld depends on X86 && 64BIT 724ed0356edSJason A. Donenfeld select CRYPTO_LIB_BLAKE2S_GENERIC 725ed0356edSJason A. Donenfeld select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 726ed0356edSJason A. Donenfeld 72768411521SHerbert Xuconfig CRYPTO_CRCT10DIF 72868411521SHerbert Xu tristate "CRCT10DIF algorithm" 72968411521SHerbert Xu select CRYPTO_HASH 73068411521SHerbert Xu help 73168411521SHerbert Xu CRC T10 Data Integrity Field computation is being cast as 73268411521SHerbert Xu a crypto transform. This allows for faster crc t10 diff 73368411521SHerbert Xu transforms to be used if they are available. 73468411521SHerbert Xu 73568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL 73668411521SHerbert Xu tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 73768411521SHerbert Xu depends on X86 && 64BIT && CRC_T10DIF 73868411521SHerbert Xu select CRYPTO_HASH 73968411521SHerbert Xu help 74068411521SHerbert Xu For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 74168411521SHerbert Xu CRC T10 DIF PCLMULQDQ computation can be hardware 74268411521SHerbert Xu accelerated PCLMULQDQ instruction. This option will create 743af8cb01fShaco 'crct10dif-pclmul' module, which is faster when computing the 74468411521SHerbert Xu crct10dif checksum as compared with the generic table implementation. 74568411521SHerbert Xu 746b01df1c1SDaniel Axtensconfig CRYPTO_CRCT10DIF_VPMSUM 747b01df1c1SDaniel Axtens tristate "CRC32T10DIF powerpc64 hardware acceleration" 748b01df1c1SDaniel Axtens depends on PPC64 && ALTIVEC && CRC_T10DIF 749b01df1c1SDaniel Axtens select CRYPTO_HASH 750b01df1c1SDaniel Axtens help 751b01df1c1SDaniel Axtens CRC10T10DIF algorithm implemented using vector polynomial 752b01df1c1SDaniel Axtens multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 753b01df1c1SDaniel Axtens POWER8 and newer processors for improved performance. 754b01df1c1SDaniel Axtens 755f3813f4bSKeith Buschconfig CRYPTO_CRC64_ROCKSOFT 756f3813f4bSKeith Busch tristate "Rocksoft Model CRC64 algorithm" 757f3813f4bSKeith Busch depends on CRC64 758f3813f4bSKeith Busch select CRYPTO_HASH 759f3813f4bSKeith Busch 760146c8688SDaniel Axtensconfig CRYPTO_VPMSUM_TESTER 761146c8688SDaniel Axtens tristate "Powerpc64 vpmsum hardware acceleration tester" 762146c8688SDaniel Axtens depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 763146c8688SDaniel Axtens help 764146c8688SDaniel Axtens Stress test for CRC32c and CRC-T10DIF algorithms implemented with 765146c8688SDaniel Axtens POWER8 vpmsum instructions. 766146c8688SDaniel Axtens Unless you are testing these algorithms, you don't need this. 767146c8688SDaniel Axtens 7682cdc6899SHuang Yingconfig CRYPTO_GHASH 7698dfa20fcSEric Biggers tristate "GHASH hash function" 7702cdc6899SHuang Ying select CRYPTO_GF128MUL 771578c60fbSArnd Bergmann select CRYPTO_HASH 7722cdc6899SHuang Ying help 7738dfa20fcSEric Biggers GHASH is the hash function used in GCM (Galois/Counter Mode). 7748dfa20fcSEric Biggers It is not a general-purpose cryptographic hash function. 7752cdc6899SHuang Ying 776f979e014SMartin Williconfig CRYPTO_POLY1305 777f979e014SMartin Willi tristate "Poly1305 authenticator algorithm" 778578c60fbSArnd Bergmann select CRYPTO_HASH 77948ea8c6eSArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 780f979e014SMartin Willi help 781f979e014SMartin Willi Poly1305 authenticator algorithm, RFC7539. 782f979e014SMartin Willi 783f979e014SMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 784f979e014SMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 785f979e014SMartin Willi in IETF protocols. This is the portable C implementation of Poly1305. 786f979e014SMartin Willi 787c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64 788b1ccc8f4SMartin Willi tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 789c70f4abeSMartin Willi depends on X86 && 64BIT 7901b2c6a51SArd Biesheuvel select CRYPTO_LIB_POLY1305_GENERIC 791f0e89bcfSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 792c70f4abeSMartin Willi help 793c70f4abeSMartin Willi Poly1305 authenticator algorithm, RFC7539. 794c70f4abeSMartin Willi 795c70f4abeSMartin Willi Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 796c70f4abeSMartin Willi It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 797c70f4abeSMartin Willi in IETF protocols. This is the x86_64 assembler implementation using SIMD 798c70f4abeSMartin Willi instructions. 799c70f4abeSMartin Willi 800a11d055eSArd Biesheuvelconfig CRYPTO_POLY1305_MIPS 801a11d055eSArd Biesheuvel tristate "Poly1305 authenticator algorithm (MIPS optimized)" 8026c810cf2SMaciej W. Rozycki depends on MIPS 803a11d055eSArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_POLY1305 804a11d055eSArd Biesheuvel 8051da177e4SLinus Torvaldsconfig CRYPTO_MD4 8061da177e4SLinus Torvalds tristate "MD4 digest algorithm" 807808a1763SAdrian-Ken Rueegsegger select CRYPTO_HASH 8081da177e4SLinus Torvalds help 8091da177e4SLinus Torvalds MD4 message digest algorithm (RFC1320). 8101da177e4SLinus Torvalds 8111da177e4SLinus Torvaldsconfig CRYPTO_MD5 8121da177e4SLinus Torvalds tristate "MD5 digest algorithm" 81314b75ba7SAdrian-Ken Rueegsegger select CRYPTO_HASH 8141da177e4SLinus Torvalds help 8151da177e4SLinus Torvalds MD5 message digest algorithm (RFC1321). 8161da177e4SLinus Torvalds 817d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON 818d69e75deSAaro Koskinen tristate "MD5 digest algorithm (OCTEON)" 819d69e75deSAaro Koskinen depends on CPU_CAVIUM_OCTEON 820d69e75deSAaro Koskinen select CRYPTO_MD5 821d69e75deSAaro Koskinen select CRYPTO_HASH 822d69e75deSAaro Koskinen help 823d69e75deSAaro Koskinen MD5 message digest algorithm (RFC1321) implemented 824d69e75deSAaro Koskinen using OCTEON crypto instructions, when available. 825d69e75deSAaro Koskinen 826e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC 827e8e59953SMarkus Stockhausen tristate "MD5 digest algorithm (PPC)" 828e8e59953SMarkus Stockhausen depends on PPC 829e8e59953SMarkus Stockhausen select CRYPTO_HASH 830e8e59953SMarkus Stockhausen help 831e8e59953SMarkus Stockhausen MD5 message digest algorithm (RFC1321) implemented 832e8e59953SMarkus Stockhausen in PPC assembler. 833e8e59953SMarkus Stockhausen 834fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64 835fa4dfedcSDavid S. Miller tristate "MD5 digest algorithm (SPARC64)" 836fa4dfedcSDavid S. Miller depends on SPARC64 837fa4dfedcSDavid S. Miller select CRYPTO_MD5 838fa4dfedcSDavid S. Miller select CRYPTO_HASH 839fa4dfedcSDavid S. Miller help 840fa4dfedcSDavid S. Miller MD5 message digest algorithm (RFC1321) implemented 841fa4dfedcSDavid S. Miller using sparc64 crypto instructions, when available. 842fa4dfedcSDavid S. Miller 843584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC 844584fffc8SSebastian Siewior tristate "Michael MIC keyed digest algorithm" 84519e2bf14SAdrian-Ken Rueegsegger select CRYPTO_HASH 846584fffc8SSebastian Siewior help 847584fffc8SSebastian Siewior Michael MIC is used for message integrity protection in TKIP 848584fffc8SSebastian Siewior (IEEE 802.11i). This algorithm is required for TKIP, but it 849584fffc8SSebastian Siewior should not be used for other purposes because of the weakness 850584fffc8SSebastian Siewior of the algorithm. 851584fffc8SSebastian Siewior 85282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160 85382798f90SAdrian-Ken Rueegsegger tristate "RIPEMD-160 digest algorithm" 854e5835fbaSHerbert Xu select CRYPTO_HASH 85582798f90SAdrian-Ken Rueegsegger help 85682798f90SAdrian-Ken Rueegsegger RIPEMD-160 (ISO/IEC 10118-3:2004). 85782798f90SAdrian-Ken Rueegsegger 85882798f90SAdrian-Ken Rueegsegger RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 85982798f90SAdrian-Ken Rueegsegger to be used as a secure replacement for the 128-bit hash functions 860b6d44341SAdrian Bunk MD4, MD5 and it's predecessor RIPEMD 861b6d44341SAdrian Bunk (not to be confused with RIPEMD-128). 86282798f90SAdrian-Ken Rueegsegger 863b6d44341SAdrian Bunk It's speed is comparable to SHA1 and there are no known attacks 864b6d44341SAdrian Bunk against RIPEMD-160. 865534fe2c1SAdrian-Ken Rueegsegger 866534fe2c1SAdrian-Ken Rueegsegger Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 8679332a9e7SAlexander A. Klimov See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 868534fe2c1SAdrian-Ken Rueegsegger 8691da177e4SLinus Torvaldsconfig CRYPTO_SHA1 8701da177e4SLinus Torvalds tristate "SHA1 digest algorithm" 87154ccb367SAdrian-Ken Rueegsegger select CRYPTO_HASH 8721da177e4SLinus Torvalds help 8731da177e4SLinus Torvalds SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 8741da177e4SLinus Torvalds 87566be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3 876e38b6b7fStim tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 87766be8951SMathias Krause depends on X86 && 64BIT 87866be8951SMathias Krause select CRYPTO_SHA1 87966be8951SMathias Krause select CRYPTO_HASH 88066be8951SMathias Krause help 88166be8951SMathias Krause SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 88266be8951SMathias Krause using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 883e38b6b7fStim Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 884e38b6b7fStim when available. 