xref: /linux/crypto/Kconfig (revision 12cb3a1c4184f891d965d1f39f8cfcc9ef617647)
11da177e4SLinus Torvalds#
2685784aaSDan Williams# Generic algorithms support
3685784aaSDan Williams#
4685784aaSDan Williamsconfig XOR_BLOCKS
5685784aaSDan Williams	tristate
6685784aaSDan Williams
7685784aaSDan Williams#
89bc89cd8SDan Williams# async_tx api: hardware offloaded memory transfer/transform support
99bc89cd8SDan Williams#
109bc89cd8SDan Williamssource "crypto/async_tx/Kconfig"
119bc89cd8SDan Williams
129bc89cd8SDan Williams#
131da177e4SLinus Torvalds# Cryptographic API Configuration
141da177e4SLinus Torvalds#
152e290f43SJan Engelhardtmenuconfig CRYPTO
16c3715cb9SSebastian Siewior	tristate "Cryptographic API"
171da177e4SLinus Torvalds	help
181da177e4SLinus Torvalds	  This option provides the core Cryptographic API.
191da177e4SLinus Torvalds
20cce9e06dSHerbert Xuif CRYPTO
21cce9e06dSHerbert Xu
22584fffc8SSebastian Siewiorcomment "Crypto core or helper"
23584fffc8SSebastian Siewior
24ccb778e1SNeil Hormanconfig CRYPTO_FIPS
25ccb778e1SNeil Horman	bool "FIPS 200 compliance"
26f2c89a10SHerbert Xu	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
271f696097SAlec Ari	depends on (MODULE_SIG || !MODULES)
28ccb778e1SNeil Horman	help
29ccb778e1SNeil Horman	  This options enables the fips boot option which is
30ccb778e1SNeil Horman	  required if you want to system to operate in a FIPS 200
31ccb778e1SNeil Horman	  certification.  You should say no unless you know what
32e84c5480SChuck Ebbert	  this is.
33ccb778e1SNeil Horman
34cce9e06dSHerbert Xuconfig CRYPTO_ALGAPI
35cce9e06dSHerbert Xu	tristate
366a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
37cce9e06dSHerbert Xu	help
38cce9e06dSHerbert Xu	  This option provides the API for cryptographic algorithms.
39cce9e06dSHerbert Xu
406a0fcbb4SHerbert Xuconfig CRYPTO_ALGAPI2
416a0fcbb4SHerbert Xu	tristate
426a0fcbb4SHerbert Xu
431ae97820SHerbert Xuconfig CRYPTO_AEAD
441ae97820SHerbert Xu	tristate
456a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
461ae97820SHerbert Xu	select CRYPTO_ALGAPI
471ae97820SHerbert Xu
486a0fcbb4SHerbert Xuconfig CRYPTO_AEAD2
496a0fcbb4SHerbert Xu	tristate
506a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
51149a3971SHerbert Xu	select CRYPTO_NULL2
52149a3971SHerbert Xu	select CRYPTO_RNG2
536a0fcbb4SHerbert Xu
545cde0af2SHerbert Xuconfig CRYPTO_BLKCIPHER
555cde0af2SHerbert Xu	tristate
566a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
575cde0af2SHerbert Xu	select CRYPTO_ALGAPI
586a0fcbb4SHerbert Xu
596a0fcbb4SHerbert Xuconfig CRYPTO_BLKCIPHER2
606a0fcbb4SHerbert Xu	tristate
616a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
626a0fcbb4SHerbert Xu	select CRYPTO_RNG2
630a2e821dSHuang Ying	select CRYPTO_WORKQUEUE
645cde0af2SHerbert Xu
65055bcee3SHerbert Xuconfig CRYPTO_HASH
66055bcee3SHerbert Xu	tristate
676a0fcbb4SHerbert Xu	select CRYPTO_HASH2
68055bcee3SHerbert Xu	select CRYPTO_ALGAPI
69055bcee3SHerbert Xu
706a0fcbb4SHerbert Xuconfig CRYPTO_HASH2
716a0fcbb4SHerbert Xu	tristate
726a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
736a0fcbb4SHerbert Xu
7417f0f4a4SNeil Hormanconfig CRYPTO_RNG
7517f0f4a4SNeil Horman	tristate
766a0fcbb4SHerbert Xu	select CRYPTO_RNG2
7717f0f4a4SNeil Horman	select CRYPTO_ALGAPI
7817f0f4a4SNeil Horman
796a0fcbb4SHerbert Xuconfig CRYPTO_RNG2
806a0fcbb4SHerbert Xu	tristate
816a0fcbb4SHerbert Xu	select CRYPTO_ALGAPI2
826a0fcbb4SHerbert Xu
83401e4238SHerbert Xuconfig CRYPTO_RNG_DEFAULT
84401e4238SHerbert Xu	tristate
85401e4238SHerbert Xu	select CRYPTO_DRBG_MENU
86401e4238SHerbert Xu
873c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER2
883c339ab8STadeusz Struk	tristate
893c339ab8STadeusz Struk	select CRYPTO_ALGAPI2
903c339ab8STadeusz Struk
913c339ab8STadeusz Strukconfig CRYPTO_AKCIPHER
923c339ab8STadeusz Struk	tristate
933c339ab8STadeusz Struk	select CRYPTO_AKCIPHER2
943c339ab8STadeusz Struk	select CRYPTO_ALGAPI
953c339ab8STadeusz Struk
964e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP2
974e5f2c40SSalvatore Benedetto	tristate
984e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI2
994e5f2c40SSalvatore Benedetto
1004e5f2c40SSalvatore Benedettoconfig CRYPTO_KPP
1014e5f2c40SSalvatore Benedetto	tristate
1024e5f2c40SSalvatore Benedetto	select CRYPTO_ALGAPI
1034e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1044e5f2c40SSalvatore Benedetto
1052ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP2
1062ebda74fSGiovanni Cabiddu	tristate
1072ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI2
1082ebda74fSGiovanni Cabiddu
1092ebda74fSGiovanni Cabidduconfig CRYPTO_ACOMP
1102ebda74fSGiovanni Cabiddu	tristate
1112ebda74fSGiovanni Cabiddu	select CRYPTO_ALGAPI
1122ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1132ebda74fSGiovanni Cabiddu
114cfc2bb32STadeusz Strukconfig CRYPTO_RSA
115cfc2bb32STadeusz Struk	tristate "RSA algorithm"
116425e0172STadeusz Struk	select CRYPTO_AKCIPHER
11758446fefSTadeusz Struk	select CRYPTO_MANAGER
118cfc2bb32STadeusz Struk	select MPILIB
119cfc2bb32STadeusz Struk	select ASN1
120cfc2bb32STadeusz Struk	help
121cfc2bb32STadeusz Struk	  Generic implementation of the RSA public key algorithm.
122cfc2bb32STadeusz Struk
123802c7f1cSSalvatore Benedettoconfig CRYPTO_DH
124802c7f1cSSalvatore Benedetto	tristate "Diffie-Hellman algorithm"
125802c7f1cSSalvatore Benedetto	select CRYPTO_KPP
126802c7f1cSSalvatore Benedetto	select MPILIB
127802c7f1cSSalvatore Benedetto	help
128802c7f1cSSalvatore Benedetto	  Generic implementation of the Diffie-Hellman algorithm.
129802c7f1cSSalvatore Benedetto
1303c4b2390SSalvatore Benedettoconfig CRYPTO_ECDH
1313c4b2390SSalvatore Benedetto	tristate "ECDH algorithm"
1323c4b2390SSalvatore Benedetto	select CRYTPO_KPP
1333c4b2390SSalvatore Benedetto	help
1343c4b2390SSalvatore Benedetto	  Generic implementation of the ECDH algorithm
135802c7f1cSSalvatore Benedetto
1362b8c19dbSHerbert Xuconfig CRYPTO_MANAGER
1372b8c19dbSHerbert Xu	tristate "Cryptographic algorithm manager"
1386a0fcbb4SHerbert Xu	select CRYPTO_MANAGER2
1392b8c19dbSHerbert Xu	help
1402b8c19dbSHerbert Xu	  Create default cryptographic template instantiations such as
1412b8c19dbSHerbert Xu	  cbc(aes).
1422b8c19dbSHerbert Xu
1436a0fcbb4SHerbert Xuconfig CRYPTO_MANAGER2
1446a0fcbb4SHerbert Xu	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
1456a0fcbb4SHerbert Xu	select CRYPTO_AEAD2
1466a0fcbb4SHerbert Xu	select CRYPTO_HASH2
1476a0fcbb4SHerbert Xu	select CRYPTO_BLKCIPHER2
148946cc463STadeusz Struk	select CRYPTO_AKCIPHER2
1494e5f2c40SSalvatore Benedetto	select CRYPTO_KPP2
1502ebda74fSGiovanni Cabiddu	select CRYPTO_ACOMP2
1516a0fcbb4SHerbert Xu
152a38f7907SSteffen Klassertconfig CRYPTO_USER
153a38f7907SSteffen Klassert	tristate "Userspace cryptographic algorithm configuration"
1545db017aaSHerbert Xu	depends on NET
155a38f7907SSteffen Klassert	select CRYPTO_MANAGER
156a38f7907SSteffen Klassert	help
157d19978f5SValdis.Kletnieks@vt.edu	  Userspace configuration for cryptographic instantiations such as
158a38f7907SSteffen Klassert	  cbc(aes).
159a38f7907SSteffen Klassert
160326a6346SHerbert Xuconfig CRYPTO_MANAGER_DISABLE_TESTS
161326a6346SHerbert Xu	bool "Disable run-time self tests"
16200ca28a5SHerbert Xu	default y
16300ca28a5SHerbert Xu	depends on CRYPTO_MANAGER2
1640b767f96SAlexander Shishkin	help
165326a6346SHerbert Xu	  Disable run-time self tests that normally take place at
166326a6346SHerbert Xu	  algorithm registration.
1670b767f96SAlexander Shishkin
168584fffc8SSebastian Siewiorconfig CRYPTO_GF128MUL
16908c70fc3SJussi Kivilinna	tristate "GF(2^128) multiplication functions"
170584fffc8SSebastian Siewior	help
171584fffc8SSebastian Siewior	  Efficient table driven implementation of multiplications in the
172584fffc8SSebastian Siewior	  field GF(2^128).  This is needed by some cypher modes. This
173584fffc8SSebastian Siewior	  option will be selected automatically if you select such a
174584fffc8SSebastian Siewior	  cipher mode.  Only select this option by hand if you expect to load
175584fffc8SSebastian Siewior	  an external module that requires these functions.
176584fffc8SSebastian Siewior
177584fffc8SSebastian Siewiorconfig CRYPTO_NULL
178584fffc8SSebastian Siewior	tristate "Null algorithms"
179149a3971SHerbert Xu	select CRYPTO_NULL2
180584fffc8SSebastian Siewior	help
181584fffc8SSebastian Siewior	  These are 'Null' algorithms, used by IPsec, which do nothing.
182584fffc8SSebastian Siewior
183149a3971SHerbert Xuconfig CRYPTO_NULL2
184dd43c4e9SHerbert Xu	tristate
185149a3971SHerbert Xu	select CRYPTO_ALGAPI2
186149a3971SHerbert Xu	select CRYPTO_BLKCIPHER2
187149a3971SHerbert Xu	select CRYPTO_HASH2
188149a3971SHerbert Xu
1895068c7a8SSteffen Klassertconfig CRYPTO_PCRYPT
1903b4afaf2SKees Cook	tristate "Parallel crypto engine"
1913b4afaf2SKees Cook	depends on SMP
1925068c7a8SSteffen Klassert	select PADATA
1935068c7a8SSteffen Klassert	select CRYPTO_MANAGER
1945068c7a8SSteffen Klassert	select CRYPTO_AEAD
1955068c7a8SSteffen Klassert	help
1965068c7a8SSteffen Klassert	  This converts an arbitrary crypto algorithm into a parallel
1975068c7a8SSteffen Klassert	  algorithm that executes in kernel threads.
1985068c7a8SSteffen Klassert
19925c38d3fSHuang Yingconfig CRYPTO_WORKQUEUE
20025c38d3fSHuang Ying       tristate
20125c38d3fSHuang Ying
202584fffc8SSebastian Siewiorconfig CRYPTO_CRYPTD
203584fffc8SSebastian Siewior	tristate "Software async crypto daemon"
204584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
205b8a28251SLoc Ho	select CRYPTO_HASH
206584fffc8SSebastian Siewior	select CRYPTO_MANAGER
207254eff77SHuang Ying	select CRYPTO_WORKQUEUE
208584fffc8SSebastian Siewior	help
209584fffc8SSebastian Siewior	  This is a generic software asynchronous crypto daemon that
210584fffc8SSebastian Siewior	  converts an arbitrary synchronous software crypto algorithm
211584fffc8SSebastian Siewior	  into an asynchronous algorithm that executes in a kernel thread.
212584fffc8SSebastian Siewior
2131e65b81aSTim Chenconfig CRYPTO_MCRYPTD
2141e65b81aSTim Chen	tristate "Software async multi-buffer crypto daemon"
2151e65b81aSTim Chen	select CRYPTO_BLKCIPHER
2161e65b81aSTim Chen	select CRYPTO_HASH
2171e65b81aSTim Chen	select CRYPTO_MANAGER
2181e65b81aSTim Chen	select CRYPTO_WORKQUEUE
2191e65b81aSTim Chen	help
2201e65b81aSTim Chen	  This is a generic software asynchronous crypto daemon that
2211e65b81aSTim Chen	  provides the kernel thread to assist multi-buffer crypto
2221e65b81aSTim Chen	  algorithms for submitting jobs and flushing jobs in multi-buffer
2231e65b81aSTim Chen	  crypto algorithms.  Multi-buffer crypto algorithms are executed
2241e65b81aSTim Chen	  in the context of this kernel thread and drivers can post
2250e56673bSTed Percival	  their crypto request asynchronously to be processed by this daemon.