88566be8951SMathias Krause 8868275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3 887e38b6b7fStim tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 8888275d1aaSTim Chen depends on X86 && 64BIT 8898275d1aaSTim Chen select CRYPTO_SHA256 8908275d1aaSTim Chen select CRYPTO_HASH 8918275d1aaSTim Chen help 8928275d1aaSTim Chen SHA-256 secure hash standard (DFIPS 180-2) implemented 8938275d1aaSTim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 8948275d1aaSTim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 895e38b6b7fStim version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 896e38b6b7fStim Instructions) when available. 8978275d1aaSTim Chen 89887de4579STim Chenconfig CRYPTO_SHA512_SSSE3 89987de4579STim Chen tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 90087de4579STim Chen depends on X86 && 64BIT 90187de4579STim Chen select CRYPTO_SHA512 90287de4579STim Chen select CRYPTO_HASH 90387de4579STim Chen help 90487de4579STim Chen SHA-512 secure hash standard (DFIPS 180-2) implemented 90587de4579STim Chen using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 90687de4579STim Chen Extensions version 1 (AVX1), or Advanced Vector Extensions 90787de4579STim Chen version 2 (AVX2) instructions, when available. 90887de4579STim Chen 909efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON 910efdb6f6eSAaro Koskinen tristate "SHA1 digest algorithm (OCTEON)" 911efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 912efdb6f6eSAaro Koskinen select CRYPTO_SHA1 913efdb6f6eSAaro Koskinen select CRYPTO_HASH 914efdb6f6eSAaro Koskinen help 915efdb6f6eSAaro Koskinen SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 916efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 917efdb6f6eSAaro Koskinen 9184ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64 9194ff28d4cSDavid S. Miller tristate "SHA1 digest algorithm (SPARC64)" 9204ff28d4cSDavid S. Miller depends on SPARC64 9214ff28d4cSDavid S. Miller select CRYPTO_SHA1 9224ff28d4cSDavid S. Miller select CRYPTO_HASH 9234ff28d4cSDavid S. Miller help 9244ff28d4cSDavid S. Miller SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 9254ff28d4cSDavid S. Miller using sparc64 crypto instructions, when available. 9264ff28d4cSDavid S. Miller 927323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC 928323a6bf1SMichael Ellerman tristate "SHA1 digest algorithm (powerpc)" 929323a6bf1SMichael Ellerman depends on PPC 930323a6bf1SMichael Ellerman help 931323a6bf1SMichael Ellerman This is the powerpc hardware accelerated implementation of the 932323a6bf1SMichael Ellerman SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 933323a6bf1SMichael Ellerman 934d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE 935d9850fc5SMarkus Stockhausen tristate "SHA1 digest algorithm (PPC SPE)" 936d9850fc5SMarkus Stockhausen depends on PPC && SPE 937d9850fc5SMarkus Stockhausen help 938d9850fc5SMarkus Stockhausen SHA-1 secure hash standard (DFIPS 180-4) implemented 939d9850fc5SMarkus Stockhausen using powerpc SPE SIMD instruction set. 940d9850fc5SMarkus Stockhausen 9411da177e4SLinus Torvaldsconfig CRYPTO_SHA256 942cd12fb90SJonathan Lynch tristate "SHA224 and SHA256 digest algorithm" 94350e109b5SAdrian-Ken Rueegsegger select CRYPTO_HASH 94408c327f6SHans de Goede select CRYPTO_LIB_SHA256 9451da177e4SLinus Torvalds help 9461da177e4SLinus Torvalds SHA256 secure hash standard (DFIPS 180-2). 9471da177e4SLinus Torvalds 9481da177e4SLinus Torvalds This version of SHA implements a 256 bit hash with 128 bits of 9491da177e4SLinus Torvalds security against collision attacks. 9501da177e4SLinus Torvalds 951cd12fb90SJonathan Lynch This code also includes SHA-224, a 224 bit hash with 112 bits 952cd12fb90SJonathan Lynch of security against collision attacks. 953cd12fb90SJonathan Lynch 9542ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE 9552ecc1e95SMarkus Stockhausen tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 9562ecc1e95SMarkus Stockhausen depends on PPC && SPE 9572ecc1e95SMarkus Stockhausen select CRYPTO_SHA256 9582ecc1e95SMarkus Stockhausen select CRYPTO_HASH 9592ecc1e95SMarkus Stockhausen help 9602ecc1e95SMarkus Stockhausen SHA224 and SHA256 secure hash standard (DFIPS 180-2) 9612ecc1e95SMarkus Stockhausen implemented using powerpc SPE SIMD instruction set. 9622ecc1e95SMarkus Stockhausen 963efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON 964efdb6f6eSAaro Koskinen tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 965efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 966efdb6f6eSAaro Koskinen select CRYPTO_SHA256 967efdb6f6eSAaro Koskinen select CRYPTO_HASH 968efdb6f6eSAaro Koskinen help 969efdb6f6eSAaro Koskinen SHA-256 secure hash standard (DFIPS 180-2) implemented 970efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 971efdb6f6eSAaro Koskinen 97286c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64 97386c93b24SDavid S. Miller tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 97486c93b24SDavid S. Miller depends on SPARC64 97586c93b24SDavid S. Miller select CRYPTO_SHA256 97686c93b24SDavid S. Miller select CRYPTO_HASH 97786c93b24SDavid S. Miller help 97886c93b24SDavid S. Miller SHA-256 secure hash standard (DFIPS 180-2) implemented 97986c93b24SDavid S. Miller using sparc64 crypto instructions, when available. 98086c93b24SDavid S. Miller 9811da177e4SLinus Torvaldsconfig CRYPTO_SHA512 9821da177e4SLinus Torvalds tristate "SHA384 and SHA512 digest algorithms" 983bd9d20dbSAdrian-Ken Rueegsegger select CRYPTO_HASH 9841da177e4SLinus Torvalds help 9851da177e4SLinus Torvalds SHA512 secure hash standard (DFIPS 180-2). 9861da177e4SLinus Torvalds 9871da177e4SLinus Torvalds This version of SHA implements a 512 bit hash with 256 bits of 9881da177e4SLinus Torvalds security against collision attacks. 9891da177e4SLinus Torvalds 9901da177e4SLinus Torvalds This code also includes SHA-384, a 384 bit hash with 192 bits 9911da177e4SLinus Torvalds of security against collision attacks. 9921da177e4SLinus Torvalds 993efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON 994efdb6f6eSAaro Koskinen tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 995efdb6f6eSAaro Koskinen depends on CPU_CAVIUM_OCTEON 996efdb6f6eSAaro Koskinen select CRYPTO_SHA512 997efdb6f6eSAaro Koskinen select CRYPTO_HASH 998efdb6f6eSAaro Koskinen help 999efdb6f6eSAaro Koskinen SHA-512 secure hash standard (DFIPS 180-2) implemented 1000efdb6f6eSAaro Koskinen using OCTEON crypto instructions, when available. 1001efdb6f6eSAaro Koskinen 1002775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64 1003775e0c69SDavid S. Miller tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1004775e0c69SDavid S. Miller depends on SPARC64 1005775e0c69SDavid S. Miller select CRYPTO_SHA512 1006775e0c69SDavid S. Miller select CRYPTO_HASH 1007775e0c69SDavid S. Miller help 1008775e0c69SDavid S. Miller SHA-512 secure hash standard (DFIPS 180-2) implemented 1009775e0c69SDavid S. Miller using sparc64 crypto instructions, when available. 1010775e0c69SDavid S. Miller 101153964b9eSJeff Garzikconfig CRYPTO_SHA3 101253964b9eSJeff Garzik tristate "SHA3 digest algorithm" 101353964b9eSJeff Garzik select CRYPTO_HASH 101453964b9eSJeff Garzik help 101553964b9eSJeff Garzik SHA-3 secure hash standard (DFIPS 202). It's based on 101653964b9eSJeff Garzik cryptographic sponge function family called Keccak. 101753964b9eSJeff Garzik 101853964b9eSJeff Garzik References: 101953964b9eSJeff Garzik http://keccak.noekeon.org/ 102053964b9eSJeff Garzik 10214f0fc160SGilad Ben-Yossefconfig CRYPTO_SM3 1022d2825fa9SJason A. Donenfeld tristate 1023d2825fa9SJason A. Donenfeld 1024d2825fa9SJason A. Donenfeldconfig CRYPTO_SM3_GENERIC 10254f0fc160SGilad Ben-Yossef tristate "SM3 digest algorithm" 10264f0fc160SGilad Ben-Yossef select CRYPTO_HASH 1027d2825fa9SJason A. Donenfeld select CRYPTO_SM3 10284f0fc160SGilad Ben-Yossef help 10294f0fc160SGilad Ben-Yossef SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 10304f0fc160SGilad Ben-Yossef It is part of the Chinese Commercial Cryptography suite. 10314f0fc160SGilad Ben-Yossef 10324f0fc160SGilad Ben-Yossef References: 10334f0fc160SGilad Ben-Yossef http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 10344f0fc160SGilad Ben-Yossef https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 10354f0fc160SGilad Ben-Yossef 1036930ab34dSTianjia Zhangconfig CRYPTO_SM3_AVX_X86_64 1037930ab34dSTianjia Zhang tristate "SM3 digest algorithm (x86_64/AVX)" 1038930ab34dSTianjia Zhang depends on X86 && 64BIT 1039930ab34dSTianjia Zhang select CRYPTO_HASH 1040d2825fa9SJason A. Donenfeld select CRYPTO_SM3 1041930ab34dSTianjia Zhang help 1042930ab34dSTianjia Zhang SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1043930ab34dSTianjia Zhang It is part of the Chinese Commercial Cryptography suite. This is 1044930ab34dSTianjia Zhang SM3 optimized implementation using Advanced Vector Extensions (AVX) 1045930ab34dSTianjia Zhang when available. 