2261e65b81aSTim Chen
227584fffc8SSebastian Siewiorconfig CRYPTO_AUTHENC
228584fffc8SSebastian Siewior	tristate "Authenc support"
229584fffc8SSebastian Siewior	select CRYPTO_AEAD
230584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
231584fffc8SSebastian Siewior	select CRYPTO_MANAGER
232584fffc8SSebastian Siewior	select CRYPTO_HASH
233e94c6a7aSHerbert Xu	select CRYPTO_NULL
234584fffc8SSebastian Siewior	help
235584fffc8SSebastian Siewior	  Authenc: Combined mode wrapper for IPsec.
236584fffc8SSebastian Siewior	  This is required for IPSec.
237584fffc8SSebastian Siewior
238584fffc8SSebastian Siewiorconfig CRYPTO_TEST
239584fffc8SSebastian Siewior	tristate "Testing module"
240584fffc8SSebastian Siewior	depends on m
241da7f033dSHerbert Xu	select CRYPTO_MANAGER
242584fffc8SSebastian Siewior	help
243584fffc8SSebastian Siewior	  Quick & dirty crypto test module.
244584fffc8SSebastian Siewior
245a62b01cdSArd Biesheuvelconfig CRYPTO_ABLK_HELPER
246ffaf9156SJussi Kivilinna	tristate
247ffaf9156SJussi Kivilinna	select CRYPTO_CRYPTD
248ffaf9156SJussi Kivilinna
249266d0516SHerbert Xuconfig CRYPTO_SIMD
250266d0516SHerbert Xu	tristate
251266d0516SHerbert Xu	select CRYPTO_CRYPTD
252266d0516SHerbert Xu
253596d8750SJussi Kivilinnaconfig CRYPTO_GLUE_HELPER_X86
254596d8750SJussi Kivilinna	tristate
255596d8750SJussi Kivilinna	depends on X86
256065ce327SHerbert Xu	select CRYPTO_BLKCIPHER
257596d8750SJussi Kivilinna
258735d37b5SBaolin Wangconfig CRYPTO_ENGINE
259735d37b5SBaolin Wang	tristate
260735d37b5SBaolin Wang
261584fffc8SSebastian Siewiorcomment "Authenticated Encryption with Associated Data"
262584fffc8SSebastian Siewior
263584fffc8SSebastian Siewiorconfig CRYPTO_CCM
264584fffc8SSebastian Siewior	tristate "CCM support"
265584fffc8SSebastian Siewior	select CRYPTO_CTR
266f15f05b0SArd Biesheuvel	select CRYPTO_HASH
267584fffc8SSebastian Siewior	select CRYPTO_AEAD
268584fffc8SSebastian Siewior	help
269584fffc8SSebastian Siewior	  Support for Counter with CBC MAC. Required for IPsec.
270584fffc8SSebastian Siewior
271584fffc8SSebastian Siewiorconfig CRYPTO_GCM
272584fffc8SSebastian Siewior	tristate "GCM/GMAC support"
273584fffc8SSebastian Siewior	select CRYPTO_CTR
274584fffc8SSebastian Siewior	select CRYPTO_AEAD
2759382d97aSHuang Ying	select CRYPTO_GHASH
2769489667dSJussi Kivilinna	select CRYPTO_NULL
277584fffc8SSebastian Siewior	help
278584fffc8SSebastian Siewior	  Support for Galois/Counter Mode (GCM) and Galois Message
279584fffc8SSebastian Siewior	  Authentication Code (GMAC). Required for IPSec.
280584fffc8SSebastian Siewior
28171ebc4d1SMartin Williconfig CRYPTO_CHACHA20POLY1305
28271ebc4d1SMartin Willi	tristate "ChaCha20-Poly1305 AEAD support"
28371ebc4d1SMartin Willi	select CRYPTO_CHACHA20
28471ebc4d1SMartin Willi	select CRYPTO_POLY1305
28571ebc4d1SMartin Willi	select CRYPTO_AEAD
28671ebc4d1SMartin Willi	help
28771ebc4d1SMartin Willi	  ChaCha20-Poly1305 AEAD support, RFC7539.
28871ebc4d1SMartin Willi
28971ebc4d1SMartin Willi	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
29071ebc4d1SMartin Willi	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
29171ebc4d1SMartin Willi	  IETF protocols.
29271ebc4d1SMartin Willi
293584fffc8SSebastian Siewiorconfig CRYPTO_SEQIV
294584fffc8SSebastian Siewior	tristate "Sequence Number IV Generator"
295584fffc8SSebastian Siewior	select CRYPTO_AEAD
296584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
297856e3f40SHerbert Xu	select CRYPTO_NULL
298401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
299584fffc8SSebastian Siewior	help
300584fffc8SSebastian Siewior	  This IV generator generates an IV based on a sequence number by
301584fffc8SSebastian Siewior	  xoring it with a salt.  This algorithm is mainly useful for CTR
302584fffc8SSebastian Siewior
303a10f554fSHerbert Xuconfig CRYPTO_ECHAINIV
304a10f554fSHerbert Xu	tristate "Encrypted Chain IV Generator"
305a10f554fSHerbert Xu	select CRYPTO_AEAD
306a10f554fSHerbert Xu	select CRYPTO_NULL
307401e4238SHerbert Xu	select CRYPTO_RNG_DEFAULT
3083491244cSHerbert Xu	default m
309a10f554fSHerbert Xu	help
310a10f554fSHerbert Xu	  This IV generator generates an IV based on the encryption of
311a10f554fSHerbert Xu	  a sequence number xored with a salt.  This is the default
312a10f554fSHerbert Xu	  algorithm for CBC.
313a10f554fSHerbert Xu
314584fffc8SSebastian Siewiorcomment "Block modes"
315584fffc8SSebastian Siewior
316584fffc8SSebastian Siewiorconfig CRYPTO_CBC
317584fffc8SSebastian Siewior	tristate "CBC support"
318584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
319584fffc8SSebastian Siewior	select CRYPTO_MANAGER
320584fffc8SSebastian Siewior	help
321584fffc8SSebastian Siewior	  CBC: Cipher Block Chaining mode
322584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
323584fffc8SSebastian Siewior
324584fffc8SSebastian Siewiorconfig CRYPTO_CTR
325584fffc8SSebastian Siewior	tristate "CTR support"
326584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
327584fffc8SSebastian Siewior	select CRYPTO_SEQIV
328584fffc8SSebastian Siewior	select CRYPTO_MANAGER
329584fffc8SSebastian Siewior	help
330584fffc8SSebastian Siewior	  CTR: Counter mode
331584fffc8SSebastian Siewior	  This block cipher algorithm is required for IPSec.
332584fffc8SSebastian Siewior
333584fffc8SSebastian Siewiorconfig CRYPTO_CTS
334584fffc8SSebastian Siewior	tristate "CTS support"
335584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
336584fffc8SSebastian Siewior	help
337584fffc8SSebastian Siewior	  CTS: Cipher Text Stealing
338584fffc8SSebastian Siewior	  This is the Cipher Text Stealing mode as described by
339584fffc8SSebastian Siewior	  Section 8 of rfc2040 and referenced by rfc3962.
340584fffc8SSebastian Siewior	  (rfc3962 includes errata information in its Appendix A)
341584fffc8SSebastian Siewior	  This mode is required for Kerberos gss mechanism support
342584fffc8SSebastian Siewior	  for AES encryption.
343584fffc8SSebastian Siewior
344584fffc8SSebastian Siewiorconfig CRYPTO_ECB
345584fffc8SSebastian Siewior	tristate "ECB support"
346584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
347584fffc8SSebastian Siewior	select CRYPTO_MANAGER
348584fffc8SSebastian Siewior	help
349584fffc8SSebastian Siewior	  ECB: Electronic CodeBook mode
350584fffc8SSebastian Siewior	  This is the simplest block cipher algorithm.  It simply encrypts
351584fffc8SSebastian Siewior	  the input block by block.
352584fffc8SSebastian Siewior
353584fffc8SSebastian Siewiorconfig CRYPTO_LRW
3542470a2b2SJussi Kivilinna	tristate "LRW support"
355584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
356584fffc8SSebastian Siewior	select CRYPTO_MANAGER
357584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
358584fffc8SSebastian Siewior	help
359584fffc8SSebastian Siewior	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
360584fffc8SSebastian Siewior	  narrow block cipher mode for dm-crypt.  Use it with cipher
361584fffc8SSebastian Siewior	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
362584fffc8SSebastian Siewior	  The first 128, 192 or 256 bits in the key are used for AES and the
363584fffc8SSebastian Siewior	  rest is used to tie each cipher block to its logical position.
364584fffc8SSebastian Siewior
365584fffc8SSebastian Siewiorconfig CRYPTO_PCBC
366584fffc8SSebastian Siewior	tristate "PCBC support"
367584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
368584fffc8SSebastian Siewior	select CRYPTO_MANAGER
369584fffc8SSebastian Siewior	help
370584fffc8SSebastian Siewior	  PCBC: Propagating Cipher Block Chaining mode
371584fffc8SSebastian Siewior	  This block cipher algorithm is required for RxRPC.
372584fffc8SSebastian Siewior
373584fffc8SSebastian Siewiorconfig CRYPTO_XTS
3745bcf8e6dSJussi Kivilinna	tristate "XTS support"
375584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
376584fffc8SSebastian Siewior	select CRYPTO_MANAGER
377584fffc8SSebastian Siewior	select CRYPTO_GF128MUL
378*12cb3a1cSMilan Broz	select CRYPTO_ECB
379584fffc8SSebastian Siewior	help
380584fffc8SSebastian Siewior	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
381584fffc8SSebastian Siewior	  key size 256, 384 or 512 bits. This implementation currently
382584fffc8SSebastian Siewior	  can't handle a sectorsize which is not a multiple of 16 bytes.
383584fffc8SSebastian Siewior
3841c49678eSStephan Muellerconfig CRYPTO_KEYWRAP
3851c49678eSStephan Mueller	tristate "Key wrapping support"
3861c49678eSStephan Mueller	select CRYPTO_BLKCIPHER
3871c49678eSStephan Mueller	help
3881c49678eSStephan Mueller	  Support for key wrapping (NIST SP800-38F / RFC3394) without
3891c49678eSStephan Mueller	  padding.
3901c49678eSStephan Mueller
391584fffc8SSebastian Siewiorcomment "Hash modes"
392584fffc8SSebastian Siewior
39393b5e86aSJussi Kivilinnaconfig CRYPTO_CMAC
39493b5e86aSJussi Kivilinna	tristate "CMAC support"
39593b5e86aSJussi Kivilinna	select CRYPTO_HASH
39693b5e86aSJussi Kivilinna	select CRYPTO_MANAGER
39793b5e86aSJussi Kivilinna	help
39893b5e86aSJussi Kivilinna	  Cipher-based Message Authentication Code (CMAC) specified by
39993b5e86aSJussi Kivilinna	  The National Institute of Standards and Technology (NIST).
40093b5e86aSJussi Kivilinna
40193b5e86aSJussi Kivilinna	  https://tools.ietf.org/html/rfc4493
40293b5e86aSJussi Kivilinna	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
40393b5e86aSJussi Kivilinna
4041da177e4SLinus Torvaldsconfig CRYPTO_HMAC
4058425165dSHerbert Xu	tristate "HMAC support"
4060796ae06SHerbert Xu	select CRYPTO_HASH
40743518407SHerbert Xu	select CRYPTO_MANAGER
4081da177e4SLinus Torvalds	help
4091da177e4SLinus Torvalds	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
4101da177e4SLinus Torvalds	  This is required for IPSec.
4111da177e4SLinus Torvalds
412333b0d7eSKazunori MIYAZAWAconfig CRYPTO_XCBC
413333b0d7eSKazunori MIYAZAWA	tristate "XCBC support"
414333b0d7eSKazunori MIYAZAWA	select CRYPTO_HASH
415333b0d7eSKazunori MIYAZAWA	select CRYPTO_MANAGER
416333b0d7eSKazunori MIYAZAWA	help
417333b0d7eSKazunori MIYAZAWA	  XCBC: Keyed-Hashing with encryption algorithm
418333b0d7eSKazunori MIYAZAWA		http://www.ietf.org/rfc/rfc3566.txt
419333b0d7eSKazunori MIYAZAWA		http://csrc.nist.gov/encryption/modes/proposedmodes/
420333b0d7eSKazunori MIYAZAWA		 xcbc-mac/xcbc-mac-spec.pdf
421333b0d7eSKazunori MIYAZAWA
422f1939f7cSShane Wangconfig CRYPTO_VMAC
423f1939f7cSShane Wang	tristate "VMAC support"
424f1939f7cSShane Wang	select CRYPTO_HASH
425f1939f7cSShane Wang	select CRYPTO_MANAGER
426f1939f7cSShane Wang	help
427f1939f7cSShane Wang	  VMAC is a message authentication algorithm designed for
428f1939f7cSShane Wang	  very high speed on 64-bit architectures.
429f1939f7cSShane Wang
430f1939f7cSShane Wang	  See also:
431f1939f7cSShane Wang	  <http://fastcrypto.org/vmac>
432f1939f7cSShane Wang
433584fffc8SSebastian Siewiorcomment "Digest"
434584fffc8SSebastian Siewior
435584fffc8SSebastian Siewiorconfig CRYPTO_CRC32C
436584fffc8SSebastian Siewior	tristate "CRC32c CRC algorithm"
4375773a3e6SHerbert Xu	select CRYPTO_HASH
4386a0962b2SDarrick J. Wong	select CRC32
4391da177e4SLinus Torvalds	help
440584fffc8SSebastian Siewior	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
441584fffc8SSebastian Siewior	  by iSCSI for header and data digests and by others.
44269c35efcSHerbert Xu	  See Castagnoli93.  Module will be crc32c.
4431da177e4SLinus Torvalds
4448cb51ba8SAustin Zhangconfig CRYPTO_CRC32C_INTEL
4458cb51ba8SAustin Zhang	tristate "CRC32c INTEL hardware acceleration"
4468cb51ba8SAustin Zhang	depends on X86
4478cb51ba8SAustin Zhang	select CRYPTO_HASH
4488cb51ba8SAustin Zhang	help
4498cb51ba8SAustin Zhang	  In Intel processor with SSE4.2 supported, the processor will
4508cb51ba8SAustin Zhang	  support CRC32C implementation using hardware accelerated CRC32
4518cb51ba8SAustin Zhang	  instruction. This option will create 'crc32c-intel' module,
4528cb51ba8SAustin Zhang	  which will enable any routine to use the CRC32 instruction to
4538cb51ba8SAustin Zhang	  gain performance compared with software implementation.
4548cb51ba8SAustin Zhang	  Module will be crc32c-intel.
4558cb51ba8SAustin Zhang
4567cf31864SJean Delvareconfig CRYPTO_CRC32C_VPMSUM
4576dd7a82cSAnton Blanchard	tristate "CRC32c CRC algorithm (powerpc64)"
458c12abf34SMichael Ellerman	depends on PPC64 && ALTIVEC
4596dd7a82cSAnton Blanchard	select CRYPTO_HASH
4606dd7a82cSAnton Blanchard	select CRC32
4616dd7a82cSAnton Blanchard	help
4626dd7a82cSAnton Blanchard	  CRC32c algorithm implemented using vector polynomial multiply-sum
4636dd7a82cSAnton Blanchard	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
4646dd7a82cSAnton Blanchard	  and newer processors for improved performance.
4656dd7a82cSAnton Blanchard
4666dd7a82cSAnton Blanchard
467442a7c40SDavid S. Millerconfig CRYPTO_CRC32C_SPARC64
468442a7c40SDavid S. Miller	tristate "CRC32c CRC algorithm (SPARC64)"
469442a7c40SDavid S. Miller	depends on SPARC64
470442a7c40SDavid S. Miller	select CRYPTO_HASH
471442a7c40SDavid S. Miller	select CRC32
472442a7c40SDavid S. Miller	help
473442a7c40SDavid S. Miller	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
474442a7c40SDavid S. Miller	  when available.
475442a7c40SDavid S. Miller
47678c37d19SAlexander Boykoconfig CRYPTO_CRC32
47778c37d19SAlexander Boyko	tristate "CRC32 CRC algorithm"
47878c37d19SAlexander Boyko	select CRYPTO_HASH
47978c37d19SAlexander Boyko	select CRC32
48078c37d19SAlexander Boyko	help
48178c37d19SAlexander Boyko	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
48278c37d19SAlexander Boyko	  Shash crypto api wrappers to crc32_le function.
48378c37d19SAlexander Boyko
48478c37d19SAlexander Boykoconfig CRYPTO_CRC32_PCLMUL
48578c37d19SAlexander Boyko	tristate "CRC32 PCLMULQDQ hardware acceleration"
48678c37d19SAlexander Boyko	depends on X86
48778c37d19SAlexander Boyko	select CRYPTO_HASH
48878c37d19SAlexander Boyko	select CRC32
48978c37d19SAlexander Boyko	help
49078c37d19SAlexander Boyko	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
49178c37d19SAlexander Boyko	  and PCLMULQDQ supported, the processor will support
49278c37d19SAlexander Boyko	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
49378c37d19SAlexander Boyko	  instruction. This option will create 'crc32-plcmul' module,
49478c37d19SAlexander Boyko	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
49578c37d19SAlexander Boyko	  and gain better performance as compared with the table implementation.
49678c37d19SAlexander Boyko
49768411521SHerbert Xuconfig CRYPTO_CRCT10DIF
49868411521SHerbert Xu	tristate "CRCT10DIF algorithm"
49968411521SHerbert Xu	select CRYPTO_HASH
50068411521SHerbert Xu	help
50168411521SHerbert Xu	  CRC T10 Data Integrity Field computation is being cast as
50268411521SHerbert Xu	  a crypto transform.  This allows for faster crc t10 diff
50368411521SHerbert Xu	  transforms to be used if they are available.
50468411521SHerbert Xu
50568411521SHerbert Xuconfig CRYPTO_CRCT10DIF_PCLMUL
50668411521SHerbert Xu	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
50768411521SHerbert Xu	depends on X86 && 64BIT && CRC_T10DIF
50868411521SHerbert Xu	select CRYPTO_HASH
50968411521SHerbert Xu	help
51068411521SHerbert Xu	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
51168411521SHerbert Xu	  CRC T10 DIF PCLMULQDQ computation can be hardware
51268411521SHerbert Xu	  accelerated PCLMULQDQ instruction. This option will create
51368411521SHerbert Xu	  'crct10dif-plcmul' module, which is faster when computing the
51468411521SHerbert Xu	  crct10dif checksum as compared with the generic table implementation.
51568411521SHerbert Xu
5162cdc6899SHuang Yingconfig CRYPTO_GHASH
5172cdc6899SHuang Ying	tristate "GHASH digest algorithm"
5182cdc6899SHuang Ying	select CRYPTO_GF128MUL
519578c60fbSArnd Bergmann	select CRYPTO_HASH
5202cdc6899SHuang Ying	help
5212cdc6899SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
5222cdc6899SHuang Ying
523f979e014SMartin Williconfig CRYPTO_POLY1305
524f979e014SMartin Willi	tristate "Poly1305 authenticator algorithm"
525578c60fbSArnd Bergmann	select CRYPTO_HASH
526f979e014SMartin Willi	help
527f979e014SMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
528f979e014SMartin Willi
529f979e014SMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
530f979e014SMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
531f979e014SMartin Willi	  in IETF protocols. This is the portable C implementation of Poly1305.
532f979e014SMartin Willi
533c70f4abeSMartin Williconfig CRYPTO_POLY1305_X86_64
534b1ccc8f4SMartin Willi	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
535c70f4abeSMartin Willi	depends on X86 && 64BIT
536c70f4abeSMartin Willi	select CRYPTO_POLY1305
537c70f4abeSMartin Willi	help
538c70f4abeSMartin Willi	  Poly1305 authenticator algorithm, RFC7539.
539c70f4abeSMartin Willi
540c70f4abeSMartin Willi	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
541c70f4abeSMartin Willi	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
542c70f4abeSMartin Willi	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
543c70f4abeSMartin Willi	  instructions.
544c70f4abeSMartin Willi
5451da177e4SLinus Torvaldsconfig CRYPTO_MD4
5461da177e4SLinus Torvalds	tristate "MD4 digest algorithm"
547808a1763SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5481da177e4SLinus Torvalds	help
5491da177e4SLinus Torvalds	  MD4 message digest algorithm (RFC1320).
5501da177e4SLinus Torvalds
5511da177e4SLinus Torvaldsconfig CRYPTO_MD5
5521da177e4SLinus Torvalds	tristate "MD5 digest algorithm"
55314b75ba7SAdrian-Ken Rueegsegger	select CRYPTO_HASH
5541da177e4SLinus Torvalds	help
5551da177e4SLinus Torvalds	  MD5 message digest algorithm (RFC1321).
5561da177e4SLinus Torvalds
557d69e75deSAaro Koskinenconfig CRYPTO_MD5_OCTEON
558d69e75deSAaro Koskinen	tristate "MD5 digest algorithm (OCTEON)"
559d69e75deSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
560d69e75deSAaro Koskinen	select CRYPTO_MD5
561d69e75deSAaro Koskinen	select CRYPTO_HASH
562d69e75deSAaro Koskinen	help
563d69e75deSAaro Koskinen	  MD5 message digest algorithm (RFC1321) implemented
564d69e75deSAaro Koskinen	  using OCTEON crypto instructions, when available.
565d69e75deSAaro Koskinen
566e8e59953SMarkus Stockhausenconfig CRYPTO_MD5_PPC
567e8e59953SMarkus Stockhausen	tristate "MD5 digest algorithm (PPC)"
568e8e59953SMarkus Stockhausen	depends on PPC
569e8e59953SMarkus Stockhausen	select CRYPTO_HASH
570e8e59953SMarkus Stockhausen	help
571e8e59953SMarkus Stockhausen	  MD5 message digest algorithm (RFC1321) implemented
572e8e59953SMarkus Stockhausen	  in PPC assembler.
573e8e59953SMarkus Stockhausen
574fa4dfedcSDavid S. Millerconfig CRYPTO_MD5_SPARC64
575fa4dfedcSDavid S. Miller	tristate "MD5 digest algorithm (SPARC64)"
576fa4dfedcSDavid S. Miller	depends on SPARC64
577fa4dfedcSDavid S. Miller	select CRYPTO_MD5
578fa4dfedcSDavid S. Miller	select CRYPTO_HASH
579fa4dfedcSDavid S. Miller	help
580fa4dfedcSDavid S. Miller	  MD5 message digest algorithm (RFC1321) implemented
581fa4dfedcSDavid S. Miller	  using sparc64 crypto instructions, when available.
582fa4dfedcSDavid S. Miller
583584fffc8SSebastian Siewiorconfig CRYPTO_MICHAEL_MIC
584584fffc8SSebastian Siewior	tristate "Michael MIC keyed digest algorithm"
58519e2bf14SAdrian-Ken Rueegsegger	select CRYPTO_HASH
586584fffc8SSebastian Siewior	help
587584fffc8SSebastian Siewior	  Michael MIC is used for message integrity protection in TKIP
588584fffc8SSebastian Siewior	  (IEEE 802.11i). This algorithm is required for TKIP, but it
589584fffc8SSebastian Siewior	  should not be used for other purposes because of the weakness
590584fffc8SSebastian Siewior	  of the algorithm.
591584fffc8SSebastian Siewior
59282798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD128
59382798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-128 digest algorithm"
5947c4468bcSHerbert Xu	select CRYPTO_HASH
59582798f90SAdrian-Ken Rueegsegger	help
59682798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 (ISO/IEC 10118-3:2004).
59782798f90SAdrian-Ken Rueegsegger
59882798f90SAdrian-Ken Rueegsegger	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
59935ed4b35SMichael Witten	  be used as a secure replacement for RIPEMD. For other use cases,
60082798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 should be used.
60182798f90SAdrian-Ken Rueegsegger
60282798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6036d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
60482798f90SAdrian-Ken Rueegsegger
60582798f90SAdrian-Ken Rueegseggerconfig CRYPTO_RMD160
60682798f90SAdrian-Ken Rueegsegger	tristate "RIPEMD-160 digest algorithm"
607e5835fbaSHerbert Xu	select CRYPTO_HASH
60882798f90SAdrian-Ken Rueegsegger	help
60982798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 (ISO/IEC 10118-3:2004).
61082798f90SAdrian-Ken Rueegsegger
61182798f90SAdrian-Ken Rueegsegger	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
61282798f90SAdrian-Ken Rueegsegger	  to be used as a secure replacement for the 128-bit hash functions
613b6d44341SAdrian Bunk	  MD4, MD5 and it's predecessor RIPEMD
614b6d44341SAdrian Bunk	  (not to be confused with RIPEMD-128).
61582798f90SAdrian-Ken Rueegsegger
616b6d44341SAdrian Bunk	  It's speed is comparable to SHA1 and there are no known attacks
617b6d44341SAdrian Bunk	  against RIPEMD-160.
618534fe2c1SAdrian-Ken Rueegsegger
619534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6206d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
621534fe2c1SAdrian-Ken Rueegsegger
622534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD256
623534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-256 digest algorithm"
624d8a5e2e9SHerbert Xu	select CRYPTO_HASH
625534fe2c1SAdrian-Ken Rueegsegger	help
626b6d44341SAdrian Bunk	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
627b6d44341SAdrian Bunk	  256 bit hash. It is intended for applications that require
628b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
629b6d44341SAdrian Bunk	  (than RIPEMD-128).
630534fe2c1SAdrian-Ken Rueegsegger
631534fe2c1SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6326d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
633534fe2c1SAdrian-Ken Rueegsegger
634534fe2c1SAdrian-Ken Rueegseggerconfig CRYPTO_RMD320
635534fe2c1SAdrian-Ken Rueegsegger	tristate "RIPEMD-320 digest algorithm"
6363b8efb4cSHerbert Xu	select CRYPTO_HASH
637534fe2c1SAdrian-Ken Rueegsegger	help
638b6d44341SAdrian Bunk	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
639b6d44341SAdrian Bunk	  320 bit hash. It is intended for applications that require
640b6d44341SAdrian Bunk	  longer hash-results, without needing a larger security level
641b6d44341SAdrian Bunk	  (than RIPEMD-160).
642534fe2c1SAdrian-Ken Rueegsegger
64382798f90SAdrian-Ken Rueegsegger	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
6446d8de74cSJustin P. Mattock	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
64582798f90SAdrian-Ken Rueegsegger
6461da177e4SLinus Torvaldsconfig CRYPTO_SHA1
6471da177e4SLinus Torvalds	tristate "SHA1 digest algorithm"
64854ccb367SAdrian-Ken Rueegsegger	select CRYPTO_HASH
6491da177e4SLinus Torvalds	help
6501da177e4SLinus Torvalds	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
6511da177e4SLinus Torvalds
65266be8951SMathias Krauseconfig CRYPTO_SHA1_SSSE3
653e38b6b7fStim	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
65466be8951SMathias Krause	depends on X86 && 64BIT
65566be8951SMathias Krause	select CRYPTO_SHA1
65666be8951SMathias Krause	select CRYPTO_HASH
65766be8951SMathias Krause	help
65866be8951SMathias Krause	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
65966be8951SMathias Krause	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
660e38b6b7fStim	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
661e38b6b7fStim	  when available.