1046930ab34dSTianjia Zhang 1047930ab34dSTianjia Zhang If unsure, say N. 1048930ab34dSTianjia Zhang 1049fe18957eSVitaly Chikunovconfig CRYPTO_STREEBOG 1050fe18957eSVitaly Chikunov tristate "Streebog Hash Function" 1051fe18957eSVitaly Chikunov select CRYPTO_HASH 1052fe18957eSVitaly Chikunov help 1053fe18957eSVitaly Chikunov Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1054fe18957eSVitaly Chikunov cryptographic standard algorithms (called GOST algorithms). 1055fe18957eSVitaly Chikunov This setting enables two hash algorithms with 256 and 512 bits output. 1056fe18957eSVitaly Chikunov 1057fe18957eSVitaly Chikunov References: 1058fe18957eSVitaly Chikunov https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1059fe18957eSVitaly Chikunov https://tools.ietf.org/html/rfc6986 1060fe18957eSVitaly Chikunov 1061584fffc8SSebastian Siewiorconfig CRYPTO_WP512 1062584fffc8SSebastian Siewior tristate "Whirlpool digest algorithms" 10634946510bSAdrian-Ken Rueegsegger select CRYPTO_HASH 10641da177e4SLinus Torvalds help 1065584fffc8SSebastian Siewior Whirlpool hash algorithm 512, 384 and 256-bit hashes 10661da177e4SLinus Torvalds 1067584fffc8SSebastian Siewior Whirlpool-512 is part of the NESSIE cryptographic primitives. 1068584fffc8SSebastian Siewior Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 10691da177e4SLinus Torvalds 10701da177e4SLinus Torvalds See also: 10716d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 10721da177e4SLinus Torvalds 10730e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL 10748dfa20fcSEric Biggers tristate "GHASH hash function (CLMUL-NI accelerated)" 10758af00860SRichard Weinberger depends on X86 && 64BIT 10760e1227d3SHuang Ying select CRYPTO_CRYPTD 10770e1227d3SHuang Ying help 10788dfa20fcSEric Biggers This is the x86_64 CLMUL-NI accelerated implementation of 10798dfa20fcSEric Biggers GHASH, the hash function used in GCM (Galois/Counter mode). 10800e1227d3SHuang Ying 1081584fffc8SSebastian Siewiorcomment "Ciphers" 10821da177e4SLinus Torvalds 10831da177e4SLinus Torvaldsconfig CRYPTO_AES 10841da177e4SLinus Torvalds tristate "AES cipher algorithms" 1085cce9e06dSHerbert Xu select CRYPTO_ALGAPI 10865bb12d78SArd Biesheuvel select CRYPTO_LIB_AES 10871da177e4SLinus Torvalds help 10881da177e4SLinus Torvalds AES cipher algorithms (FIPS-197). AES uses the Rijndael 10891da177e4SLinus Torvalds algorithm. 10901da177e4SLinus Torvalds 10911da177e4SLinus Torvalds Rijndael appears to be consistently a very good performer in 10921da177e4SLinus Torvalds both hardware and software across a wide range of computing 10931da177e4SLinus Torvalds environments regardless of its use in feedback or non-feedback 10941da177e4SLinus Torvalds modes. Its key setup time is excellent, and its key agility is 10951da177e4SLinus Torvalds good. Rijndael's very low memory requirements make it very well 10961da177e4SLinus Torvalds suited for restricted-space environments, in which it also 10971da177e4SLinus Torvalds demonstrates excellent performance. Rijndael's operations are 10981da177e4SLinus Torvalds among the easiest to defend against power and timing attacks. 10991da177e4SLinus Torvalds 11001da177e4SLinus Torvalds The AES specifies three key sizes: 128, 192 and 256 bits 11011da177e4SLinus Torvalds 11021da177e4SLinus Torvalds See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 11031da177e4SLinus Torvalds 1104b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI 1105b5e0b032SArd Biesheuvel tristate "Fixed time AES cipher" 1106b5e0b032SArd Biesheuvel select CRYPTO_ALGAPI 1107e59c1c98SArd Biesheuvel select CRYPTO_LIB_AES 1108b5e0b032SArd Biesheuvel help 1109b5e0b032SArd Biesheuvel This is a generic implementation of AES that attempts to eliminate 1110b5e0b032SArd Biesheuvel data dependent latencies as much as possible without affecting 1111b5e0b032SArd Biesheuvel performance too much. It is intended for use by the generic CCM 1112b5e0b032SArd Biesheuvel and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1113b5e0b032SArd Biesheuvel solely on encryption (although decryption is supported as well, but 1114b5e0b032SArd Biesheuvel with a more dramatic performance hit) 1115b5e0b032SArd Biesheuvel 1116b5e0b032SArd Biesheuvel Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1117b5e0b032SArd Biesheuvel 8 for decryption), this implementation only uses just two S-boxes of 1118b5e0b032SArd Biesheuvel 256 bytes each, and attempts to eliminate data dependent latencies by 1119b5e0b032SArd Biesheuvel prefetching the entire table into the cache at the start of each 11200a6a40c2SEric Biggers block. Interrupts are also disabled to avoid races where cachelines 11210a6a40c2SEric Biggers are evicted when the CPU is interrupted to do something else. 1122b5e0b032SArd Biesheuvel 112354b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL 112454b6a1bdSHuang Ying tristate "AES cipher algorithms (AES-NI)" 11258af00860SRichard Weinberger depends on X86 112685671860SHerbert Xu select CRYPTO_AEAD 11272c53fd11SArd Biesheuvel select CRYPTO_LIB_AES 112854b6a1bdSHuang Ying select CRYPTO_ALGAPI 1129b95bba5dSEric Biggers select CRYPTO_SKCIPHER 113085671860SHerbert Xu select CRYPTO_SIMD 113154b6a1bdSHuang Ying help 113254b6a1bdSHuang Ying Use Intel AES-NI instructions for AES algorithm. 113354b6a1bdSHuang Ying 113454b6a1bdSHuang Ying AES cipher algorithms (FIPS-197). AES uses the Rijndael 113554b6a1bdSHuang Ying algorithm. 113654b6a1bdSHuang Ying 113754b6a1bdSHuang Ying Rijndael appears to be consistently a very good performer in 113854b6a1bdSHuang Ying both hardware and software across a wide range of computing 113954b6a1bdSHuang Ying environments regardless of its use in feedback or non-feedback 114054b6a1bdSHuang Ying modes. Its key setup time is excellent, and its key agility is 114154b6a1bdSHuang Ying good. Rijndael's very low memory requirements make it very well 114254b6a1bdSHuang Ying suited for restricted-space environments, in which it also 114354b6a1bdSHuang Ying demonstrates excellent performance. Rijndael's operations are 114454b6a1bdSHuang Ying among the easiest to defend against power and timing attacks. 114554b6a1bdSHuang Ying 114654b6a1bdSHuang Ying The AES specifies three key sizes: 128, 192 and 256 bits 114754b6a1bdSHuang Ying 114854b6a1bdSHuang Ying See <http://csrc.nist.gov/encryption/aes/> for more information. 114954b6a1bdSHuang Ying 11500d258efbSMathias Krause In addition to AES cipher algorithm support, the acceleration 11510d258efbSMathias Krause for some popular block cipher mode is supported too, including 1152944585a6SArd Biesheuvel ECB, CBC, LRW, XTS. The 64 bit version has additional 11530d258efbSMathias Krause acceleration for CTR. 11542cf4ac8bSHuang Ying 11559bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64 11569bf4852dSDavid S. Miller tristate "AES cipher algorithms (SPARC64)" 11579bf4852dSDavid S. Miller depends on SPARC64 1158b95bba5dSEric Biggers select CRYPTO_SKCIPHER 11599bf4852dSDavid S. Miller help 11609bf4852dSDavid S. Miller Use SPARC64 crypto opcodes for AES algorithm. 11619bf4852dSDavid S. Miller 11629bf4852dSDavid S. Miller AES cipher algorithms (FIPS-197). AES uses the Rijndael 11639bf4852dSDavid S. Miller algorithm. 11649bf4852dSDavid S. Miller 11659bf4852dSDavid S. Miller Rijndael appears to be consistently a very good performer in 11669bf4852dSDavid S. Miller both hardware and software across a wide range of computing 11679bf4852dSDavid S. Miller environments regardless of its use in feedback or non-feedback 11689bf4852dSDavid S. Miller modes. Its key setup time is excellent, and its key agility is 11699bf4852dSDavid S. Miller good. Rijndael's very low memory requirements make it very well 11709bf4852dSDavid S. Miller suited for restricted-space environments, in which it also 11719bf4852dSDavid S. Miller demonstrates excellent performance. Rijndael's operations are 11729bf4852dSDavid S. Miller among the easiest to defend against power and timing attacks. 11739bf4852dSDavid S. Miller 11749bf4852dSDavid S. Miller The AES specifies three key sizes: 128, 192 and 256 bits 11759bf4852dSDavid S. Miller 11769bf4852dSDavid S. Miller See <http://csrc.nist.gov/encryption/aes/> for more information. 