66266be8951SMathias Krause
6638275d1aaSTim Chenconfig CRYPTO_SHA256_SSSE3
664e38b6b7fStim	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
6658275d1aaSTim Chen	depends on X86 && 64BIT
6668275d1aaSTim Chen	select CRYPTO_SHA256
6678275d1aaSTim Chen	select CRYPTO_HASH
6688275d1aaSTim Chen	help
6698275d1aaSTim Chen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
6708275d1aaSTim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
6718275d1aaSTim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
672e38b6b7fStim	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
673e38b6b7fStim	  Instructions) when available.
6748275d1aaSTim Chen
67587de4579STim Chenconfig CRYPTO_SHA512_SSSE3
67687de4579STim Chen	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
67787de4579STim Chen	depends on X86 && 64BIT
67887de4579STim Chen	select CRYPTO_SHA512
67987de4579STim Chen	select CRYPTO_HASH
68087de4579STim Chen	help
68187de4579STim Chen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
68287de4579STim Chen	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
68387de4579STim Chen	  Extensions version 1 (AVX1), or Advanced Vector Extensions
68487de4579STim Chen	  version 2 (AVX2) instructions, when available.
68587de4579STim Chen
686efdb6f6eSAaro Koskinenconfig CRYPTO_SHA1_OCTEON
687efdb6f6eSAaro Koskinen	tristate "SHA1 digest algorithm (OCTEON)"
688efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
689efdb6f6eSAaro Koskinen	select CRYPTO_SHA1
690efdb6f6eSAaro Koskinen	select CRYPTO_HASH
691efdb6f6eSAaro Koskinen	help
692efdb6f6eSAaro Koskinen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
693efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
694efdb6f6eSAaro Koskinen
6954ff28d4cSDavid S. Millerconfig CRYPTO_SHA1_SPARC64
6964ff28d4cSDavid S. Miller	tristate "SHA1 digest algorithm (SPARC64)"
6974ff28d4cSDavid S. Miller	depends on SPARC64
6984ff28d4cSDavid S. Miller	select CRYPTO_SHA1
6994ff28d4cSDavid S. Miller	select CRYPTO_HASH
7004ff28d4cSDavid S. Miller	help
7014ff28d4cSDavid S. Miller	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7024ff28d4cSDavid S. Miller	  using sparc64 crypto instructions, when available.
7034ff28d4cSDavid S. Miller
704323a6bf1SMichael Ellermanconfig CRYPTO_SHA1_PPC
705323a6bf1SMichael Ellerman	tristate "SHA1 digest algorithm (powerpc)"
706323a6bf1SMichael Ellerman	depends on PPC
707323a6bf1SMichael Ellerman	help
708323a6bf1SMichael Ellerman	  This is the powerpc hardware accelerated implementation of the
709323a6bf1SMichael Ellerman	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
710323a6bf1SMichael Ellerman
711d9850fc5SMarkus Stockhausenconfig CRYPTO_SHA1_PPC_SPE
712d9850fc5SMarkus Stockhausen	tristate "SHA1 digest algorithm (PPC SPE)"
713d9850fc5SMarkus Stockhausen	depends on PPC && SPE
714d9850fc5SMarkus Stockhausen	help
715d9850fc5SMarkus Stockhausen	  SHA-1 secure hash standard (DFIPS 180-4) implemented
716d9850fc5SMarkus Stockhausen	  using powerpc SPE SIMD instruction set.
717d9850fc5SMarkus Stockhausen
7181e65b81aSTim Chenconfig CRYPTO_SHA1_MB
7191e65b81aSTim Chen	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7201e65b81aSTim Chen	depends on X86 && 64BIT
7211e65b81aSTim Chen	select CRYPTO_SHA1
7221e65b81aSTim Chen	select CRYPTO_HASH
7231e65b81aSTim Chen	select CRYPTO_MCRYPTD
7241e65b81aSTim Chen	help
7251e65b81aSTim Chen	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7261e65b81aSTim Chen	  using multi-buffer technique.  This algorithm computes on
7271e65b81aSTim Chen	  multiple data lanes concurrently with SIMD instructions for
7281e65b81aSTim Chen	  better throughput.  It should not be enabled by default but
7291e65b81aSTim Chen	  used when there is significant amount of work to keep the keep
7301e65b81aSTim Chen	  the data lanes filled to get performance benefit.  If the data
7311e65b81aSTim Chen	  lanes remain unfilled, a flush operation will be initiated to
7321e65b81aSTim Chen	  process the crypto jobs, adding a slight latency.
7331e65b81aSTim Chen
7349be7e244SMegha Deyconfig CRYPTO_SHA256_MB
7359be7e244SMegha Dey	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
7369be7e244SMegha Dey	depends on X86 && 64BIT
7379be7e244SMegha Dey	select CRYPTO_SHA256
7389be7e244SMegha Dey	select CRYPTO_HASH
7399be7e244SMegha Dey	select CRYPTO_MCRYPTD
7409be7e244SMegha Dey	help
7419be7e244SMegha Dey	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
7429be7e244SMegha Dey	  using multi-buffer technique.  This algorithm computes on
7439be7e244SMegha Dey	  multiple data lanes concurrently with SIMD instructions for
7449be7e244SMegha Dey	  better throughput.  It should not be enabled by default but
7459be7e244SMegha Dey	  used when there is significant amount of work to keep the keep
7469be7e244SMegha Dey	  the data lanes filled to get performance benefit.  If the data
7479be7e244SMegha Dey	  lanes remain unfilled, a flush operation will be initiated to
7489be7e244SMegha Dey	  process the crypto jobs, adding a slight latency.
7499be7e244SMegha Dey
750026bb8aaSMegha Deyconfig CRYPTO_SHA512_MB
751026bb8aaSMegha Dey        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
752026bb8aaSMegha Dey        depends on X86 && 64BIT
753026bb8aaSMegha Dey        select CRYPTO_SHA512
754026bb8aaSMegha Dey        select CRYPTO_HASH
755026bb8aaSMegha Dey        select CRYPTO_MCRYPTD
756026bb8aaSMegha Dey        help
757026bb8aaSMegha Dey          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
758026bb8aaSMegha Dey          using multi-buffer technique.  This algorithm computes on
759026bb8aaSMegha Dey          multiple data lanes concurrently with SIMD instructions for
760026bb8aaSMegha Dey          better throughput.  It should not be enabled by default but
761026bb8aaSMegha Dey          used when there is significant amount of work to keep the keep
762026bb8aaSMegha Dey          the data lanes filled to get performance benefit.  If the data
763026bb8aaSMegha Dey          lanes remain unfilled, a flush operation will be initiated to
764026bb8aaSMegha Dey          process the crypto jobs, adding a slight latency.
765026bb8aaSMegha Dey
7661da177e4SLinus Torvaldsconfig CRYPTO_SHA256
767cd12fb90SJonathan Lynch	tristate "SHA224 and SHA256 digest algorithm"
76850e109b5SAdrian-Ken Rueegsegger	select CRYPTO_HASH
7691da177e4SLinus Torvalds	help
7701da177e4SLinus Torvalds	  SHA256 secure hash standard (DFIPS 180-2).
7711da177e4SLinus Torvalds
7721da177e4SLinus Torvalds	  This version of SHA implements a 256 bit hash with 128 bits of
7731da177e4SLinus Torvalds	  security against collision attacks.
7741da177e4SLinus Torvalds
775cd12fb90SJonathan Lynch	  This code also includes SHA-224, a 224 bit hash with 112 bits
776cd12fb90SJonathan Lynch	  of security against collision attacks.
777cd12fb90SJonathan Lynch
7782ecc1e95SMarkus Stockhausenconfig CRYPTO_SHA256_PPC_SPE
7792ecc1e95SMarkus Stockhausen	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
7802ecc1e95SMarkus Stockhausen	depends on PPC && SPE
7812ecc1e95SMarkus Stockhausen	select CRYPTO_SHA256
7822ecc1e95SMarkus Stockhausen	select CRYPTO_HASH
7832ecc1e95SMarkus Stockhausen	help
7842ecc1e95SMarkus Stockhausen	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
7852ecc1e95SMarkus Stockhausen	  implemented using powerpc SPE SIMD instruction set.
7862ecc1e95SMarkus Stockhausen
787efdb6f6eSAaro Koskinenconfig CRYPTO_SHA256_OCTEON
788efdb6f6eSAaro Koskinen	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
789efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
790efdb6f6eSAaro Koskinen	select CRYPTO_SHA256
791efdb6f6eSAaro Koskinen	select CRYPTO_HASH
792efdb6f6eSAaro Koskinen	help
793efdb6f6eSAaro Koskinen	  SHA-256 secure hash standard (DFIPS 180-2) implemented
794efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
795efdb6f6eSAaro Koskinen
79686c93b24SDavid S. Millerconfig CRYPTO_SHA256_SPARC64
79786c93b24SDavid S. Miller	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
79886c93b24SDavid S. Miller	depends on SPARC64
79986c93b24SDavid S. Miller	select CRYPTO_SHA256
80086c93b24SDavid S. Miller	select CRYPTO_HASH
80186c93b24SDavid S. Miller	help
80286c93b24SDavid S. Miller	  SHA-256 secure hash standard (DFIPS 180-2) implemented
80386c93b24SDavid S. Miller	  using sparc64 crypto instructions, when available.
80486c93b24SDavid S. Miller
8051da177e4SLinus Torvaldsconfig CRYPTO_SHA512
8061da177e4SLinus Torvalds	tristate "SHA384 and SHA512 digest algorithms"
807bd9d20dbSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8081da177e4SLinus Torvalds	help
8091da177e4SLinus Torvalds	  SHA512 secure hash standard (DFIPS 180-2).
8101da177e4SLinus Torvalds
8111da177e4SLinus Torvalds	  This version of SHA implements a 512 bit hash with 256 bits of
8121da177e4SLinus Torvalds	  security against collision attacks.
8131da177e4SLinus Torvalds
8141da177e4SLinus Torvalds	  This code also includes SHA-384, a 384 bit hash with 192 bits
8151da177e4SLinus Torvalds	  of security against collision attacks.
8161da177e4SLinus Torvalds
817efdb6f6eSAaro Koskinenconfig CRYPTO_SHA512_OCTEON
818efdb6f6eSAaro Koskinen	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
819efdb6f6eSAaro Koskinen	depends on CPU_CAVIUM_OCTEON
820efdb6f6eSAaro Koskinen	select CRYPTO_SHA512
821efdb6f6eSAaro Koskinen	select CRYPTO_HASH
822efdb6f6eSAaro Koskinen	help
823efdb6f6eSAaro Koskinen	  SHA-512 secure hash standard (DFIPS 180-2) implemented
824efdb6f6eSAaro Koskinen	  using OCTEON crypto instructions, when available.
825efdb6f6eSAaro Koskinen
826775e0c69SDavid S. Millerconfig CRYPTO_SHA512_SPARC64
827775e0c69SDavid S. Miller	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
828775e0c69SDavid S. Miller	depends on SPARC64
829775e0c69SDavid S. Miller	select CRYPTO_SHA512
830775e0c69SDavid S. Miller	select CRYPTO_HASH
831775e0c69SDavid S. Miller	help
832775e0c69SDavid S. Miller	  SHA-512 secure hash standard (DFIPS 180-2) implemented
833775e0c69SDavid S. Miller	  using sparc64 crypto instructions, when available.
834775e0c69SDavid S. Miller
83553964b9eSJeff Garzikconfig CRYPTO_SHA3
83653964b9eSJeff Garzik	tristate "SHA3 digest algorithm"
83753964b9eSJeff Garzik	select CRYPTO_HASH
83853964b9eSJeff Garzik	help
83953964b9eSJeff Garzik	  SHA-3 secure hash standard (DFIPS 202). It's based on
84053964b9eSJeff Garzik	  cryptographic sponge function family called Keccak.
84153964b9eSJeff Garzik
84253964b9eSJeff Garzik	  References:
84353964b9eSJeff Garzik	  http://keccak.noekeon.org/
84453964b9eSJeff Garzik
8451da177e4SLinus Torvaldsconfig CRYPTO_TGR192
8461da177e4SLinus Torvalds	tristate "Tiger digest algorithms"
847f63fbd3dSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8481da177e4SLinus Torvalds	help
8491da177e4SLinus Torvalds	  Tiger hash algorithm 192, 160 and 128-bit hashes
8501da177e4SLinus Torvalds
8511da177e4SLinus Torvalds	  Tiger is a hash function optimized for 64-bit processors while
8521da177e4SLinus Torvalds	  still having decent performance on 32-bit processors.
8531da177e4SLinus Torvalds	  Tiger was developed by Ross Anderson and Eli Biham.
8541da177e4SLinus Torvalds
8551da177e4SLinus Torvalds	  See also:
8561da177e4SLinus Torvalds	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
8571da177e4SLinus Torvalds
858584fffc8SSebastian Siewiorconfig CRYPTO_WP512
859584fffc8SSebastian Siewior	tristate "Whirlpool digest algorithms"
8604946510bSAdrian-Ken Rueegsegger	select CRYPTO_HASH
8611da177e4SLinus Torvalds	help
862584fffc8SSebastian Siewior	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
8631da177e4SLinus Torvalds
864584fffc8SSebastian Siewior	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
865584fffc8SSebastian Siewior	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
8661da177e4SLinus Torvalds
8671da177e4SLinus Torvalds	  See also:
8686d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
8691da177e4SLinus Torvalds
8700e1227d3SHuang Yingconfig CRYPTO_GHASH_CLMUL_NI_INTEL
8710e1227d3SHuang Ying	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
8728af00860SRichard Weinberger	depends on X86 && 64BIT
8730e1227d3SHuang Ying	select CRYPTO_CRYPTD
8740e1227d3SHuang Ying	help
8750e1227d3SHuang Ying	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
8760e1227d3SHuang Ying	  The implementation is accelerated by CLMUL-NI of Intel.