11779bf4852dSDavid S. Miller 11789bf4852dSDavid S. Miller In addition to AES cipher algorithm support, the acceleration 11799bf4852dSDavid S. Miller for some popular block cipher mode is supported too, including 11809bf4852dSDavid S. Miller ECB and CBC. 11819bf4852dSDavid S. Miller 1182504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE 1183504c6143SMarkus Stockhausen tristate "AES cipher algorithms (PPC SPE)" 1184504c6143SMarkus Stockhausen depends on PPC && SPE 1185b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1186504c6143SMarkus Stockhausen help 1187504c6143SMarkus Stockhausen AES cipher algorithms (FIPS-197). Additionally the acceleration 1188504c6143SMarkus Stockhausen for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1189504c6143SMarkus Stockhausen This module should only be used for low power (router) devices 1190504c6143SMarkus Stockhausen without hardware AES acceleration (e.g. caam crypto). It reduces the 1191504c6143SMarkus Stockhausen size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1192504c6143SMarkus Stockhausen timining attacks. Nevertheless it might be not as secure as other 1193504c6143SMarkus Stockhausen architecture specific assembler implementations that work on 1KB 1194504c6143SMarkus Stockhausen tables or 256 bytes S-boxes. 1195504c6143SMarkus Stockhausen 11961da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS 11971da177e4SLinus Torvalds tristate "Anubis cipher algorithm" 11981674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1199cce9e06dSHerbert Xu select CRYPTO_ALGAPI 12001da177e4SLinus Torvalds help 12011da177e4SLinus Torvalds Anubis cipher algorithm. 12021da177e4SLinus Torvalds 12031da177e4SLinus Torvalds Anubis is a variable key length cipher which can use keys from 12041da177e4SLinus Torvalds 128 bits to 320 bits in length. It was evaluated as a entrant 12051da177e4SLinus Torvalds in the NESSIE competition. 12061da177e4SLinus Torvalds 12071da177e4SLinus Torvalds See also: 12086d8de74cSJustin P. Mattock <https://www.cosic.esat.kuleuven.be/nessie/reports/> 12096d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 12101da177e4SLinus Torvalds 1211584fffc8SSebastian Siewiorconfig CRYPTO_ARC4 1212584fffc8SSebastian Siewior tristate "ARC4 cipher algorithm" 12139ace6771SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1214b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1215dc51f257SArd Biesheuvel select CRYPTO_LIB_ARC4 1216e2ee95b8SHye-Shik Chang help 1217584fffc8SSebastian Siewior ARC4 cipher algorithm. 1218e2ee95b8SHye-Shik Chang 1219584fffc8SSebastian Siewior ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1220584fffc8SSebastian Siewior bits in length. This algorithm is required for driver-based 1221584fffc8SSebastian Siewior WEP, but it should not be for other purposes because of the 1222584fffc8SSebastian Siewior weakness of the algorithm. 1223584fffc8SSebastian Siewior 1224584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH 1225584fffc8SSebastian Siewior tristate "Blowfish cipher algorithm" 1226584fffc8SSebastian Siewior select CRYPTO_ALGAPI 122752ba867cSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1228584fffc8SSebastian Siewior help 1229584fffc8SSebastian Siewior Blowfish cipher algorithm, by Bruce Schneier. 1230584fffc8SSebastian Siewior 1231584fffc8SSebastian Siewior This is a variable key length cipher which can use keys from 32 1232584fffc8SSebastian Siewior bits to 448 bits in length. It's fast, simple and specifically 1233584fffc8SSebastian Siewior designed for use on "large microprocessors". 1234e2ee95b8SHye-Shik Chang 1235e2ee95b8SHye-Shik Chang See also: 12369332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 1237584fffc8SSebastian Siewior 123852ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON 123952ba867cSJussi Kivilinna tristate 124052ba867cSJussi Kivilinna help 124152ba867cSJussi Kivilinna Common parts of the Blowfish cipher algorithm shared by the 124252ba867cSJussi Kivilinna generic c and the assembler implementations. 124352ba867cSJussi Kivilinna 124452ba867cSJussi Kivilinna See also: 12459332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 124652ba867cSJussi Kivilinna 124764b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64 124864b94ceaSJussi Kivilinna tristate "Blowfish cipher algorithm (x86_64)" 1249f21a7c19SAl Viro depends on X86 && 64BIT 1250b95bba5dSEric Biggers select CRYPTO_SKCIPHER 125164b94ceaSJussi Kivilinna select CRYPTO_BLOWFISH_COMMON 1252c0a64926SArd Biesheuvel imply CRYPTO_CTR 125364b94ceaSJussi Kivilinna help 125464b94ceaSJussi Kivilinna Blowfish cipher algorithm (x86_64), by Bruce Schneier. 125564b94ceaSJussi Kivilinna 125664b94ceaSJussi Kivilinna This is a variable key length cipher which can use keys from 32 125764b94ceaSJussi Kivilinna bits to 448 bits in length. It's fast, simple and specifically 125864b94ceaSJussi Kivilinna designed for use on "large microprocessors". 125964b94ceaSJussi Kivilinna 126064b94ceaSJussi Kivilinna See also: 12619332a9e7SAlexander A. Klimov <https://www.schneier.com/blowfish.html> 126264b94ceaSJussi Kivilinna 1263584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA 1264584fffc8SSebastian Siewior tristate "Camellia cipher algorithms" 1265584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1266584fffc8SSebastian Siewior help 1267584fffc8SSebastian Siewior Camellia cipher algorithms module. 1268584fffc8SSebastian Siewior 1269584fffc8SSebastian Siewior Camellia is a symmetric key block cipher developed jointly 1270584fffc8SSebastian Siewior at NTT and Mitsubishi Electric Corporation. 1271584fffc8SSebastian Siewior 1272584fffc8SSebastian Siewior The Camellia specifies three key sizes: 128, 192 and 256 bits. 1273584fffc8SSebastian Siewior 1274584fffc8SSebastian Siewior See also: 1275584fffc8SSebastian Siewior <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1276584fffc8SSebastian Siewior 12770b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64 12780b95ec56SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64)" 1279f21a7c19SAl Viro depends on X86 && 64BIT 1280b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1281a1f91ecfSArd Biesheuvel imply CRYPTO_CTR 12820b95ec56SJussi Kivilinna help 12830b95ec56SJussi Kivilinna Camellia cipher algorithm module (x86_64). 12840b95ec56SJussi Kivilinna 12850b95ec56SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 12860b95ec56SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 12870b95ec56SJussi Kivilinna 12880b95ec56SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 12890b95ec56SJussi Kivilinna 12900b95ec56SJussi Kivilinna See also: 12910b95ec56SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 12920b95ec56SJussi Kivilinna 1293d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1294d9b1d2e7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1295d9b1d2e7SJussi Kivilinna depends on X86 && 64BIT 1296b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1297d9b1d2e7SJussi Kivilinna select CRYPTO_CAMELLIA_X86_64 129844893bc2SEric Biggers select CRYPTO_SIMD 129955a7e88fSArd Biesheuvel imply CRYPTO_XTS 1300d9b1d2e7SJussi Kivilinna help 1301d9b1d2e7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1302d9b1d2e7SJussi Kivilinna 1303d9b1d2e7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1304d9b1d2e7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1305d9b1d2e7SJussi Kivilinna 1306d9b1d2e7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1307d9b1d2e7SJussi Kivilinna 1308d9b1d2e7SJussi Kivilinna See also: 1309d9b1d2e7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1310d9b1d2e7SJussi Kivilinna 1311f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1312f3f935a7SJussi Kivilinna tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1313f3f935a7SJussi Kivilinna depends on X86 && 64BIT 1314f3f935a7SJussi Kivilinna select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1315f3f935a7SJussi Kivilinna help 1316f3f935a7SJussi Kivilinna Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1317f3f935a7SJussi Kivilinna 1318f3f935a7SJussi Kivilinna Camellia is a symmetric key block cipher developed jointly 1319f3f935a7SJussi Kivilinna at NTT and Mitsubishi Electric Corporation. 1320f3f935a7SJussi Kivilinna 1321f3f935a7SJussi Kivilinna The Camellia specifies three key sizes: 128, 192 and 256 bits. 1322f3f935a7SJussi Kivilinna 1323f3f935a7SJussi Kivilinna See also: 1324f3f935a7SJussi Kivilinna <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1325f3f935a7SJussi Kivilinna 132681658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64 132781658ad0SDavid S. Miller tristate "Camellia cipher algorithm (SPARC64)" 132881658ad0SDavid S. Miller depends on SPARC64 132981658ad0SDavid S. Miller select CRYPTO_ALGAPI 1330b95bba5dSEric Biggers select CRYPTO_SKCIPHER 133181658ad0SDavid S. Miller help 133281658ad0SDavid S. Miller Camellia cipher algorithm module (SPARC64). 133381658ad0SDavid S. Miller 133481658ad0SDavid S. Miller Camellia is a symmetric key block cipher developed jointly 133581658ad0SDavid S. Miller at NTT and Mitsubishi Electric Corporation. 133681658ad0SDavid S. Miller 133781658ad0SDavid S. Miller The Camellia specifies three key sizes: 128, 192 and 256 bits. 133881658ad0SDavid S. Miller 133981658ad0SDavid S. Miller See also: 134081658ad0SDavid S. Miller <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 134181658ad0SDavid S. Miller 1342044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON 1343044ab525SJussi Kivilinna tristate 1344044ab525SJussi Kivilinna help 1345044ab525SJussi Kivilinna Common parts of the CAST cipher algorithms shared by the 1346044ab525SJussi Kivilinna generic c and the assembler implementations. 1347044ab525SJussi Kivilinna 1348584fffc8SSebastian Siewiorconfig CRYPTO_CAST5 1349584fffc8SSebastian Siewior tristate "CAST5 (CAST-128) cipher algorithm" 1350584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1351044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1352584fffc8SSebastian Siewior help 1353584fffc8SSebastian Siewior The CAST5 encryption algorithm (synonymous with CAST-128) is 1354584fffc8SSebastian Siewior described in RFC2144. 1355584fffc8SSebastian Siewior 13564d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64 13574d6d6a2cSJohannes Goetzfried tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 13584d6d6a2cSJohannes Goetzfried depends on X86 && 64BIT 1359b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13604d6d6a2cSJohannes Goetzfried select CRYPTO_CAST5 13611e63183aSEric Biggers select CRYPTO_CAST_COMMON 13621e63183aSEric Biggers select CRYPTO_SIMD 1363e2d60e2fSArd Biesheuvel imply CRYPTO_CTR 13644d6d6a2cSJohannes Goetzfried help 13654d6d6a2cSJohannes Goetzfried The CAST5 encryption algorithm (synonymous with CAST-128) is 13664d6d6a2cSJohannes Goetzfried described in RFC2144. 13674d6d6a2cSJohannes Goetzfried 13684d6d6a2cSJohannes Goetzfried This module provides the Cast5 cipher algorithm that processes 13694d6d6a2cSJohannes Goetzfried sixteen blocks parallel using the AVX instruction set. 13704d6d6a2cSJohannes Goetzfried 1371584fffc8SSebastian Siewiorconfig CRYPTO_CAST6 1372584fffc8SSebastian Siewior tristate "CAST6 (CAST-256) cipher algorithm" 1373584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1374044ab525SJussi Kivilinna select CRYPTO_CAST_COMMON 1375584fffc8SSebastian Siewior help 1376584fffc8SSebastian Siewior The CAST6 encryption algorithm (synonymous with CAST-256) is 1377584fffc8SSebastian Siewior described in RFC2612. 1378584fffc8SSebastian Siewior 13794ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64 13804ea1277dSJohannes Goetzfried tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 13814ea1277dSJohannes Goetzfried depends on X86 && 64BIT 1382b95bba5dSEric Biggers select CRYPTO_SKCIPHER 13834ea1277dSJohannes Goetzfried select CRYPTO_CAST6 13844bd96924SEric Biggers select CRYPTO_CAST_COMMON 13854bd96924SEric Biggers select CRYPTO_SIMD 13862cc0fedbSArd Biesheuvel imply CRYPTO_XTS 13877a6623ccSArd Biesheuvel imply CRYPTO_CTR 13884ea1277dSJohannes Goetzfried help 13894ea1277dSJohannes Goetzfried The CAST6 encryption algorithm (synonymous with CAST-256) is 13904ea1277dSJohannes Goetzfried described in RFC2612. 13914ea1277dSJohannes Goetzfried 13924ea1277dSJohannes Goetzfried This module provides the Cast6 cipher algorithm that processes 13934ea1277dSJohannes Goetzfried eight blocks parallel using the AVX instruction set. 13944ea1277dSJohannes Goetzfried 1395584fffc8SSebastian Siewiorconfig CRYPTO_DES 1396584fffc8SSebastian Siewior tristate "DES and Triple DES EDE cipher algorithms" 1397584fffc8SSebastian Siewior select CRYPTO_ALGAPI 139804007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1399584fffc8SSebastian Siewior help 1400584fffc8SSebastian Siewior DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1401584fffc8SSebastian Siewior 1402c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64 1403c5aac2dfSDavid S. Miller tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 140497da37b3SDave Jones depends on SPARC64 1405c5aac2dfSDavid S. Miller select CRYPTO_ALGAPI 140604007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1407b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1408c5aac2dfSDavid S. Miller help 1409c5aac2dfSDavid S. Miller DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1410c5aac2dfSDavid S. Miller optimized using SPARC64 crypto opcodes. 1411c5aac2dfSDavid S. Miller 14126574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64 14136574e6c6SJussi Kivilinna tristate "Triple DES EDE cipher algorithm (x86-64)" 14146574e6c6SJussi Kivilinna depends on X86 && 64BIT 1415b95bba5dSEric Biggers select CRYPTO_SKCIPHER 141604007b0eSArd Biesheuvel select CRYPTO_LIB_DES 1417768db5feSArd Biesheuvel imply CRYPTO_CTR 14186574e6c6SJussi Kivilinna help 14196574e6c6SJussi Kivilinna Triple DES EDE (FIPS 46-3) algorithm. 14206574e6c6SJussi Kivilinna 14216574e6c6SJussi Kivilinna This module provides implementation of the Triple DES EDE cipher 14226574e6c6SJussi Kivilinna algorithm that is optimized for x86-64 processors. Two versions of 14236574e6c6SJussi Kivilinna algorithm are provided; regular processing one input block and 14246574e6c6SJussi Kivilinna one that processes three blocks parallel. 14256574e6c6SJussi Kivilinna 1426584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT 1427584fffc8SSebastian Siewior tristate "FCrypt cipher algorithm" 1428584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1429b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1430584fffc8SSebastian Siewior help 1431584fffc8SSebastian Siewior FCrypt algorithm used by RxRPC. 1432584fffc8SSebastian Siewior 1433584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD 1434584fffc8SSebastian Siewior tristate "Khazad cipher algorithm" 14351674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1436584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1437584fffc8SSebastian Siewior help 1438584fffc8SSebastian Siewior Khazad cipher algorithm. 1439584fffc8SSebastian Siewior 1440584fffc8SSebastian Siewior Khazad was a finalist in the initial NESSIE competition. It is 1441584fffc8SSebastian Siewior an algorithm optimized for 64-bit processors with good performance 1442584fffc8SSebastian Siewior on 32-bit processors. Khazad uses an 128 bit key size. 1443584fffc8SSebastian Siewior 1444584fffc8SSebastian Siewior See also: 14456d8de74cSJustin P. Mattock <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1446e2ee95b8SHye-Shik Chang 1447c08d0e64SMartin Williconfig CRYPTO_CHACHA20 1448aa762409SEric Biggers tristate "ChaCha stream cipher algorithms" 14495fb8ef25SArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 1450b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1451c08d0e64SMartin Willi help 1452aa762409SEric Biggers The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1453c08d0e64SMartin Willi 1454c08d0e64SMartin Willi ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1455c08d0e64SMartin Willi Bernstein and further specified in RFC7539 for use in IETF protocols. 1456de61d7aeSEric Biggers This is the portable C implementation of ChaCha20. See also: 14579332a9e7SAlexander A. Klimov <https://cr.yp.to/chacha/chacha-20080128.pdf> 1458c08d0e64SMartin Willi 1459de61d7aeSEric Biggers XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1460de61d7aeSEric Biggers rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1461de61d7aeSEric Biggers from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1462de61d7aeSEric Biggers while provably retaining ChaCha20's security. See also: 1463de61d7aeSEric Biggers <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1464de61d7aeSEric Biggers 1465aa762409SEric Biggers XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1466aa762409SEric Biggers reduced security margin but increased performance. It can be needed 1467aa762409SEric Biggers in some performance-sensitive scenarios. 1468aa762409SEric Biggers 1469c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64 14704af78261SEric Biggers tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1471c9320b6dSMartin Willi depends on X86 && 64BIT 1472b95bba5dSEric Biggers select CRYPTO_SKCIPHER 147328e8d89bSArd Biesheuvel select CRYPTO_LIB_CHACHA_GENERIC 147484e03fa3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 1475c9320b6dSMartin Willi help 14767a507d62SEric Biggers SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 14777a507d62SEric Biggers XChaCha20, and XChaCha12 stream ciphers. 1478c9320b6dSMartin Willi 14793a2f58f3SArd Biesheuvelconfig CRYPTO_CHACHA_MIPS 14803a2f58f3SArd Biesheuvel tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 14813a2f58f3SArd Biesheuvel depends on CPU_MIPS32_R2 1482660eda8dSEric Biggers select CRYPTO_SKCIPHER 14833a2f58f3SArd Biesheuvel select CRYPTO_ARCH_HAVE_LIB_CHACHA 14843a2f58f3SArd Biesheuvel 1485584fffc8SSebastian Siewiorconfig CRYPTO_SEED 1486584fffc8SSebastian Siewior tristate "SEED cipher algorithm" 14871674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1488584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1489584fffc8SSebastian Siewior help 1490584fffc8SSebastian Siewior SEED cipher algorithm (RFC4269). 