8770e1227d3SHuang Ying
878584fffc8SSebastian Siewiorcomment "Ciphers"
8791da177e4SLinus Torvalds
8801da177e4SLinus Torvaldsconfig CRYPTO_AES
8811da177e4SLinus Torvalds	tristate "AES cipher algorithms"
882cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
8831da177e4SLinus Torvalds	help
8841da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
8851da177e4SLinus Torvalds	  algorithm.
8861da177e4SLinus Torvalds
8871da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
8881da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
8891da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
8901da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
8911da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
8921da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
8931da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
8941da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
8951da177e4SLinus Torvalds
8961da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
8971da177e4SLinus Torvalds
8981da177e4SLinus Torvalds	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
8991da177e4SLinus Torvalds
900b5e0b032SArd Biesheuvelconfig CRYPTO_AES_TI
901b5e0b032SArd Biesheuvel	tristate "Fixed time AES cipher"
902b5e0b032SArd Biesheuvel	select CRYPTO_ALGAPI
903b5e0b032SArd Biesheuvel	help
904b5e0b032SArd Biesheuvel	  This is a generic implementation of AES that attempts to eliminate
905b5e0b032SArd Biesheuvel	  data dependent latencies as much as possible without affecting
906b5e0b032SArd Biesheuvel	  performance too much. It is intended for use by the generic CCM
907b5e0b032SArd Biesheuvel	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
908b5e0b032SArd Biesheuvel	  solely on encryption (although decryption is supported as well, but
909b5e0b032SArd Biesheuvel	  with a more dramatic performance hit)
910b5e0b032SArd Biesheuvel
911b5e0b032SArd Biesheuvel	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
912b5e0b032SArd Biesheuvel	  8 for decryption), this implementation only uses just two S-boxes of
913b5e0b032SArd Biesheuvel	  256 bytes each, and attempts to eliminate data dependent latencies by
914b5e0b032SArd Biesheuvel	  prefetching the entire table into the cache at the start of each
915b5e0b032SArd Biesheuvel	  block.
916b5e0b032SArd Biesheuvel
9171da177e4SLinus Torvaldsconfig CRYPTO_AES_586
9181da177e4SLinus Torvalds	tristate "AES cipher algorithms (i586)"
919cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && !64BIT
920cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
9215157dea8SSebastian Siewior	select CRYPTO_AES
9221da177e4SLinus Torvalds	help
9231da177e4SLinus Torvalds	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
9241da177e4SLinus Torvalds	  algorithm.
9251da177e4SLinus Torvalds
9261da177e4SLinus Torvalds	  Rijndael appears to be consistently a very good performer in
9271da177e4SLinus Torvalds	  both hardware and software across a wide range of computing
9281da177e4SLinus Torvalds	  environments regardless of its use in feedback or non-feedback
9291da177e4SLinus Torvalds	  modes. Its key setup time is excellent, and its key agility is
9301da177e4SLinus Torvalds	  good. Rijndael's very low memory requirements make it very well
9311da177e4SLinus Torvalds	  suited for restricted-space environments, in which it also
9321da177e4SLinus Torvalds	  demonstrates excellent performance. Rijndael's operations are
9331da177e4SLinus Torvalds	  among the easiest to defend against power and timing attacks.
9341da177e4SLinus Torvalds
9351da177e4SLinus Torvalds	  The AES specifies three key sizes: 128, 192 and 256 bits
9361da177e4SLinus Torvalds
9371da177e4SLinus Torvalds	  See <http://csrc.nist.gov/encryption/aes/> for more information.
9381da177e4SLinus Torvalds
939a2a892a2SAndreas Steinmetzconfig CRYPTO_AES_X86_64
940a2a892a2SAndreas Steinmetz	tristate "AES cipher algorithms (x86_64)"
941cce9e06dSHerbert Xu	depends on (X86 || UML_X86) && 64BIT
942cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
94381190b32SSebastian Siewior	select CRYPTO_AES
944a2a892a2SAndreas Steinmetz	help
945a2a892a2SAndreas Steinmetz	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
946a2a892a2SAndreas Steinmetz	  algorithm.
947a2a892a2SAndreas Steinmetz
948a2a892a2SAndreas Steinmetz	  Rijndael appears to be consistently a very good performer in
949a2a892a2SAndreas Steinmetz	  both hardware and software across a wide range of computing
950a2a892a2SAndreas Steinmetz	  environments regardless of its use in feedback or non-feedback
951a2a892a2SAndreas Steinmetz	  modes. Its key setup time is excellent, and its key agility is
952a2a892a2SAndreas Steinmetz	  good. Rijndael's very low memory requirements make it very well
953a2a892a2SAndreas Steinmetz	  suited for restricted-space environments, in which it also
954a2a892a2SAndreas Steinmetz	  demonstrates excellent performance. Rijndael's operations are
955a2a892a2SAndreas Steinmetz	  among the easiest to defend against power and timing attacks.
956a2a892a2SAndreas Steinmetz
957a2a892a2SAndreas Steinmetz	  The AES specifies three key sizes: 128, 192 and 256 bits
958a2a892a2SAndreas Steinmetz
959a2a892a2SAndreas Steinmetz	  See <http://csrc.nist.gov/encryption/aes/> for more information.
960a2a892a2SAndreas Steinmetz
96154b6a1bdSHuang Yingconfig CRYPTO_AES_NI_INTEL
96254b6a1bdSHuang Ying	tristate "AES cipher algorithms (AES-NI)"
9638af00860SRichard Weinberger	depends on X86
96485671860SHerbert Xu	select CRYPTO_AEAD
9650d258efbSMathias Krause	select CRYPTO_AES_X86_64 if 64BIT
9660d258efbSMathias Krause	select CRYPTO_AES_586 if !64BIT
96754b6a1bdSHuang Ying	select CRYPTO_ALGAPI
96885671860SHerbert Xu	select CRYPTO_BLKCIPHER
9697643a11aSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86 if 64BIT
97085671860SHerbert Xu	select CRYPTO_SIMD
97154b6a1bdSHuang Ying	help
97254b6a1bdSHuang Ying	  Use Intel AES-NI instructions for AES algorithm.
97354b6a1bdSHuang Ying
97454b6a1bdSHuang Ying	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
97554b6a1bdSHuang Ying	  algorithm.
97654b6a1bdSHuang Ying
97754b6a1bdSHuang Ying	  Rijndael appears to be consistently a very good performer in
97854b6a1bdSHuang Ying	  both hardware and software across a wide range of computing
97954b6a1bdSHuang Ying	  environments regardless of its use in feedback or non-feedback
98054b6a1bdSHuang Ying	  modes. Its key setup time is excellent, and its key agility is
98154b6a1bdSHuang Ying	  good. Rijndael's very low memory requirements make it very well
98254b6a1bdSHuang Ying	  suited for restricted-space environments, in which it also
98354b6a1bdSHuang Ying	  demonstrates excellent performance. Rijndael's operations are
98454b6a1bdSHuang Ying	  among the easiest to defend against power and timing attacks.
98554b6a1bdSHuang Ying
98654b6a1bdSHuang Ying	  The AES specifies three key sizes: 128, 192 and 256 bits
98754b6a1bdSHuang Ying
98854b6a1bdSHuang Ying	  See <http://csrc.nist.gov/encryption/aes/> for more information.
98954b6a1bdSHuang Ying
9900d258efbSMathias Krause	  In addition to AES cipher algorithm support, the acceleration
9910d258efbSMathias Krause	  for some popular block cipher mode is supported too, including
9920d258efbSMathias Krause	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
9930d258efbSMathias Krause	  acceleration for CTR.
9942cf4ac8bSHuang Ying
9959bf4852dSDavid S. Millerconfig CRYPTO_AES_SPARC64
9969bf4852dSDavid S. Miller	tristate "AES cipher algorithms (SPARC64)"
9979bf4852dSDavid S. Miller	depends on SPARC64
9989bf4852dSDavid S. Miller	select CRYPTO_CRYPTD
9999bf4852dSDavid S. Miller	select CRYPTO_ALGAPI
10009bf4852dSDavid S. Miller	help
10019bf4852dSDavid S. Miller	  Use SPARC64 crypto opcodes for AES algorithm.
10029bf4852dSDavid S. Miller
10039bf4852dSDavid S. Miller	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
10049bf4852dSDavid S. Miller	  algorithm.
10059bf4852dSDavid S. Miller
10069bf4852dSDavid S. Miller	  Rijndael appears to be consistently a very good performer in
10079bf4852dSDavid S. Miller	  both hardware and software across a wide range of computing
10089bf4852dSDavid S. Miller	  environments regardless of its use in feedback or non-feedback
10099bf4852dSDavid S. Miller	  modes. Its key setup time is excellent, and its key agility is
10109bf4852dSDavid S. Miller	  good. Rijndael's very low memory requirements make it very well
10119bf4852dSDavid S. Miller	  suited for restricted-space environments, in which it also
10129bf4852dSDavid S. Miller	  demonstrates excellent performance. Rijndael's operations are
10139bf4852dSDavid S. Miller	  among the easiest to defend against power and timing attacks.
10149bf4852dSDavid S. Miller
10159bf4852dSDavid S. Miller	  The AES specifies three key sizes: 128, 192 and 256 bits
10169bf4852dSDavid S. Miller
10179bf4852dSDavid S. Miller	  See <http://csrc.nist.gov/encryption/aes/> for more information.
10189bf4852dSDavid S. Miller
10199bf4852dSDavid S. Miller	  In addition to AES cipher algorithm support, the acceleration
10209bf4852dSDavid S. Miller	  for some popular block cipher mode is supported too, including
10219bf4852dSDavid S. Miller	  ECB and CBC.
10229bf4852dSDavid S. Miller
1023504c6143SMarkus Stockhausenconfig CRYPTO_AES_PPC_SPE
1024504c6143SMarkus Stockhausen	tristate "AES cipher algorithms (PPC SPE)"
1025504c6143SMarkus Stockhausen	depends on PPC && SPE
1026504c6143SMarkus Stockhausen	help
1027504c6143SMarkus Stockhausen	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1028504c6143SMarkus Stockhausen	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1029504c6143SMarkus Stockhausen	  This module should only be used for low power (router) devices
1030504c6143SMarkus Stockhausen	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1031504c6143SMarkus Stockhausen	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1032504c6143SMarkus Stockhausen	  timining attacks. Nevertheless it might be not as secure as other
1033504c6143SMarkus Stockhausen	  architecture specific assembler implementations that work on 1KB
1034504c6143SMarkus Stockhausen	  tables or 256 bytes S-boxes.
1035504c6143SMarkus Stockhausen
10361da177e4SLinus Torvaldsconfig CRYPTO_ANUBIS
10371da177e4SLinus Torvalds	tristate "Anubis cipher algorithm"
1038cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
10391da177e4SLinus Torvalds	help
10401da177e4SLinus Torvalds	  Anubis cipher algorithm.
10411da177e4SLinus Torvalds
10421da177e4SLinus Torvalds	  Anubis is a variable key length cipher which can use keys from
10431da177e4SLinus Torvalds	  128 bits to 320 bits in length.  It was evaluated as a entrant
10441da177e4SLinus Torvalds	  in the NESSIE competition.
10451da177e4SLinus Torvalds
10461da177e4SLinus Torvalds	  See also:
10476d8de74cSJustin P. Mattock	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
10486d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
10491da177e4SLinus Torvalds
1050584fffc8SSebastian Siewiorconfig CRYPTO_ARC4
1051584fffc8SSebastian Siewior	tristate "ARC4 cipher algorithm"
1052b9b0f080SSebastian Andrzej Siewior	select CRYPTO_BLKCIPHER
1053e2ee95b8SHye-Shik Chang	help
1054584fffc8SSebastian Siewior	  ARC4 cipher algorithm.
1055e2ee95b8SHye-Shik Chang
1056584fffc8SSebastian Siewior	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1057584fffc8SSebastian Siewior	  bits in length.  This algorithm is required for driver-based
1058584fffc8SSebastian Siewior	  WEP, but it should not be for other purposes because of the
1059584fffc8SSebastian Siewior	  weakness of the algorithm.
1060584fffc8SSebastian Siewior
1061584fffc8SSebastian Siewiorconfig CRYPTO_BLOWFISH
1062584fffc8SSebastian Siewior	tristate "Blowfish cipher algorithm"
1063584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
106452ba867cSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
1065584fffc8SSebastian Siewior	help
1066584fffc8SSebastian Siewior	  Blowfish cipher algorithm, by Bruce Schneier.
1067584fffc8SSebastian Siewior
1068584fffc8SSebastian Siewior	  This is a variable key length cipher which can use keys from 32
1069584fffc8SSebastian Siewior	  bits to 448 bits in length.  It's fast, simple and specifically
1070584fffc8SSebastian Siewior	  designed for use on "large microprocessors".
1071e2ee95b8SHye-Shik Chang
1072e2ee95b8SHye-Shik Chang	  See also:
1073584fffc8SSebastian Siewior	  <http://www.schneier.com/blowfish.html>
1074584fffc8SSebastian Siewior
107552ba867cSJussi Kivilinnaconfig CRYPTO_BLOWFISH_COMMON
107652ba867cSJussi Kivilinna	tristate
107752ba867cSJussi Kivilinna	help
107852ba867cSJussi Kivilinna	  Common parts of the Blowfish cipher algorithm shared by the
107952ba867cSJussi Kivilinna	  generic c and the assembler implementations.
108052ba867cSJussi Kivilinna
108152ba867cSJussi Kivilinna	  See also:
108252ba867cSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
108352ba867cSJussi Kivilinna
108464b94ceaSJussi Kivilinnaconfig CRYPTO_BLOWFISH_X86_64
108564b94ceaSJussi Kivilinna	tristate "Blowfish cipher algorithm (x86_64)"
1086f21a7c19SAl Viro	depends on X86 && 64BIT
108764b94ceaSJussi Kivilinna	select CRYPTO_ALGAPI
108864b94ceaSJussi Kivilinna	select CRYPTO_BLOWFISH_COMMON
108964b94ceaSJussi Kivilinna	help
109064b94ceaSJussi Kivilinna	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
109164b94ceaSJussi Kivilinna
109264b94ceaSJussi Kivilinna	  This is a variable key length cipher which can use keys from 32
109364b94ceaSJussi Kivilinna	  bits to 448 bits in length.  It's fast, simple and specifically
109464b94ceaSJussi Kivilinna	  designed for use on "large microprocessors".
109564b94ceaSJussi Kivilinna
109664b94ceaSJussi Kivilinna	  See also:
109764b94ceaSJussi Kivilinna	  <http://www.schneier.com/blowfish.html>
109864b94ceaSJussi Kivilinna
1099584fffc8SSebastian Siewiorconfig CRYPTO_CAMELLIA
1100584fffc8SSebastian Siewior	tristate "Camellia cipher algorithms"
1101584fffc8SSebastian Siewior	depends on CRYPTO
1102584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1103584fffc8SSebastian Siewior	help
1104584fffc8SSebastian Siewior	  Camellia cipher algorithms module.
1105584fffc8SSebastian Siewior
1106584fffc8SSebastian Siewior	  Camellia is a symmetric key block cipher developed jointly
1107584fffc8SSebastian Siewior	  at NTT and Mitsubishi Electric Corporation.
1108584fffc8SSebastian Siewior
1109584fffc8SSebastian Siewior	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1110584fffc8SSebastian Siewior
1111584fffc8SSebastian Siewior	  See also:
1112584fffc8SSebastian Siewior	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1113584fffc8SSebastian Siewior
11140b95ec56SJussi Kivilinnaconfig CRYPTO_CAMELLIA_X86_64
11150b95ec56SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64)"
1116f21a7c19SAl Viro	depends on X86 && 64BIT
11170b95ec56SJussi Kivilinna	depends on CRYPTO
11180b95ec56SJussi Kivilinna	select CRYPTO_ALGAPI
1119964263afSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
11200b95ec56SJussi Kivilinna	select CRYPTO_LRW
11210b95ec56SJussi Kivilinna	select CRYPTO_XTS
11220b95ec56SJussi Kivilinna	help
11230b95ec56SJussi Kivilinna	  Camellia cipher algorithm module (x86_64).
11240b95ec56SJussi Kivilinna
11250b95ec56SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
11260b95ec56SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
11270b95ec56SJussi Kivilinna
11280b95ec56SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
11290b95ec56SJussi Kivilinna
11300b95ec56SJussi Kivilinna	  See also:
11310b95ec56SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
11320b95ec56SJussi Kivilinna
1133d9b1d2e7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1134d9b1d2e7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1135d9b1d2e7SJussi Kivilinna	depends on X86 && 64BIT
1136d9b1d2e7SJussi Kivilinna	depends on CRYPTO
1137d9b1d2e7SJussi Kivilinna	select CRYPTO_ALGAPI
1138d9b1d2e7SJussi Kivilinna	select CRYPTO_CRYPTD
1139801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1140d9b1d2e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1141d9b1d2e7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1142d9b1d2e7SJussi Kivilinna	select CRYPTO_LRW
1143d9b1d2e7SJussi Kivilinna	select CRYPTO_XTS
1144d9b1d2e7SJussi Kivilinna	help
1145d9b1d2e7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1146d9b1d2e7SJussi Kivilinna
1147d9b1d2e7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1148d9b1d2e7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1149d9b1d2e7SJussi Kivilinna
1150d9b1d2e7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1151d9b1d2e7SJussi Kivilinna
1152d9b1d2e7SJussi Kivilinna	  See also:
1153d9b1d2e7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1154d9b1d2e7SJussi Kivilinna
1155f3f935a7SJussi Kivilinnaconfig CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1156f3f935a7SJussi Kivilinna	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1157f3f935a7SJussi Kivilinna	depends on X86 && 64BIT
1158f3f935a7SJussi Kivilinna	depends on CRYPTO
1159f3f935a7SJussi Kivilinna	select CRYPTO_ALGAPI
1160f3f935a7SJussi Kivilinna	select CRYPTO_CRYPTD
1161801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1162f3f935a7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1163f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_X86_64
1164f3f935a7SJussi Kivilinna	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1165f3f935a7SJussi Kivilinna	select CRYPTO_LRW
1166f3f935a7SJussi Kivilinna	select CRYPTO_XTS
1167f3f935a7SJussi Kivilinna	help
1168f3f935a7SJussi Kivilinna	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1169f3f935a7SJussi Kivilinna
1170f3f935a7SJussi Kivilinna	  Camellia is a symmetric key block cipher developed jointly
1171f3f935a7SJussi Kivilinna	  at NTT and Mitsubishi Electric Corporation.
1172f3f935a7SJussi Kivilinna
1173f3f935a7SJussi Kivilinna	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1174f3f935a7SJussi Kivilinna
1175f3f935a7SJussi Kivilinna	  See also:
1176f3f935a7SJussi Kivilinna	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1177f3f935a7SJussi Kivilinna
117881658ad0SDavid S. Millerconfig CRYPTO_CAMELLIA_SPARC64
117981658ad0SDavid S. Miller	tristate "Camellia cipher algorithm (SPARC64)"
118081658ad0SDavid S. Miller	depends on SPARC64
118181658ad0SDavid S. Miller	depends on CRYPTO
118281658ad0SDavid S. Miller	select CRYPTO_ALGAPI
118381658ad0SDavid S. Miller	help
118481658ad0SDavid S. Miller	  Camellia cipher algorithm module (SPARC64).
118581658ad0SDavid S. Miller
118681658ad0SDavid S. Miller	  Camellia is a symmetric key block cipher developed jointly
118781658ad0SDavid S. Miller	  at NTT and Mitsubishi Electric Corporation.
118881658ad0SDavid S. Miller
118981658ad0SDavid S. Miller	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
119081658ad0SDavid S. Miller
119181658ad0SDavid S. Miller	  See also:
119281658ad0SDavid S. Miller	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
119381658ad0SDavid S. Miller
1194044ab525SJussi Kivilinnaconfig CRYPTO_CAST_COMMON
1195044ab525SJussi Kivilinna	tristate
1196044ab525SJussi Kivilinna	help
1197044ab525SJussi Kivilinna	  Common parts of the CAST cipher algorithms shared by the
1198044ab525SJussi Kivilinna	  generic c and the assembler implementations.
1199044ab525SJussi Kivilinna
1200584fffc8SSebastian Siewiorconfig CRYPTO_CAST5
1201584fffc8SSebastian Siewior	tristate "CAST5 (CAST-128) cipher algorithm"
1202584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1203044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1204584fffc8SSebastian Siewior	help
1205584fffc8SSebastian Siewior	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1206584fffc8SSebastian Siewior	  described in RFC2144.
1207584fffc8SSebastian Siewior
12084d6d6a2cSJohannes Goetzfriedconfig CRYPTO_CAST5_AVX_X86_64
12094d6d6a2cSJohannes Goetzfried	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
12104d6d6a2cSJohannes Goetzfried	depends on X86 && 64BIT
12114d6d6a2cSJohannes Goetzfried	select CRYPTO_ALGAPI
12124d6d6a2cSJohannes Goetzfried	select CRYPTO_CRYPTD
1213801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1214044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12154d6d6a2cSJohannes Goetzfried	select CRYPTO_CAST5
12164d6d6a2cSJohannes Goetzfried	help
12174d6d6a2cSJohannes Goetzfried	  The CAST5 encryption algorithm (synonymous with CAST-128) is
12184d6d6a2cSJohannes Goetzfried	  described in RFC2144.
12194d6d6a2cSJohannes Goetzfried
12204d6d6a2cSJohannes Goetzfried	  This module provides the Cast5 cipher algorithm that processes
12214d6d6a2cSJohannes Goetzfried	  sixteen blocks parallel using the AVX instruction set.
12224d6d6a2cSJohannes Goetzfried
1223584fffc8SSebastian Siewiorconfig CRYPTO_CAST6
1224584fffc8SSebastian Siewior	tristate "CAST6 (CAST-256) cipher algorithm"
1225584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1226044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
1227584fffc8SSebastian Siewior	help
1228584fffc8SSebastian Siewior	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1229584fffc8SSebastian Siewior	  described in RFC2612.
1230584fffc8SSebastian Siewior
12314ea1277dSJohannes Goetzfriedconfig CRYPTO_CAST6_AVX_X86_64
12324ea1277dSJohannes Goetzfried	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
12334ea1277dSJohannes Goetzfried	depends on X86 && 64BIT
12344ea1277dSJohannes Goetzfried	select CRYPTO_ALGAPI
12354ea1277dSJohannes Goetzfried	select CRYPTO_CRYPTD
1236801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
12374ea1277dSJohannes Goetzfried	select CRYPTO_GLUE_HELPER_X86
1238044ab525SJussi Kivilinna	select CRYPTO_CAST_COMMON
12394ea1277dSJohannes Goetzfried	select CRYPTO_CAST6
12404ea1277dSJohannes Goetzfried	select CRYPTO_LRW
12414ea1277dSJohannes Goetzfried	select CRYPTO_XTS
12424ea1277dSJohannes Goetzfried	help
12434ea1277dSJohannes Goetzfried	  The CAST6 encryption algorithm (synonymous with CAST-256) is
12444ea1277dSJohannes Goetzfried	  described in RFC2612.
12454ea1277dSJohannes Goetzfried
12464ea1277dSJohannes Goetzfried	  This module provides the Cast6 cipher algorithm that processes
12474ea1277dSJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
12484ea1277dSJohannes Goetzfried
1249584fffc8SSebastian Siewiorconfig CRYPTO_DES
1250584fffc8SSebastian Siewior	tristate "DES and Triple DES EDE cipher algorithms"
1251584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1252584fffc8SSebastian Siewior	help
1253584fffc8SSebastian Siewior	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1254584fffc8SSebastian Siewior
1255c5aac2dfSDavid S. Millerconfig CRYPTO_DES_SPARC64
1256c5aac2dfSDavid S. Miller	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
125797da37b3SDave Jones	depends on SPARC64
1258c5aac2dfSDavid S. Miller	select CRYPTO_ALGAPI
1259c5aac2dfSDavid S. Miller	select CRYPTO_DES
1260c5aac2dfSDavid S. Miller	help
1261c5aac2dfSDavid S. Miller	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1262c5aac2dfSDavid S. Miller	  optimized using SPARC64 crypto opcodes.
1263c5aac2dfSDavid S. Miller
12646574e6c6SJussi Kivilinnaconfig CRYPTO_DES3_EDE_X86_64
12656574e6c6SJussi Kivilinna	tristate "Triple DES EDE cipher algorithm (x86-64)"
12666574e6c6SJussi Kivilinna	depends on X86 && 64BIT
12676574e6c6SJussi Kivilinna	select CRYPTO_ALGAPI
12686574e6c6SJussi Kivilinna	select CRYPTO_DES
12696574e6c6SJussi Kivilinna	help
12706574e6c6SJussi Kivilinna	  Triple DES EDE (FIPS 46-3) algorithm.
12716574e6c6SJussi Kivilinna
12726574e6c6SJussi Kivilinna	  This module provides implementation of the Triple DES EDE cipher
12736574e6c6SJussi Kivilinna	  algorithm that is optimized for x86-64 processors. Two versions of
12746574e6c6SJussi Kivilinna	  algorithm are provided; regular processing one input block and
12756574e6c6SJussi Kivilinna	  one that processes three blocks parallel.
12766574e6c6SJussi Kivilinna
1277584fffc8SSebastian Siewiorconfig CRYPTO_FCRYPT
1278584fffc8SSebastian Siewior	tristate "FCrypt cipher algorithm"
1279584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1280584fffc8SSebastian Siewior	select CRYPTO_BLKCIPHER
1281584fffc8SSebastian Siewior	help
1282584fffc8SSebastian Siewior	  FCrypt algorithm used by RxRPC.
1283584fffc8SSebastian Siewior
1284584fffc8SSebastian Siewiorconfig CRYPTO_KHAZAD
1285584fffc8SSebastian Siewior	tristate "Khazad cipher algorithm"
1286584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1287584fffc8SSebastian Siewior	help
1288584fffc8SSebastian Siewior	  Khazad cipher algorithm.
1289584fffc8SSebastian Siewior
1290584fffc8SSebastian Siewior	  Khazad was a finalist in the initial NESSIE competition.  It is
1291584fffc8SSebastian Siewior	  an algorithm optimized for 64-bit processors with good performance
1292584fffc8SSebastian Siewior	  on 32-bit processors.  Khazad uses an 128 bit key size.
1293584fffc8SSebastian Siewior
1294584fffc8SSebastian Siewior	  See also:
12956d8de74cSJustin P. Mattock	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1296e2ee95b8SHye-Shik Chang
12972407d608STan Swee Hengconfig CRYPTO_SALSA20
12983b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm"
12992407d608STan Swee Heng	select CRYPTO_BLKCIPHER
13002407d608STan Swee Heng	help
13012407d608STan Swee Heng	  Salsa20 stream cipher algorithm.