1491584fffc8SSebastian Siewior 1492584fffc8SSebastian Siewior SEED is a 128-bit symmetric key block cipher that has been 1493584fffc8SSebastian Siewior developed by KISA (Korea Information Security Agency) as a 1494584fffc8SSebastian Siewior national standard encryption algorithm of the Republic of Korea. 1495584fffc8SSebastian Siewior It is a 16 round block cipher with the key size of 128 bit. 1496584fffc8SSebastian Siewior 1497584fffc8SSebastian Siewior See also: 1498584fffc8SSebastian Siewior <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1499584fffc8SSebastian Siewior 1500584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT 1501584fffc8SSebastian Siewior tristate "Serpent cipher algorithm" 1502584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1503584fffc8SSebastian Siewior help 1504584fffc8SSebastian Siewior Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1505584fffc8SSebastian Siewior 1506584fffc8SSebastian Siewior Keys are allowed to be from 0 to 256 bits in length, in steps 1507784506a1SArd Biesheuvel of 8 bits. 1508584fffc8SSebastian Siewior 1509584fffc8SSebastian Siewior See also: 15109332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1511584fffc8SSebastian Siewior 1512937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64 1513937c30d7SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/SSE2)" 1514937c30d7SJussi Kivilinna depends on X86 && 64BIT 1515b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1516937c30d7SJussi Kivilinna select CRYPTO_SERPENT 1517e0f409dcSEric Biggers select CRYPTO_SIMD 15182e9440aeSArd Biesheuvel imply CRYPTO_CTR 1519937c30d7SJussi Kivilinna help 1520937c30d7SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1521937c30d7SJussi Kivilinna 1522937c30d7SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1523937c30d7SJussi Kivilinna of 8 bits. 1524937c30d7SJussi Kivilinna 15251e6232f8SMasanari Iida This module provides Serpent cipher algorithm that processes eight 1526937c30d7SJussi Kivilinna blocks parallel using SSE2 instruction set. 1527937c30d7SJussi Kivilinna 1528937c30d7SJussi Kivilinna See also: 15299332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1530937c30d7SJussi Kivilinna 1531251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586 1532251496dbSJussi Kivilinna tristate "Serpent cipher algorithm (i586/SSE2)" 1533251496dbSJussi Kivilinna depends on X86 && !64BIT 1534b95bba5dSEric Biggers select CRYPTO_SKCIPHER 1535251496dbSJussi Kivilinna select CRYPTO_SERPENT 1536e0f409dcSEric Biggers select CRYPTO_SIMD 15372e9440aeSArd Biesheuvel imply CRYPTO_CTR 1538251496dbSJussi Kivilinna help 1539251496dbSJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1540251496dbSJussi Kivilinna 1541251496dbSJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 1542251496dbSJussi Kivilinna of 8 bits. 1543251496dbSJussi Kivilinna 1544251496dbSJussi Kivilinna This module provides Serpent cipher algorithm that processes four 1545251496dbSJussi Kivilinna blocks parallel using SSE2 instruction set. 1546251496dbSJussi Kivilinna 1547251496dbSJussi Kivilinna See also: 15489332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1549251496dbSJussi Kivilinna 15507efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64 15517efe4076SJohannes Goetzfried tristate "Serpent cipher algorithm (x86_64/AVX)" 15527efe4076SJohannes Goetzfried depends on X86 && 64BIT 1553b95bba5dSEric Biggers select CRYPTO_SKCIPHER 15547efe4076SJohannes Goetzfried select CRYPTO_SERPENT 1555e16bf974SEric Biggers select CRYPTO_SIMD 15569ec0af8aSArd Biesheuvel imply CRYPTO_XTS 15572e9440aeSArd Biesheuvel imply CRYPTO_CTR 15587efe4076SJohannes Goetzfried help 15597efe4076SJohannes Goetzfried Serpent cipher algorithm, by Anderson, Biham & Knudsen. 15607efe4076SJohannes Goetzfried 15617efe4076SJohannes Goetzfried Keys are allowed to be from 0 to 256 bits in length, in steps 15627efe4076SJohannes Goetzfried of 8 bits. 15637efe4076SJohannes Goetzfried 15647efe4076SJohannes Goetzfried This module provides the Serpent cipher algorithm that processes 15657efe4076SJohannes Goetzfried eight blocks parallel using the AVX instruction set. 15667efe4076SJohannes Goetzfried 15677efe4076SJohannes Goetzfried See also: 15689332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 15697efe4076SJohannes Goetzfried 157056d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64 157156d76c96SJussi Kivilinna tristate "Serpent cipher algorithm (x86_64/AVX2)" 157256d76c96SJussi Kivilinna depends on X86 && 64BIT 157356d76c96SJussi Kivilinna select CRYPTO_SERPENT_AVX_X86_64 157456d76c96SJussi Kivilinna help 157556d76c96SJussi Kivilinna Serpent cipher algorithm, by Anderson, Biham & Knudsen. 157656d76c96SJussi Kivilinna 157756d76c96SJussi Kivilinna Keys are allowed to be from 0 to 256 bits in length, in steps 157856d76c96SJussi Kivilinna of 8 bits. 157956d76c96SJussi Kivilinna 158056d76c96SJussi Kivilinna This module provides Serpent cipher algorithm that processes 16 158156d76c96SJussi Kivilinna blocks parallel using AVX2 instruction set. 158256d76c96SJussi Kivilinna 158356d76c96SJussi Kivilinna See also: 15849332a9e7SAlexander A. Klimov <https://www.cl.cam.ac.uk/~rja14/serpent.html> 158556d76c96SJussi Kivilinna 1586747c8ce4SGilad Ben-Yossefconfig CRYPTO_SM4 1587d2825fa9SJason A. Donenfeld tristate 1588d2825fa9SJason A. Donenfeld 1589d2825fa9SJason A. Donenfeldconfig CRYPTO_SM4_GENERIC 1590747c8ce4SGilad Ben-Yossef tristate "SM4 cipher algorithm" 1591747c8ce4SGilad Ben-Yossef select CRYPTO_ALGAPI 1592d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1593747c8ce4SGilad Ben-Yossef help 1594747c8ce4SGilad Ben-Yossef SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1595747c8ce4SGilad Ben-Yossef 1596747c8ce4SGilad Ben-Yossef SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1597747c8ce4SGilad Ben-Yossef Organization of State Commercial Administration of China (OSCCA) 1598747c8ce4SGilad Ben-Yossef as an authorized cryptographic algorithms for the use within China. 1599747c8ce4SGilad Ben-Yossef 1600747c8ce4SGilad Ben-Yossef SMS4 was originally created for use in protecting wireless 1601747c8ce4SGilad Ben-Yossef networks, and is mandated in the Chinese National Standard for 1602747c8ce4SGilad Ben-Yossef Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1603747c8ce4SGilad Ben-Yossef (GB.15629.11-2003). 1604747c8ce4SGilad Ben-Yossef 1605747c8ce4SGilad Ben-Yossef The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1606747c8ce4SGilad Ben-Yossef standardized through TC 260 of the Standardization Administration 1607747c8ce4SGilad Ben-Yossef of the People's Republic of China (SAC). 1608747c8ce4SGilad Ben-Yossef 1609747c8ce4SGilad Ben-Yossef The input, output, and key of SMS4 are each 128 bits. 1610747c8ce4SGilad Ben-Yossef 1611747c8ce4SGilad Ben-Yossef See also: <https://eprint.iacr.org/2008/329.pdf> 1612747c8ce4SGilad Ben-Yossef 1613747c8ce4SGilad Ben-Yossef If unsure, say N. 1614747c8ce4SGilad Ben-Yossef 1615a7ee22eeSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX_X86_64 1616a7ee22eeSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1617a7ee22eeSTianjia Zhang depends on X86 && 64BIT 1618a7ee22eeSTianjia Zhang select CRYPTO_SKCIPHER 1619a7ee22eeSTianjia Zhang select CRYPTO_SIMD 1620a7ee22eeSTianjia Zhang select CRYPTO_ALGAPI 1621d2825fa9SJason A. Donenfeld select CRYPTO_SM4 1622a7ee22eeSTianjia Zhang help 1623a7ee22eeSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1624a7ee22eeSTianjia Zhang 1625a7ee22eeSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1626a7ee22eeSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 1627a7ee22eeSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 1628a7ee22eeSTianjia Zhang 1629a7ee22eeSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX/x86_64 1630a7ee22eeSTianjia Zhang instruction set for block cipher. Through two affine transforms, 1631a7ee22eeSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1632a7ee22eeSTianjia Zhang effect of instruction acceleration. 1633a7ee22eeSTianjia Zhang 1634a7ee22eeSTianjia Zhang If unsure, say N. 1635a7ee22eeSTianjia Zhang 16365b2efa2bSTianjia Zhangconfig CRYPTO_SM4_AESNI_AVX2_X86_64 16375b2efa2bSTianjia Zhang tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 16385b2efa2bSTianjia Zhang depends on X86 && 64BIT 16395b2efa2bSTianjia Zhang select CRYPTO_SKCIPHER 16405b2efa2bSTianjia Zhang select CRYPTO_SIMD 16415b2efa2bSTianjia Zhang select CRYPTO_ALGAPI 1642d2825fa9SJason A. Donenfeld select CRYPTO_SM4 16435b2efa2bSTianjia Zhang select CRYPTO_SM4_AESNI_AVX_X86_64 16445b2efa2bSTianjia Zhang help 16455b2efa2bSTianjia Zhang SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 16465b2efa2bSTianjia Zhang 16475b2efa2bSTianjia Zhang SM4 (GBT.32907-2016) is a cryptographic standard issued by the 16485b2efa2bSTianjia Zhang Organization of State Commercial Administration of China (OSCCA) 16495b2efa2bSTianjia Zhang as an authorized cryptographic algorithms for the use within China. 