13022407d608STan Swee Heng
13032407d608STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13042407d608STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13052407d608STan Swee Heng
13062407d608STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13072407d608STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13081da177e4SLinus Torvalds
1309974e4b75STan Swee Hengconfig CRYPTO_SALSA20_586
13103b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (i586)"
1311974e4b75STan Swee Heng	depends on (X86 || UML_X86) && !64BIT
1312974e4b75STan Swee Heng	select CRYPTO_BLKCIPHER
1313974e4b75STan Swee Heng	help
1314974e4b75STan Swee Heng	  Salsa20 stream cipher algorithm.
1315974e4b75STan Swee Heng
1316974e4b75STan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1317974e4b75STan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1318974e4b75STan Swee Heng
1319974e4b75STan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1320974e4b75STan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1321974e4b75STan Swee Heng
13229a7dafbbSTan Swee Hengconfig CRYPTO_SALSA20_X86_64
13233b4afaf2SKees Cook	tristate "Salsa20 stream cipher algorithm (x86_64)"
13249a7dafbbSTan Swee Heng	depends on (X86 || UML_X86) && 64BIT
13259a7dafbbSTan Swee Heng	select CRYPTO_BLKCIPHER
13269a7dafbbSTan Swee Heng	help
13279a7dafbbSTan Swee Heng	  Salsa20 stream cipher algorithm.
13289a7dafbbSTan Swee Heng
13299a7dafbbSTan Swee Heng	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
13309a7dafbbSTan Swee Heng	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
13319a7dafbbSTan Swee Heng
13329a7dafbbSTan Swee Heng	  The Salsa20 stream cipher algorithm is designed by Daniel J.
13339a7dafbbSTan Swee Heng	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
13349a7dafbbSTan Swee Heng
1335c08d0e64SMartin Williconfig CRYPTO_CHACHA20
1336c08d0e64SMartin Willi	tristate "ChaCha20 cipher algorithm"
1337c08d0e64SMartin Willi	select CRYPTO_BLKCIPHER
1338c08d0e64SMartin Willi	help
1339c08d0e64SMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1340c08d0e64SMartin Willi
1341c08d0e64SMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1342c08d0e64SMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1343c08d0e64SMartin Willi	  This is the portable C implementation of ChaCha20.
1344c08d0e64SMartin Willi
1345c08d0e64SMartin Willi	  See also:
1346c08d0e64SMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1347c08d0e64SMartin Willi
1348c9320b6dSMartin Williconfig CRYPTO_CHACHA20_X86_64
13493d1e93cdSMartin Willi	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1350c9320b6dSMartin Willi	depends on X86 && 64BIT
1351c9320b6dSMartin Willi	select CRYPTO_BLKCIPHER
1352c9320b6dSMartin Willi	select CRYPTO_CHACHA20
1353c9320b6dSMartin Willi	help
1354c9320b6dSMartin Willi	  ChaCha20 cipher algorithm, RFC7539.
1355c9320b6dSMartin Willi
1356c9320b6dSMartin Willi	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1357c9320b6dSMartin Willi	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1358c9320b6dSMartin Willi	  This is the x86_64 assembler implementation using SIMD instructions.
1359c9320b6dSMartin Willi
1360c9320b6dSMartin Willi	  See also:
1361c9320b6dSMartin Willi	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1362c9320b6dSMartin Willi
1363584fffc8SSebastian Siewiorconfig CRYPTO_SEED
1364584fffc8SSebastian Siewior	tristate "SEED cipher algorithm"
1365584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1366584fffc8SSebastian Siewior	help
1367584fffc8SSebastian Siewior	  SEED cipher algorithm (RFC4269).
1368584fffc8SSebastian Siewior
1369584fffc8SSebastian Siewior	  SEED is a 128-bit symmetric key block cipher that has been
1370584fffc8SSebastian Siewior	  developed by KISA (Korea Information Security Agency) as a
1371584fffc8SSebastian Siewior	  national standard encryption algorithm of the Republic of Korea.
1372584fffc8SSebastian Siewior	  It is a 16 round block cipher with the key size of 128 bit.
1373584fffc8SSebastian Siewior
1374584fffc8SSebastian Siewior	  See also:
1375584fffc8SSebastian Siewior	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1376584fffc8SSebastian Siewior
1377584fffc8SSebastian Siewiorconfig CRYPTO_SERPENT
1378584fffc8SSebastian Siewior	tristate "Serpent cipher algorithm"
1379584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1380584fffc8SSebastian Siewior	help
1381584fffc8SSebastian Siewior	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1382584fffc8SSebastian Siewior
1383584fffc8SSebastian Siewior	  Keys are allowed to be from 0 to 256 bits in length, in steps
1384584fffc8SSebastian Siewior	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1385584fffc8SSebastian Siewior	  variant of Serpent for compatibility with old kerneli.org code.
1386584fffc8SSebastian Siewior
1387584fffc8SSebastian Siewior	  See also:
1388584fffc8SSebastian Siewior	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1389584fffc8SSebastian Siewior
1390937c30d7SJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_X86_64
1391937c30d7SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1392937c30d7SJussi Kivilinna	depends on X86 && 64BIT
1393937c30d7SJussi Kivilinna	select CRYPTO_ALGAPI
1394341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1395801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1396596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1397937c30d7SJussi Kivilinna	select CRYPTO_SERPENT
1398feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1399feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1400937c30d7SJussi Kivilinna	help
1401937c30d7SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1402937c30d7SJussi Kivilinna
1403937c30d7SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1404937c30d7SJussi Kivilinna	  of 8 bits.
1405937c30d7SJussi Kivilinna
14061e6232f8SMasanari Iida	  This module provides Serpent cipher algorithm that processes eight
1407937c30d7SJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1408937c30d7SJussi Kivilinna
1409937c30d7SJussi Kivilinna	  See also:
1410937c30d7SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1411937c30d7SJussi Kivilinna
1412251496dbSJussi Kivilinnaconfig CRYPTO_SERPENT_SSE2_586
1413251496dbSJussi Kivilinna	tristate "Serpent cipher algorithm (i586/SSE2)"
1414251496dbSJussi Kivilinna	depends on X86 && !64BIT
1415251496dbSJussi Kivilinna	select CRYPTO_ALGAPI
1416341975bfSJussi Kivilinna	select CRYPTO_CRYPTD
1417801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1418596d8750SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1419251496dbSJussi Kivilinna	select CRYPTO_SERPENT
1420feaf0cfcSJussi Kivilinna	select CRYPTO_LRW
1421feaf0cfcSJussi Kivilinna	select CRYPTO_XTS
1422251496dbSJussi Kivilinna	help
1423251496dbSJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1424251496dbSJussi Kivilinna
1425251496dbSJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
1426251496dbSJussi Kivilinna	  of 8 bits.
1427251496dbSJussi Kivilinna
1428251496dbSJussi Kivilinna	  This module provides Serpent cipher algorithm that processes four
1429251496dbSJussi Kivilinna	  blocks parallel using SSE2 instruction set.
1430251496dbSJussi Kivilinna
1431251496dbSJussi Kivilinna	  See also:
1432251496dbSJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1433251496dbSJussi Kivilinna
14347efe4076SJohannes Goetzfriedconfig CRYPTO_SERPENT_AVX_X86_64
14357efe4076SJohannes Goetzfried	tristate "Serpent cipher algorithm (x86_64/AVX)"
14367efe4076SJohannes Goetzfried	depends on X86 && 64BIT
14377efe4076SJohannes Goetzfried	select CRYPTO_ALGAPI
14387efe4076SJohannes Goetzfried	select CRYPTO_CRYPTD
1439801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
14401d0debbdSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
14417efe4076SJohannes Goetzfried	select CRYPTO_SERPENT
14427efe4076SJohannes Goetzfried	select CRYPTO_LRW
14437efe4076SJohannes Goetzfried	select CRYPTO_XTS
14447efe4076SJohannes Goetzfried	help
14457efe4076SJohannes Goetzfried	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
14467efe4076SJohannes Goetzfried
14477efe4076SJohannes Goetzfried	  Keys are allowed to be from 0 to 256 bits in length, in steps
14487efe4076SJohannes Goetzfried	  of 8 bits.
14497efe4076SJohannes Goetzfried
14507efe4076SJohannes Goetzfried	  This module provides the Serpent cipher algorithm that processes
14517efe4076SJohannes Goetzfried	  eight blocks parallel using the AVX instruction set.
14527efe4076SJohannes Goetzfried
14537efe4076SJohannes Goetzfried	  See also:
14547efe4076SJohannes Goetzfried	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
14557efe4076SJohannes Goetzfried
145656d76c96SJussi Kivilinnaconfig CRYPTO_SERPENT_AVX2_X86_64
145756d76c96SJussi Kivilinna	tristate "Serpent cipher algorithm (x86_64/AVX2)"
145856d76c96SJussi Kivilinna	depends on X86 && 64BIT
145956d76c96SJussi Kivilinna	select CRYPTO_ALGAPI
146056d76c96SJussi Kivilinna	select CRYPTO_CRYPTD
1461801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
146256d76c96SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
146356d76c96SJussi Kivilinna	select CRYPTO_SERPENT
146456d76c96SJussi Kivilinna	select CRYPTO_SERPENT_AVX_X86_64
146556d76c96SJussi Kivilinna	select CRYPTO_LRW
146656d76c96SJussi Kivilinna	select CRYPTO_XTS
146756d76c96SJussi Kivilinna	help
146856d76c96SJussi Kivilinna	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
146956d76c96SJussi Kivilinna
147056d76c96SJussi Kivilinna	  Keys are allowed to be from 0 to 256 bits in length, in steps
147156d76c96SJussi Kivilinna	  of 8 bits.
147256d76c96SJussi Kivilinna
147356d76c96SJussi Kivilinna	  This module provides Serpent cipher algorithm that processes 16
147456d76c96SJussi Kivilinna	  blocks parallel using AVX2 instruction set.
147556d76c96SJussi Kivilinna
147656d76c96SJussi Kivilinna	  See also:
147756d76c96SJussi Kivilinna	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
147856d76c96SJussi Kivilinna
1479584fffc8SSebastian Siewiorconfig CRYPTO_TEA
1480584fffc8SSebastian Siewior	tristate "TEA, XTEA and XETA cipher algorithms"
1481584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1482584fffc8SSebastian Siewior	help
1483584fffc8SSebastian Siewior	  TEA cipher algorithm.
1484584fffc8SSebastian Siewior
1485584fffc8SSebastian Siewior	  Tiny Encryption Algorithm is a simple cipher that uses
1486584fffc8SSebastian Siewior	  many rounds for security.  It is very fast and uses
1487584fffc8SSebastian Siewior	  little memory.
1488584fffc8SSebastian Siewior
1489584fffc8SSebastian Siewior	  Xtendend Tiny Encryption Algorithm is a modification to
1490584fffc8SSebastian Siewior	  the TEA algorithm to address a potential key weakness
1491584fffc8SSebastian Siewior	  in the TEA algorithm.
1492584fffc8SSebastian Siewior
1493584fffc8SSebastian Siewior	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1494584fffc8SSebastian Siewior	  of the XTEA algorithm for compatibility purposes.
1495584fffc8SSebastian Siewior
1496584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH
1497584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm"
1498584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1499584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1500584fffc8SSebastian Siewior	help
1501584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1502584fffc8SSebastian Siewior
1503584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1504584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1505584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1506584fffc8SSebastian Siewior	  bits.
1507584fffc8SSebastian Siewior
1508584fffc8SSebastian Siewior	  See also:
1509584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1510584fffc8SSebastian Siewior
1511584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_COMMON
1512584fffc8SSebastian Siewior	tristate
1513584fffc8SSebastian Siewior	help
1514584fffc8SSebastian Siewior	  Common parts of the Twofish cipher algorithm shared by the
1515584fffc8SSebastian Siewior	  generic c and the assembler implementations.
1516584fffc8SSebastian Siewior
1517584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_586
1518584fffc8SSebastian Siewior	tristate "Twofish cipher algorithms (i586)"
1519584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && !64BIT
1520584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1521584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1522584fffc8SSebastian Siewior	help
1523584fffc8SSebastian Siewior	  Twofish cipher algorithm.
1524584fffc8SSebastian Siewior
1525584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1526584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1527584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1528584fffc8SSebastian Siewior	  bits.
1529584fffc8SSebastian Siewior
1530584fffc8SSebastian Siewior	  See also:
1531584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1532584fffc8SSebastian Siewior
1533584fffc8SSebastian Siewiorconfig CRYPTO_TWOFISH_X86_64
1534584fffc8SSebastian Siewior	tristate "Twofish cipher algorithm (x86_64)"
1535584fffc8SSebastian Siewior	depends on (X86 || UML_X86) && 64BIT
1536584fffc8SSebastian Siewior	select CRYPTO_ALGAPI
1537584fffc8SSebastian Siewior	select CRYPTO_TWOFISH_COMMON
1538584fffc8SSebastian Siewior	help
1539584fffc8SSebastian Siewior	  Twofish cipher algorithm (x86_64).
1540584fffc8SSebastian Siewior
1541584fffc8SSebastian Siewior	  Twofish was submitted as an AES (Advanced Encryption Standard)
1542584fffc8SSebastian Siewior	  candidate cipher by researchers at CounterPane Systems.  It is a
1543584fffc8SSebastian Siewior	  16 round block cipher supporting key sizes of 128, 192, and 256
1544584fffc8SSebastian Siewior	  bits.