16505b2efa2bSTianjia Zhang 16515b2efa2bSTianjia Zhang This is SM4 optimized implementation using AES-NI/AVX2/x86_64 16525b2efa2bSTianjia Zhang instruction set for block cipher. Through two affine transforms, 16535b2efa2bSTianjia Zhang we can use the AES S-Box to simulate the SM4 S-Box to achieve the 16545b2efa2bSTianjia Zhang effect of instruction acceleration. 16555b2efa2bSTianjia Zhang 16565b2efa2bSTianjia Zhang If unsure, say N. 16575b2efa2bSTianjia Zhang 1658584fffc8SSebastian Siewiorconfig CRYPTO_TEA 1659584fffc8SSebastian Siewior tristate "TEA, XTEA and XETA cipher algorithms" 16601674aea5SArd Biesheuvel depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1661584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1662584fffc8SSebastian Siewior help 1663584fffc8SSebastian Siewior TEA cipher algorithm. 1664584fffc8SSebastian Siewior 1665584fffc8SSebastian Siewior Tiny Encryption Algorithm is a simple cipher that uses 1666584fffc8SSebastian Siewior many rounds for security. It is very fast and uses 1667584fffc8SSebastian Siewior little memory. 1668584fffc8SSebastian Siewior 1669584fffc8SSebastian Siewior Xtendend Tiny Encryption Algorithm is a modification to 1670584fffc8SSebastian Siewior the TEA algorithm to address a potential key weakness 1671584fffc8SSebastian Siewior in the TEA algorithm. 1672584fffc8SSebastian Siewior 1673584fffc8SSebastian Siewior Xtendend Encryption Tiny Algorithm is a mis-implementation 1674584fffc8SSebastian Siewior of the XTEA algorithm for compatibility purposes. 1675584fffc8SSebastian Siewior 1676584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH 1677584fffc8SSebastian Siewior tristate "Twofish cipher algorithm" 1678584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1679584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1680584fffc8SSebastian Siewior help 1681584fffc8SSebastian Siewior Twofish cipher algorithm. 1682584fffc8SSebastian Siewior 1683584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1684584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1685584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1686584fffc8SSebastian Siewior bits. 1687584fffc8SSebastian Siewior 1688584fffc8SSebastian Siewior See also: 16899332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1690584fffc8SSebastian Siewior 1691584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON 1692584fffc8SSebastian Siewior tristate 1693584fffc8SSebastian Siewior help 1694584fffc8SSebastian Siewior Common parts of the Twofish cipher algorithm shared by the 1695584fffc8SSebastian Siewior generic c and the assembler implementations. 1696584fffc8SSebastian Siewior 1697584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586 1698584fffc8SSebastian Siewior tristate "Twofish cipher algorithms (i586)" 1699584fffc8SSebastian Siewior depends on (X86 || UML_X86) && !64BIT 1700584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1701584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1702f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1703584fffc8SSebastian Siewior help 1704584fffc8SSebastian Siewior Twofish cipher algorithm. 1705584fffc8SSebastian Siewior 1706584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1707584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1708584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1709584fffc8SSebastian Siewior bits. 1710584fffc8SSebastian Siewior 1711584fffc8SSebastian Siewior See also: 17129332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1713584fffc8SSebastian Siewior 1714584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64 1715584fffc8SSebastian Siewior tristate "Twofish cipher algorithm (x86_64)" 1716584fffc8SSebastian Siewior depends on (X86 || UML_X86) && 64BIT 1717584fffc8SSebastian Siewior select CRYPTO_ALGAPI 1718584fffc8SSebastian Siewior select CRYPTO_TWOFISH_COMMON 1719f43dcaf2SArd Biesheuvel imply CRYPTO_CTR 1720584fffc8SSebastian Siewior help 1721584fffc8SSebastian Siewior Twofish cipher algorithm (x86_64). 1722584fffc8SSebastian Siewior 1723584fffc8SSebastian Siewior Twofish was submitted as an AES (Advanced Encryption Standard) 1724584fffc8SSebastian Siewior candidate cipher by researchers at CounterPane Systems. It is a 1725584fffc8SSebastian Siewior 16 round block cipher supporting key sizes of 128, 192, and 256 1726584fffc8SSebastian Siewior bits. 1727584fffc8SSebastian Siewior 1728584fffc8SSebastian Siewior See also: 17299332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1730584fffc8SSebastian Siewior 17318280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY 17328280daadSJussi Kivilinna tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1733f21a7c19SAl Viro depends on X86 && 64BIT 1734b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17358280daadSJussi Kivilinna select CRYPTO_TWOFISH_COMMON 17368280daadSJussi Kivilinna select CRYPTO_TWOFISH_X86_64 17378280daadSJussi Kivilinna help 17388280daadSJussi Kivilinna Twofish cipher algorithm (x86_64, 3-way parallel). 17398280daadSJussi Kivilinna 17408280daadSJussi Kivilinna Twofish was submitted as an AES (Advanced Encryption Standard) 17418280daadSJussi Kivilinna candidate cipher by researchers at CounterPane Systems. It is a 17428280daadSJussi Kivilinna 16 round block cipher supporting key sizes of 128, 192, and 256 17438280daadSJussi Kivilinna bits. 17448280daadSJussi Kivilinna 17458280daadSJussi Kivilinna This module provides Twofish cipher algorithm that processes three 17468280daadSJussi Kivilinna blocks parallel, utilizing resources of out-of-order CPUs better. 17478280daadSJussi Kivilinna 17488280daadSJussi Kivilinna See also: 17499332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 17508280daadSJussi Kivilinna 1751107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64 1752107778b5SJohannes Goetzfried tristate "Twofish cipher algorithm (x86_64/AVX)" 1753107778b5SJohannes Goetzfried depends on X86 && 64BIT 1754b95bba5dSEric Biggers select CRYPTO_SKCIPHER 17550e6ab46dSEric Biggers select CRYPTO_SIMD 1756107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_COMMON 1757107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64 1758107778b5SJohannes Goetzfried select CRYPTO_TWOFISH_X86_64_3WAY 1759da4df93aSArd Biesheuvel imply CRYPTO_XTS 1760107778b5SJohannes Goetzfried help 1761107778b5SJohannes Goetzfried Twofish cipher algorithm (x86_64/AVX). 1762107778b5SJohannes Goetzfried 1763107778b5SJohannes Goetzfried Twofish was submitted as an AES (Advanced Encryption Standard) 1764107778b5SJohannes Goetzfried candidate cipher by researchers at CounterPane Systems. It is a 1765107778b5SJohannes Goetzfried 16 round block cipher supporting key sizes of 128, 192, and 256 1766107778b5SJohannes Goetzfried bits. 1767107778b5SJohannes Goetzfried 1768107778b5SJohannes Goetzfried This module provides the Twofish cipher algorithm that processes 1769107778b5SJohannes Goetzfried eight blocks parallel using the AVX Instruction Set. 1770107778b5SJohannes Goetzfried 1771107778b5SJohannes Goetzfried See also: 17729332a9e7SAlexander A. Klimov <https://www.schneier.com/twofish.html> 1773107778b5SJohannes Goetzfried 1774584fffc8SSebastian Siewiorcomment "Compression" 1775584fffc8SSebastian Siewior 17761da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE 17771da177e4SLinus Torvalds tristate "Deflate compression algorithm" 1778cce9e06dSHerbert Xu select CRYPTO_ALGAPI 1779f6ded09dSGiovanni Cabiddu select CRYPTO_ACOMP2 17801da177e4SLinus Torvalds select ZLIB_INFLATE 17811da177e4SLinus Torvalds select ZLIB_DEFLATE 17821da177e4SLinus Torvalds help 17831da177e4SLinus Torvalds This is the Deflate algorithm (RFC1951), specified for use in 17841da177e4SLinus Torvalds IPSec with the IPCOMP protocol (RFC3173, RFC2394). 17851da177e4SLinus Torvalds 17861da177e4SLinus Torvalds You will most probably want this if using IPSec. 17871da177e4SLinus Torvalds 17880b77abb3SZoltan Sogorconfig CRYPTO_LZO 17890b77abb3SZoltan Sogor tristate "LZO compression algorithm" 17900b77abb3SZoltan Sogor select CRYPTO_ALGAPI 1791ac9d2c4bSGiovanni Cabiddu select CRYPTO_ACOMP2 17920b77abb3SZoltan Sogor select LZO_COMPRESS 17930b77abb3SZoltan Sogor select LZO_DECOMPRESS 17940b77abb3SZoltan Sogor help 17950b77abb3SZoltan Sogor This is the LZO algorithm. 17960b77abb3SZoltan Sogor 179735a1fc18SSeth Jenningsconfig CRYPTO_842 179835a1fc18SSeth Jennings tristate "842 compression algorithm" 17992062c5b6SDan Streetman select CRYPTO_ALGAPI 18006a8de3aeSGiovanni Cabiddu select CRYPTO_ACOMP2 18012062c5b6SDan Streetman select 842_COMPRESS 18022062c5b6SDan Streetman select 842_DECOMPRESS 180335a1fc18SSeth Jennings help 180435a1fc18SSeth Jennings This is the 842 algorithm. 