1545584fffc8SSebastian Siewior
1546584fffc8SSebastian Siewior	  See also:
1547584fffc8SSebastian Siewior	  <http://www.schneier.com/twofish.html>
1548584fffc8SSebastian Siewior
15498280daadSJussi Kivilinnaconfig CRYPTO_TWOFISH_X86_64_3WAY
15508280daadSJussi Kivilinna	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1551f21a7c19SAl Viro	depends on X86 && 64BIT
15528280daadSJussi Kivilinna	select CRYPTO_ALGAPI
15538280daadSJussi Kivilinna	select CRYPTO_TWOFISH_COMMON
15548280daadSJussi Kivilinna	select CRYPTO_TWOFISH_X86_64
1555414cb5e7SJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1556e7cda5d2SJussi Kivilinna	select CRYPTO_LRW
1557e7cda5d2SJussi Kivilinna	select CRYPTO_XTS
15588280daadSJussi Kivilinna	help
15598280daadSJussi Kivilinna	  Twofish cipher algorithm (x86_64, 3-way parallel).
15608280daadSJussi Kivilinna
15618280daadSJussi Kivilinna	  Twofish was submitted as an AES (Advanced Encryption Standard)
15628280daadSJussi Kivilinna	  candidate cipher by researchers at CounterPane Systems.  It is a
15638280daadSJussi Kivilinna	  16 round block cipher supporting key sizes of 128, 192, and 256
15648280daadSJussi Kivilinna	  bits.
15658280daadSJussi Kivilinna
15668280daadSJussi Kivilinna	  This module provides Twofish cipher algorithm that processes three
15678280daadSJussi Kivilinna	  blocks parallel, utilizing resources of out-of-order CPUs better.
15688280daadSJussi Kivilinna
15698280daadSJussi Kivilinna	  See also:
15708280daadSJussi Kivilinna	  <http://www.schneier.com/twofish.html>
15718280daadSJussi Kivilinna
1572107778b5SJohannes Goetzfriedconfig CRYPTO_TWOFISH_AVX_X86_64
1573107778b5SJohannes Goetzfried	tristate "Twofish cipher algorithm (x86_64/AVX)"
1574107778b5SJohannes Goetzfried	depends on X86 && 64BIT
1575107778b5SJohannes Goetzfried	select CRYPTO_ALGAPI
1576107778b5SJohannes Goetzfried	select CRYPTO_CRYPTD
1577801201aaSArd Biesheuvel	select CRYPTO_ABLK_HELPER
1578a7378d4eSJussi Kivilinna	select CRYPTO_GLUE_HELPER_X86
1579107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_COMMON
1580107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64
1581107778b5SJohannes Goetzfried	select CRYPTO_TWOFISH_X86_64_3WAY
1582107778b5SJohannes Goetzfried	select CRYPTO_LRW
1583107778b5SJohannes Goetzfried	select CRYPTO_XTS
1584107778b5SJohannes Goetzfried	help
1585107778b5SJohannes Goetzfried	  Twofish cipher algorithm (x86_64/AVX).
1586107778b5SJohannes Goetzfried
1587107778b5SJohannes Goetzfried	  Twofish was submitted as an AES (Advanced Encryption Standard)
1588107778b5SJohannes Goetzfried	  candidate cipher by researchers at CounterPane Systems.  It is a
1589107778b5SJohannes Goetzfried	  16 round block cipher supporting key sizes of 128, 192, and 256
1590107778b5SJohannes Goetzfried	  bits.
1591107778b5SJohannes Goetzfried
1592107778b5SJohannes Goetzfried	  This module provides the Twofish cipher algorithm that processes
1593107778b5SJohannes Goetzfried	  eight blocks parallel using the AVX Instruction Set.
1594107778b5SJohannes Goetzfried
1595107778b5SJohannes Goetzfried	  See also:
1596107778b5SJohannes Goetzfried	  <http://www.schneier.com/twofish.html>
1597107778b5SJohannes Goetzfried
1598584fffc8SSebastian Siewiorcomment "Compression"
1599584fffc8SSebastian Siewior
16001da177e4SLinus Torvaldsconfig CRYPTO_DEFLATE
16011da177e4SLinus Torvalds	tristate "Deflate compression algorithm"
1602cce9e06dSHerbert Xu	select CRYPTO_ALGAPI
1603f6ded09dSGiovanni Cabiddu	select CRYPTO_ACOMP2
16041da177e4SLinus Torvalds	select ZLIB_INFLATE
16051da177e4SLinus Torvalds	select ZLIB_DEFLATE
16061da177e4SLinus Torvalds	help
16071da177e4SLinus Torvalds	  This is the Deflate algorithm (RFC1951), specified for use in
16081da177e4SLinus Torvalds	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
16091da177e4SLinus Torvalds
16101da177e4SLinus Torvalds	  You will most probably want this if using IPSec.
16111da177e4SLinus Torvalds
16120b77abb3SZoltan Sogorconfig CRYPTO_LZO
16130b77abb3SZoltan Sogor	tristate "LZO compression algorithm"
16140b77abb3SZoltan Sogor	select CRYPTO_ALGAPI
1615ac9d2c4bSGiovanni Cabiddu	select CRYPTO_ACOMP2
16160b77abb3SZoltan Sogor	select LZO_COMPRESS
16170b77abb3SZoltan Sogor	select LZO_DECOMPRESS
16180b77abb3SZoltan Sogor	help
16190b77abb3SZoltan Sogor	  This is the LZO algorithm.
16200b77abb3SZoltan Sogor
162135a1fc18SSeth Jenningsconfig CRYPTO_842
162235a1fc18SSeth Jennings	tristate "842 compression algorithm"
16232062c5b6SDan Streetman	select CRYPTO_ALGAPI
16246a8de3aeSGiovanni Cabiddu	select CRYPTO_ACOMP2
16252062c5b6SDan Streetman	select 842_COMPRESS
16262062c5b6SDan Streetman	select 842_DECOMPRESS
162735a1fc18SSeth Jennings	help
162835a1fc18SSeth Jennings	  This is the 842 algorithm.
162935a1fc18SSeth Jennings
16300ea8530dSChanho Minconfig CRYPTO_LZ4
16310ea8530dSChanho Min	tristate "LZ4 compression algorithm"
16320ea8530dSChanho Min	select CRYPTO_ALGAPI
16338cd9330eSGiovanni Cabiddu	select CRYPTO_ACOMP2
16340ea8530dSChanho Min	select LZ4_COMPRESS
16350ea8530dSChanho Min	select LZ4_DECOMPRESS
16360ea8530dSChanho Min	help
16370ea8530dSChanho Min	  This is the LZ4 algorithm.
16380ea8530dSChanho Min
16390ea8530dSChanho Minconfig CRYPTO_LZ4HC
16400ea8530dSChanho Min	tristate "LZ4HC compression algorithm"
16410ea8530dSChanho Min	select CRYPTO_ALGAPI
164291d53d96SGiovanni Cabiddu	select CRYPTO_ACOMP2
16430ea8530dSChanho Min	select LZ4HC_COMPRESS
16440ea8530dSChanho Min	select LZ4_DECOMPRESS
16450ea8530dSChanho Min	help
16460ea8530dSChanho Min	  This is the LZ4 high compression mode algorithm.
16470ea8530dSChanho Min
164817f0f4a4SNeil Hormancomment "Random Number Generation"
164917f0f4a4SNeil Horman
165017f0f4a4SNeil Hormanconfig CRYPTO_ANSI_CPRNG
165117f0f4a4SNeil Horman	tristate "Pseudo Random Number Generation for Cryptographic modules"
165217f0f4a4SNeil Horman	select CRYPTO_AES
165317f0f4a4SNeil Horman	select CRYPTO_RNG
165417f0f4a4SNeil Horman	help
165517f0f4a4SNeil Horman	  This option enables the generic pseudo random number generator
165617f0f4a4SNeil Horman	  for cryptographic modules.  Uses the Algorithm specified in
16577dd607e8SJiri Kosina	  ANSI X9.31 A.2.4. Note that this option must be enabled if
16587dd607e8SJiri Kosina	  CRYPTO_FIPS is selected
165917f0f4a4SNeil Horman
1660f2c89a10SHerbert Xumenuconfig CRYPTO_DRBG_MENU
1661419090c6SStephan Mueller	tristate "NIST SP800-90A DRBG"
1662419090c6SStephan Mueller	help
1663419090c6SStephan Mueller	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1664419090c6SStephan Mueller	  more of the DRBG types must be selected.
1665419090c6SStephan Mueller
1666f2c89a10SHerbert Xuif CRYPTO_DRBG_MENU
1667419090c6SStephan Mueller
1668419090c6SStephan Muellerconfig CRYPTO_DRBG_HMAC
1669401e4238SHerbert Xu	bool
1670419090c6SStephan Mueller	default y
1671419090c6SStephan Mueller	select CRYPTO_HMAC
1672826775bbSHerbert Xu	select CRYPTO_SHA256
1673419090c6SStephan Mueller
1674419090c6SStephan Muellerconfig CRYPTO_DRBG_HASH
1675419090c6SStephan Mueller	bool "Enable Hash DRBG"
1676826775bbSHerbert Xu	select CRYPTO_SHA256
1677419090c6SStephan Mueller	help
1678419090c6SStephan Mueller	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1679419090c6SStephan Mueller
1680419090c6SStephan Muellerconfig CRYPTO_DRBG_CTR
1681419090c6SStephan Mueller	bool "Enable CTR DRBG"
1682419090c6SStephan Mueller	select CRYPTO_AES
168335591285SStephan Mueller	depends on CRYPTO_CTR
1684419090c6SStephan Mueller	help
1685419090c6SStephan Mueller	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1686419090c6SStephan Mueller
1687f2c89a10SHerbert Xuconfig CRYPTO_DRBG
1688f2c89a10SHerbert Xu	tristate
1689401e4238SHerbert Xu	default CRYPTO_DRBG_MENU
1690f2c89a10SHerbert Xu	select CRYPTO_RNG
1691bb5530e4SStephan Mueller	select CRYPTO_JITTERENTROPY
1692f2c89a10SHerbert Xu
1693f2c89a10SHerbert Xuendif	# if CRYPTO_DRBG_MENU
1694419090c6SStephan Mueller
1695bb5530e4SStephan Muellerconfig CRYPTO_JITTERENTROPY
1696bb5530e4SStephan Mueller	tristate "Jitterentropy Non-Deterministic Random Number Generator"
16972f313e02SArnd Bergmann	select CRYPTO_RNG
1698bb5530e4SStephan Mueller	help
1699bb5530e4SStephan Mueller	  The Jitterentropy RNG is a noise that is intended
1700bb5530e4SStephan Mueller	  to provide seed to another RNG. The RNG does not
1701bb5530e4SStephan Mueller	  perform any cryptographic whitening of the generated
1702bb5530e4SStephan Mueller	  random numbers. This Jitterentropy RNG registers with
1703bb5530e4SStephan Mueller	  the kernel crypto API and can be used by any caller.
1704bb5530e4SStephan Mueller
170503c8efc1SHerbert Xuconfig CRYPTO_USER_API
170603c8efc1SHerbert Xu	tristate
170703c8efc1SHerbert Xu
1708fe869cdbSHerbert Xuconfig CRYPTO_USER_API_HASH
1709fe869cdbSHerbert Xu	tristate "User-space interface for hash algorithms"
17107451708fSHerbert Xu	depends on NET
1711fe869cdbSHerbert Xu	select CRYPTO_HASH
1712fe869cdbSHerbert Xu	select CRYPTO_USER_API
1713fe869cdbSHerbert Xu	help
1714fe869cdbSHerbert Xu	  This option enables the user-spaces interface for hash
1715fe869cdbSHerbert Xu	  algorithms.
1716fe869cdbSHerbert Xu
17178ff59090SHerbert Xuconfig CRYPTO_USER_API_SKCIPHER
17188ff59090SHerbert Xu	tristate "User-space interface for symmetric key cipher algorithms"
17197451708fSHerbert Xu	depends on NET
17208ff59090SHerbert Xu	select CRYPTO_BLKCIPHER
17218ff59090SHerbert Xu	select CRYPTO_USER_API
17228ff59090SHerbert Xu	help
17238ff59090SHerbert Xu	  This option enables the user-spaces interface for symmetric
17248ff59090SHerbert Xu	  key cipher algorithms.
17258ff59090SHerbert Xu
17262f375538SStephan Muellerconfig CRYPTO_USER_API_RNG
17272f375538SStephan Mueller	tristate "User-space interface for random number generator algorithms"
17282f375538SStephan Mueller	depends on NET
17292f375538SStephan Mueller	select CRYPTO_RNG
17302f375538SStephan Mueller	select CRYPTO_USER_API
17312f375538SStephan Mueller	help
17322f375538SStephan Mueller	  This option enables the user-spaces interface for random
17332f375538SStephan Mueller	  number generator algorithms.
17342f375538SStephan Mueller
1735b64a2d95SHerbert Xuconfig CRYPTO_USER_API_AEAD
1736b64a2d95SHerbert Xu	tristate "User-space interface for AEAD cipher algorithms"
1737b64a2d95SHerbert Xu	depends on NET
1738b64a2d95SHerbert Xu	select CRYPTO_AEAD
1739b64a2d95SHerbert Xu	select CRYPTO_USER_API
1740b64a2d95SHerbert Xu	help
1741b64a2d95SHerbert Xu	  This option enables the user-spaces interface for AEAD
1742b64a2d95SHerbert Xu	  cipher algorithms.
1743b64a2d95SHerbert Xu
1744ee08997fSDmitry Kasatkinconfig CRYPTO_HASH_INFO
1745ee08997fSDmitry Kasatkin	bool
1746ee08997fSDmitry Kasatkin
17471da177e4SLinus Torvaldssource "drivers/crypto/Kconfig"
1748964f3b3bSDavid Howellssource crypto/asymmetric_keys/Kconfig
1749cfc411e7SDavid Howellssource certs/Kconfig
17501da177e4SLinus Torvalds
1751cce9e06dSHerbert Xuendif	# if CRYPTO
1752