180535a1fc18SSeth Jennings 18060ea8530dSChanho Minconfig CRYPTO_LZ4 18070ea8530dSChanho Min tristate "LZ4 compression algorithm" 18080ea8530dSChanho Min select CRYPTO_ALGAPI 18098cd9330eSGiovanni Cabiddu select CRYPTO_ACOMP2 18100ea8530dSChanho Min select LZ4_COMPRESS 18110ea8530dSChanho Min select LZ4_DECOMPRESS 18120ea8530dSChanho Min help 18130ea8530dSChanho Min This is the LZ4 algorithm. 18140ea8530dSChanho Min 18150ea8530dSChanho Minconfig CRYPTO_LZ4HC 18160ea8530dSChanho Min tristate "LZ4HC compression algorithm" 18170ea8530dSChanho Min select CRYPTO_ALGAPI 181891d53d96SGiovanni Cabiddu select CRYPTO_ACOMP2 18190ea8530dSChanho Min select LZ4HC_COMPRESS 18200ea8530dSChanho Min select LZ4_DECOMPRESS 18210ea8530dSChanho Min help 18220ea8530dSChanho Min This is the LZ4 high compression mode algorithm. 18230ea8530dSChanho Min 1824d28fc3dbSNick Terrellconfig CRYPTO_ZSTD 1825d28fc3dbSNick Terrell tristate "Zstd compression algorithm" 1826d28fc3dbSNick Terrell select CRYPTO_ALGAPI 1827d28fc3dbSNick Terrell select CRYPTO_ACOMP2 1828d28fc3dbSNick Terrell select ZSTD_COMPRESS 1829d28fc3dbSNick Terrell select ZSTD_DECOMPRESS 1830d28fc3dbSNick Terrell help 1831d28fc3dbSNick Terrell This is the zstd algorithm. 1832d28fc3dbSNick Terrell 183317f0f4a4SNeil Hormancomment "Random Number Generation" 183417f0f4a4SNeil Horman 183517f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG 183617f0f4a4SNeil Horman tristate "Pseudo Random Number Generation for Cryptographic modules" 183717f0f4a4SNeil Horman select CRYPTO_AES 183817f0f4a4SNeil Horman select CRYPTO_RNG 183917f0f4a4SNeil Horman help 184017f0f4a4SNeil Horman This option enables the generic pseudo random number generator 184117f0f4a4SNeil Horman for cryptographic modules. Uses the Algorithm specified in 18427dd607e8SJiri Kosina ANSI X9.31 A.2.4. Note that this option must be enabled if 18437dd607e8SJiri Kosina CRYPTO_FIPS is selected 184417f0f4a4SNeil Horman 1845f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU 1846419090c6SStephan Mueller tristate "NIST SP800-90A DRBG" 1847419090c6SStephan Mueller help 1848419090c6SStephan Mueller NIST SP800-90A compliant DRBG. In the following submenu, one or 1849419090c6SStephan Mueller more of the DRBG types must be selected. 1850419090c6SStephan Mueller 1851f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU 1852419090c6SStephan Mueller 1853419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC 1854401e4238SHerbert Xu bool 1855419090c6SStephan Mueller default y 1856419090c6SStephan Mueller select CRYPTO_HMAC 18575261cdf4SStephan Mueller select CRYPTO_SHA512 1858419090c6SStephan Mueller 1859419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH 1860419090c6SStephan Mueller bool "Enable Hash DRBG" 1861826775bbSHerbert Xu select CRYPTO_SHA256 1862419090c6SStephan Mueller help 1863419090c6SStephan Mueller Enable the Hash DRBG variant as defined in NIST SP800-90A. 1864419090c6SStephan Mueller 1865419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR 1866419090c6SStephan Mueller bool "Enable CTR DRBG" 1867419090c6SStephan Mueller select CRYPTO_AES 1868d6fc1a45SCorentin Labbe select CRYPTO_CTR 1869419090c6SStephan Mueller help 1870419090c6SStephan Mueller Enable the CTR DRBG variant as defined in NIST SP800-90A. 1871419090c6SStephan Mueller 1872f2c89a10SHerbert Xuconfig CRYPTO_DRBG 1873f2c89a10SHerbert Xu tristate 1874401e4238SHerbert Xu default CRYPTO_DRBG_MENU 1875f2c89a10SHerbert Xu select CRYPTO_RNG 1876bb5530e4SStephan Mueller select CRYPTO_JITTERENTROPY 1877f2c89a10SHerbert Xu 1878f2c89a10SHerbert Xuendif # if CRYPTO_DRBG_MENU 1879419090c6SStephan Mueller 1880bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY 1881bb5530e4SStephan Mueller tristate "Jitterentropy Non-Deterministic Random Number Generator" 18822f313e02SArnd Bergmann select CRYPTO_RNG 1883bb5530e4SStephan Mueller help 1884bb5530e4SStephan Mueller The Jitterentropy RNG is a noise that is intended 1885bb5530e4SStephan Mueller to provide seed to another RNG. The RNG does not 1886bb5530e4SStephan Mueller perform any cryptographic whitening of the generated 1887bb5530e4SStephan Mueller random numbers. This Jitterentropy RNG registers with 1888bb5530e4SStephan Mueller the kernel crypto API and can be used by any caller. 1889bb5530e4SStephan Mueller 1890026a733eSStephan Müllerconfig CRYPTO_KDF800108_CTR 1891026a733eSStephan Müller tristate 1892a88592ccSHerbert Xu select CRYPTO_HMAC 1893304b4aceSStephan Müller select CRYPTO_SHA256 1894026a733eSStephan Müller 189503c8efc1SHerbert Xuconfig CRYPTO_USER_API 189603c8efc1SHerbert Xu tristate 189703c8efc1SHerbert Xu 1898fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH 1899fe869cdbSHerbert Xu tristate "User-space interface for hash algorithms" 19007451708fSHerbert Xu depends on NET 1901fe869cdbSHerbert Xu select CRYPTO_HASH 1902fe869cdbSHerbert Xu select CRYPTO_USER_API 1903fe869cdbSHerbert Xu help 1904fe869cdbSHerbert Xu This option enables the user-spaces interface for hash 1905fe869cdbSHerbert Xu algorithms. 1906fe869cdbSHerbert Xu 19078ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER 19088ff59090SHerbert Xu tristate "User-space interface for symmetric key cipher algorithms" 19097451708fSHerbert Xu depends on NET 1910b95bba5dSEric Biggers select CRYPTO_SKCIPHER 19118ff59090SHerbert Xu select CRYPTO_USER_API 19128ff59090SHerbert Xu help 19138ff59090SHerbert Xu This option enables the user-spaces interface for symmetric 19148ff59090SHerbert Xu key cipher algorithms. 19158ff59090SHerbert Xu 19162f375538SStephan Muellerconfig CRYPTO_USER_API_RNG 19172f375538SStephan Mueller tristate "User-space interface for random number generator algorithms" 19182f375538SStephan Mueller depends on NET 19192f375538SStephan Mueller select CRYPTO_RNG 19202f375538SStephan Mueller select CRYPTO_USER_API 19212f375538SStephan Mueller help 19222f375538SStephan Mueller This option enables the user-spaces interface for random 19232f375538SStephan Mueller number generator algorithms. 19242f375538SStephan Mueller 192577ebdabeSElena Petrovaconfig CRYPTO_USER_API_RNG_CAVP 192677ebdabeSElena Petrova bool "Enable CAVP testing of DRBG" 192777ebdabeSElena Petrova depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 192877ebdabeSElena Petrova help 192977ebdabeSElena Petrova This option enables extra API for CAVP testing via the user-space 193077ebdabeSElena Petrova interface: resetting of DRBG entropy, and providing Additional Data. 193177ebdabeSElena Petrova This should only be enabled for CAVP testing. You should say 193277ebdabeSElena Petrova no unless you know what this is. 193377ebdabeSElena Petrova 1934b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD 1935b64a2d95SHerbert Xu tristate "User-space interface for AEAD cipher algorithms" 1936b64a2d95SHerbert Xu depends on NET 1937b64a2d95SHerbert Xu select CRYPTO_AEAD 1938b95bba5dSEric Biggers select CRYPTO_SKCIPHER 193972548b09SStephan Mueller select CRYPTO_NULL 1940b64a2d95SHerbert Xu select CRYPTO_USER_API 1941b64a2d95SHerbert Xu help 1942b64a2d95SHerbert Xu This option enables the user-spaces interface for AEAD 1943b64a2d95SHerbert Xu cipher algorithms. 1944b64a2d95SHerbert Xu 19459ace6771SArd Biesheuvelconfig CRYPTO_USER_API_ENABLE_OBSOLETE 19469ace6771SArd Biesheuvel bool "Enable obsolete cryptographic algorithms for userspace" 19479ace6771SArd Biesheuvel depends on CRYPTO_USER_API 19489ace6771SArd Biesheuvel default y 19499ace6771SArd Biesheuvel help 19509ace6771SArd Biesheuvel Allow obsolete cryptographic algorithms to be selected that have 19519ace6771SArd Biesheuvel already been phased out from internal use by the kernel, and are 19529ace6771SArd Biesheuvel only useful for userspace clients that still rely on them. 19539ace6771SArd Biesheuvel 1954cac5818cSCorentin Labbeconfig CRYPTO_STATS 1955cac5818cSCorentin Labbe bool "Crypto usage statistics for User-space" 1956a6a31385SCorentin Labbe depends on CRYPTO_USER 1957cac5818cSCorentin Labbe help 1958cac5818cSCorentin Labbe This option enables the gathering of crypto stats. 1959cac5818cSCorentin Labbe This will collect: 1960cac5818cSCorentin Labbe - encrypt/decrypt size and numbers of symmeric operations 1961cac5818cSCorentin Labbe - compress/decompress size and numbers of compress operations 1962cac5818cSCorentin Labbe - size and numbers of hash operations 1963cac5818cSCorentin Labbe - encrypt/decrypt/sign/verify numbers for asymmetric operations 1964cac5818cSCorentin Labbe - generate/seed numbers for rng operations 1965cac5818cSCorentin Labbe 1966ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO 1967ee08997fSDmitry Kasatkin bool 1968ee08997fSDmitry Kasatkin 19691da177e4SLinus Torvaldssource "drivers/crypto/Kconfig" 19708636a1f9SMasahiro Yamadasource "crypto/asymmetric_keys/Kconfig" 19718636a1f9SMasahiro Yamadasource "certs/Kconfig" 19721da177e4SLinus Torvalds 1973cce9e06dSHerbert Xuendif # if CRYPTO 1974